@ Micr Osemi Application Note AC392

SmartFusion2 SoC FPGA SRAM Initialization from
eNVM - Libero SoC v11.7

Table of Contents

Purpose 1
Introduction L e 1
References e 2
Design Requirements L 2
Embedded SRAM Blocks in SmartFusion2 SoOCFPGAs 2
SmartFusion2 SoC FPGA eNVM Controller for Data Storage i i 3
SRAM 10 APB3 WWrapper . . oottt e e e e e 5
SRAM Initialization Reference Designs e 6
Cortex-M3 Processor as Master e 6
Fabric Mastero 7
Initializing SRAM Using Cortex-M3 ProcessorasMaster 10
Hardware Implementation 10
Firmware and Application Code Software Implementation 12
Simulating Reference Design with Cortex-M3 Processoras Master 12
Running the Design with Cortex-M3 Processoras Master 13
Initializing SRAM using Fabric Master 16
Hardware Implementation e 17
Simulating Reference Design with a Fabricas Master i 18
Running the Design with a Fabric Master 20
Customizing Wrapper Interface e 22
Conclusion L L e e 23
Appendix: Design and Programming Files o 24
Listof Changes e 25
Purpose

This application note describes two different methods of initializing the large static random access
memory (LSRAM) and micro SRAMs (USRAM) using design examples where ARM® Cortex®-M3
processor or fabric logic is used as the master. The design examples describe initializing the fabric
SRAM blocks after power-up with the initialization data from the embedded non-volatile memory (eNVM)
block.

Introduction

The SmartFusion®2 system-on-chip (SoC) field programmable gate array (FPGA) devices have
embedded SRAM blocks in fabric. There are two types of SRAM blocks in SmartFusion2 SoC FPGA
fabric— LSRAMs and uSRAMs. The LSRAMSs are used for storing large data or for creating large FIFOs.
The LSRAM and uSRAM blocks are volatile memory types, the stored data disappears in the absence of
power. After the device is powered-up, the content of SRAM is unknown. There are some applications
which require the SRAM data to be initialized and validated after power-up.

March 2016 1
© 2016 Microsemi Corporation

& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.7

There are several methods of initializing the LSRAM and uSRAM. This document provides two solutions
for implementing this initialization method, and also provides the design examples. The design examples
describe initializing the fabric SRAM blocks after power-up with the initialization data from the eNVM
block using the Cortex-M3 processor or fabric logic as the master. The Cortex-M3 processor or the fabric
master transfers the data from eNVM to the SRAM blocks after power-up.

Figure 4 on page 7 and Figure 5 on page 9 show block diagrams of the design examples. The reference
designs use the SRAM block configured as a two-port memory, but this initialization approach can be
used for all the variations of LSRAM and uSRAM in the SmartFusion2 SoC FPGA device. The reference

design is simulated and tested on silicon using SmartFusion2 Security Evaluation Kit board.

References

The list of references are:
* UGO0331: SmartFusion2 Microcontroller Subsystem User Guide
* TU0530: SmartFusion2 and IGLOO2 SmartDebug Hardware Design Debug Tools Tutorial
* SmartFusion2 MSS Embedded Nonvolatile Memory (eNVM) Simulation
+ UG0445: IGLOO2 FPGA and SmartFusion2 SoC FPGA Fabric User Guide

Design Requirements

Table 1 lists the design requirements.
Table 1« Design Requirements

Design Requirements

‘ Description

Hardware Requirements

SmartFusion2 Security Evaluation Kit

| M2S090TS-1FGG484

Software Requirements

Libero® System-on-Chip (SoC) viI1.7
FlashPro programming software v11.7
SoftConsole v3.4 SP1’

Note: For this application note, SoftConsole v3.4 SP1 is used. For using SoftConsole v4.0, see the
TU0546: SoftConsole v4.0 and Libero SoC v11.7 Tutorial.

Embedded SRAM Blocks in SmartFusion2 SoC FPGAs

This section describes the fabric SRAM blocks in various SmartFusion2 devices and clarifies their

differences.

Table 2 lists the types of fabric SRAM blocks in various SmartFusion2 devices.
Table 2+ SRAM Blocks in Various SmartFusion2 Devices

Features M2S005 M2S010 M2S025 | M2S050 | M2S060 | M2S090 | M2S150
LSRAM 18 K Blocks 10 21 31 69 69 109 236
uSRAM 1 K Blocks 1" 22 34 72 72 112 240
Total RAM (Kbits) 191 400 592 1314 1314 2074 4488

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918
http://coredocs.s3.amazonaws.com/Libero/SmartFusion2MSS/MSS/sf2_mss_envm_sim_ug_1.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130920
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=133136
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=133700

& Microsemi

Embedded SRAM Blocks in SmartFusion2 SoC FPGAs

The LSRAM blocks can be configured as a dual-port SRAM or two-port SRAM. LSRAM configured as
dual-port SRAM provides two independent access ports— Port A and Port B. In dual-port mode, data can
be transferred through these ports independently based on various parameters. Each port has its own
address, data in, data out, clock, clock enable, and write enable. LSRAM configured as two-port SRAM
has Port A dedicated to read operations, and Port B dedicated to write operations. The read and write
operations in LSRAM are synchronous and require a clock edge.

The uSRAM has two read ports (Port A and Port B) and one write port (Port C). The read ports operate
either in synchronous or asynchronous modes. The write operation is performed only in synchronous
mode.

The SRAM blocks support rich variations in size and features of memory blocks for SmartFusion2 SoC
FPGA devices. Although these variations require changes for a specific implementation of initializing the
SRAM blocks, the changes are not significant enough to affect the fundamentals of the reference design.
Therefore, the two reference designs target only the LSRAM block. The effects of feature and size
variations on the reference designs are discussed in the "Customizing Wrapper Interface" section on
page 24.

