

APPLICATION NOTE

Atmel AT02260: Driving AT42QT1085

Atmel QTouch

Features

• Overview of Atmel® AT42QT1085

• Circuit configuration with Host MCU

• SPI communication

• Demonstration program

Description

This application note explains the communication of Master SPI controller with
AT42QT1085 as a slave device. It demonstrates configuring and controlling various
parameters of this device.

The host code demonstration program provided has been developed for 8-bit Atmel
megaAVR® (Atmel ATmega2560) microcontroller but can be easily adapted for other
platforms.

The demonstration program is written in C and supports both GCC (Atmel Studio)
and IAR™ (IAR Embedded Workbench®) compiler.

42092A−AVR−03/2013

Atmel AT02260: Driving AT42QT1085 [APPLICATION NOTE]
42092A−AVR−03/2013

2

Table of Contents

1. Overview of Atmel AT42QT1085 .. 3
1.1 Introduction ... 3
1.2 Host interface .. 3

2. Circuit Configuration with Host Microcontroller 4

3. SPI Communication ... 5
3.1 Specifications for the Atmel AT42QT1085 .. 5
3.2 SPI driver implementation ... 5
3.3 SPI Communication Protocol for the Atmel AT42QT1085 6

4. Demonstration Program ... 7
4.1 Program flow ... 7
4.2 Files …. .. 8
4.3 Functions .. 9

5. Porting Code to Other Platforms .. 11
5.1 Change pin .. 11
5.2 Reset pin ... 11
5.3 SPI driver .. 11

5.3.1 Pins for SPI communication .. 11
5.3.2 SPI Initialization .. 11
5.3.3 SPI data transfer ... 11

6. References .. 12

7. Revision History ... 13

Atmel AT02260: Driving AT42QT1085 [APPLICATION NOTE]
42092A−AVR−03/2013

3

1. Overview of Atmel AT42QT1085

1.1 Introduction
AT42QT1085 is a device based on the Atmel QTouchADC technology designed for capacitive touch key applications.

This device supports up to eight keys, where four are dedicated channels for keys (Key0 to Key3) and another four
channels can be configured either as keys (Key4 to Key7) or as GPIO channels (GPIO_12 to GPIO _15). This device
also supports 12 dedicated GPIO channels (GPIO_0 to GPIO_11).

This device has a haptics engine integrated in it, which allows haptic effects to be triggered on key detection or directly
controlled by the host microcontroller.

1.2 Host interface
The host microcontroller communicates with the AT42QT1085 over SPI interface using master-slave relationship, with
the AT42QT1085 acting in slave mode. This bus protocol takes care of all addressing functions and bidirectional data
transfer.

In addition, the device also features a CHANGE signal, which is asserted when there is a message waiting to be read.

This can be used either to wake the host or as an interrupt signal to inform the host when the QT™ device has detected

a touch. The host should always use CHANGE line as an indication to read messages from QT device and the host

should not read messages at any other time, when CHANGE line is not asserted.

Atmel AT02260: Driving AT42QT1085 [APPLICATION NOTE]
42092A−AVR−03/2013

4

2. Circuit Configuration with Host Microcontroller
Following are the connections used in the demonstration program.

Table 2-1. Connection between Host microcontroller and QT device.

Atmel ATmega2560 Atmel AT42QT1085

PD1 (Pin 44) CHANGE

PB4 (Pin 23) RESET

PB0 (Pin 19) SS

PB1 (Pin 20) SCK

PB2 (Pin 21) MOSI

PB3 (Pin 22) MISO

The hardware SPI module of the ATmega2560 is used in this demonstration. The SPI module of ATmega2560 is
available in the corresponding pins mentioned in the Table 2-1.

Figure 2-1. Circuit configuration with Host microcontroller.

Touch keys (K0 – K7) are connected to the KEY0 to KEY7 sense pins of AT42QT1085.

In the demonstration source code provided, PORT C (PC0 to PC7) of the Host microcontroller has been configured for
touch status indication on keys K0 to K7 using LEDs.

Note: External pull-up resistors of 100kΩ are required on the SS , RESET and the CHANGE lines.

