

APPLICATION NOTE

AT11628: SAM D21 SERCOM I2C Configuration

ATSAMD21J18

Introduction

This application note explains the various features of SERCOM I2C in the Atmel®

SAM D21 microcontrollers and its configurations with example codes and

corresponding scope shots.

For demonstration purpose two SAM D21 Xplained Pro boards will be used.

Features

 Combined interface configurable as one of the following:

– I2C – Two-wire serial interface (SMbus compatible)

– SPI – Serial Peripheral Interface

– USART – Universal Synchronous/Asynchronous Receiver/Transmitter

 Single transmit buffer and double receive buffers

 Baud-rate generator

 Address match/mask logic

 Operational in all sleep modes

 Can be used with DMA (not supported in SAM D20 MCUs)

Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015
2

2

Table of Contents

1 Glossary ... 3

2 Pre-requisites .. 3

3 SERCOM Implementation in SAM D21 Microcontrollers .. 4

3.1 SERCOM Overview... 4

3.2 Block Diagram ... 4

3.3 Clocks .. 5

4 Hardware and Software Requirements .. 6

5 Application Demonstration ... 9

5.1 Basic Configuration ... 9

5.1.1 Main Clock .. 10

5.1.2 Master and Slave Clock .. 11

5.1.3 Clock Flow for Master and Slave .. 11

5.1.4 System Initialization .. 11

5.1.5 I2C Clock Initialization ... 11

5.1.6 I2C Pin Initialization ... 12

5.1.7 I2C Master Initialization ... 13

5.1.8 I2C Master Transaction ... 14

5.1.9 I2C Slave Initialization ... 20

5.1.10 I2C Slave Transaction ... 21

5.2 High Speed Configuration ... 28

5.2.1 Master and Slave Clock in High-speed Configuration .. 28

5.2.2 Clock Flow for Master and Slave .. 29

5.2.3 System Initialization .. 29

5.2.4 I2C clock Initialization .. 29

5.2.5 I2C Pin Initialization ... 29

5.2.6 I2C Master Initialization ... 30

5.2.7 I2C Master Transaction ... 31

5.2.8 I2C Slave Initialization ... 36

5.2.9 I2C Slave Transaction ... 37

5.3 Address Match and Mode Configuration ... 44

5.3.1 Address Match and Mask Mode ... 44

5.3.2 Master and Slave Clock .. 45

5.3.3 Clock Flow for Master and slave ... 45

5.3.4 System Initialization .. 45

5.3.5 I2C clock Initialization .. 45

5.3.6 I2C Pin Initialization ... 45

5.3.7 I2C Master Initialization ... 45

5.3.8 I2C Master Transaction ... 46

5.3.9 I2C Slave Initialization ... 51

5.3.10 I2C Slave Transaction ... 52

6 References ... 56

7 Revision History .. 57

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015

3

3

1 Glossary

SERCOM Serial communication interface

I2C Inter-Integrated Circuit

USART Universal asynchronous receiver/transmitter

SPI Serial communication interface

EDBG Embedded Debugger

IDE Integrated Development Environment

SCL Serial Clock Line

SDA Serial Data Line

SMBus System Management Bus

DMA Direct Memory Access

2 Pre-requisites

The solutions discussed in this document require basic familiarity with the following skills and technologies:

 Atmel Studio 6.2 or above

 ASF version 3.22.0 or above

 SAM D21 Xplained Pro kit

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015
4

4

3 SERCOM Implementation in SAM D21 Microcontrollers

Generally microcontrollers will have separate serial communication modules with different pinouts for each

module. Separate dedicated peripherals and user registers will be available for each module. For example

USART will be a separate peripheral with dedicated pins for its function and I2C will be a separate peripheral

with its own dedicated pins.

In SAM D microcontrollers, all the serial peripherals are designed into a single module as serial communication

interface (SERCOM). A SERCOM module can be either configured as USART or I2C or SPI selectable by user.

Each SERCOM will be assigned four pads from PAD0 to PAD3. The functionality of each pad is configurable

depending on the SERCOM mode used. Unused pads can be used for other purpose and the SERCOM

module will not control them unless it is configured to be used by the SERCOM module.

For example, SERCOM0 can be configured as USART mode with PAD0 as transmit pad and PAD1 as receive

pad. Other unused pads (PAD2 and PAD3) can be either used as GPIO pins or can be assigned to some other

peripherals. The assignment of SERCOM functionality for different pads is highly flexible making the SERCOM

module more advantageous compared to the typical serial communication peripheral implementation.

3.1 SERCOM Overview

The serial communication interface (SERCOM) can be configured to support three different modes: I2C, SPI,

and USART. Once configured and enabled, all SERCOM resources are dedicated to the selected mode.

The SERCOM serial engine consists of a transmitter and receiver, baud-rate generator and address matching

functionality. It can be configured to use either the internal generic clock or an external clock, making operation

in all sleep modes possible.

3.2 Block Diagram

Figure 3-1 depicts the block diagram of a SERCOM module. The module mainly consists of a serial engine

handling the actual data transfers and mode specific IPs implementing the corresponding protocol.

Figure 3-1. SERCOM Block Diagram

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015

5

5

3.3 Clocks

SERCOM module needs below clocks for its operation:

 SERCOM bus clock (APB clock)

 SERCOM CORE generic clock

 SERCOM SLOW generic clock

SERCOM bus clock (CLK_SERCOMx_APB) is used for reading and writing SERCOM registers by the CPU.

This clock is disabled by default and can be enabled or disabled in Power Manager (PM) module.

Two generic clocks are used by the SERCOM module namely GCLK_SERCOMx_CORE and

GCLK_SERCOMx_SLOW. The generic clocks are used for SERCOM’s operation. All the SERCOM

communication timings are based on the generic clocks.

The core clock (GCLK_SERCOMx_CORE) is required to clock the SERCOM while operating as a master,

while the slow clock (GCLK_SERCOMx_SLOW) is only required for certain functions like I2C timeouts.

Note: In this application note only the SERCOM bus clock (CLK_SERCOMx_APB) and core clock

(GCLK_SERCOMx_CORE) are used.

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015
6

6

4 Hardware and Software Requirements

The application demonstration require two SAM D21 Xplained Pro boards. One board will be configured as

master and other board as slave.

Figure 4-1. SAM D21 Xplained Pro Board

There are two USB ports on the SAM D21 Xplained Pro board – DEBUG USB and TARGET USB. For

debugging the target SAM D21 MCU using the Embedded debugger (EDBG), a Micro-B USB cable should be

connected between a host PC running Atmel Studio and the DEBUG USB port on the SAM D21 Xplained Pro

board.

Once the kit is successfully connected for the first time, the Windows® Task bar will pop up a message as

shown in Figure 4-2.

Figure 4-2. SAM D21 Xplained Pro Driver Installation

If the driver installation is proper, EDBG will be listed in the Device Manager as shown in Figure 4-3.

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015

7

7

Figure 4-3. Successful EDBG Driver Installation

Application codes are tested in Atmel Studio 6.2 with ASF version 3.22.0 and above. Two projects are needed

for implementing the functionalities; one for master and other for slave. GCC C ASF Board project from Atmel

Studio is used for the implementation.

To create an ASF board project for SAM D21 Xplained pro board, go to File menu → New → Project and

select “GCC C ASF Board project” in the new project wizard.

Figure 4-4. New project in Atmel Studio

Figure 4-5. ASF Board Project

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015
8

8

In the next window, select the device family as "SAM D", scroll down, and select the device "ATSAMD21J18A"

and Board as "SAM D21 Xplained PRO - ATSAMD21J18A", and click on "OK" to create the new project.

Figure 4-6. Device and Board Selection

The new project by default has a minimal application that will turn ON or OFF the LED on SAM D21 Xplained

Pro based on the state of the SW0 push button. Pressing the SW0 button will turn the LED ON and releasing

the button will turn the LED OFF. To verify that the SAM D21 Xplained Pro is connected correctly this

application can be run and checked whether it shows the expected output.

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015

9

9

5 Application Demonstration

This section will demonstrate the various features of the SERCOM I2C module of SAM D21 with different

example codes. Following are the examples demonstrated in this application note.

 Basic Configuration

 High speed configuration

 Address mode configuration

Note: This section assumes that the user has previous knowledge on programming/debugging a SAM D21

device using Atmel Studio IDE.

For easier understanding, the examples will use register level coding for SERCOM module configuration. The

clock configuration will, however, use ASF functions.

 Since this application note is demonstrated using the ASF template project,

build errors are expected when compiling the project with SERCOM drivers included from ASF.

This because ASF SERCOM drivers will predefine all the SERCOM handlers which will make

redefinition error as SERCOM handlers are defined again as per the application note.

5.1 Basic Configuration

In Basic configuration application, the master will transmit a data buffer of few bytes to the slave and the slave

will re-transmit the same data buffer to the master.

Basic configuration application performs the following actions:

 Master write (Slave read)

 Slave write (Master read

SERCOM I2C lines (PA08 - SDA, PA09 - SCL) of the two SAM D21 Xplained Pro boards should be connected

through EXT2 connector using a pair of wires as shown in Figure 5-1.

Note that the same I2C lines (PA08 and PA09) are available on all three EXT headers in SAM D21 Xplained

Pro board so any of the three headers can be used for this connection.

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015
1

0

10

Figure 5-1. Block Diagram

The SAM D21 Xplained Pro board has on-board pull-up resistors on I2C lines with 4.7kΩ resistance value and

with reference designators R305 and R306.

Note: To get better I2C signal timings the 4.7kΩ pull-up resistors on both the master and slave SAM D21

Xplained Pro boards have been replaced by 2kΩ resistors and all the modes have been tested with

this pull-up configuration.

In Basic configuration section, both master and slave communicates at the fast mode plus – 1MHz speed.

Following are the common function calls used in master and slave applications in basic configuration example:

 system_init()

 i2c_clock_init()

 i2c_pin_init()

Detailed explanation on each function will be provided in the upcoming sections. At the end of each section a

complete code will be provided for reference.

The Complete Project solution for all the applications can be found in the zipped folder attachment that comes

with this application note.

5.1.1 Main Clock

In SAM D21 devices, the output from GCLK Generator 0 will be used as the main clock. The Generic Clock

Generator 0, also called GCLK_MAIN, is the clock feeding the Power Manager used to generate synchronous

clocks. The GCLK Generator 0 can have one of the SYSCTRL oscillators as its source clock.

By default, after reset, 1MHz clock from OSC8M (prescaler set to 8) is used as the clock source for GCLK

Generator 0 and hence the main clock. However, as per the default ASF clock configuration, 8MHz clock from

OSC8M (prescaler set to 1) is used as the clock source for GCLK Generator 0.

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015

1
1

11

5.1.2 Master and Slave Clock

The master and slave application uses OSC8M as the clock source for Generator 0. The following lines in the

conf_clocks.h will initialize the source clock for generator 0.

/* Configure GCLK generator 0 (Main Clock) */
define CONF_CLOCK_GCLK_0_ENABLE true
define CONF_CLOCK_GCLK_0_RUN_IN_STANDBY false
define CONF_CLOCK_GCLK_0_CLOCK_SOURCE SYSTEM_CLOCK_SOURCE_OSC8M
define CONF_CLOCK_GCLK_0_PRESCALER 1
define CONF_CLOCK_GCLK_0_OUTPUT_ENABLE false

The flash wait state can be set to 0 as the CPU will not run in maximum speed in this example.

5.1.3 Clock Flow for Master and Slave

Figure 5-2. Clock Flow Diagram for Master and Slave

5.1.4 System Initialization

system_init() is an ASF function used to configure the clock sources and GCLK generators as per the

settings in the conf_clocks.h file. The main clock will be configured as stated in the Section 5.1.2. It also

initializes the board hardware of SAM D21 Xplained Pro and the event system.

5.1.5 I2C Clock Initialization

i2c_clock_init() function configures the peripheral bus clock (APB clock) and generic clock for the

SERCOM I2C module. SERCOM2 is used in both the master and slave boards.

void i2c_clock_init()
{

struct system_gclk_chan_config gclk_chan_conf;
uint32_t gclk_index = SERCOM2_GCLK_ID_CORE;
/* Turn on module in PM */
system_apb_clock_set_mask(SYSTEM_CLOCK_APB_APBC, PM_APBCMASK_SERCOM2);
/* Turn on Generic clock for I2C */
system_gclk_chan_get_config_defaults(&gclk_chan_conf);
/* Default is generator 0. Other wise need to configure like below */
/* gclk_chan_conf.source_generator = GCLK_GENERATOR_1; */
system_gclk_chan_set_config(gclk_index, &gclk_chan_conf);
system_gclk_chan_enable(gclk_index);

}

 A structure variable gclk_chan_conf is declared. This structure is used to configure the generic clock for

the SERCOM used.

 SERCOM2 core clock “SERCOM2_GCLK_ID_CORE” and bus clock “SYSTEM_CLOCK_APB_APBC” are configured

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015
1

2

12

 Generic clock “SERCOM2_GCLK_ID_CORE” uses GCLK Generator 0 as source generator (generic clock

source can be changed to any other GCLK Generators as per user needs). So the SERCOM2 module is

clocked at 48MHz from DFLL48M.

 system_gclk_chan_set_config will set the generic clock channel configuration

 system_gclk_chan_enable will enable the generic clock “SERCOM2_GCLK_ID_CORE”

5.1.6 I2C Pin Initialization

i2c_pin_init() function will initialize pins PA08 and PA09 to the SERCOM-Alternate peripheral function (D).

void i2c_pin_init()
{

/* PA08 and PA09 set into peripheral function D*/
pin_set_peripheral_function(PINMUX_PA08D_SERCOM2_PAD0);
pin_set_peripheral_function(PINMUX_PA09D_SERCOM2_PAD1);

}

i2c_pin_init function calls the pin_set_peripheral_function to assign I/O lines PA08 and PA09 to the

SERCOM peripheral function.

static void pin_set_peripheral_function(uint32_t pinmux)
{

uint8_t port = (uint8_t)((pinmux >> 16)/32);
PORT->Group[port].PMUX[((pinmux >> 16) - (port*32))/2].reg &= ~(0xF << (4 * ((pinmux >>
16) & 0x01u)));
0x0000FFFF) << (4 * ((pinmux >> 16) & 0x01u)));
PORT->Group[port].PINCFG[((pinmux >> 16) - (port*32))].bit.PMUXEN = 1;

}

The function pin_set_peripheral_function() will switch the GPIO functionality of an I/O pin to peripheral

functionality and assigns the given peripheral function to the pin. The function takes a 32-bit pinmux value as

its argument. The 32-bit pinmux value contains the pin number in its 16-bit MSB part and the peripheral

function number in its 16-bit LSB part. So each 32-bit pinmux value is unique per pin per peripheral function.

The function first identifies the PORT group from the pin number (MSB 16-bit) and updates the PMUX register

with the peripheral number (LSB 16-bit).

SERCOM2 PAD0 will be SDA line and SERCOM2 PAD1 will be SCL line as per the SERCOM I2C pad

assignment shown in Table 5-1.