SmartFusion2 eNVM Controller for Data Storage

The design example uses the eNVM array in microcontroller subsystem (MSS) as the source of the
SRAM initialization. The flash memory block in the eNVM is used to store the SRAM initialization data,
and it is loaded to SRAM after power-up. The eNVM controller is an advanced high-performance bus
(AHB) slave that provides access to eNVM. It converts the logical AHB addresses to physical eNVM
addresses, and allows to command the eNVM to perform specific tasks such as read, and write
operations. For more information, see the Embedded eNVM Controller section in the

UG0331: SmartFusion2 Microcontroller Subsystem User Guide.

In the design examples, the data is defined first to be programmed into eNVM, which is used for the
SRAM initialization. The user can define an eNVM "Data Client", which is configured as 64 x 8 using the
eNVM configurator. Figure 1 shows the eNVM configurator graphical user interface (GUI) in Libero SoC
that is accessed through the System Builder tools.

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918

& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.7

Y Clocks m — u D E ecurity :: Tnterrupt ;

Configure your external and embedded memories

[ENVM |
pemthe User Clients in eNVM
| Data Storage |
| Serialization Client Type Client Name Depthowidth Start Address{Hex)

Page Start Page End

Client name: sram_data

ehNvM
Content:
Add to System...)
@ Memory file: &M_INIT/constraint/sram_gnvm.mem E
U Statistics 1
el Format: | Microsemi-Binary = |
Available Pages: 2032 o
Used Pages: 1 || Use absolute addressing []
Free Pages: 2031

") Content filled with 0s

() Mo Content (Client is a placeholder)

Start address: Ox 800 [T
Size of word: ; » | bits
Number of Words: 64

[luseasrom @

Use Content for Simulation

Optimize
Help

Figure 1 » Data Storage eNVM Client (System Builder)

& Microsemi

Embedded SRAM Blocks in SmartFusion2 SoC FPGAs

Page 16 (start address 0x800) is used here for demonstration purposes. Figure 2 shows an excerpt of
the data storage client content using Microsemi binary scheme (sram_envm.mem) that is defined in the
eNVM. The sram_envm.mem file is included in the Libero project under the constraint folder.

=l sram_envm.mem l

1

=] o Lnod W Da

oo

00000001
00000010
00000011
00000100
00000101
00000110
01010011
11111111
01010011
11111111
01010101
11100010
10101010
11110000
01010011
11111111
01010011

m

DosiW ANSI

Figure 2 » Memory File Content Saved into eNVM

& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.7

SRAM to APB3 Wrapper

The section describes connecting the SRAM block to the advanced microcontroller bus architecture
(AMBA®) advanced peripheral bus 3 (APB3) bus system. To move the data from eNVM to SRAM using
the Cortex-M3 processor as the master or a fabric master, the user needs to create a wrapper logic
around the SRAM block. The wrapper generates the write enable and read enable for SRAM using the
APB3 bus signals. Figure 3 shows the state diagram for the APB3 bus specification.

No Transfer

IDLE
PSELx =0
PENABLE =0

Transfer

PREADY =1
and No
Transfer

SETUP
PSELx =1
PENABLE =0

PREADY =1
and Transfer

ACCESS
PSELx =1
PENABLE =1

Figure 3 + APB3 State Diagram

Following are the three states:

« IDLE: This is the default state for the peripheral bus.

+ SETUP: When a transfer is required, the bus moves to this state where the appropriate select
signal PSELXx is asserted. The bus remains in this state for one clock cycle only and always
moves to the ACCESS state on the next rising edge of the clock.

* ACCESS: In this state, the enable signal PENABLE is asserted. The address, write, and select
signals should be stable during the transition from SETUP to ACCESS state. The transition from
the ACCESS state is controlled by the PREADY signal from the slave.

— If PREADY is held low by the slave, then the peripheral bus remains in the ACCESS state.

— If PREADY is held high by the slave and no more transfers are required, the bus transitions
from the ACCESS state to the IDLE state. Alternatively, if another transfer follows, the bus
moves directly to the SETUP state.

In this design example, the wrapper logic generates the write enable and read enable for SRAM using
the PSEL, PWRITE, and PENABLE signals. The PREADY signal is used to insert the wait state.

& Microsemi

SRAM Initialization Reference Designs

SRAM Initialization Reference Designs

This document discusses two methods of initializing the fabric SRAM. The first method uses the
Cortex-M3 processor as the master that transfers the data from eNVM to SRAM. The second method
uses a master in the fabric to transfer the data from eNVM to SRAM. The two reference designs are
described and analyzed in the following sections:

» Cortex-M3 Processor as Master—describes the method of initializing SRAM using the Cortex-M3
processor as the master.

» Fabric Master—describes the method of initializing SRAM using a fabric master.

Cortex-M3 Processor as Master

The SRAM block is configured as two-port memory with a depth of 64 and a width of 8. This design
implements an APB3 slave wrapper interface on Port A and Port B of the SRAM block, and the APB3
wrapper is memory mapped to the MSS. The user can also implement the AHBLite wrapper instead of
APB3 wrapper on the SRAM block and connect to the MSS. However, the APB3 interface is much
simpler than the AHBLite interface, and it is easy to create this interface with the SRAM ports. This APB3
slave wrapper interface is connected to the MSS through the CoreAPB3, CoreAHBTOAPBS3,
CoreAHBLite and fabric interface controller (FIC_Q) interface as shown in Figure 4. FIC_0 and FIC_1
enable the connectivity between the fabric and the MSS. The FIC_O0 is part of the MSS, and performs a
bridging functionality between MSS and FPGA fabric. The FIC can be configured either in the AHBLite
mode or in the APB3 mode. In this design example, the FIC_0 is configured in the AHBLIte, so that the
other AHBLite blocks in the fabric can be connected to MSS through FIC. Figure 4 shows a top-level
block diagram of the design example using the Cortex-M3 processor as the master.

The muxing arbiter block in the APB3 slave wrapper allows switching the SRAM ports as user-ports after
the initialization is done. The Cortex-M3 processor in MSS acts as a master to read data from eNVM after
powering-up and initializing the fabric SRAM block. After the initialization is done, the APB3 wrapper
interface asserts a SEL signal for muxing arbiter to switch the SRAM ports as user-ports. After the
initialization in done, the user reads/writes from/to SRAM block can be started. Figure 4 shows the
design example block diagram using the Cortex-M3 processor as the master.