Atmel AT02260: Driving AT42QT1085 [APPLICATION NOTE]
42092A−AVR−03/2013

5

3. SPI Communication

3.1 Specifications for the Atmel AT42QT1085
The AT42QT1085 communicates with the host over a full-duplex 4-wire (MISO, MOSI, SCK, SS) SPI interface. The

AT42QT1085 supports an object-based protocol that is used to communicate with the device. There are a few
specifications with regards to AT42QT1085 communication, which are mentioned below.

• The AT42QT1085 SPI Interface can operate at a speed of up to 750kHz

• The Least Significant Bit (LSB) is the first byte in a multi-byte data transmission (Little-Endian Configuration)

• The AT42QT1085 set up data on the rising edge and replace data on the falling edge

• The AT42QT1085 require that the clock idles to “high” state

• In AT42QT1085 a minimum delay of 100μs is required between transmissions of each byte in case of multi-
byte communication

• To begin a new communication exchange with AT42QT1085, SS must be pulled high for at least 2ms after

performing a read operation or 10ms after performing a write operation

Note: Refer to the AT42QT1085 device datasheet for other timing specifications.

3.2 SPI driver implementation
The SPI driver in this demonstration program is developed for the Atmel ATmega2560. SPI Peripheral for this device is
available in PORTB. Refer to Table 2-1 and Figure 2-1 for details.

Following are the functions used to implement the SPI driver:

Function Description
void SPI_MasterInit
(uint8_t sck_fosc_div)

Initializes the SPI module of the Host microcontroller

Input sck_fosc_div - Division Factor to generate SCK Frequency. The
following macros are the allowable inputs as arguments
SCK_FOSC_DIV_2
SCK_FOSC_DIV_4
SCK_FOSC_DIV_8
SCK_FOSC_DIV_16
SCK_FOSC_DIV_32
SCK_FOSC_DIV_64
SCK_FOSC_DIV_128

Output None

void SPI_Transfer
(uint8_t *command, uint8_t
command_length, uint8_t *data,
uint8_t data_length)

Sends command and simultaneously transmits and receives the number of
data bytes specified

 Input *command – Pointer to command array

command_length – Number of command bytes to be transmitted
by master

*data – Pointer to local array to send data from host

data_length – Number of data bytes to be written by master or
read back from the slave

Output *data – Pointer to local array to read data from QT device

Atmel AT02260: Driving AT42QT1085 [APPLICATION NOTE]
42092A−AVR−03/2013

6

3.3 SPI Communication Protocol for the Atmel AT42QT1085
The Object Protocol of the AT42QT1085 device organizes different features of the device into objects that can be
controlled individually. The Objects must be configured before use and the modified settings need to be written into the
nonvolatile memory using the Command Processor object.

Using the Object Protocol
The host should perform the following initialization to communicate with the AT42QT1085 using SPI:

a. Read the start positions and sizes of all the objects from the Object Table in the AT42QT1085 and build up a
list of all these addresses.

b. Use the Object Table to calculate the report IDs so that messages from the QT device can be correctly
interpreted.

Host Command
A 3-byte command sequence is transmitted by the host on MOSI, setting the memory map address pointer, a Read /
Write indication, and the number of bytes which will be read or written.

Reading from / Writing to the device
The SPI Transfer routine sends the appropriate command to the QT device for reading or writing.

This routine receives a pointer to command array and length of the command array as inputs. The command array byte
indicates read or write operation.

This routine also receives a pointer to local array and number of data bytes to be read from the QT device or written into
the QT device. The local array is dumped with the received SPI data during read operation and during write operation,
the host controller fills the local array with data to be written into the QT device.

Note: Refer to the AT42QT1085 Protocol Guide for detailed information on configuring objects.

Atmel AT02260: Driving AT42QT1085 [APPLICATION NOTE]
42092A−AVR−03/2013

7

4. Demonstration Program
The demonstration program shows how to use the host interface to read real-time touch information from QT devices. It
also demonstrates the procedure to perform read and write operations into objects on the Object Protocol memory map
structure. This helps in tuning different operating parameters of the device.