Table 5-1. Signal Description

Signal name Type Description

PAD[0] Digital I/O SDA

PAD[1] Digital I/O SDL

PAD[2] Digital I/O SDA_OUT (4-wire)

PAD[3] Digital I/O SDC_OUT (4-wire)

Note: System initialization, I2C clock initialization, and I2C pin initialization are common for both master and slave. For

the slave part the same will be applicable.

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015

1
3

13

5.1.7 I2C Master Initialization

The i2c_master_init function will initialize the I2C master function by configuring the control registers, baud

registers, and setting the respective interrupt enable bits.

void i2c_master_init()
{

/* By setting the SPEED bit field as 0x01, I2C Master runs at Fast mode + - 1MHz,
 By setting the SDAHOLD bit field as 0x02, SDA hold time is configured for 300-600ns,
 By setting the RUNSTDBY bit as 0x01,Generic clock is enabled in all sleep modes,
 any interrupt can wake up the device,
 SERCOM2 is configured as an I2C Master by writing the MODE bitfield as 0x5 */
SERCOM2->I2CM.CTRLA.reg = SERCOM_I2CM_CTRLA_SPEED (FAST_MODE_PLUS) |

SERCOM_I2CM_CTRLA_SDAHOLD(0x2) |
SERCOM_I2CM_CTRLA_RUNSTDBY |
SERCOM_I2CM_CTRLA_MODE_I2C_MASTER;

/* smart mode enabled by setting the bit SMEN as 1 */
SERCOM2->I2CM.CTRLB.reg = SERCOM_I2CM_CTRLB_SMEN;
/* synchronization busy */
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* BAUDLOW is non-zero, and baud register is loaded */
SERCOM2->I2CM.BAUD.reg = SERCOM_I2CM_BAUD_BAUD(11) | SERCOM_I2CM_BAUD_BAUDLOW(22);
/* synchronization busy */
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* SERCOM2 peripheral enabled by setting the ENABLE bit as 1*/
SERCOM2->I2CM.CTRLA.reg |= SERCOM_I2CM_CTRLA_ENABLE;
/* SERCOM Enable synchronization busy */
while((SERCOM2->I2CM.SYNCBUSY.reg & SERCOM_I2CM_SYNCBUSY_ENABLE));
/* bus state is forced into idle state */
SERCOM2->I2CM.STATUS.bit.BUSSTATE = 0x1;
/* synchronization busy */
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* Both master on bus and slave on bus interrupt is enabled */
SERCOM2->I2CM.INTENSET.reg = SERCOM_I2CM_INTENSET_MB | SERCOM_I2CM_INTENSET_SB;
/* SERCOM2 handler enabled */
system_interrupt_enable(SERCOM2_IRQn);

}

 The CTRLA register is used to configure the I2C speed, SDA hold time, and I2C mode. In the above

function I2C speed is configured as Fast-mode plus, SDA hold time is set for 300 - 600ns. I2C is

configured as master and the I2C module is made to run even in standby sleep mode.

 CTRLB register is used to write the commands and to enable Smart Mode. In the above function SMEN

– Smart Mode Enable bit is set.

 For BAUD.BAUDLOW non-zero, the following formula is used to determine the SCL frequency, FSCL =

fGCLK/(10 + BAUD +BAUDLOW + fGCLK TRISE)

FSCL = I2C clock frequency

fGCLK = SERCOM generic clock frequency

BAUD = BAUD register value

BAUDLOW = BAUD LOW register value

TRISE = Rise time for I2C in the defined mode

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015
1

4

14

Rise time for the respective speed modes can be found in section Electrical Characteristics → Timing

Characteristics → SERCOM I2C Mode Timing in the SAM D21 device datasheet.

In this configuration, the I2C runs at the speed of 1MHz and the worst case rise time for fast mode plus is

100ns.

From the equation:

BAUD + BAUDLOW = fGCLK/FSCL – (fGCLK TRISE) – 10

= 48M/1M – (48M x 100ns) – 10

= 33.2

Note: For Fast-mode plus the nominal high to low SCL ratio is 1 to 2 and BAUD should be set accordingly. At

a minimum, BAUD.BAUD and/or BAUD.BAUDLOW must be non-zero.

So the BAUD value is set to 11 and BAUDLOW value is set to 22.

Apart from high-speed mode, the same equation given above can be used for BAUD-BAUDLOW calculation

for other speed modes like standard mode and fast mode with appropriate rise time taken from the SERCOM

I2C Mode Timing section in the datasheet as mentioned earlier.

 CTRLA, CTRLB, and BAUD registers can be written only when the I2C is disabled because these

registers are enable protected. So once configuring these registers the I2C is enabled.

 As CLK_SERCOMx_APB and GCLK_SERCOMx_CORE are not synchronized and some registers

needs synchronization when they are accessed. CTRLA register is Write-Synchronized so the

application should wait until the synchronization busy flag (SYSOP bit in SYNCBUSY register) is cleared

after performing a write to this register.

 The I2C bus-state is unknown when the master is disabled. During this time writing 0x1 to BUSSTATE

forces the bus state into the idle state.

 Each peripheral has a dedicated interrupt line, which is connected to the Nested Vector Interrupt

Controller in the Cortex®-M0+ core. In the above function SERCOM2 interrupt request line (IRQ - 11) is

enabled.

 The INTENSET register is used to enable the required SERCOM interrupts. In the above function SB –

Slave on bus and MB – Master on bus interrupts are enabled

5.1.8 I2C Master Transaction

The i2c_master_transact function is used to perform a transaction with the connected slave device.

void i2c_master_transact(void)
{

i = 0;
/* Acknowledge section is set as ACK signal by

 writing 0 in ACKACT bit */
SERCOM2->I2CM.CTRLB.reg &= ~SERCOM_I2CM_CTRLB_ACKACT;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* slave address with Write(0) */
SERCOM2->I2CM.ADDR.reg = (SLAVE_ADDR << 1) | 0;
while(!tx_done);
i = 0;
/* Acknowledge section is set as ACK signal by

 writing 0 in ACKACT bit */
SERCOM2->I2CM.CTRLB.reg &= ~SERCOM_I2CM_CTRLB_ACKACT;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* slave address with read (1) */

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015

1
5

15

SERCOM2->I2CM.ADDR.reg = (SLAVE_ADDR << 1) | 1;
while(!rx_done);
/*interrupts are cleared */
SERCOM2->I2CM.INTENCLR.reg = SERCOM_I2CM_INTENCLR_MB | SERCOM_I2CM_INTENCLR_SB;

}

 In master application a global variable for iteration count and two Boolean variables to indicate

transmission done status and reception done status are used

uint8_t i
volatile bool tx_done = false, rx_done = false

 In CTRLB register, ACKACT field is used to define the I2C master’s acknowledge behavior after a data

byte is received from the I2C slave. The acknowledge action will be executed when a command is written

to CTRLB.CMD bits or after a transfer with Smart Mode is enabled.

 In the above function, ACKACT is set to 0, so ACK will be sent by master after a data byte is received

 In the application we are using 7-bit addressing mode. The slave address is written into the Address

register, which initiates a transfer by sending a start condition followed by address on the I2C line.

 The slave address is shifted by 1 bit and LSB of ADDR register is written as 0 because application is

going to write/transmit the data to slave

 Once placing the address in the ADDR register, the address will be kept in Data register and transferred

to Slave

 The Boolean flag variable tx_done is initialized as false, so it remains in the while loop until SERCOM2

handler sets it to true indicating the completion of transfer

while(!tx_done);

 Once transmitting the address of slave and then after receiving the ACK/NACK, the Master on Bus (MB)

interrupt will be set and SERCOM2_Handler will be serviced

if (SERCOM2->I2CM.INTFLAG.bit.MB)
{

if (i == BUF_SIZE)
{ /* After transferring the last byte stop condition will be sent */

SERCOM2->I2CM.CTRLB.bit.CMD = 0x3;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
tx_done = true;
i = 0;

}
else
{ /* placing the data from transmitting buffer to DATA register*/

SERCOM2->I2CM.DATA.reg = tx_buf[i++];
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);

}
}

 Buffer size has been set by macro BUF_SIZE

 In SERCOM2 handler it will check for Master on bus interrupt set condition and enters that loop

 In that loop, variable i is checked with the BUF_SIZE. If i is not equal to BUF_SIZE the transmit buffer data

will be placed in the data register.

 Each time when the placed data is successfully transferred on the bus, the MB interrupt will be triggered

 Once i value equals the BUF_SIZE, STOP condition will be sent and Boolean variable tx_done is set to

true condition

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015
1

6

16

 Now the code execution will reach the i2c_master_transact function. tx_done is true so it will come out

of while loop.

 Now the application is going to read the data from the slave

 Again the variable i is set to 0

 In the address register, again address value is loaded by shifting it left by one bit and LSB of ADDR

register is set as 1 for read operation

 Once placing the address (Address + R) in the ADDR register, the address will be kept in data register

and transferred to slave. Then slave will acknowledge the address and since it is master read operation

so the slave device will send the data to master and now slave on bus interrupt condition will be set in

master.

if (SERCOM2->I2CM.INTFLAG.bit.SB)
{

if (i == (BUF_SIZE-1))
{ /* NACK should be sent before reading the last byte */

SERCOM2->I2CM.CTRLB.reg |= SERCOM_I2CM_CTRLB_ACKACT;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
SERCOM2->I2CM.CTRLB.bit.CMD = 0x3;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
rx_buf[i++] = SERCOM2->I2CM.DATA.reg;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
rx_done = true;

}
else
{

SERCOM2->I2CM.CTRLB.reg &= ~SERCOM_I2CM_CTRLB_ACKACT;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
rx_buf[i++] = SERCOM2->I2CM.DATA.reg;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* sending ACK after reading each byte */
SERCOM2->I2CM.CTRLB.bit.CMD = 0x2;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);

}
}

 The received data byte will be read into the read buffer rx_buf and acknowledgement – ACK will be sent

 Last data byte should be read only after giving the STOP condition and NACK should be sent by the

Master

 In CTRLB register the Acknowledge action is set as NACK for last byte read and STOP condition is sent

 After sending the STOP condition the last byte is read from DATA register into read buffer

 Now the code execution will reach the i2c_master_transact function and clears the interrupt enable bits

Note: CTRLA, CTRLB, ADDR, DATA registers are write synchronized so SYSOP bit in the SYNCBUSY

register should be checked after writing these registers.

The final application “Basic Configuration” in main.c file will be as below for MASTER:

#include <asf.h>

#define STANDARD_MODE_FAST_MODE 0x0
#define FAST_MODE_PLUS 0X01
#define HIGHSPEED_MODE 0X02
#define SLAVE_ADDR 0x12

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015

1
7

17

#define BUF_SIZE 3

/* Function Prototype */
void i2c_clock_init(void);
void i2c_pin_init(void);
void i2c_master_init(void);
void i2c_master_transact(void);
uint32_t calculate_baud(uint32_t, uint32_t);

uint8_t tx_buf[BUF_SIZE] = {1, 2, 3};
uint8_t rx_buf[BUF_SIZE];
uint8_t i;
volatile bool tx_done = false, rx_done = false;

/* I2C handler */
void SERCOM2_Handler(void)

{
/* Master on bus interrupt checking */
if (SERCOM2->I2CM.INTFLAG.bit.MB)
{

if (i == BUF_SIZE)
{ /* After transferring the last byte stop condition will be sent */

SERCOM2->I2CM.CTRLB.bit.CMD = 0x3;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
tx_done = true;
i = 0;

}
else
{ /* placing the data from transmitting buffer to DATA register*/

SERCOM2->I2CM.DATA.reg = tx_buf[i++];
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);

}
}
/* Slave on bus interrupt checking */
if (SERCOM2->I2CM.INTFLAG.bit.SB)
{

if (i == (BUF_SIZE-1))
{ /* NACK should be sent before reading the last byte */

SERCOM2->I2CM.CTRLB.reg |= SERCOM_I2CM_CTRLB_ACKACT;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
SERCOM2->I2CM.CTRLB.bit.CMD = 0x3;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
rx_buf[i++] = SERCOM2->I2CM.DATA.reg;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
rx_done = true;

}
else
{

SERCOM2->I2CM.CTRLB.reg &= ~SERCOM_I2CM_CTRLB_ACKACT;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
rx_buf[i++] = SERCOM2->I2CM.DATA.reg;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* sending ACK after reading each byte */
SERCOM2->I2CM.CTRLB.bit.CMD = 0x2;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);

}
}

}

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015
1

8

18

/*Assigning pin to the alternate peripheral function*/
static inline void pin_set_peripheral_function(uint32_t pinmux)
{

uint8_t port = (uint8_t)((pinmux >> 16)/32);
PORT->Group[port].PINCFG[((pinmux >> 16) - (port*32))].bit.PMUXEN = 1;
PORT->Group[port].PMUX[((pinmux >> 16) - (port*32))/2].reg &= ~(0xF << (4 * ((pinmux >>
16) & 0x01u)));
PORT->Group[port].PMUX[((pinmux >> 16) - (port*32))/2].reg |= (uint8_t)((pinmux &
0x0000FFFF) << (4 * ((pinmux >> 16) & 0x01u)));

}

/* calculating the BAUD value using Fgclk,Fscl,Trise
 FSCL =fGCLK / (10 + BAUD +BAUDLOW + fGCLKTRISE)*/
uint32_t calculate_baud(uint32_t fgclk, uint32_t fscl)
{

float f_temp, f_baud;
f_temp = ((float)fgclk/(float)fscl) - (((float)fgclk/(float)1000000)*0.3);
f_baud = (f_temp/2)-5;
return ((uint32_t)f_baud);

}
/* SERCOM clock and peripheral bus clock initialization */
void i2c_clock_init()
{

struct system_gclk_chan_config gclk_chan_conf;
uint32_t gclk_index = SERCOM2_GCLK_ID_CORE;
/* Turn on module in PM */
system_apb_clock_set_mask(SYSTEM_CLOCK_APB_APBC, PM_APBCMASK_SERCOM2);
/* Turn on Generic clock for I2C */
system_gclk_chan_get_config_defaults(&gclk_chan_conf);
/* Default is generator 0. Other wise need to configure like below */
/* gclk_chan_conf.source_generator = GCLK_GENERATOR_1; */
system_gclk_chan_set_config(gclk_index, &gclk_chan_conf);
system_gclk_chan_enable(gclk_index);

}
/* I2C pin initialization */
void i2c_pin_init()
{

/* PA08 and PA09 set into peripheral function D*/
pin_set_peripheral_function(PINMUX_PA08D_SERCOM2_PAD0); // SDA
pin_set_peripheral_function(PINMUX_PA09D_SERCOM2_PAD1); // SCL