Cortex-M3
FIC_O Microcontroller Subsystem (MSS)

A

v Fabric

CoreAHBLite « 4 >
Y
CoreAHBLITETOAPB
A
CoreAPB3 < Y I >
Y
SRAM to APB3 . . User RAM
Slave Wrapper » Muxing Arbiter 4 Interface
SEL

SRAM
RAM_with_wrapper Block

Figure 4 » Design Example Block Diagram

& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.7

Interface Description

Table 3 shows the top-level Cortex-M3 processor as the master interface signal descriptions.
For more information about LSRAM and uSRAM functionalities and features, refer to UG0445: IGLOO2
FPGA and SmartFusion2 SoC FPGA Fabric User Guide.

Table 3 « Top-Level Cortex-M3 Processor as the Master Interface Signals

Signal Direction Description
raddr_user[5:0] Input User read address

rclk_user Input User read clock

rd_enable_user Input User read enable

waddr_user[5:0] Input User write address

wclk_user Input User write clock

wdata_user{7:0] Input User write data

wr_enable_user Input User write enable

rdata_user[7:0] Output User read data

INIT_DONE OQutput Initialization complete

DEVRST_N Input Active low reset

MMUART_1_RXD Input Uart RX input (for debug only)
MMUART_1_TXD Output Uart TX output (for debug only)

SEL Output Selection for RAM muxing logic (for debug only)

Status Output

The INIT_DONE output of the reference design indicates the sequence of initialization done.
At power-up, it is asserted as low to indicate the start of initialization process. It remains low until the
Cortex-M3 processor or a fabric master finishes reading the data from eNVM and writing it to SRAM.
Once INIT_DONE output is asserted, the asserted state indicates the end of initialization process. Port A
and Port B of SRAM interface are available to the user for read and write access operations.

Fabric Master

The design is similar to the design that is implemented using the Cortex-M3 processor as the master.
The fabric acts as a master to read data from eNVM after powering-up and initializing the SRAM block.
After the initialization is done, the APB3 wrapper interface asserts a SEL signal for muxing arbiter to
switch the SRAM ports as user-ports. After the initialization is done, the write and read data to/from the
SRAM block can be started. The INIT_DONE output of the reference design indicates the sequence of
initialization done.

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130920
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130920
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130920

& Microsemi

SRAM Initialization Reference Designs

Figure 5 shows a top-level block diagram of the design example.

Microcontroller Subsystem (MSS) eNVM
4
P < A 4
CoreAHBLite « y'y r'y »
v v
CoreAHBLITETOAPB3 Fabric Master
A
CoreAPB3 Y y P
A 4
SRAM to APB3 < > Muxing Arbiter P > User RAM
Slave Wrapper Interface
A
SEL
v
RAM_with_wrapper SRAM block

Figure 5 » Design Example Block Diagram using Fabric Master

The fabric Master block shown in Figure 5 acts as a master logic to read data from eNVM and write it to
SRAM. The AHB-Lite master drives the address and controls the signals onto the bus after the rising
edge of HCLK. If HREADY is in low state, the Fabric Master waits. If HREADY is in high state, the logic
moves to the data phase. During the data phase, if HREADY is in low state, the AHB-Lite master holds
the data stable throughout the extended cycle for a write operation, or read the data only after HREADY
is in high state.

& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.7

Figure 6 shows the state diagram for the fabric master.

Figure 6 « Fabric Master State Diagram

10

& Microsemi

Initializing SRAM Using Cortex-M3 Processor as Master

Interface Description for Fabric Master Design
Table 4 shows the top-level interface signal descriptions.

Table 4 « Top-Level Interface Signals

Signal Direction Description
raddr_user[5:0] Input User read address

rclk_user Input User read clock

rd_enable_user Input User read enable

waddr_user[5:0] Input User write address

rdata_user[7:0] OQutput User read data

wclk_user Input User write clock

wdata_user[7:0] Input User write data

wr_enable_user Input User write enable

INIT_DONE Output Initialization complete

DEVRST_N Input Active Low reset
MMUART_1_RXD Input Uart RX input (for debug only)
MMUART_1_TXD Output Uart TX output (for debug only)
RESP_err{1:0] Output Ahb error response

ram_init_done Output Initialization complete

SEL Output Selection for RAM muxing logic (for debug only)
ahb_busy Output Ahb busy indication

Initializing SRAM Using Cortex-M3 Processor as Master

This section explains the following topics:
* Hardware Implementation
+ Firmware and Application Code Software Implementation
+ Simulating Reference Design with Cortex-M3 Processor as Master
* Running the Design with Cortex-M3 Processor as Master

Hardware Implementation

The hardware implementation involves configuring the MSS along with the SRAM block configuration.
The SRAM block is configured as two-port memory with a depth of 64 and a width of 8. The MSS along
with FIC_0, MMUART, and the eNVM are configured using System Builder. Through the System Builder,
the design is configured to use a 50 MHz RC oscillator as a reference clock for the fabric phase-locked
loop (PLL). The fabric PLL then generates a 100 MHz clock that is used as the main system clock. The
design example consists MSS, SRAM wrapper logic, and IP cores (CoreAHBToAPB3, CoreAPB3) as
shown in Figure 7 on page 12.