4.1 Program flow

Atmel AT02260: Driving AT42QT1085 [APPLICATION NOTE]
42092A−AVR−03/2013

8

4.2 Files
The folder structure for the demonstration program is shown below.

The source code consists of the following files:

File name Description

main.c It consists the main() function and the body of the application program

configuration.h Device selection and port pin selections for RESET and CHANGE pins are

configured here

QT1085.c It consists the application interfaces to drive the QT device

QT1085.h Consists of function prototypes and memory map structure for object protocol

SPI_Master.c SPI driver code

SPI_Master.h Header file for the SPI driver

checksum.c Contains algorithm for 24-bit CRC checksum calculation and verifies the
information block checksum read

checksum.h Header file for CRC computation

LED.c Handling LED update based on touch key status

LED.h Header file for Host Control source file

Atmel AT02260: Driving AT42QT1085 [APPLICATION NOTE]
42092A−AVR−03/2013

9

4.3 Functions
Function Description

void InitQtInterface(void)

Performs SPI Master initialization, configures a selected GPIO as input

for CHANGE pin and configures a GPIO as output for RESET pin

Input None

Output
Return

None
None

void ResetQT(void)

Performs a hardware reset of the QT device by pulling down the RESET pin of
the QT device

Input None

Output
Return

None
None

void GetCommsReady(void)

Uses the SPI command to ensure proper communication, by verifying
information block checksum read

Input None

Output
Return

None
None

void ReadObjectTable(void)

Reads the information block bytes of the QT device

Input None

Output
Return

None
None

uint32_t InformationBlockCRC
(void)

Computes CRC for the information block bytes

Input None

Output
Return

None
Returns the computed CRC

Uint8_t VerifyInfoBlockChecksum
(uint32_t checkcum_calc)

Verifies the computed CRC of the information block

Input checkcum_calc - computed CRC of the information block

Output
Return

None
Returns TRUE if successful or FALSE otherwise

uint8_t ReadSetupBlock
(struct QT1085_objects_config_t
*objects_config_ptr)

Reads the configurable Object parameters from memory map structure

Input *objects_config_ptr:
Pointer to configuration objects structure

Output

Return

*objects_config_ptr: Pointer to configuration objects structure,
Configured data filled in objects_config structure
Returns TRUE if successful or FALSE otherwise

struct object_table_t*
GetObjectInfo (uint8_t type)

Determines the starting address of the requested Object table element in
memory map structure, which matches with the type input

Input type - type code for the object details requested

Output
Return

None
Returns the starting address of the object table element

uint8_t WriteSetupBlock
(struct QT1085_objects_config_t
*objects_config_ptr)

Writes the modified Object parameters into memory map structure

Input *objects_config_ptr:
Pointer to configuration objects structure

Output
Return

None
Returns TRUE if successful or FALSE otherwise

Atmel AT02260: Driving AT42QT1085 [APPLICATION NOTE]
42092A−AVR−03/2013

10

void BackupConfigSetting(void)

Sends command to backup configuration settings in nonvolatile memory

Input None

Output
Return

None
None

uint8_t ReadKeyStatus
 (uint8_t *msg_ptr)

Reads the message waiting to be read from QT device

Input *msg_ptr: Pointer to message status array

Output
Return

None
Returns TRUE if there is a touch status message, else FALSE

uint8_t ReadMessageProcessorData
 (uint8_t *msg_ptr)

Reads the object generated message from message processor

Input *msg_ptr: Pointer to message status array

Output
Return

None
Returns the report ID of the object that sent the message

uint8_t ConfigurationCheck(void)

Checks whether the Configuration Error Bit is set in received message

Input None

Output
Return

None
Returns the Configuration Error bit status

void InitTouchStatusPorts(void)

Configure the PORTC pins 0 to 7 for displaying touch status of Keys 0 to 7

Input None

Output
Return

None
None

void UpdateLedStatus
 (uint8_t * QtStatusPtr)

Update touch key status through LED indications

Input *QtStatusPtr: Pointer to QT Touch status message array

Output
Return

None
None

Atmel AT02260: Driving AT42QT1085 [APPLICATION NOTE]
42092A−AVR−03/2013

11

5. Porting Code to Other Platforms
This chapter discusses the parts of the demonstration program which needs modification while porting to other MCUs.