}

/* I2C master initialization */
void i2c_master_init()
{

/* By setting the SPEED bit field as 0x01, I2C Master runs at Fast mode + - 1MHz,
 By setting the SDAHOLD bit field as 0x02, SDA hold time is configured for 300-600ns,
 By setting the RUNSTDBY bit as 0x01,Generic clock is enabled in all sleep modes,any
interrupt can wake up the device,
 SERCOM2 is configured as an I2C Master by writing the MODE bitfield as 0x5 */
SERCOM2->I2CM.CTRLA.reg = SERCOM_I2CM_CTRLA_SPEED (FAST_MODE_PLUS) |

SERCOM_I2CM_CTRLA_SDAHOLD(0x2) |
SERCOM_I2CM_CTRLA_RUNSTDBY |
SERCOM_I2CM_CTRLA_MODE_I2C_MASTER;

/* smart mode enabled by setting the bit SMEN as 1 */
SERCOM2->I2CM.CTRLB.reg = SERCOM_I2CM_CTRLB_SMEN;
/* synchronization busy */
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015

1
9

19

/* BAUDLOW is non-zero, and baud register is loaded */
SERCOM2->I2CM.BAUD.reg = SERCOM_I2CM_BAUD_BAUD(11) | SERCOM_I2CM_BAUD_BAUDLOW(22);
/* synchronization busy */
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* SERCOM2 peripheral enabled by setting the ENABLE bit as 1*/
SERCOM2->I2CM.CTRLA.reg |= SERCOM_I2CM_CTRLA_ENABLE;
/* SERCOM Enable synchronization busy */
while((SERCOM2->I2CM.SYNCBUSY.reg & SERCOM_I2CM_SYNCBUSY_ENABLE));
/* bus state is forced into idle state */
SERCOM2->I2CM.STATUS.bit.BUSSTATE = 0x1;
/* synchronization busy */
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* Both master on bus and slave on bus interrupt is enabled */
SERCOM2->I2CM.INTENSET.reg = SERCOM_I2CM_INTENSET_MB | SERCOM_I2CM_INTENSET_SB;
/* SERCOM2 handler enabled */
system_interrupt_enable(SERCOM2_IRQn);

}
/* I2C master Transaction */
void i2c_master_transact(void)
{

i = 0;
/* Acknowledge section is set as ACK signal by

 writing 0 in ACKACT bit */
SERCOM2->I2CM.CTRLB.reg &= ~SERCOM_I2CM_CTRLB_ACKACT;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* slave address with Write(0) */
SERCOM2->I2CM.ADDR.reg = (SLAVE_ADDR << 1) | 0;
while(!tx_done);
i = 0;
/* Acknowledge section is set as ACK signal by

 writing 0 in ACKACT bit */
SERCOM2->I2CM.CTRLB.reg &= ~SERCOM_I2CM_CTRLB_ACKACT;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* slave address with read (1) */
SERCOM2->I2CM.ADDR.reg = (SLAVE_ADDR << 1) | 1;
while(!rx_done);
/*interrupts are cleared */
SERCOM2->I2CM.INTENCLR.reg = SERCOM_I2CM_INTENCLR_MB | SERCOM_I2CM_INTENCLR_SB;

}

int main (void)
{

system_init();

i2c_clock_init();

i2c_pin_init();

i2c_master_init();

i2c_master_transact();

while(1);

}

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015
2

0

20

5.1.9 I2C Slave Initialization

The i2c_slave_init function will initialize the I2C slave function by configuring the control registers, address

register, and setting the respective interrupt enable bits.

void i2c_slave_init()
{

/* By setting the SPEED bit field as 0x01, I2C communication runs at 1MHz,
 By setting the SDAHOLD bit field as 0x02, SDA hold time is configured for 300-600ns,
 By setting the RUNSTDBY bit as 0x01,Generic clock is enabled in all sleep modes,
 any interrupt can wake up the device,
 SERCOM2 is configured as an I2C Slave by writing the MODE bitfield as 0x04 */
SERCOM2->I2CS.CTRLA.reg = SERCOM_I2CS_CTRLA_SPEED (FAST_MODE_PLUS) |
 SERCOM_I2CS_CTRLA_SDAHOLD(0x2) |
 SERCOM_I2CM_CTRLA_RUNSTDBY |
 SERCOM_I2CS_CTRLA_MODE_I2C_SLAVE;
/* smart mode enabled by setting the bit SMEN as 1 */
SERCOM2->I2CS.CTRLB.reg = SERCOM_I2CS_CTRLB_SMEN;
/* writing the slave address into ADDR register */
SERCOM2->I2CS.ADDR.reg = SLAVE_ADDR << 1 ;
/* Address match interrupt, Data ready interrupt,stop received
interrupts are enabled */
SERCOM2->I2CS.INTENSET.reg = SERCOM_I2CS_INTENSET_PREC | SERCOM_I2CS_INTENSET_AMATCH |
SERCOM_I2CS_INTENSET_DRDY;
/* SERCOM2 peripheral enabled by setting the ENABLE bit as 1*/
SERCOM2->I2CS.CTRLA.reg |= SERCOM_I2CS_CTRLA_ENABLE;
/* SERCOM enable synchronization busy */
while((SERCOM2->I2CS.SYNCBUSY.reg & SERCOM_I2CS_SYNCBUSY_ENABLE));
/* SERCOM2 handler enabled */
system_interrupt_enable(SERCOM2_IRQn);

}

 I2C slave CTRLA register is used to configure the I2C speed, SDA Hold time, and the I2C mode of the

device. In the above function, I2C runs at fast mode plus (1MHz) and is configured to have a SDA hold

time of 300 - 600ns, and device runs as I2C slave mode. SERCOM module is made to run even in

standby sleep mode.

 CTRLB register is used to configure the acknowledge action, user to write commands during transaction

and to enable smart mode. In the above function Smart Mode is enabled.

 ADDR register is used to hold the address of slave

 The INTENSET register is used to enable the required interrupts. In the above function, address match

interrupt, stop received interrupt and data ready interrupts are enabled.

 CTRLA, CTRLB, and BAUD registers can be written only when the I2C is disabled because these

registers are enable protected. So once configuring these registers, the I2C is enabled.

 Due to the asynchronicity between CLK_SERCOMx_APB and GCLK_SERCOMx_CORE, some

registers must be synchronized when accessed. ENABLE bit in CTRLA register is Write-Synchronized so

the application should wait until the synchronization busy flag (ENABLE bit in SYNCBUSY register) is

cleared after performing a write to this register.

 Each peripheral has a dedicated interrupt line, which is connected to the Nested Vector Interrupt

Controller in the Cortex-M0+ core. In the above function SERCOM2 interrupt request line (IRQ - 11) is

enabled.

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015

2
1

21

5.1.10 I2C Slave Transaction

SERCOM2 Handler will serve the I2C slave transaction function.

void SERCOM2_Handler(void)
{

/* Check for Address match interrupt */
if(SERCOM2->I2CS.INTFLAG.bit.AMATCH)
{

/* clearing the Address match interrupt */
SERCOM2->I2CS.INTFLAG.bit.AMATCH = 1;

}

/* Data Ready interrupt check */
if(SERCOM2->I2CS.INTFLAG.bit.DRDY)
{
/* Checking for direction,
DIR - 0 for slave read,
DIR - 1 for slave write */
if (SERCOM2->I2CS.STATUS.bit.DIR)
{

/* Slave write */
if (i == (BUF_SIZE-1))
{

SERCOM2->I2CS.DATA.reg = rx_buff[i++];
/* wait for stop condition */
SERCOM2->I2CS.CTRLB.bit.CMD = 0x2;
i = 0;

}
else
{
 SERCOM2->I2CS.DATA.reg = rx_buff[i++];

 /* Execute a byte read operation followed by ACK/NACK reception by master*/
SERCOM2->I2CS.CTRLB.bit.CMD = 0x3;

}
}
else
{

/* Slave read */
if (i == (BUF_SIZE-1))
{

SERCOM2->I2CS.CTRLB.bit.ACKACT = 0;

/* Execute acknowledge action succeeded by waiting for any start (S/Sr) condition */
SERCOM2->I2CS.CTRLB.bit.CMD = 0x2;

}
else
{

rx_buff[i++] = SERCOM2->I2CS.DATA.reg;
SERCOM2->I2CS.CTRLB.bit.ACKACT = 0;

/* Execute acknowledge action succeeded by reception of next byte to master*/
SERCOM2->I2CS.CTRLB.bit.CMD = 0x3;
}

}
}

if (SERCOM2->I2CS.INTFLAG.bit.PREC)
{

SERCOM2->I2CS.INTFLAG.bit.PREC = 1;

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015
2

2

22

if (!SERCOM2->I2CS.STATUS.bit.DIR)
{

rx_buff[i++] = SERCOM2->I2CS.DATA.reg;
}
i = 0;

}

}

 In the SERCOM2 handler, three interrupt conditions are checked:

– Address match interrupt

– Data Ready interrupt

– Stop Interrupt

 Address match interrupt flag is set when the received address matches the configured slave address.

Clearing the flag by writing one to it will automatically send the configured acknowledge action when

smart mode is enabled.

 Data Ready interrupt is set when I2C slave byte needs to be transmitted or received

 In I2C status register, DIR bit will be set for master read operation and cleared for master write operation

 When master transmits the buffer data, code will enter into the below loop of slave SERCOM2 handler

/* Slave read */
if (i == (BUF_SIZE-1))
{

SERCOM2->I2CS.CTRLB.bit.ACKACT = 0;

/* Execute acknowledge action succeeded by waiting for any start (S/Sr) condition */
SERCOM2->I2CS.CTRLB.bit.CMD = 0x2;
i = 0;

}
else
{

rx_buff[i++] = SERCOM2->I2CS.DATA.reg;
SERCOM2->I2CS.CTRLB.bit.ACKACT = 0;

/* Execute acknowledge action succeeded by reception of next byte to master*/

SERCOM2->I2CS.CTRLB.bit.CMD = 0x3;
}

 Once receiving the data byte in the DATA register, it will be copied into receive buffer rx_buff

 Acknowledgement action (ACK) for each byte should be sent by the slave. After receiving, a byte slave

sends the ACK by writing command value 0x3 to CMD bits in CTRLB register. Command value 0x3 is

used to send acknowledge action followed by next byte reception.

 For the last data byte, command value 0x2 is written to CMD bits in CTRLB register, which waits for a

STOP/Repeated START condition. The last data received should only be read after receiving a STOP

condition.

 Inside STOP interrupt condition, the application will clear the STOP interrupt flag and read the last

received data into the receive buffer in master write mode

if (SERCOM2->I2CS.INTFLAG.bit.PREC)
{

SERCOM2->I2CS.INTFLAG.bit.PREC = 1;

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015

2
3

23

if (!SERCOM2->I2CS.STATUS.bit.DIR)
{

rx_buff[i++] = SERCOM2->I2CS.DATA.reg;
}
i = 0;

}

 Below code is for the master read operation:

if (SERCOM2->I2CS.STATUS.bit.DIR)
{

/* Slave write */
if (i == (BUF_SIZE-1))
{

SERCOM2->I2CS.DATA.reg = rx_buff[i++];
/* wait for stop condition */
SERCOM2->I2CS.CTRLB.bit.CMD = 0x2;
i = 0;

}
else
{

SERCOM2->I2CS.DATA.reg = rx_buff[i++];
/* Execute a byte read operation followed by ACK/NACK reception by master */

SERCOM2->I2CS.CTRLB.bit.CMD = 0x3;
}

}

 Received data from the master will be in the receive buffer rx_buff

 In master read operation, receive buffer data i.e.data byte which received from the master is transmitted

by slave to master by placing in the DATA register

 Once writing the data byte, the command is set to 0x3 for executing a byte read operation by master

followed by ACK/NACK reception by slave

 For the last byte transfer, after writing the last data byte stop command will be placed in command

register

The final application “Basic Configuration” in main.c file will be as below for SLAVE:

#include <asf.h>
#define STANDARD_MODE_FAST_MODE 0x0
#define FAST_MODE_PLUS 0X01
#define HIGHSPEED_MODE 0X02
#define SLAVE_ADDR 0x12
#define BUF_SIZE 3

/* Function Prototype */
void i2c_clock_init(void);
void i2c_pin_init(void);
void i2c_slave_init(void);
uint8_t i = 0;
uint8_t rx_buff[BUF_SIZE];

/* SERCOM2 I2C handler */
void SERCOM2_Handler(void)
{
/* Check for Address match interrupt */
if(SERCOM2->I2CS.INTFLAG.bit.AMATCH)

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015
2

4

24

{
/* clearing the Address match interrupt */
SERCOM2->I2CS.INTFLAG.bit.AMATCH = 1;

}

/* Data Ready interrupt check */
if(SERCOM2->I2CS.INTFLAG.bit.DRDY)
{
/* Checking for direction,
DIR - 0 for slave read,
DIR - 1 for slave write */
if (SERCOM2->I2CS.STATUS.bit.DIR)
{

/* Slave write */
if (i == (BUF_SIZE-1))
{

SERCOM2->I2CS.DATA.reg = rx_buff[i++];
/* wait for stop condition */
SERCOM2->I2CS.CTRLB.bit.CMD = 0x2;
i = 0;

}
else
{

SERCOM2->I2CS.DATA.reg = rx_buff[i++];
/* Execute a byte read operation followed by ACK/NACK reception by master */

SERCOM2->I2CS.CTRLB.bit.CMD = 0x3;
}

}
else
{

/* Slave read */
if (i == (BUF_SIZE-1))
{

SERCOM2->I2CS.CTRLB.bit.ACKACT = 0;
/* Execute acknowledge action succeeded by waiting for any start (S/Sr) condition */

SERCOM2->I2CS.CTRLB.bit.CMD = 0x2;
}
else
{

rx_buff[i++] = SERCOM2->I2CS.DATA.reg;
SERCOM2->I2CS.CTRLB.bit.ACKACT = 0;

/* Execute acknowledge action succeeded by reception of next byte to master*/
SERCOM2->I2CS.CTRLB.bit.CMD = 0x3;

}
}
}
if (SERCOM2->I2CS.INTFLAG.bit.PREC)
{

SERCOM2->I2CS.INTFLAG.bit.PREC = 1;
if (!SERCOM2->I2CS.STATUS.bit.DIR)
{

rx_buff[i++] = SERCOM2->I2CS.DATA.reg;
}
i = 0;

}
}

/*Assigning pin to the alternate peripheral function*/
static inline void pin_set_peripheral_function(uint32_t pinmux)

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015

2
5

25

{
uint8_t port = (uint8_t)((pinmux >> 16)/32);
PORT->Group[port].PINCFG[((pinmux >> 16) - (port*32))].bit.PMUXEN = 1;
PORT->Group[port].PMUX[((pinmux >> 16) - (port*32))/2].reg &= ~(0xF << (4 * ((pinmux >>
16) & 0x01u)));
PORT->Group[port].PMUX[((pinmux >> 16) - (port*32))/2].reg |= (uint8_t)((pinmux &
0x0000FFFF) << (4 * ((pinmux >> 16) & 0x01u)));