1"

& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.7

my_mss top 0
DE/RST_N FIC 0 CLK
4 FAB_RESET_N FIC_D_LOCK
MSS_READY
INT_PANSE
MMUART_1_PACSE@-----1- @AEMMUART 1 PACS
o
u.ll
=3
=
CII"I
=
o
=
N &
a
&
&
I
=T
COREAHBETOAFPEZ 0
4: HCLK
HRESETN
g
E
o
o
? oF»
CoreAPB2 0 *
1 =

wr_enable user 4

wclk user 4

p——————— &
[Ckuser a@ 3§
[0 gtk Wagr p————,

[Craddr_user[5.0
[_wdata user[7:0] &
[_waddr user[5:0] &

BF 1 3—a3so0

RAM with wrapper 0

wr_enable_user

INT_OUT
rclk_user SH.
rdata_user[7.0]

rd_enable_user
wclk_user
PRESETN

PCLK
raddr_user[5.0]
wdata_user[7:0]
waddr_user[5:0]

T_DONE
SH_
rdata user[7:0

Figure 7 » Top-Level Hardware Design for Cortex-M3 Processor as Master

CoreAHBLite IP is generated and used automatically inside the System Builder block. The IP cores along
with the SRAM wrapper are used to initialize the fabric SRAM by moving the data from eNVM to the
fabric SRAM through the FIC_0 AHB master interface. A Data Storage client is defined in the eNVM with

the data to be written to the SRAM.

12

& Microsemi

Initializing SRAM Using Cortex-M3 Processor as Master

Firmware and Application Code Software Implementation

Firmware and application code is required only while using the Cortex-M3 processor as the master. This
design example includes the MSS MMUART_1 block. The MMUART_1 block is used so that the
initialization sequence and the debug of SRAM block can be viewed through HyperTerminal. The
software design includes an initialization function (nvm_access()) that reads the eNVM content and
writes it to the SRAM block.

nvm_access ()

This function reads the eNVM content which is loaded during SmartFusion2 SoC FPGA device
programming. Each read output is 64-bit data. It converts the 64-bit data to four sets of 8-bit data, and
then writes each set of 8-bit data to four SRAM locations. This process (read, convert, and write)
continues until the last SRAM address is initialized. It also reads back the SRAM content to check the
data.

Note: Once the last address location is written, the SEL signal is generated and the SRAM interface is
switched to User mode, so the last address read back should be seen as zeros.

Simulating Reference Design with Cortex-M3 Processor as Master
The design file includes the test bench files to run simulation in the Libero SoC. The simulation uses the
bus functional model (BFM) command to exercise data transfer between the MSS and the fabric.

Note: After system reset, the BFM has several commands to load the eNVM content, which is not needed
for software implementation.

The BFM has the following sequence:
1. Setting access privileges to eNVM
2. Writing the initialization data to eNVM (for simulation only)

3. Reading from eNVM and then write to SRAM Reading SRAM through the MSS and check the
data

Figure 8 shows the BFM simulation transcript results and Figure 9 on page 14 shows the ModelSim
presynthesis simulation waveform results.

b 1 Transcript HE H A =
BFM:*hdkdkhhddkhhdhbhdrdbbdrddhbdddddddd rs
#4444 4444 A 404 4 A A S A4 A A A4 A S AR A4

BFM:Write to last data to finish the initilization

BFM: 32868 :write w 300000L£0 000000aa at 17580 na

S5FM: Data BRead 300000e& 00000000 at 17640.010000ns3

BFM:32869%:write w 300000£4 000000kk at 17650 ns

5FM: Data Read 300000ec 0O00000L£f at 17710.010000ns

BEM:32870:write w 30000028 000000cc at 17720 na

BFM: Data Write 3000000 000000aa

BFM:32871:write w 300000£fc 00000044 at 17750 ns

BFM: Data Write 300000f£4 000000kl

BFM:3Z2874:return

BFM:Z4:return

BFM: Data Write 300000£2 000000ce

BFM: Data Write 300000£fc 00000044

FHEFFFFE SIS SRS S S S S A EEE

BFM Simmlaticn Complete — 408 Instructicns — NO ERRCES
#
FHEFFFFFF S F 4SS S ESSESSSES S A S ESESEAEEE

' =

Mow: 70 us Delta: 10 sim: /my_testbench L

Figure 8 » BFM Transcript Simulation Results

13

& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.7

[LT =—EE~—§=° ST
g

A ﬁm%ﬁ?ﬂwﬂ%m

PR Ty e p——
B4 ey _testhencTon M3, Oirdata_Leser
O oy _ttenchYop_M3_) e

O jmy_testhench/Top_M3_Master_Ojwdata_user
o ey testhenchTop_M3_Master_Djwr_enable_user
(— Nt- Divvcder
-y _esttaenchyTop_MOI_Master_Cjfrey_frs_to_0jesy_sess,_0jfery_fres_MSS_GIFIC_O_Nel_M_HIITE

4.y tesoenchTog_M3_Master -»nuw.u iy s MES_OIFIC_U_AHE_M_HWRITE
B4y iestienchTon M3, _o_bog By HSS, H_HIWDIATA
Oy _tetenchTop M3, _prs_tog, ey eSS, 0_te_M_HEDATA

E Curzer | 2M0Lrs _I"|

i Waee — - e |
.ﬁle fdt Yiew Add Fgrmat Jooks Bookmards Window Help {
g W - Dot el
|9-FEES iRBO2 | O-HE|| AT B-R-T0-9|| SR | 3e-9€-5 | s > BF 8

Stes | @ st | 00| v o4y Be || L2 £ RA]AQ “.3‘ 1y I W

0_A0_M_HRLADY

| i 0 o |

Figure 9 » MSS Master Design Example Waveform

Running the Design with Cortex-M3 Processor as Master
This section describes running Cortex-M3 processor as master design example in SmartFusion2
Security Evaluation Kit.
1. Open the MSS_MSTR_RAM_INIT Libero project (refer to
"Appendix: Design and Programming Files" on page 25).
2. Update the eNVM client memory file path. For more information, refer to
http://soc.microsemi.com/kb/article.aspx?id=SL5657.

3. Program the SmartFusion2 Security Evaluation Kit board by selecting Run PROGRAM Action
option in the Libero Design Flow window or with the provided Cortex-M3 processor as master
STAPL file (refer to "Appendix: Design and Programming Files" on page 25) using FlashPro4.

4. Connect the USB to PC.

5. Launch the SoftConsole v4.0 and browse the SoftConsole folder project where the Libero project
is created as shown in Figure 10 on page 15.