5.1 Change pin
The CHANGE pin of the QT device must be connected to a MCU pin which can be configured as an input.

To assign any particular pin the following MACROs declared in configuration.h needs to be modified.

// CHANGE Status port and pin configuration
#define CHANGE_STATUS_PORT D // PORT
#define CHANGE_STATUS_PIN 1 // Pin Number

5.2 Reset pin
The RESET pin of the QT device must be connected to a MCU pin which can be configured as an output.

To assign any particular pin the following MACROs declared in configuration.h needs to be modified.

// RESET port and pin configuration
#define RESET_PORT B // PORT
#define RESET_PIN 4 // Pin Number

5.3 SPI driver
The device level drivers for SPI communication will be specific to the MCU platform used. The details of the SPI driver
implementation has been provided in Section 3.2.

5.3.1 Pins for SPI communication
Pins for the SPI communication are configured in SPI_Master.h file. For porting to any other Atmel megaAVR or Atmel
tinyAVR® one can simply configure the SPI pins as per the device datasheet. In the current demonstration program the
following configuration has been made.

#define SPI_PORT PORTB
#define SPI_DDR DDRB

#define SPI_SS PB0
#define SPI_SCK PB1
#define SPI_MOSI PB2
#define SPI_MISO PB3

5.3.2 SPI Initialization
The initialization routine for SPI master module must be done in void SPI_MasterInit(uint_8 sck_fosc_div).

The implementation can be made for a fixed SCK frequency rather than a configurable one. The SCK frequency should
not exceed the maximum speed supported by the QT device.

5.3.3 SPI data transfer
The data transfer routine should be able to handle bidirectional data transfer. This routine sends three command bytes
and simultaneously transmits and receives the number of data bytes specified.

This routine should receive a pointer to command array, length of the command array as inputs, a pointer to local array
and number of data bytes to be read from QT device or written into QT device.

Atmel AT02260: Driving AT42QT1085 [APPLICATION NOTE]
42092A−AVR−03/2013

12

6. References
• AT42QT1085 Protocol Guide Complete

• AT42QT1085 Complete device datasheet

http://www.atmel.com/Images/doc9626.pdf
http://www.atmel.com/Images/doc9625.pdf

Atmel AT02260: Driving AT42QT1085 [APPLICATION NOTE]
42092A−AVR−03/2013

13

7. Revision History
Doc. Rev. Date Comments

42092A 03/2013 Initial document release

Atmel Corporation
1600 Technology Drive
San Jose, CA 95110
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

Atmel Japan G.K.
16F Shin-Osaki Kangyo Building
1-6-4 Osaki Shinagawa-ku
Tokyo 141-0032
JAPAN
Tel: (+81)(3) 6417-0300
Fax: (+81)(3) 6417-0370

© 2013 Atmel Corporation. All rights reserved. / Rev.: 42092A−AVR−03/2013

Atmel®, Atmel logo and combinations thereof, AVR®, Enabling Unlimited Possibilities®, megaAVR®, QTouch®, tinyAVR®, and others are registered trademarks or
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

http://www.atmel.com/

	1. Overview of Atmel AT42QT1085
	1.1 Introduction
	1.2 Host interface

	2. Circuit Configuration with Host Microcontroller
	3. SPI Communication
	3.1 Specifications for the Atmel AT42QT1085
	3.2 SPI driver implementation
	3.3 SPI Communication Protocol for the Atmel AT42QT1085

	4. Demonstration Program
	4.1 Program flow
	/
	4.2 Files
	4.3 Functions

	5. Porting Code to Other Platforms
	5.1 Change pin
	5.2 Reset pin
	5.3 SPI driver
	5.3.1 Pins for SPI communication
	5.3.2 SPI Initialization
	5.3.3 SPI data transfer

	6. References
	7. Revision History