}
/* SERCOM clock and peripheral bus clock initialization */
void i2c_clock_init()
{

struct system_gclk_chan_config gclk_chan_conf;
uint32_t gclk_index = SERCOM2_GCLK_ID_CORE;
/* Turn on module in PM */
system_apb_clock_set_mask(SYSTEM_CLOCK_APB_APBC, PM_APBCMASK_SERCOM2);
/* Turn on Generic clock for I2C */
system_gclk_chan_get_config_defaults(&gclk_chan_conf);
/* Default is generator 0. Other wise need to configure like below */
/* gclk_chan_conf.source_generator = GCLK_GENERATOR_1; */
system_gclk_chan_set_config(gclk_index, &gclk_chan_conf);
system_gclk_chan_enable(gclk_index);

}
/* I2C pin initialization */
void i2c_pin_init()
{
 /* PA08 and PA09 set into peripheral function D*/

pin_set_peripheral_function(PINMUX_PA08D_SERCOM2_PAD0);
pin_set_peripheral_function(PINMUX_PA09D_SERCOM2_PAD1);

}
/* I2C Slave initialization */
void i2c_slave_init()
{

/* By setting the SPEED bit field as 0x01, I2C communication runs at 1MHz,
 By setting the SDAHOLD bit field as 0x02, SDA hold time is configured for 300-600ns,
 By setting the RUNSTDBY bit as 0x01,Generic clock is enabled in all sleep modes,

 any interrupt can wake up the device,
 SERCOM2 is configured as an I2C Slave by writing the MODE bitfield as 0x04 */
SERCOM2->I2CS.CTRLA.reg = SERCOM_I2CS_CTRLA_SPEED (FAST_MODE_PLUS) |
 SERCOM_I2CS_CTRLA_SDAHOLD(0x2) |
 SERCOM_I2CM_CTRLA_RUNSTDBY |
 SERCOM_I2CS_CTRLA_MODE_I2C_SLAVE;
/* smart mode enabled by setting the bit SMEN as 1 */
SERCOM2->I2CS.CTRLB.reg = SERCOM_I2CS_CTRLB_SMEN;
/* writing the slave address into ADDR register */
SERCOM2->I2CS.ADDR.reg = SLAVE_ADDR << 1 ;
/* Address match interrupt, Data ready interrupt,stop received
interrupts are enabled */
SERCOM2->I2CS.INTENSET.reg = SERCOM_I2CS_INTENSET_PREC | SERCOM_I2CS_INTENSET_AMATCH |
SERCOM_I2CS_INTENSET_DRDY;
/* SERCOM2 peripheral enabled by setting the ENABLE bit as 1*/
SERCOM2->I2CS.CTRLA.reg |= SERCOM_I2CS_CTRLA_ENABLE;
/* SERCOM enable synchronization busy */
while((SERCOM2->I2CS.SYNCBUSY.reg & SERCOM_I2CS_SYNCBUSY_ENABLE));
/* SERCOM2 handler enabled */
system_interrupt_enable(SERCOM2_IRQn);

}

int main (void)
{

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015
2

6

26

system_init();

i2c_clock_init();

i2c_pin_init();

i2c_slave_init();

while(1);

}

Scope plot for Basic configuration application – Fast mode plus (1MHz).

Figure 5-3. Complete Transaction

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015

2
7

27

Figure 5-4. Start Condition + Address + Write Transmission

Figure 5-5. Master Stops and Starts Transaction Again for Read

The Complete Project solution for all the applications can be found in the zipped folder attachment that comes

with this application note.

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015
2

8

28

5.2 High Speed Configuration

In high speed configuration, SERCOM I2C communicates at an SCL clock frequency of 3.4MHz.

Unlike other speed modes the high speed mode starts the communication in full speed mode (fast mode –

400kHz) frequency in which it sends a unique code and then continues the normal transaction in high speed

frequency (3.4MHz).

High speed mode application example does the following actions:

 Master write (Slave read)

 Master read (Slave write)

The example configuration is almost similar to the Basic Configuration example but with some additional steps.

This section explains only the additional steps from the Basic Configuration step.

5.2.1 Master and Slave Clock in High-speed Configuration

The default ASF clock configuration in conf_clocks.h header file should be changed to make the device as well

as the SERCOM module clocked at a maximum speed of 48MHz.

Following changes should be implemented in conf_clocks.h file in both master and slave applications for

48MHz operation.

1. Set the flash wait-states to 1.

define CONF_CLOCK_FLASH_WAIT_STATES 1

2. Configure and enable the XOSC32K oscillator which will be used as the reference clock for DFLL48M

module.

/* SYSTEM_CLOCK_SOURCE_XOSC32K configuration - External 32KHz crystal/clock oscillator
*/
define CONF_CLOCK_XOSC32K_ENABLE true
define CONF_CLOCK_XOSC32K_EXTERNAL_CRYSTAL SYSTEM_CLOCK_EXTERNAL_CRYSTAL
define CONF_CLOCK_XOSC32K_STARTUP_TIME SYSTEM_XOSC32K_STARTUP_65536
define CONF_CLOCK_XOSC32K_AUTO_AMPLITUDE_CONTROL false
define CONF_CLOCK_XOSC32K_ENABLE_1KHZ_OUPUT false
define CONF_CLOCK_XOSC32K_ENABLE_32KHZ_OUTPUT true
define CONF_CLOCK_XOSC32K_ON_DEMAND true
define CONF_CLOCK_XOSC32K_RUN_IN_STANDBY false

3. Set XOSC32K as the clock source for GCLK Generator 1.

/* Configure GCLK generator 1 */
define CONF_CLOCK_GCLK_1_ENABLE true
define CONF_CLOCK_GCLK_1_RUN_IN_STANDBY false
define CONF_CLOCK_GCLK_1_CLOCK_SOURCE SYSTEM_CLOCK_SOURCE_XOSC32K
define CONF_CLOCK_GCLK_1_PRESCALER 1
define CONF_CLOCK_GCLK_1_OUTPUT_ENABLE false

4. Configure and enable DFLL48M in closed loop mode using GCLK Generator 1 as reference clock

generator and with appropriate multiplication factor.

/* SYSTEM_CLOCK_SOURCE_DFLL configuration - Digital Frequency Locked Loop */
define CONF_CLOCK_DFLL_ENABLE true
define CONF_CLOCK_DFLL_LOOP_MODE SYSTEM_CLOCK_DFLL_LOOP_MODE_CLOSED
define CONF_CLOCK_DFLL_ON_DEMAND false

/* DFLL closed loop mode configuration */
define CONF_CLOCK_DFLL_SOURCE_GCLK_GENERATOR GCLK_GENERATOR_1

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015

2
9

29

define CONF_CLOCK_DFLL_MULTIPLY_FACTOR (48000000 / 32768)
define CONF_CLOCK_DFLL_QUICK_LOCK true
define CONF_CLOCK_DFLL_TRACK_AFTER_FINE_LOCK true
define CONF_CLOCK_DFLL_KEEP_LOCK_ON_WAKEUP true
define CONF_CLOCK_DFLL_ENABLE_CHILL_CYCLE true
define CONF_CLOCK_DFLL_MAX_COARSE_STEP_SIZE (0x1f / 4)
define CONF_CLOCK_DFLL_MAX_FINE_STEP_SIZE (0xff / 4)

5. Set DFLL48M as clock source for GCLK Generator 0 which sources the main clock domain and also

used as clock source for SERCOM module.

/* Configure GCLK generator 0 (Main Clock) */
define CONF_CLOCK_GCLK_0_ENABLE true
define CONF_CLOCK_GCLK_0_RUN_IN_STANDBY false
define CONF_CLOCK_GCLK_0_CLOCK_SOURCE SYSTEM_CLOCK_SOURCE_DFLL

define CONF_CLOCK_GCLK_0_PRESCALER 1
define CONF_CLOCK_GCLK_0_OUTPUT_ENABLE false

5.2.2 Clock Flow for Master and Slave

Figure 5-6. Clock Flow Diagram for Master and Slave

5.2.3 System Initialization

system_init() is an ASF function used to configure the clock sources and GCLK generators as per the

settings in the conf_clocks.h file. The main clock will be configured as stated in Section 5.2.1. It also initializes

the board hardware of SAM D21 Xplained Pro and the event system.

5.2.4 I2C clock Initialization

This section is the same as Section 5.1.5.

5.2.5 I2C Pin Initialization

This section is the same as Section 5.1.6.

Note: System initialization, I2C clock initialization, and I2C pin initialization are common for both master and

slave. For the slave part the same will be applicable.

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015
3

0

30

5.2.6 I2C Master Initialization

The i2c_master_init function will initialize the I2C master by configuring the control registers, baud registers,

and setting the respective interrupt enable bits.

void i2c_master_init()
{

/* By setting the SPEED bit field as 0x02, I2C Master runs at High speed - 3.4 MHz,
 By setting the SDAHOLD bit field as 0x02, SDA hold time is configured for 300-600ns,
 By setting the RUNSTDBY bit as 0x01,Generic clock is enabled in all sleep modes,

 any interrupt can wake up the device,
 SERCOM2 is configured as an I2C Master by writing the MODE bitfield as 0x5,
 SCL stretch only after ACK bit is selected by setting the SCLSM bit as 1
*/
SERCOM2->I2CM.CTRLA.reg = SERCOM_I2CM_CTRLA_SPEED (HIGHSPEED_MODE) |

SERCOM_I2CM_CTRLA_SDAHOLD(0x2) |
SERCOM_I2CM_CTRLA_RUNSTDBY |
SERCOM_I2CM_CTRLA_SCLSM |
SERCOM_I2CM_CTRLA_MODE_I2C_MASTER;

/* smart mode enabled */
SERCOM2->I2CM.CTRLB.reg = SERCOM_I2CM_CTRLB_SMEN;
/* synchronization busy */
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* loading the BAUD register */
SERCOM2->I2CM.BAUD.reg = SERCOM_I2CM_BAUD_HSBAUD(4) | SERCOM_I2CM_BAUD_HSBAUDLOW(8) |
SERCOM_I2CM_BAUD_BAUD(48) | SERCOM_I2CM_BAUD_BAUDLOW(48);
/* synchronization busy */
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);

 /* SERCOM2 peripheral enabled by setting the ENABLE bit as 1*/
SERCOM2->I2CM.CTRLA.reg |= SERCOM_I2CM_CTRLA_ENABLE;
/* SERCOM Enable synchronization busy */
while((SERCOM2->I2CM.SYNCBUSY.reg & SERCOM_I2CM_SYNCBUSY_ENABLE));
/* bus state is forced into idle state */
SERCOM2->I2CM.STATUS.bit.BUSSTATE = 0x1;
/* SERCOM2 handler enabled */
system_interrupt_enable(SERCOM2_IRQn);

}

 The CTRLA register is used to configure the I2C speed, SDA hold time, and I2C mode. In the above

function I2C runs at high speed mode – 3.4MHz, SDA hold time is set for 300 - 600ns. I2C is configured

as master and the SERCOM module is made to run even in standby sleep mode.

 CTRLB register is used to write commands and to enable Smart Mode. In the above function SMEN –

Smart Mode Enable is set.

 Equation for calculating the SCL frequency is:

FSCL = FGCLK/2 + HSBAUD + HSBAUDLOW

FSCL = I2C clock frequency

FGCLK = SERCOM generic clock frequency

HSBAUD = BAUD register value of high speed

HSBAUDLOW = BAUD LOW register value of high speed

From the equation:

HSBAUD + HSBAUDLOW = (FGCLK / FSCL) - 2

= (48M/3.4M) - 2

=12.11 ~= 12

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015

3
1

31

HSBAUD = 4

HSBAUDLOW = 8

Note: For High-speed the nominal high to low SCL ratio is 1 to 2 and HSBAUD should be set accordingly. At

a minimum, BAUD.BAUD and/or BAUD.BAUDLOW must be non-zero. Since the high speed transfer

starts in full speed mode, the BAUD and BAUDLOW bits should be set to values corresponding to

400kHz apart from configuring the HSBAUD and HSBAUDLOW bits.

The nominal high to low SCL ratio is 1 to 2 is not applicable for 100 and 400 KHz, so the BAUD and

BAUDLOW value should be equal.

 First, a master code (0000 1nnn where nnn is a unique master code) is transmitted in full speed mode,

followed by a NACK reception since no slave should acknowledge this code. Arbitration is performed

only during the full speed Master Code phase. The master code is transmitted by writing the master code

to the address register (ADDR) with the high-speed bit (ADDR.HS) written to zero.

 In BAUD register HSBAUD, HSBAUDLOW, BAUD, and BAUDLOW values are loaded

 CTRLA, CTRLB, and BAUD registers can be written only when the I2C is disabled because these

registers are enable protected. So once configuring these registers, the I2C is enabled.

 Due to the asynchronicity between CLK_SERCOMx_APB and GCLK_SERCOMx_CORE, some

registers must be synchronized when accessed. The ENABLE bit in CTRLA register is Write-

Synchronized so the application has to wait until the SYSOP bit in SYNCBUSY register is cleared after

writing to the ENABLE bit.

 The I2C bus-state is unknown when the master is disabled. During this time writing 0x1 to BUSSTATE

forces the bus state into the idle state.

 Each peripheral has a dedicated interrupt line, which is connected to the Nested Vector Interrupt

Controller in the Cortex-M0+ core. In the above function the SERCOM2 interrupt request line (IRQ - 11)

is enabled.

5.2.7 I2C Master Transaction

The i2c_master_transact() function will transfer the master unique code in fast mode followed by a NACK

reception since no slave should acknowledge this code.

Figure 5-7. High Speed Transfer

void i2c_master_transact(void)
{

i = 0;
/* Master unique code + NACK signal */
SERCOM2->I2CM.CTRLB.reg |= SERCOM_I2CM_CTRLB_ACKACT;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
SERCOM2->I2CM.ADDR.reg = UNIQUE_CODE;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* wait till MB flag set */
while(!SERCOM2->I2CM.INTFLAG.bit.MB);
/* clearing the MB interrupt */
SERCOM2->I2CM.INTFLAG.bit.MB = 1;
/* ACK signal */

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015
3

2

32

SERCOM2->I2CM.CTRLB.reg &= ~SERCOM_I2CM_CTRLB_ACKACT;
/* synchronization busy */
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* slave address+w, High speed transfer enabled */
SERCOM2->I2CM.ADDR.reg = (SLAVE_ADDR << 1) | 0 | SERCOM_I2CM_ADDR_HS;
/* synchronization busy */
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* MB and SB interrupts are set */
SERCOM2->I2CM.INTENSET.reg = SERCOM_I2CM_INTENSET_MB | SERCOM_I2CM_INTENSET_SB;
while(!tx_done);
/* MB and SB interrupts are cleared */
SERCOM2->I2CM.INTENCLR.reg = SERCOM_I2CM_INTENCLR_MB | SERCOM_I2CM_INTENCLR_SB;
i = 0;
/* Master unique code + NACK signal */
SERCOM2->I2CM.CTRLB.reg |= SERCOM_I2CM_CTRLB_ACKACT;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP)
/* Master unique code + NACK signal */;
SERCOM2->I2CM.ADDR.reg = UNIQUE_CODE;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* wait till MB flag set */
while(!SERCOM2->I2CM.INTFLAG.bit.MB);
/* clearing the MB interrupt */
SERCOM2->I2CM.INTFLAG.bit.MB = 1;
/* ACK signal */
SERCOM2->I2CM.CTRLB.reg &= ~SERCOM_I2CM_CTRLB_ACKACT;
/* synchronization busy */
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* slave address+R, High speed transfer enabled */
SERCOM2->I2CM.ADDR.reg = (SLAVE_ADDR << 1) | 1 | SERCOM_I2CM_ADDR_HS;
/* synchronization busy */
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
//while(!SERCOM2->I2CM.INTFLAG.bit.MB);
//SERCOM2->I2CM.INTFLAG.bit.MB = 1;
/* MB and SB interrupts are set */
SERCOM2->I2CM.INTENSET.reg = SERCOM_I2CM_INTENSET_MB | SERCOM_I2CM_INTENSET_SB;
while(!rx_done);
/* MB and SB interrupts are cleared */
SERCOM2->I2CM.INTENCLR.reg = SERCOM_I2CM_INTENCLR_MB | SERCOM_I2CM_INTENCLR_SB;

}

 CTRLB register is used to configure the commands, acknowledge action, Smart mode enabling. In the

above function, NACK action is set for the Master unique code.