14

https://microchipsupport.force.com/s/communityknowledge

& Microsemi

Initializing SRAM Using Cortex-M3 Processor as Master

SC Workspace Launcher [

Select a workspace

Microsemi SoftConsole IDE v3.4 stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace: E\Microsemi_prj\RAM_INIT_FROM_MSS\MS5_MSTR_RAM_INIM\SoftConsole +

[] Use this as the default and do not ask again

0K] ’ Cancel

Figure 10 « Specifying the SoftConsole Workspace Location

6. Click OK.
SoftConsole opens with the project automatically loaded as shown in Figure 11.

f » . . —e - A o -
SC C/C++ - my_mss_MS5_CM3_app/main.c - Microsemi SoftConsole IDE v3.4 s | o=
File Edit Source Refactor Mavigate Search Project Run Window Help
H-lal® F L& E-E-H-@ R i B0 B & [fgoc-—
& - G- Lo -
-['_j Project Explorer| 52 = O/ [£) maine £3 S, EE Outli 22 __'.-_;' Mak | = O]
M e ——————--- : R o % T
BE my_mss_M55_CM3_app o stdioh
%, Binarizs v ¥ B drivers/mss_uart/mss_u;
E int main ()
[Incluces ¢ # SRAM _BASE_ADDR
_ DEI;_‘U const uint8 t greatingl[] = "\r\n*****SmartFusion2: Start SRAM Ini # =M. chil g
const uint8 t greating2[] = "\r\n*****SmartFusion?: SRAM Initializ # eNVM_BASE ADDR
(25 my_mss_MS5_CM3_hw_platform const uinta & seperatori] = P\r\RSvestestsevEesetes ettt tatesy # no_of data_words
SRAM_depth
M55 UBRT init{ &g mss uartl, M55 UART 57600 BAUD, MSS UART DAT; ++ nvm_access{void) : void
MS5 UART polled tx(&g mss uartl, greatingl, sizeof(greatingl) ® main(:int
MS5 UART polled tx(&g _mss uartl, seperator, sizeof(seperator) @ nvm_access(void) : void
nvm_access ();
38 M55_UART polled tx(&g _mss_uartl, seperator, sizeof(seperator)
2q MSS TIZRT malled twi fr ms= nartd mreatine? sizeafioreatina?l . - -
1 1 J ¥ | T ;
:i_.';'._‘ Problems 2 | Tasks| B Console| = Proper‘ties\ e
0 items
| =
Descripticn Resource Path Location Type
| s ' :
Writable Smart Insert 1:1
e :

Figure 11 » SoftConsole Window
7. In SoftConsole, click the Project Explorer tab and click the
SF2_GNU_SC4_MMUART_polled_uart folder on the left pane.
8. Inspect the main code by double-clicking the main.c file as shown in Figure 11.
9. Choose Project > Clean to perform a clean build of the code.
10. Retain the default settings in the Clean dialog box and click OK.
Note: Ensure that errors are not displayed throughout the design configuration and build flow.

15

& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.7

11. Choose Run > Debug Configurations > Debug option. The Debugger window is displayed as
shown in Figure 12. Click on Debug from the Debugger window.

SC Debug Conﬁguration;-

4 [£] GDB OpenOCD Debugging
[] SF2_GNU_SC4_MMUART ¢

Create, manage, and run configurations

Mame: 5F2_GNU_SC4_MMUART_polled_uart Debug
B Main. %5 Dehugger: - Startup:E_ Source: = Common:
Project:
SF2_GNU_SC4_MMUART_polled_uart | Browse. |

C/C++ Application:
Debugh5F2_GMU_SC4_MMUART _polled_uart.elf

Variables... | | Search Project... | | Browse... |
Build (if required] before launching
Build configuration: | Select Automatically v|
(1 Enable auto build () Disable auto build
@ Use workspace settings Configure Workspace Settings...

Figure 12 Launch the Debugger

12. Start a HyperTerminal session with 57600 baud rate, 8 data bits, 1 stop bit, no parity, and no flow
control. If the computer does not have the HyperTerminal program, any free serial terminal
emulation program such as PuTTY or Tera Term can be used. Refer to the Configuring Serial
Terminal Emulation Programs Tutorial for configuring HyperTerminal, Tera Term, or PuTTY.

13. Run the debugger by pressing the F8 (function key) on the keyboard or double-click the Resume
icon as shown in Figure 13.

Figure 13 » Resume Icon

16

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815

& Microsemi

Initializing SRAM using Fabric Master

The HyperTerminal window shows the initialization sequence by reading eNVM and writing to
SRAM. Figure 14 shows the screenshot of HyperTerminal.

|8 COM19:57600baud - Tera Term VT =

File Edit Setup Control Window Help
eexxxSmart Fusion2: Start SRAM Initializat ionscaee -

E?EBEEE?WWW

Reading from eNUM...
6H000B800 4830201

i 2 3 4

Writing to SRAM...

300600

| Reading SRAM. ..

300000

Writing to SRAM...

30060004 2

| Reading SRAM. ..

3A0ARAA4 2
Writing to SRAM...

300000 3

| Reading SRAM. ..

3000008 3

| Hrit%gg to SRAM...

g5 15575] 4

| Reading SRAM. ..
3000808C 4
| Reading from eNUH...
5 BBBB8B41FF5306085

| 5 6 53 FF

| Writing to SRAM...
3A860A10 5
| Reading SRAM. ..
36000016 5
| Writing to SRAM...
1ABOAA1 4 6
| Reading SRAM...
36000014 6
| Writing to SRAM...
BABeRA1 53
| Reading SRAM...
36000018 53
| Wpiting to SRAM...
3ABBAA1 FF
| Reading SRAM... >

Figure 14 « Screenshot of HyperTerminal Showing the Design Example

Initializing SRAM using Fabric Master

The fabric master design implementation is similar to the Cortex-M3 processor master design except that
the master is responsible for moving the initialization data from the eNVM to SRAM master in the fabric.

The following section describes the hardware implementation using a fabric master. It also details how to
simulate the provided design along with the steps on how to run the design on the SmartFusion2 Security
Evaluation Kit board.