 In the Application code we have the Master code of 0x0A. Format of master code is 0000 1nnn where

nnn is unique master code.

 Master code is written into the ADDR register with HS bit in the ADDR register set to 0

 MB interrupt flag will be set once the master code is transmitted

 NACK will be received as acknowledge action is set as NACK in the CTRLB register

 After receiving the NACK signal, the acknowledge action should be set as ACK, and address of slave is

written in ADDR register

 The Address of slave is left shifted by 1 bit and LSB of ADDR register is set as 0 for master write

 HS bit in ADDR register should be enabled for high speed mode

 Once placing the address in the ADDR register, the address will be kept in Data register and transferred

to Slave

 MB and SB interrupts are enabled

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015

3
3

33

 The Boolean flag variable is initialized as false, so it while remain in the while loop and reach the

SERCOM2 handler

while(!tx_done);

 Once transmitting the Address of slave, the Master on bus interrupt will be set and SERCOM2_Handler

will be serviced

 SERCOM2_Handler is the same as Basic configuration

 Once writing the data bytes, the application stops the I2C transaction by using stop command

 Before starting the master read operation, the master unique code should be used as before

 In ADDR register, LSB should be set as 1 for master read operation

Note: CTRLA, CTRLB, ADDR, and DATA registers are write synchronized so SYSOP bit in the SYNCBUSY

register should be checked after writing these registers.

The final application “High speed Configuration” in main.c file will be as below for MASTER.

#include <asf.h>

#define STANDARD_MODE_FAST_MODE 0x0
#define FAST_MODE_PLUS 0X01
#define HIGHSPEED_MODE 0X02
#define SLAVE_ADDR 0x12
#define BUF_SIZE 3
#define UNIQUE_CODE 0x0A

/* Function Prototype */
void i2c_clock_init(void);
void i2c_pin_init(void);
void i2c_master_init(void);
void i2c_master_transact(void);

uint8_t tx_buf[BUF_SIZE] = {1, 2, 3};
uint8_t rx_buf[BUF_SIZE];
uint8_t i;
volatile bool tx_done = false, rx_done = false, addr_transmitted = false;
uint32_t read_flag;

/* I2C handler */
void SERCOM2_Handler(void)
{

/* Master on bus interrupt checking */
if (SERCOM2->I2CM.INTFLAG.bit.MB)

{
if (i == BUF_SIZE)
{
/* After transferring the last byte stop condition will be sent */
SERCOM2->I2CM.CTRLB.bit.CMD = 0x3;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
tx_done = true;
i = 0;

}
else
{

/* placing the data from transmitting buffer to DATA register*/
SERCOM2->I2CM.DATA.reg = tx_buf[i++];
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);

}

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015
3

4

34

}
/* Slave on bus interrupt checking */
if (SERCOM2->I2CM.INTFLAG.bit.SB)
{
if (i == (BUF_SIZE-1))

{
/* NACK should be sent before reading the last byte */
SERCOM2->I2CM.CTRLB.reg |= SERCOM_I2CM_CTRLB_ACKACT;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
SERCOM2->I2CM.CTRLB.bit.CMD = 0x3;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
rx_buf[i++] = SERCOM2->I2CM.DATA.reg;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
rx_done = true;

}
else
{

SERCOM2->I2CM.CTRLB.reg &= ~SERCOM_I2CM_CTRLB_ACKACT;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
rx_buf[i++] = SERCOM2->I2CM.DATA.reg;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* sending ACK after reading each byte */
SERCOM2->I2CM.CTRLB.bit.CMD = 0x2;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);

}
}

}

/*Assigning pin to the alternate peripheral function*/
static inline void pin_set_peripheral_function(uint32_t pinmux)
{

uint8_t port = (uint8_t)((pinmux >> 16)/32);
PORT->Group[port].PINCFG[((pinmux >> 16) - (port*32))].bit.PMUXEN = 1;
PORT->Group[port].PMUX[((pinmux >> 16) - (port*32))/2].reg &= ~(0xF << (4 * ((pinmux >>
16) & 0x01u)));
PORT->Group[port].PMUX[((pinmux >> 16) - (port*32))/2].reg |= (uint8_t)((pinmux &
0x0000FFFF) << (4 * ((pinmux >> 16) & 0x01u)));

}

/* SERCOM clock and peripheral bus clock initialization */
void i2c_clock_init()
{

struct system_gclk_chan_config gclk_chan_conf;
uint32_t gclk_index = SERCOM2_GCLK_ID_CORE;
/* Turn on module in PM */
system_apb_clock_set_mask(SYSTEM_CLOCK_APB_APBC, PM_APBCMASK_SERCOM2);
/* Turn on Generic clock for I2C */
system_gclk_chan_get_config_defaults(&gclk_chan_conf);
//Default is generator 0. Other wise need to configure like below
/* gclk_chan_conf.source_generator = GCLK_GENERATOR_1; */
system_gclk_chan_set_config(gclk_index, &gclk_chan_conf);
system_gclk_chan_enable(gclk_index);

}

/* I2C pin initialization */
void i2c_pin_init()
{

/* PA08 and PA09 set into peripheral function D*/
pin_set_peripheral_function(PINMUX_PA08D_SERCOM2_PAD0);

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015

3
5

35

pin_set_peripheral_function(PINMUX_PA09D_SERCOM2_PAD1);
}

/* I2C master initialization */
void i2c_master_init()
{

/* By setting the SPEED bit field as 0x02, I2C Master runs at High speed - 3.4 MHz,
 By setting the SDAHOLD bit field as 0x02, SDA hold time is configured for 300-600ns,
 By setting the RUNSTDBY bit as 0x01,Generic clock is enabled in all sleep modes,

 any interrupt can wake up the device,
 SERCOM2 is configured as an I2C Master by writing the MODE bitfield as 0x5,
 SCL stretch only after ACK bit is selected by setting the SCLSM bit as 1
*/
SERCOM2->I2CM.CTRLA.reg = SERCOM_I2CM_CTRLA_SPEED (HIGHSPEED_MODE) |

SERCOM_I2CM_CTRLA_SDAHOLD(0x2) |
SERCOM_I2CM_CTRLA_RUNSTDBY |
SERCOM_I2CM_CTRLA_SCLSM |
SERCOM_I2CM_CTRLA_MODE_I2C_MASTER;

/* smart mode enabled */
SERCOM2->I2CM.CTRLB.reg = SERCOM_I2CM_CTRLB_SMEN;
/* synchronization busy */
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* loading the BAUD register */
SERCOM2->I2CM.BAUD.reg = SERCOM_I2CM_BAUD_HSBAUD(4) | SERCOM_I2CM_BAUD_HSBAUDLOW(8) |
SERCOM_I2CM_BAUD_BAUD(48) | SERCOM_I2CM_BAUD_BAUDLOW(48);
/* synchronization busy */
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);

 /* SERCOM2 peripheral enabled by setting the ENABLE bit as 1*/
SERCOM2->I2CM.CTRLA.reg |= SERCOM_I2CM_CTRLA_ENABLE;
/* SERCOM Enable synchronization busy */
while((SERCOM2->I2CM.SYNCBUSY.reg & SERCOM_I2CM_SYNCBUSY_ENABLE));
/* bus state is forced into idle state */
SERCOM2->I2CM.STATUS.bit.BUSSTATE = 0x1;
/* SERCOM2 handler enabled */
system_interrupt_enable(SERCOM2_IRQn);

}

/* I2C master Transaction */
void i2c_master_transact(void)
{

i = 0;
/* Master unique code + NACK signal */
SERCOM2->I2CM.CTRLB.reg |= SERCOM_I2CM_CTRLB_ACKACT;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
SERCOM2->I2CM.ADDR.reg = UNIQUE_CODE;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* wait till MB flag set */
while(!SERCOM2->I2CM.INTFLAG.bit.MB);
/* clearing the MB interrupt */
SERCOM2->I2CM.INTFLAG.bit.MB = 1;
/* ACK signal */
SERCOM2->I2CM.CTRLB.reg &= ~SERCOM_I2CM_CTRLB_ACKACT;
/* synchronization busy */
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* slave address+w, High speed transfer enabled */
SERCOM2->I2CM.ADDR.reg = (SLAVE_ADDR << 1) | 0 | SERCOM_I2CM_ADDR_HS;
/* synchronization busy */
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* MB and SB interrupts are set */

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015
3

6

36

SERCOM2->I2CM.INTENSET.reg = SERCOM_I2CM_INTENSET_MB | SERCOM_I2CM_INTENSET_SB;
while(!tx_done);
/* MB and SB interrupts are cleared */
SERCOM2->I2CM.INTENCLR.reg = SERCOM_I2CM_INTENCLR_MB | SERCOM_I2CM_INTENCLR_SB;
i = 0;
/* Master unique code + NACK signal */
SERCOM2->I2CM.CTRLB.reg |= SERCOM_I2CM_CTRLB_ACKACT;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP)
/* Master unique code + NACK signal */;
SERCOM2->I2CM.ADDR.reg = UNIQUE_CODE;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* wait till MB flag set */
while(!SERCOM2->I2CM.INTFLAG.bit.MB);
/* clearing the MB interrupt */
SERCOM2->I2CM.INTFLAG.bit.MB = 1;
/* ACK signal */
SERCOM2->I2CM.CTRLB.reg &= ~SERCOM_I2CM_CTRLB_ACKACT;
/* synchronization busy */
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* slave address+R, High speed transfer enabled */
SERCOM2->I2CM.ADDR.reg = (SLAVE_ADDR << 1) | 1 | SERCOM_I2CM_ADDR_HS;
/* synchronization busy */
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
//while(!SERCOM2->I2CM.INTFLAG.bit.MB);
//SERCOM2->I2CM.INTFLAG.bit.MB = 1;
/* MB and SB interrupts are set */
SERCOM2->I2CM.INTENSET.reg = SERCOM_I2CM_INTENSET_MB | SERCOM_I2CM_INTENSET_SB;
while(!rx_done);
/* MB and SB interrupts are cleared */
SERCOM2->I2CM.INTENCLR.reg = SERCOM_I2CM_INTENCLR_MB | SERCOM_I2CM_INTENCLR_SB;

}

int main (void)
{

system_init();

i2c_clock_init();

i2c_pin_init();

i2c_master_init();

i2c_master_transact();

while(1);

}

5.2.8 I2C Slave Initialization

The i2c_slave_init function will initialize the I2C slave by configuring the control registers, address register,

and setting the respective interrupt enable bits.

void i2c_slave_init()
{

/* By setting the SPEED bit field as 0x02, I2C Slave runs at High speed - 3.4 MHz,
 By setting the RUNSTDBY bit as 0x01,Generic clock is enabled in all sleep modes,

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015

3
7

37

 any interrupt can wake up the device,
 SERCOM2 is configured as an I2C Slave by writing the MODE bitfield as 0x04,
 SCL stretch only after ACK bit is selected by setting the SCLSM bit as 1,

 SERCOM2 is configured as an I2C Slave by writing the MODE bitfield as 0x04
*/
SERCOM2->I2CS.CTRLA.reg = SERCOM_I2CS_CTRLA_SPEED (HIGHSPEED_MODE) |

SERCOM_I2CS_CTRLA_RUNSTDBY |
SERCOM_I2CS_CTRLA_SCLSM |
SERCOM_I2CS_CTRLA_MODE_I2C_SLAVE;

/* smart mode enabled by setting the bit SMEN as 1 */
SERCOM2->I2CS.CTRLB.reg = SERCOM_I2CS_CTRLB_SMEN;
//while(SERCOM2->I2CS.STATUS.bit.SYNCBUSY);
/* writing the slave address into ADDR register */
SERCOM2->I2CS.ADDR.reg = SLAVE_ADDR << 1 ;
/* Address match interrupt, Data ready interrupt,stop received
interrupts are enabled */
SERCOM2->I2CS.INTENSET.reg = SERCOM_I2CS_INTENSET_PREC | SERCOM_I2CS_INTENSET_AMATCH |
SERCOM_I2CS_INTENSET_DRDY;
/* SERCOM2 peripheral enabled */
SERCOM2->I2CS.CTRLA.reg |= SERCOM_I2CS_CTRLA_ENABLE;
/* SERCOM enable synchronization busy */
while((SERCOM2->I2CS.SYNCBUSY.reg & SERCOM_I2CS_SYNCBUSY_ENABLE));
/* SERCOM2 handler enabled */
system_interrupt_enable(SERCOM2_IRQn);

}

 I2C slave CTRLA register is used to configure the I2C speed, clock stretch, and the I2C mode of the

device. In the above function, I2C runs at high speed, clock stretch only after ACK bit, and device runs as

I2C slave mode. SERCOM module is made to run even in standby sleep mode.

 CTRLB register is used to configure the acknowledge action, command bits to write commands and

enabling smart mode. In the above function the Smart Mode is enabled.

 ADDR register is used to hold the address of slave

 The INTENSET register is used to enable the required interrupts. In the above function, address match

interrupt, stop received interrupt, and Data ready interrupt are enabled.

 CTRLA, CTRLB, and BAUD registers can be written only when the I2C is disabled because these

registers are enable protected. So once configuring these registers, the I2C is enabled.

 Due to the asynchronicity between CLK_SERCOMx_APB and GCLK_SERCOMx_CORE, some

registers must be synchronized when accessed. ENABLE bit in CTRLA register is Write-Synchronized so

the application has to wait until SYSOP bit in SYNCBUSY register is cleared after writing to the ENABLE

bit.

 Each peripheral has a dedicated interrupt line, which is connected to the Nested Vector Interrupt

Controller in the Cortex-M0+ core. In the above function SERCOM2 interrupt request line (IRQ - 11) is

enabled.

5.2.9 I2C Slave Transaction

SERCOM2 Handler will serve the I2C slave transaction function.

 In high speed mode, SCLSM bit should be set one, which is handled by application in the I2C slave

initialization function

 For master reads (slave write), an address and data interrupt will be issued simultaneously with SCLSM

=1

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015
3

8

38

 So for this purpose inside the SERCOM handler application will check for the direction flag inside the

AMATCH condition. If DIR is set (Master Read – Slave Write) a Boolean flag ‘slave_write_mode’ will be

set to true.

 In the same AMATCH condition inside the SERCOM handler application will check for the flag

‘slave_write_mode’ flag. If it is true, the application will write the first data byte from the buffer ‘rx_buff’

followed by clearing the AMATCH interrupt flag. Otherwise the application will simply clear the AMATCH

interrupt flag without performing any data read. Note that the same buffer ‘rx_buff’ will be used for both

slave transmission and reception.

 Inside the DRDY condition in SERCOM handler application will check for the Boolean flag

‘slave_write_mode’ status. If it is true (Master Read – Slave Write), the application will write the data

from the buffer ‘rx_buff’ for (BUF_SIZE-1) times since the first data byte was already transmitted in

previous step. When DRDY is hit for the last time (iteration count is equal to BUF_SIZE) the I2C lines are

released by writing command register with value 0x2.

 Otherwise, if the Boolean flag is false (Master Write – Slave Read), the application will read the received

data into buffer and send acknowledgment for each byte received by writing command register with

value 0x3. When the iteration count reaches BUF_SIZE-1 application will release the I2C lines by writing

the command register with value 0x2 followed by reception of STOP condition.

 After reception of STOP condition (PREC condition inside SERCOM handler) application will clear the

stop interrupt flag PREC and then reads the last received byte into buffer

void SERCOM2_Handler(void)
{

/* Check for Address match interrupt */
if(SERCOM2->I2CS.INTFLAG.bit.AMATCH)
{

/* Checking for direction,
DIR - 0 for slave read,
DIR - 1 for slave write */
if (SERCOM2->I2CS.STATUS.bit.DIR)

slave_write_mode = true;
else

slave_write_mode = false;
if (slave_write_mode)
{

SERCOM2->I2CS.DATA.reg = rx_buff[i++];
/* clearing the Address match interrupt */
SERCOM2->I2CS.INTFLAG.bit.AMATCH = 1;
SERCOM2->I2CS.CTRLB.bit.CMD = 0x3;

}
else
{

/* clearing the Address match interrupt */
SERCOM2->I2CS.INTFLAG.bit.AMATCH = 1;

}
}

/* Data Ready interrupt check */
if(SERCOM2->I2CS.INTFLAG.bit.DRDY)
{
if (slave_write_mode)
{

if (i == BUF_SIZE)
{

//SERCOM2->I2CS.DATA.reg = rx_buff[i++];

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015

3
9

39

/* wait for stop condition */
SERCOM2->I2CS.CTRLB.bit.CMD = 0x2;
i = 0;

}
else
{

SERCOM2->I2CS.DATA.reg = rx_buff[i++];
/* Execute a byte read operation followed by ACK/NACK reception by master */

SERCOM2->I2CS.CTRLB.bit.CMD = 0x3;
}

}
else
{

if (i == BUF_SIZE-1)
{

SERCOM2->I2CS.CTRLB.bit.ACKACT = 0;
/* Execute acknowledge action succeeded by waiting for any start (S/Sr) condition */

SERCOM2->I2CS.CTRLB.bit.CMD = 0x2;
//i = 0;

}
else
{

rx_buff[i++] = SERCOM2->I2CS.DATA.reg;
SERCOM2->I2CS.CTRLB.bit.ACKACT = 0;

/* Execute acknowledge action succeeded by reception of next byte to master*/
SERCOM2->I2CS.CTRLB.bit.CMD = 0x3;

}
}
}
/* Stop received interrupt check */

if (SERCOM2->I2CS.INTFLAG.bit.PREC)
{

SERCOM2->I2CS.INTFLAG.bit.PREC = 1;
if (!slave_write_mode)
{

rx_buff[i++] = SERCOM2->I2CS.DATA.reg;
}
i = 0;

}
}

The final application “High speed Configuration” in main.c file will be as below for SLAVE.

#include <asf.h>
#define STANDARD_MODE_FAST_MODE 0x0
#define FAST_MODE_PLUS 0X01
#define HIGHSPEED_MODE 0X02
#define SLAVE_ADDR 0x12
#define BUF_SIZE 3

/* Function Prototype */
void i2c_clock_init(void);
void i2c_pin_init(void);
void i2c_slave_init(void);

uint8_t i = 0;

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015
4

0

40

uint8_t rx_buff[BUF_SIZE];
volatile bool slave_write_mode = false;

/* I2C handler */
void SERCOM2_Handler(void)
{

/* Check for Address match interrupt */
if(SERCOM2->I2CS.INTFLAG.bit.AMATCH)
{

/* Checking for direction,
DIR - 0 for slave read,
DIR - 1 for slave write */
if (SERCOM2->I2CS.STATUS.bit.DIR)

slave_write_mode = true;
else

slave_write_mode = false;
if (slave_write_mode)
{

SERCOM2->I2CS.DATA.reg = rx_buff[i++];
/* clearing the Address match interrupt */
SERCOM2->I2CS.INTFLAG.bit.AMATCH = 1;
SERCOM2->I2CS.CTRLB.bit.CMD = 0x3;

}
else
{

/* clearing the Address match interrupt */
SERCOM2->I2CS.INTFLAG.bit.AMATCH = 1;

}
}

/* Data Ready interrupt check */
if(SERCOM2->I2CS.INTFLAG.bit.DRDY)
{

if (slave_write_mode)
{

if (i == BUF_SIZE)
{

//SERCOM2->I2CS.DATA.reg = rx_buff[i++];
/* wait for stop condition */
SERCOM2->I2CS.CTRLB.bit.CMD = 0x2;
i = 0;

}
else
{
 SERCOM2->I2CS.DATA.reg = rx_buff[i++];

/* Execute a byte read operation followed by ACK/NACK reception by master */

SERCOM2->I2CS.CTRLB.bit.CMD = 0x3;
}

}
else
{
if (i == BUF_SIZE-1)
{

SERCOM2->I2CS.CTRLB.bit.ACKACT = 0;
/* Execute acknowledge action succeeded by waiting for any start (S/Sr) condition */

SERCOM2->I2CS.CTRLB.bit.CMD = 0x2;
//i = 0;

}

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015

4
1

41

else
{

rx_buff[i++] = SERCOM2->I2CS.DATA.reg;
SERCOM2->I2CS.CTRLB.bit.ACKACT = 0;

/* Execute acknowledge action succeeded by reception of next byte to master*/
SERCOM2->I2CS.CTRLB.bit.CMD = 0x3;

}
}
}
/* Stop received interrupt check */
if (SERCOM2->I2CS.INTFLAG.bit.PREC)
{

SERCOM2->I2CS.INTFLAG.bit.PREC = 1;
if (!slave_write_mode)
{

rx_buff[i++] = SERCOM2->I2CS.DATA.reg;
}
i = 0;

}
}

/*Assigning pin to the alternate peripheral function*/
static inline void pin_set_peripheral_function(uint32_t pinmux)
{

uint8_t port = (uint8_t)((pinmux >> 16)/32);
PORT->Group[port].PINCFG[((pinmux >> 16) - (port*32))].bit.PMUXEN = 1;
PORT->Group[port].PMUX[((pinmux >> 16) - (port*32))/2].reg &= ~(0xF << (4 * ((pinmux >>
16) & 0x01u)));
PORT->Group[port].PMUX[((pinmux >> 16) - (port*32))/2].reg |= (uint8_t)((pinmux &
0x0000FFFF) << (4 * ((pinmux >> 16) & 0x01u)));

}
/* SERCOM clock and peripheral bus clock initialization */
void i2c_clock_init()
{

struct system_gclk_chan_config gclk_chan_conf;
uint32_t gclk_index = SERCOM2_GCLK_ID_CORE;
/* Turn on module in PM */
system_apb_clock_set_mask(SYSTEM_CLOCK_APB_APBC, PM_APBCMASK_SERCOM2);
/* Turn on Generic clock for I2C */
system_gclk_chan_get_config_defaults(&gclk_chan_conf);
//Default is generator 0. Other wise need to configure like below
/* gclk_chan_conf.source_generator = GCLK_GENERATOR_1; */
system_gclk_chan_set_config(gclk_index, &gclk_chan_conf);
system_gclk_chan_enable(gclk_index);

}
/* I2C pin initialization */
void i2c_pin_init()
{

/* PA08 and PA09 set into peripheral function D*/
pin_set_peripheral_function(PINMUX_PA08D_SERCOM2_PAD0);
pin_set_peripheral_function(PINMUX_PA09D_SERCOM2_PAD1);

}
/* I2C Slave initialization */
void i2c_slave_init()
{

/* By setting the SPEED bit field as 0x02, I2C Slave runs at High speed - 3.4 MHz,
 By setting the RUNSTDBY bit as 0x01,Generic clock is enabled in all sleep modes,

 any interrupt can wake up the device,
 SERCOM2 is configured as an I2C Slave by writing the MODE bitfield as 0x04,

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015
4

2

42

 SCL stretch only after ACK bit is selected by setting the SCLSM bit as 1,
 SERCOM2 is configured as an I2C Slave by writing the MODE bitfield as 0x04

*/
SERCOM2->I2CS.CTRLA.reg = SERCOM_I2CS_CTRLA_SPEED (HIGHSPEED_MODE) |

SERCOM_I2CS_CTRLA_RUNSTDBY |
SERCOM_I2CS_CTRLA_SCLSM |
SERCOM_I2CS_CTRLA_MODE_I2C_SLAVE;

/* smart mode enabled by setting the bit SMEN as 1 */
SERCOM2->I2CS.CTRLB.reg = SERCOM_I2CS_CTRLB_SMEN;
//while(SERCOM2->I2CS.STATUS.bit.SYNCBUSY);
/* writing the slave address into ADDR register */
SERCOM2->I2CS.ADDR.reg = SLAVE_ADDR << 1 ;
/* Address match interrupt, Data ready interrupt,stop received
interrupts are enabled */
SERCOM2->I2CS.INTENSET.reg = SERCOM_I2CS_INTENSET_PREC | SERCOM_I2CS_INTENSET_AMATCH |
SERCOM_I2CS_INTENSET_DRDY;
/* SERCOM2 peripheral enabled */
SERCOM2->I2CS.CTRLA.reg |= SERCOM_I2CS_CTRLA_ENABLE;
/* SERCOM enable synchronization busy */
while((SERCOM2->I2CS.SYNCBUSY.reg & SERCOM_I2CS_SYNCBUSY_ENABLE));
/* SERCOM2 handler enabled */
system_interrupt_enable(SERCOM2_IRQn);

}
int main (void)
{

system_init();

i2c_clock_init();

i2c_pin_init();

i2c_slave_init();

while(1);

}

The upcoming figures depicts the scope plots of I2C communication in High speed configuration mode –

(3.4MHz).

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015

4
3

43

Figure 5-8. Complete Transaction

Figure 5-9. Transaction Showing Unique Code Sent in Full Speed Mode Followed by Normal I2C Transfer in

High-speed Mode

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015
4

4

44

Figure 5-10. SCL Timing

5.3 Address Match and Mode Configuration

This section explains about the various address matching modes supported by the SERCOM I2C slave. Three

address matching modes are supported as given below.

1. Address match and mask mode (ADDR bits are used to hold address value and ADDRMASK bits are

used to hold mask bits in ADDR register). Respective bit positions set in ADDRMASK bit field represents

those bits in ADDR register that will not be compared with respective incoming address bits.

2. Two unique addresses mode (ADDR bits hold first address and ADDRMASK bits hold second address).

The slave will respond only to these two addresses.

3. Range of addresses (ADDR bits hold the upper limit of the range and ADDRMASK holds the lower limit

of the range). The slave will respond for an address within this range including the upper and lower limit

values.

For demonstration purpose the first mode (Address match and mask mode) is used as explained in upcoming

sections.

5.3.1 Address Match and Mask Mode

In the Address match and mask mode, an address written to the Address bits in the Address register

(ADDR.ADDR) with a mask written to the Address Mask bits in the Address register (ADDR.ADDRMASK) will

yield an address match.

The bits set in the ADDRMASK will not be compared for the address match and the rest of the bits are

compared and acknowledged if these bits are matched.

If the ADDR.ADDRMASK is set for all the bits then all addresses are accepted.

The main purpose of this mode is to emulate single I2C slave as multiple slaves.

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015

4
5

45

5.3.2 Master and Slave Clock

The master and slave application uses OSC8M as the clock source for Generator 0.

This section is the same as Section 5.1.2.

5.3.3 Clock Flow for Master and slave

This section is the same as Section 5.1.3.

5.3.4 System Initialization

This section is the same as Section 5.1.4.

5.3.5 I2C clock Initialization

This section is the same as Section 5.1.5.

5.3.6 I2C Pin Initialization

This section is the same as Section 5.1.6.

Note: System initialization, I2C clock initialization and I2C pin initialization are common for both master and

slave. For the slave part the same will be applicable.

5.3.7 I2C Master Initialization

The i2c_master_init function will initialize the I2C master function by configuring the control registers, baud

registers, and setting the respective interrupt enable bits.

void i2c_master_init()
{
 /* By setting the SPEED bit field as 0x00, I2C Master runs at standard mode,

 By setting the SDAHOLD bit field as 0x02, SDA hold time is configured for 300-600ns,
 By setting the RUNSTDBY bit as 0x01,Generic clock is enabled in all sleep modes,

 any interrupt can wake up the device,
 SERCOM2 is configured as an I2C Master by writing the MODE bitfield as 0x5 */
SERCOM2->I2CM.CTRLA.reg = SERCOM_I2CM_CTRLA_SPEED (STANDARD_MODE_FAST_MODE) |

SERCOM_I2CM_CTRLA_SDAHOLD(0x2) |
SERCOM_I2CM_CTRLA_RUNSTDBY |
SERCOM_I2CM_CTRLA_MODE_I2C_MASTER;

/* smart mode enabled by setting the bit SMEN as 1 */
SERCOM2->I2CM.CTRLB.reg = SERCOM_I2CM_CTRLB_SMEN;
/* synchronization busy */
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* BAUDLOW is non-zero, and baud register is loaded */
SERCOM2->I2CM.BAUD.reg = SERCOM_I2CM_BAUD_BAUD(34) | SERCOM_I2CM_BAUD_BAUDLOW(34);
/* synchronization busy */
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* SERCOM2 peripheral enabled by setting the ENABLE bit as 1*/
SERCOM2->I2CM.CTRLA.reg |= SERCOM_I2CM_CTRLA_ENABLE;
/* SERCOM Enable synchronization busy */
while((SERCOM2->I2CM.SYNCBUSY.reg & SERCOM_I2CM_SYNCBUSY_ENABLE));
/* bus state is forced into idle state */
SERCOM2->I2CM.STATUS.bit.BUSSTATE = 0x1;
/* Both master on bus and slave on bus interrupt is enabled */
SERCOM2->I2CM.INTENSET.reg = SERCOM_I2CM_INTENSET_MB | SERCOM_I2CM_INTENSET_SB;
/* SERCOM2 handler enabled */
system_interrupt_enable(SERCOM2_IRQn);

}

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015
4

6

46

 The CTRLA register is used to configure the I2C speed, SDA hold time, and I2C mode. In the above

function the I2C speed is configured in standard mode (100kHz), SDA hold time is set for 300 - 600ns.