17

& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.7

Hardware Implementation

The hardware implementation involves configuring the MSS along with the SRAM block configuration.
The SRAM block is configured as two-port memory with a depth of 64 and a width of 8. Through the
System Builder, the design is configured to use a 50 MHz RC oscillator as a reference clock for the fabric
phase-locked loop (PLL). The fabric PLL then generates a 100 MHz clock that is used as the main
system clock. The design example consists MSS, SRAM wrapper

(AHBMASTER_FIC_0) as shown in Figure 15.

logic,

AHBMASTER_FIC_0
HCLK

DEVRST N —i

HRESETn
START

R

ahb_busy
ram_init_done
RESP_err(1:0]

Fi

4

DEVRST_N
FAB_RESET_N
M3_RESET_N

e

my mss top 0

AMEA_MASTER_D.-‘
$lEF_1

MS5_READY

POWER_ON_RESET_N
INT_PINSTE
FIC_0_PINSE]
FIC_0_CLK
FIC_0_LOCK
MMUART 1_PADSE

wI_enable user

rd enable user

wclk_user
rclk_user
PRESETN
L@ PCLK
[Lwaddr_user5.0 — waddr_user]5:0]
| wdata_user[7.0 1 wdata_user{7:0]
|_raddr_user[5.0

_.. raddr_user[5:0]

RAM_with_wrapper_0

wr_enable_user
rd_enable_user

BIF_1 3——30 AMBA_SLAVE_D

Fabric Master

ENWUART 1 PADS

INT_OUT
SEL

INT_DONE

rdata_user[7.0]

Figure 15 » Top-Level Hardware Design for Fabric Master

18

fabric master

& Microsemi

Initializing SRAM using Fabric Master

The SRAM wrapper along with the fabric master is used to initialize the fabric SRAM by moving data from
the eNVM to the fabric SRAM through the FIC_0 AHB master interface. The System Builder is mainly
used to configure the MSS, eNVM Data Storage client, and FIC interface. A Data Storage client is
defined in the eNVM with the data to write to SRAM. Refer to Figure 1 on page 4 and Figure 2 on page 5
for more details.

At power-up or at power-on reset, the Cortex-M3 processor fetches the initial stack pointer from
0x00000000 (eNVM address 0x60000000) and address of the reset handler from 0x00000004 (eNVM
address 0x60000004). If the execution control goes to the default reset handler, the boot up sequence is
executed and the execution control moves to the user boot code. The Cortex-M3 processor is not used
for this particular design since there is no user boot code implemented for it. The user can expose the
reset signal M3_RESET_N and tie it LOW to keep the Cortex-M3 in reset as shown in Figure 15 on page
18.
Note: To expose the M3_RESET_N signal, the System Builder block is re-opened as SmartDesign block.
Refer to the SmartFusion2 System Builder User Guide for more information on
Modifying/Inspecting Your System Builder Design.

Simulating Reference Design with a Fabric as Master

This section describes the pre-synthesis simulation detail of simulating the fabric master design using the
top-level test bench, Top_Fabric_Master, and Use Content for Simulation option in the Data Storage
Client Configurator, as shown in Figure 16.

e ™

Clientname: my_envM

eNvM
Content:

@ Memory file: *AB_MST_RAM_INITconstraint/sram_envm_orig.mem [:]

[Use absolute addressing o

(7 Content filed with 0s
() No Content (Client is a placeholder)
Start address: Ox 800 =

Size of word: bits

Number of Words: g4 (dedmal)

|:| Use as ROM 0

Use Content for Simulation

Help ’ Ok] ’ Cancel

Figure 16 » Use Content for Simulation Data Storage for Client Option

Using the User Content for Simulation option, the Data Client mem file content is automatically used by
the simulation model and the user do not have to emulate the process of writing into eNVM.

19

http://coredocs.s3.amazonaws.com/Libero/Tool/SysBuilder/sf2_system_builder_ug_1.pdf

& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.7

Figure 17 shows the simulation transcript waveform results showing the eNVM read data at the

equivalent eNVM address.

l Transcript

NVM 0: Write into CMD Reg Addr: 1fc : CMD: 00 : Page#: 00 : Sector#: 00
HVM 0: User Read Data: 32'h0000000& : Mem Address: 1fc : Time: 3060 ns
HVM 0: User Read Data: 32'hc0000001 : Mem Address: 120 : Time: 3130 ns
HVM 0: User Read Data: 32'h04030201 : Mem Address: 800 : Time: 3260 ns
HVM 0: User Read Data: 32'hc0000001 : Mem Address: 120 : Time: 3440 ns
HVM 0: User Read Data: 32'hff530605 : Mem Address: 804 : Time: 3510 ns
HVM 0: User Read Data: 32'hc0000001 : Mem Address: 120 : Time: 3690 ns
HVM 0: User Read Data: 32'he255If53 : Mem Address: 808 : Time: 3820 ns
HVM 0: User Read Data: 32'hc0000001 : Mem Address: 120 : Time: 4000 ns
HVM 0: User Read Data: 32'hff53flaa : Mem Address: 80c : Time: 4070 ns
HVM 0: User Read Data: 32'hc0000001 : Mem Address: 120 : Time: 4250 ns
HVM 0: User Read Data: 32'he255If53 : Mem Address: 810 : Time: 4380 ns
HVM 0: User Read Data: 32'hc0000001 : Mem Address: 120 : Time: 4560 ns
HVM 0: User Read Data: 32'hff53flaa : Mem Address: 814 : Time: 4630 ns
HVM 0: User Read Data: 32'hc0000001 : Mem Address: 120 : Time: 4810 ns
HVM 0: User Read Data: 32'he255If53 : Mem Address: 818 : Time: 4940 ns
HVM 0: User Read Data: 32'hc0000001 : Mem Address: 120 : Time: 5120 ns
HVM 0: User Read Data: 32'hff53flaa : Mem Address: 8lc : Time: 5190 ns
HVM 0: User Read Data: 32'hc0000001 : Mem Address: 120 : Time: 5370 ns
HVM 0: User Read Data: 32'he255If53 : Mem Address: 820 : Time: 5500 ns
HVM 0: User Read Data: 32'hc0000001 : Mem Address: 120 : Time: 5680 ns
HVM 0: User Read Data: 32'hff53flaa : Mem Address: 524 Time: 5750 ns
HVM 0: User Read Data: 32'hc0000001 : Mem Address: 120 Time: 55330 ns
HVM 0: User Read Data: 32'h0201ff53 : Mem Address: 828 Time: 6060 ns
HVM 0: User Read Data: 32'hc0000001 : Mem Address: 120 Time: 6240 ns
HVM 0: User Read Data: 32'h06050403 : Mem Address: 82c : Time: 6310 ns
HVM 0: User Read Data: 32'hc0000001 : Mem Address: 120 : Time: 6490 ns
HVM 0: User Read Data: 32'he255If53 : Mem Address: 830 : Time: 6620 ns