I2C is configured as master and the I2C module is made to run even in standby sleep mode.

 CTRLB register is used to write the commands and to enable Smart Mode. In the above function SMEN

– Smart Mode Enable bit is set.

 For BAUD.BAUDLOW non-zero, the following equation is used to determine the SCL frequency, FSCL =

fGCLK / (10 + BAUD +BAUDLOW + fGCLK TRISE)

FSCL = I2C clock frequency

fGCLK = SERCOM generic clock frequency

BAUD = BAUD register value

BAUDLOW = BAUD LOW register value

TRISE = Rise time for I2C in the defined mode

Rise time for the respective speed modes can be found in section Electrical Characteristics → Timing

Characteristics → SERCOM I2C Mode Timing in SAM D21 device datasheet.

In this configuration, the I2C runs at the speed of 100kHz and the worst case rise time for standard and fast

mode is 300ns.

From the equation:

BAUD + BAUDLOW = fGCLK / FSCL – (fGCLK TRISE) – 10

= 8M/100k – (8M x 300ns) – 10

= 67.6

The BAUD value is set to 34 and BAUDLOW value is set to 34.

 CTRLA, CTRLB, and BAUD registers can be written only when the I2C is disabled because these

registers are enable protected. So once configuring these registers, the I2C is enabled.

 Due to the asynchronicity between CLK_SERCOMx_APB and GCLK_SERCOMx_CORE, some

registers must be synchronized when accessed. The ENABLE bit in CTRLA register is Write-

Synchronized so the application has to wait until the SYSOP bit in SYNCBUSY register is cleared after

writing to the ENABLE bit.

 The I2C bus-state is unknown, when the master is disabled. During this time writing 0x1 to BUSSTATE

forces the bus state into the idle state.

 Each peripheral has a dedicated interrupt line, which is connected to the Nested Vector Interrupt

Controller in the Cortex-M0+ core. In the above function SERCOM2 interrupt request line (IRQ - 11) is

enabled.

 The INTENSET register is used to enable the required interrupts. In the above function SB – Slave on

bus interrupt and MB – Master on bus interrupts are enabled

5.3.8 I2C Master Transaction

The i2c_master_transact function is used to perform a transaction with the connected slave device.

void i2c_master_transact(void)
{

i = 0;
/* ACK signal */
SERCOM2->I2CM.CTRLB.reg &= ~SERCOM_I2CM_CTRLB_ACKACT;
/* synchronization busy */

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015

4
7

47

while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* slave address 0 with receive */
SERCOM2->I2CM.ADDR.reg = (SLAVE_ADDR_0 << 1) | 1;
while(!rx_done);
rx_done = false;
SERCOM2->I2CM.CTRLB.reg &= ~SERCOM_I2CM_CTRLB_ACKACT;
/* synchronization busy */
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* slave address 1 with receive */
SERCOM2->I2CM.ADDR.reg = (SLAVE_ADDR_1 << 1) | 1;
while(!rx_done);
rx_done = false;
SERCOM2->I2CM.CTRLB.reg &= ~SERCOM_I2CM_CTRLB_ACKACT;
/* synchronization busy */
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* slave address 2 with receive */
SERCOM2->I2CM.ADDR.reg = (SLAVE_ADDR_2 << 1) | 1;
while(!rx_done);
rx_done = false;
SERCOM2->I2CM.CTRLB.reg &= ~SERCOM_I2CM_CTRLB_ACKACT;
/* synchronization busy */
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* slave address 3 with receive */
SERCOM2->I2CM.ADDR.reg = (SLAVE_ADDR_3 << 1) | 1;
while(!rx_done);
rx_done = false;
/*Interrupts are cleared */
SERCOM2->I2CM.INTENCLR.reg = SERCOM_I2CM_INTENCLR_MB | SERCOM_I2CM_INTENCLR_SB;

}

 In master application a global variable for iteration count and two Boolean variables to indicate

transmission done status and reception done status are used

uint8_t i
volatile bool tx_done = false, rx_done = false

 In CTRLB register, ACKACT field is used to define the I2C master’s acknowledge behavior after a data

byte is received from the I2C slave. The acknowledge action will be executed when a command is written

to CTRLB.CMD bits or after a transfer with Smart Mode is enabled.

 In the above function, ACKACT is set to 0, so ACK will be sent by master after a data byte is received

 Since the application uses range of addresses configuration, the first slave address ‘SLAVE_ADDR_0’ is

written in the address register by shifting the address left by 1 bit

 The I2C operation is read activity, so LSB of ADDR register is set into 1

 The Boolean flag variable tx_done is initialized as false, so it remains in the while loop until SERCOM2

handler sets it to true indicating the completion of transfer

while(!tx_done);

 Once transmitting the address of ‘SLAVE_ADDR_0’, the Master on bus interrupt will be set and no action

is taken in SERCOM2_Handler

 Once the master receives the data from I2C bus the Slave on bus interrupt (SB) is set. In SERCOM2

handler, application will check for slave on bus interrupt set condition.

 If it is set, then code enters inside the loop and NACK is sent to the slave. This because once reading

the data byte the I2C master will stop the transaction. The last byte read in I2C transaction should have

NACK as acknowledge signal.

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015
4

8

48

 For last byte read first stop command should be issued then only the data byte should be read from the

DATA register

 After reading the data byte, Boolean variable ‘rx_done’ is set as true and control reaches the

i2c_master_transact function and writes the address of second slave and reaches the SERCOM2

handler as above

 Once completing all the four slave address transactions, interrupts are cleared in the INTCLR register

void SERCOM2_Handler(void)
{

/* Slave on bus interrupt checking */
if (SERCOM2->I2CM.INTFLAG.bit.SB)
{

 /* sending NACK signal*/
SERCOM2->I2CM.CTRLB.reg |= SERCOM_I2CM_CTRLB_ACKACT;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* execute acknowledge action followed by stop */
SERCOM2->I2CM.CTRLB.bit.CMD = 0x3;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/*reading the data byte into receive buffer */
rx_buf[i++] = SERCOM2->I2CM.DATA.reg;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
rx_done = true;

}
}

The final application “Address mode configuration” in main.c file will be as below for MASTER.

#include <asf.h>
#define STANDARD_MODE_FAST_MODE 0x0
#define FAST_MODE_PLUS 0X01
#define HIGHSPEED_MODE 0X02
#define SLAVE_ADDR_0 0x50
#define SLAVE_ADDR_1 0x51
#define SLAVE_ADDR_2 0x52
#define SLAVE_ADDR_3 0x53

/* Function Prototype */
void i2c_clock_init(void);
void i2c_pin_init(void);
void i2c_master_init(void);
void i2c_master_transact(void);

uint8_t rx_buf[4];
uint8_t i;
volatile bool tx_done = false, rx_done = false;

/* SERCOM2 I2C handler */
void SERCOM2_Handler(void)
{

/* Slave on bus interrupt checking */
if (SERCOM2->I2CM.INTFLAG.bit.SB)
{

 /* sending NACK signal*/
SERCOM2->I2CM.CTRLB.reg |= SERCOM_I2CM_CTRLB_ACKACT;

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015

4
9

49

while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* execute acknowledge action followed by stop */
SERCOM2->I2CM.CTRLB.bit.CMD = 0x3;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/*reading the data byte into receive buffer */
rx_buf[i++] = SERCOM2->I2CM.DATA.reg;
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
rx_done = true;

}
}

/*Assigning pin to the alternate peripheral function*/
static inline void pin_set_peripheral_function(uint32_t pinmux)
{

uint8_t port = (uint8_t)((pinmux >> 16)/32);
PORT->Group[port].PINCFG[((pinmux >> 16) - (port*32))].bit.PMUXEN = 1;
PORT->Group[port].PMUX[((pinmux >> 16) - (port*32))/2].reg &= ~(0xF << (4 * ((pinmux >>
16) & 0x01u)));
PORT->Group[port].PMUX[((pinmux >> 16) - (port*32))/2].reg |= (uint8_t)((pinmux &
0x0000FFFF) << (4 * ((pinmux >> 16) & 0x01u)));

}

/* SERCOM clock and peripheral bus clock initialization */
void i2c_clock_init()
{

struct system_gclk_chan_config gclk_chan_conf;
uint32_t gclk_index = SERCOM2_GCLK_ID_CORE;
/* Turn on module in PM */
system_apb_clock_set_mask(SYSTEM_CLOCK_APB_APBC, PM_APBCMASK_SERCOM2);
/* Turn on Generic clock for I2C */
system_gclk_chan_get_config_defaults(&gclk_chan_conf);
//Default is generator 0. Other wise need to configure like below
/* gclk_chan_conf.source_generator = GCLK_GENERATOR_1; */
system_gclk_chan_set_config(gclk_index, &gclk_chan_conf);
system_gclk_chan_enable(gclk_index);

}
/* I2C pin initialization */
void i2c_pin_init()
{

/* PA08 and PA09 set into peripheral function D*/
pin_set_peripheral_function(PINMUX_PA08D_SERCOM2_PAD0);
pin_set_peripheral_function(PINMUX_PA09D_SERCOM2_PAD1);

}
/* I2C master initialization */
void i2c_master_init()
{

/* By setting the SPEED bit field as 0x00, I2C Master runs at standard mode,
 By setting the SDAHOLD bit field as 0x02, SDA hold time is configured for 300-600ns,
 By setting the RUNSTDBY bit as 0x01,Generic clock is enabled in all sleep modes,
 any interrupt can wake up the device,
 SERCOM2 is configured as an I2C Master by writing the MODE bitfield as 0x5 */
SERCOM2->I2CM.CTRLA.reg = SERCOM_I2CM_CTRLA_SPEED (STANDARD_MODE_FAST_MODE) |

SERCOM_I2CM_CTRLA_SDAHOLD(0x2) |
SERCOM_I2CM_CTRLA_RUNSTDBY |
SERCOM_I2CM_CTRLA_MODE_I2C_MASTER;

/* smart mode enabled by setting the bit SMEN as 1 */
SERCOM2->I2CM.CTRLB.reg = SERCOM_I2CM_CTRLB_SMEN;
/* synchronization busy */
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015
5

0

50

/* BAUDLOW is non-zero, and baud register is loaded */
SERCOM2->I2CM.BAUD.reg = SERCOM_I2CM_BAUD_BAUD(34) | SERCOM_I2CM_BAUD_BAUDLOW(34);
/* synchronization busy */
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* SERCOM2 peripheral enabled by setting the ENABLE bit as 1*/
SERCOM2->I2CM.CTRLA.reg |= SERCOM_I2CM_CTRLA_ENABLE;
/* SERCOM Enable synchronization busy */
while((SERCOM2->I2CM.SYNCBUSY.reg & SERCOM_I2CM_SYNCBUSY_ENABLE));
/* bus state is forced into idle state */
SERCOM2->I2CM.STATUS.bit.BUSSTATE = 0x1;
/* Both master on bus and slave on bus interrupt is enabled */
SERCOM2->I2CM.INTENSET.reg = SERCOM_I2CM_INTENSET_MB | SERCOM_I2CM_INTENSET_SB;
/* SERCOM2 handler enabled */
system_interrupt_enable(SERCOM2_IRQn);

}
/* I2C master Transaction */
void i2c_master_transact(void)
{

i = 0;
/* ACK signal */
SERCOM2->I2CM.CTRLB.reg &= ~SERCOM_I2CM_CTRLB_ACKACT;
/* synchronization busy */
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* slave address 0 with receive */
SERCOM2->I2CM.ADDR.reg = (SLAVE_ADDR_0 << 1) | 1;
while(!rx_done);
rx_done = false;
SERCOM2->I2CM.CTRLB.reg &= ~SERCOM_I2CM_CTRLB_ACKACT;
/* synchronization busy */
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* slave address 1 with receive */
SERCOM2->I2CM.ADDR.reg = (SLAVE_ADDR_1 << 1) | 1;
while(!rx_done);
rx_done = false;
SERCOM2->I2CM.CTRLB.reg &= ~SERCOM_I2CM_CTRLB_ACKACT;
/* synchronization busy */
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* slave address 2 with receive */
SERCOM2->I2CM.ADDR.reg = (SLAVE_ADDR_2 << 1) | 1;
while(!rx_done);
rx_done = false;
SERCOM2->I2CM.CTRLB.reg &= ~SERCOM_I2CM_CTRLB_ACKACT;
/* synchronization busy */
while(SERCOM2->I2CM.SYNCBUSY.bit.SYSOP);
/* slave address 3 with receive */
SERCOM2->I2CM.ADDR.reg = (SLAVE_ADDR_3 << 1) | 1;
while(!rx_done);
rx_done = false;
/*Interrupts are cleared */
SERCOM2->I2CM.INTENCLR.reg = SERCOM_I2CM_INTENCLR_MB | SERCOM_I2CM_INTENCLR_SB;

}

int main (void)
{

system_init();

i2c_clock_init();

i2c_pin_init();

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015

5
1

51

i2c_master_init();

i2c_master_transact();

while(1);

}

5.3.9 I2C Slave Initialization

The i2c_slave_init function will initialize the I2C slave function by configuring the control registers, address

register with range of addresses, and setting the respective interrupt enable bits.

void i2c_slave_init()
{
 /* By setting the SPEED bit field as 0x00,I2C communication runs at standard mode-
100KHz,

 By setting the SDAHOLD bit field as 0x02, SDA hold time is configured for 300-600ns,
 By setting the RUNSTDBY bit as 0x01,Generic clock is enabled in all sleep modes,
 any interrupt can wake up the device,
 SERCOM2 is configured as an I2C Slave by writing the MODE bitfield as 0x04 */
SERCOM2->I2CS.CTRLA.reg = SERCOM_I2CS_CTRLA_SPEED (STANDARD_MODE_FAST_MODE) |

SERCOM_I2CS_CTRLA_SDAHOLD(0x2) |
SERCOM_I2CM_CTRLA_RUNSTDBY |
SERCOM_I2CS_CTRLA_MODE_I2C_SLAVE;

/* smart mode enabled by setting the bit SMEN as 1,
 Address match and mask mode is selected by setting the AMODE bitfield as 0x00 */
SERCOM2->I2CS.CTRLB.reg = SERCOM_I2CS_CTRLB_SMEN | SERCOM_I2CS_CTRLB_AMODE(0);
/*ADDR_ADDR is the main address and
 setting 0x3 in ADDRMASK will not include the bits 0 and 1 for address compare */
SERCOM2->I2CS.ADDR.reg = SERCOM_I2CS_ADDR_ADDR(SLAVE_ADDR_0) | SERCOM_I2CS_ADDR_AD-
DRMASK(0x3);
/* Address match interrupt, Data ready interrupt,stop received
interrupts are enabled */
SERCOM2->I2CS.INTENSET.reg = SERCOM_I2CS_INTENSET_PREC | SERCOM_I2CS_INTENSET_AMATCH |
SERCOM_I2CS_INTENSET_DRDY;
/* SERCOM2 peripheral enabled */
SERCOM2->I2CS.CTRLA.reg |= SERCOM_I2CS_CTRLA_ENABLE;
/* SERCOM enable synchronization busy */
while((SERCOM2->I2CS.SYNCBUSY.reg & SERCOM_I2CS_SYNCBUSY_ENABLE));
/* SERCOM2 handler enabled */
system_interrupt_enable(SERCOM2_IRQn);

}

 I2C slave CTRLA register is used to configure the I2C speed, SDA hold time, and the I2C mode of the

device. In the above function, I2C runs at standard speed – 100kHz, SDA hold time as 300 – 600ns, and

the device runs as I2C slave mode. Generic clocks will be enabled in all the sleep modes.

 CTRLB register is used to configure the acknowledge action, command to configure, smart mode enable,

and address mode. In the above function the Smart Mode is enabled and range of addresses is selected

in address mode.

 ADDR bits hold the upper limit of the range and ADDRMASK holds the lower limit of the range. The

slave will respond for an address within this range.

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015
5

2

52

 The INTENSET register is used to enable the required interrupts. In the above function, address match

interrupt, stop received interrupt, and Data ready interrupt are enabled.

 CTRLA, CTRLB, and BAUD registers can be written only when the I2C is disabled because these

registers are enable protected. So once configuring these registers, the I2C is enabled.

 Due to the asynchronicity between CLK_SERCOMx_APB and GCLK_SERCOMx_CORE, some

registers must be synchronized when accessed. CTRLA register is Write-Synchronized so needs to

check the synchronization busy.

 Each peripheral has a dedicated interrupt line, which is connected to the Nested Vector Interrupt

Controller in the Cortex-M0+ core

 In the above function the SERCOM2 interrupt request line (IRQ - 11) is enabled

5.3.10 I2C Slave Transaction

SERCOM2 Handler will serve the I2C slave transaction function.

 In SERCOM2 handler, address match interrupt set will be checked and once it is set, the address is

stored in a variable from the DATA register

 The address from the DATA register is right shifted by 1 bit and stored in a variable, because LSB of

DATA register value is R/W value of I2C transaction.

 Now DRDY interrupt set condition is checked and if it sets it will enter inside the loop

 Inside the loop the Boolean flag ‘tx_done’ is checked for true condition, as its initialized value is false.

This flag will be true once loading the value “ï” in DATA register so now code enters into the checking for

direction loop.

 Since it is master read – slave write operation so DIR flag will be set and enters inside the loop

 Code will check for the first slave address with the received address in the variable ’rxd_addr’

 Now writes the variable “i” value into the DATA register and writes the command 0x3 in CTRLB register,

which is execute a byte read operation by master (slave write) followed by ACK/NACK reception by

slave.

 Now Boolean flag ‘tx_done ’is set to true

 On receiving the ACK/NACK DRDY interrupt sets and flag ‘tx_done’ is checked for true and enters inside

the loop. Now sets the flag ‘tx_done’ as false and command 0x2 is written into CTRLB register.

 Command 0x2 is waiting for stop condition

 The above steps repeats for the remaining range of addresses

void SERCOM2_Handler(void)
{

/* Check for Address match interrupt */
if(SERCOM2->I2CS.INTFLAG.bit.AMATCH)
{

/* getting the address from DATA register
by shifting 1 bit right */
rxd_addr = (SERCOM2->I2CS.DATA.reg >> 1);
/* clearing the Address match interrupt */
SERCOM2->I2CS.INTFLAG.bit.AMATCH = 1;

}
/* Data Ready interrupt check */
if(SERCOM2->I2CS.INTFLAG.bit.DRDY)
{

if (tx_done)
{

tx_done = false;
/* wait for stop condition */

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015

5
3

53

SERCOM2->I2CS.CTRLB.bit.CMD = 0x2;
}
/* Checking for direction,
DIR - 0 for slave read,
DIR - 1 for slave write */
else if (SERCOM2->I2CS.STATUS.bit.DIR)
{

/*checking the received address with range of slave addresses */
if (rxd_addr == SLAVE_ADDR_0) {

i = 5;
}
else if (rxd_addr == SLAVE_ADDR_1) {

i = 10;
}
else if (rxd_addr == SLAVE_ADDR_2) {

i = 15;
}
else if (rxd_addr == SLAVE_ADDR_3) {

i = 20;
}
/* writing into the DATA register */
SERCOM2->I2CS.DATA.reg = i;
/* Execute a byte read operation followed by ACK/NACK reception */
SERCOM2->I2CS.CTRLB.bit.CMD = 0x3;
tx_done = true;

}
}

}

The final application “Address mode configuration” in main.c file will be as below for SLAVE.

#include <asf.h>
#define STANDARD_MODE_FAST_MODE 0x0
#define FAST_MODE_PLUS 0X01
#define HIGHSPEED_MODE 0X02
#define SLAVE_ADDR_0 0x50
#define SLAVE_ADDR_1 0x51
#define SLAVE_ADDR_2 0x52
#define SLAVE_ADDR_3 0x53

/* Function Prototype */
void i2c_clock_init(void);
void i2c_pin_init(void);
void i2c_slave_init(void);

uint8_t i = 0;
uint8_t rxd_addr;
volatile bool tx_done = false;

/* SERCOM2 I2C handler */
void SERCOM2_Handler(void)
{

/* Check for Address match interrupt */
if(SERCOM2->I2CS.INTFLAG.bit.AMATCH)
{

/* getting the address from DATA register
by shifting 1 bit right */

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015
5

4

54

rxd_addr = (SERCOM2->I2CS.DATA.reg >> 1);
/* clearing the Address match interrupt */
SERCOM2->I2CS.INTFLAG.bit.AMATCH = 1;

}
/* Data Ready interrupt check */
if(SERCOM2->I2CS.INTFLAG.bit.DRDY)
{

if (tx_done)
{

tx_done = false;
/* wait for stop condition */
SERCOM2->I2CS.CTRLB.bit.CMD = 0x2;

}
/* Checking for direction,
DIR - 0 for slave read,
DIR - 1 for slave write */
else if (SERCOM2->I2CS.STATUS.bit.DIR)
{

/*checking the received address with range of slave addresses */
if (rxd_addr == SLAVE_ADDR_0) {

i = 5;
}
else if (rxd_addr == SLAVE_ADDR_1) {

i = 10;
}
else if (rxd_addr == SLAVE_ADDR_2) {

i = 15;
}
else if (rxd_addr == SLAVE_ADDR_3) {

i = 20;
}
/* writing into the DATA register */
SERCOM2->I2CS.DATA.reg = i;
/* Execute a byte read operation followed by ACK/NACK reception */
SERCOM2->I2CS.CTRLB.bit.CMD = 0x3;
tx_done = true;

}
}

}

/*Assigning pin to the alternate peripheral function*/
static inline void pin_set_peripheral_function(uint32_t pinmux)
{

uint8_t port = (uint8_t)((pinmux >> 16)/32);
PORT->Group[port].PINCFG[((pinmux >> 16) - (port*32))].bit.PMUXEN = 1;
PORT->Group[port].PMUX[((pinmux >> 16) - (port*32))/2].reg &= ~(0xF << (4 * ((pinmux >>
16) & 0x01u)));
PORT->Group[port].PMUX[((pinmux >> 16) - (port*32))/2].reg |= (uint8_t)((pinmux &
0x0000FFFF) << (4 * ((pinmux >> 16) & 0x01u)));

}
/* SERCOM clock and peripheral bus clock initialization */
void i2c_clock_init()
{

struct system_gclk_chan_config gclk_chan_conf;
uint32_t gclk_index = SERCOM2_GCLK_ID_CORE;
/* Turn on module in PM */
system_apb_clock_set_mask(SYSTEM_CLOCK_APB_APBC, PM_APBCMASK_SERCOM2);
/* Turn on Generic clock for I2C */
system_gclk_chan_get_config_defaults(&gclk_chan_conf);

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015

5
5

55

//Default is generator 0. Other wise need to configure like below
/* gclk_chan_conf.source_generator = GCLK_GENERATOR_1; */
system_gclk_chan_set_config(gclk_index, &gclk_chan_conf);
system_gclk_chan_enable(gclk_index);

}
/* I2C pin initialization */
void i2c_pin_init()
{

/* PA08 and PA09 set into peripheral function D*/
pin_set_peripheral_function(PINMUX_PA08D_SERCOM2_PAD0);
pin_set_peripheral_function(PINMUX_PA09D_SERCOM2_PAD1);

}

/* I2C Slave initialization */
void i2c_slave_init()
{

/* By setting the SPEED bit field as 0x00, I2C communication runs at standard mode -
100KHz,
 By setting the SDAHOLD bit field as 0x02, SDA hold time is configured for 300-600ns,
 By setting the RUNSTDBY bit as 0x01,Generic clock is enabled in all sleep modes,

 any interrupt can wake up the device,
 SERCOM2 is configured as an I2C Slave by writing the MODE bitfield as 0x04 */
SERCOM2->I2CS.CTRLA.reg = SERCOM_I2CS_CTRLA_SPEED (STANDARD_MODE_FAST_MODE) |
 SERCOM_I2CS_CTRLA_SDAHOLD(0x2) |
 SERCOM_I2CM_CTRLA_RUNSTDBY |
 SERCOM_I2CS_CTRLA_MODE_I2C_SLAVE;
/* smart mode enabled by setting the bit SMEN as 1,
 Address match and mask mode is selected by setting the AMODE bitfield as 0x00 */
SERCOM2->I2CS.CTRLB.reg = SERCOM_I2CS_CTRLB_SMEN | SERCOM_I2CS_CTRLB_AMODE(0);
/*ADDR_ADDR is the main address and
 setting 0x3 in ADDRMASK will not include the bits 0 and 1 for address compare */
SERCOM2->I2CS.ADDR.reg = SERCOM_I2CS_ADDR_ADDR(SLAVE_ADDR_0) | SERCOM_I2CS_ADDR_AD-
DRMASK(0x3);
/* Address match interrupt, Data ready interrupt,stop received
interrupts are enabled */
SERCOM2->I2CS.INTENSET.reg = SERCOM_I2CS_INTENSET_PREC | SERCOM_I2CS_INTENSET_AMATCH |
SERCOM_I2CS_INTENSET_DRDY;
/* SERCOM2 peripheral enabled */
SERCOM2->I2CS.CTRLA.reg |= SERCOM_I2CS_CTRLA_ENABLE;
/* SERCOM enable synchronization busy */
while((SERCOM2->I2CS.SYNCBUSY.reg & SERCOM_I2CS_SYNCBUSY_ENABLE));
/* SERCOM2 handler enabled */
system_interrupt_enable(SERCOM2_IRQn);

}

int main (void)
{

system_init();

i2c_clock_init();

i2c_pin_init();

i2c_slave_init();

while(1);

}

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015
5

6

56

Note: In this Address mode application, there is no scope plot attached. In this mode the slave responds to

the master with specific data byte for each slave address.

Table 5-2. Data Byte for Different Slave Address

Slave address Data byte respond to master by slave

0x50 5

0x51 10

0x52 15

0x53 20

6 References

SAM D21 Device Datasheet - http://www.atmel.com/Images/Atmel-42181-SAM-D21_Datasheet.pdf.

SAM D21 Xplained Pro user guide and schematics link - http://www.atmel.com/tools/atsamd21-

xpro.aspx?tab=documents.

http://www.atmel.com/Images/Atmel-42181-SAM-D21_Datasheet.pdf
http://www.atmel.com/tools/atsamd21-xpro.aspx?tab=documents
http://www.atmel.com/tools/atsamd21-xpro.aspx?tab=documents

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015

5
7

57

7 Revision History

Doc Rev. Date Comments

42631A 12/2015 Initial document release.

AT11628: SAM D21 SERCOM I2C Configuration [APPLICATION NOTE]
Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015
5

8

58

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 │ www.atmel.com

© 2015 Atmel Corporation. / Rev.: Atmel-42631A-SAM-D21-SERCOM-I2C-Configuration_ApplicationNote_AT11628_122015.

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected® logo, Cortex®, and others are the registered trademarks or trademarks of ARM Ltd. Windows® is a registered trademark of
Microsoft Corporation in U.S. and or other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND COND ITIONS OF SALES LOCATED ON THE
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON -INFRINGEMENT. IN NO EVENT
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LI MITATION, DAMAGES
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO U SE THIS DOCUMENT, EVEN IF ATMEL

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accurac y or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, auto motive applications. Atmel products are not intended,

authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and wi ll not be used in connection with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety -Critical Applications”) without an Atmel officer's specific written consent.
Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation o f nuclear facilities and weapons systems. Atmel

products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not

designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive -grade.

http://www.atmel.com/
https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel

	Introduction
	Features
	Table of Contents
	1 Glossary
	2 Pre-requisites
	3 SERCOM Implementation in SAM D21 Microcontrollers
	3.1 SERCOM Overview
	3.2 Block Diagram
	3.3 Clocks

	4 Hardware and Software Requirements
	5 Application Demonstration
	5.1 Basic Configuration
	5.1.1 Main Clock
	5.1.2 Master and Slave Clock
	5.1.3 Clock Flow for Master and Slave
	5.1.4 System Initialization
	5.1.5 I2C Clock Initialization
	5.1.6 I2C Pin Initialization
	5.1.7 I2C Master Initialization
	5.1.8 I2C Master Transaction
	5.1.9 I2C Slave Initialization
	5.1.10 I2C Slave Transaction

	5.2 High Speed Configuration
	5.2.1 Master and Slave Clock in High-speed Configuration
	5.2.2 Clock Flow for Master and Slave
	5.2.3 System Initialization
	5.2.4 I2C clock Initialization
	5.2.5 I2C Pin Initialization
	5.2.6 I2C Master Initialization
	5.2.7 I2C Master Transaction
	5.2.8 I2C Slave Initialization
	5.2.9 I2C Slave Transaction

	5.3 Address Match and Mode Configuration
	5.3.1 Address Match and Mask Mode
	5.3.2 Master and Slave Clock
	5.3.3 Clock Flow for Master and slave
	5.3.4 System Initialization
	5.3.5 I2C clock Initialization
	5.3.6 I2C Pin Initialization
	5.3.7 I2C Master Initialization
	5.3.8 I2C Master Transaction
	5.3.9 I2C Slave Initialization
	5.3.10 I2C Slave Transaction

	6 References
	7 Revision History