120

234

120

a38

120

g

HVM 0: User Read Data: 32'hc0000001 : Mem Address: Time: 6800 ns
HVM 0: User Read Data: 32'hff53flaa : Mem Address: Time: 6870 ns
HVM 0: User Read Data: 32'hc0000001 : Mem Address: Time: 7050 ns
HVM 0: User Read Data: 32'h0201ff53 : Mem Address: Time: 7180 ns
HVM 0: User Read Data: 32'hc0000001 : Mem Address: Time: 7360 ns
HVM 0: User Read Data: 32'h06050403 : Mem Address: c : Time: 7430 ns
HVM 0: Write inteo CMD Reg Addr: 1fc : CMD: 00 : Page 00 : Sector#: 00

e o ok e b ol o e o ok e ok ol o o ol ok e kool o o ok ook ok ok o ok ok ok ko ok ok

VSIM 2

Figure 17 » Transcript eNVM Data and Address Results

Figure 18 shows the ModelSim presynthesis simulation waveform results.

tat|a-a-9a 3 s

@Hg..-..e-;., Search: | i B
) aaenan || mmiE s

& ftestbench/CLK_GEN_0/CLK
& ftestbench/RESET_GEN_0/RESET

£ ftestbench/Top_Fabric_Master_0/AHEMASTER _FIC_0/HCLK
4 frestbench/Top_Fabric_Master_0/AHBMASTER_FIC_0/HRESETn
. ftestbench/Top_Fabric_Master_0/AHBMASTER_FIC_0/HADDR
.. ftestbench/Top_Fabric_Master_0/AHEMASTER_FIC_O/HTRANS
4. testbench/Top_Fabric_Master_0/AHBMASTER_FIC_0/HWRITE
E1-“.. ftestbench/Top_Fabric_Master_0/AHBMASTER_FIC_O/HSIZE
E“s ftestbench/Top_Fabric_Master_0/AHBMASTER_FIC_0/HBURST
. ftestbench/Top_Fabric_Master_0/AHBMASTER_FIC_0/HPROT
.. ftestbench/Top_Fabric_Master_0/AHEMASTER_FIC_0/HWDATA
B¢ ftestbench/Top_Fabric_Master_0/AHBMASTER _FIC_O/HRDATA
4 ftestbench/Top_Fabric_Master_0/AHBMASTER_FIC_0/HREADY
£ ftestbench/Top_Fabric_Master_0/AHBMASTER_FIC_0/HRESP
£ frestbench/Top_Fabric_Master_0/AHBMASTER_FIC_O/START
.. ftestbench/Top_Fabric_Master_0/AHEMASTER_FIC_0/RESP_err
4. testbench/Top_Fabric_Master_0/AHBMASTER _FIC_0/ahb_busy
#. ftestbench/Top_Fabric_Master_0/AHBMASTER_FIC_0jram_init_done
— SRAM_SIGNALS
[-£ ftestbench/Top_Fabric_Master_0/RAM_with_wrapper_0/SRAM_64x8_0/RADDR
£ festbench/Top_Fabric_Master_0/RAM_with_wrapper_0/SRAM_654xB_0/RCLK
£

ftestbench/Top_Fabric_Master_0/RAM_with_wrapper_0/SRAM_64x8_0/REN

ftestbench/Top_Fabric_Master_0/RAM _with_wrapper_0/SRAM_64x8_D/WEN
o ftestbench/Top_Fabric Master_0/RAM_with_wrapper_0/SRAM_64x8_0/RD

poooooo fs
Cursor 1 3812846 fs

O O T

IENSIATEEN fo tn WEINRASTF | fracthanchiCl i GEN NCTK

Figure 18 « Fabric Master Design Example Simulation Waveform (1)

20

& Microsemi

Initializing SRAM using Fabric Master

Figure 19 shows the HRDATA is 04030201 at the eNVM address 800 which matches with the SRAM
read data on WD.

4. ftestbench/CLK_GEN_DfCLK 1
4. ftestbench/RESET_GEN_O/RESET 1

— AHBMASTER_FIC_SIGNALS
1

£ Jtestbench/Top_Fabric_Master_0/AHEMASTER _FIC_0/HCLK
£ testbench/Top_Fabric_Master_0/AHEMASTER _FIC_0/HRESETn
Jtestbench/Top_Fabric_Master_0/AHBMASTER _FIC_0/HADDR 650000800
. Jtestbench/Top_Fabric_Master_0/AHBMASTER_FIC_O/HTRANS
“.. ftestbench/Top_Fabric_Master_0/AHBMASTER _FIC_O/HWRITE
B-“. Jtestbench/Top_Fabric_Master_0/AHBMASTER_FIC_O/HSIZE
B-“. Jtestbench/Top_Fabric_Master_0/AHBMASTER_FIC_0/HBURST
“.. jtestbench/Top_Fabric_Master_0/AHBMASTER_FIC_0/HPROT 3
B-“. Jtestbench/Top_Fabric_Master_0/AHBMASTER_FIC_O/HWDATA 00000001
+) 29 [testhench/Tap_Fabric_Master_0/AHBMASTER _FIC_0/HRDATA
£ testbench/Top_Fabric_Master_0/AHEMASTER FIC_0/HREADY 1
£ jtestbench/Top_Fabric_Master_0/AHBMASTER_FIC_O/HRESP
£ Jtestbench/Top_Fabric_Master_0/AHBMASTER _FIC_0/START
“.. jtestbench/Top_Fabric_Master_0/AHBMASTER _FIC_O/RESP_err
4., [testbench/Top_Fabric_Master_0/AHBMASTER _FIC_0/ahb_busy
4. Jtestbench/Top_Fabric_Master_0/AHBMASTER_FIC_0/ram_init_done
— SRAM_SIGNALS
m-f jtestbench/Top_Fabric_Master_0/RAM_with_wrapper_0/SRAM_64x8_0/RADDR |00
4 [testhench/Top_Fabric_Master_0/RAM_with_wrapper_0/SRAM_64x8_0/RCLK 0
£ [testbench/Top_Fabric_Master_0/RAM_with_wrapper_0/SRAM_G4x8_0/REN 0
ot
£

Jtestbench/Top_Fabric_Master_0/RAM_with_wrapper_0/SRAM_g4x8_0/WADDR. |00
Jtestbench/Top_Fabric_Master_0/RAM_with_wrapper_0/SRAM_64x8_0/MICLK 0
i+ J[testbench/Top_Fabric_Master _0/RAM_with_wrapper_0/SRAM_&4x8_0,/ WD 00
Jtestbench/Top_Fabric_Master_0/RAM_with_wrapper_0/SRAM_54x8_0/WEN
. [testbench/Top_Fabric_Master_0/RAM_with_wrapper_0/SRAM_64x8_0/RD

po00000 fs
Cursor 1 7571643 fs

| Kl)] Dej«i

Figure 19 « Fabric Master Design Example Simulation Waveform (2)

Running the Design with a Fabric Master

This section describes running the design example in SmartFusion2 Security Evaluation Kit board where
SRAM is initialized using a master in the fabric instead of the Cortex-M3 processor. The content of eNVM
and SRAM is checked with real-time data using the SmartDebug tools as shown in the following steps:

1. Open the FAB_MSTR_RAM_INIT Libero project
(refer to "Appendix: Design and Programming Files" on page 25).

2. Update the eNVM client memory file path, if needed. For more information, refer to
http://soc.microsemi.com/kb/article.aspx?id=SL5657.

3. Program the SmartFusion2 Security Evaluation Kit board by selecting Run PROGRAM Action
option in the Libero Design Flow window or with the provided fabric master version of STAPL file
(refer to "Appendix: Design and Programming Files" on page 25) using FlashPro4.

21

https://microchipsupport.force.com/s/communityknowledge

& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.7

4. Launch SmartDebug by selecting the SmartDebug Design option from the Design Flow
window as shown in Figure 20. The SmartDebug window is displayed.

Design Flow P X

Top_Fabric_Master E o

Tool

v o Create Design
Create Constraints
Implement Design
Edit Diesign Hardware Configuration
Configure Security and Programming Options
Program Design
@‘ Generate Bitstream
% Run PROGRAM Action
4 » Debug Design

Q Identify Debug Design

€& SmartDebug Design

> # Handoff Design for Production

Sss

> » Handoff Design for Firmware Development

| Design ... | Design Hier... | Stimulus Hier... Catalog | Files |

Figure 20 » SmartDebug Window Debug Options
5. From the SmartDebug window, click View Flash Memory Content to retrieve the eNVM content
from the device. The Flash Memory window is displayed as shown in Figure 21 on page 22.

6. Enter the Start Page and End Page as 16 because the data storage client is stored in page16.
Page 16 is used for demonstration purposes.

7. Click Read from Device as shown in Figure 21.

£ Flash Memory o2 %J

Retrieve Flash Memory Content from Device:

Select |<Page Range> ‘@] Read from Device

Start Page: 16 (address 0xB00)
End Page: 16 (1page, 128 bytes)
Latest Content Retrieved from Device: Tue Feb 16 10:34:02 2016

Retrieved Content: at Page 16, 128 bytes starting from address 0x800

view All Page Status Go to Address (hex):

Status for Page 715! S | Content |
_ |Page Number
- M T T =15 T+ 15 Ts T 7 [s T 5 T» 158 [c 5o [€T~ |
15 00800f 01 02 03 04 05 06 53 FF 53 FF 55 E2 AA FO 53 FF
Recoverable ECC1 error detected: False
Hon recoverable data error detected: False 16 00810| 53 FF 55 E2 AA FO 53 FF 53 FF 55 E2 AR FO 53 FF
Write counter over threshold: False
Write count: 3 ***Thisy 3 00820} 53 FF 53 E2 AA Fo 53 FF 53 FF 01 02 03 04 05
Use as ROM: off
Overwrite Protect: Not sat 16 00830 53 FF 55 E2 AL FO 53 FF 53 FF 01 0z 03 04 05 08
FlashFreeze state: False
15 00840 00 00 0o 0o 00 00 0o 00 00 (] 0o 00 00 (] 0o 00
15 00830 00 00 0o 0o 00 00 0o 00 00 (] 0o 00 00 (] oo 00
o = | m 15 00860} 00 00 0o 00 00 00 0o 00 00 (] 0o 00 00 00 oo 00
15 00870} 00 0o 0o 0o 00 00 a0 a0 00 oo 0o 0o 00 0o oo 00

Figure 21 « Flash Memory (eNVM) Content Read from the Device

22

& Microsemi

Initializing SRAM using Fabric Master

8. From the SmartDebug window, click Debug FPGA Array. The Debug FGPA Array window
opens.

Note: Libero SoC generates the Debug File, <projectName> debug.txt, during Place and Route and
stores the file into the <project path>\designer folder. The Debug File contains information used by
SmartDebug mainly for mapping the user design names to their respective physical addresses on
the device. It also contains other information used during the debug process. SmartDebug when
launched, automatically points to the debug file.

9. Select the Memory Blocks tab under FPGA Array Debug Data as shown in Figure 22 on page
23.

The fabric master locks and gets exclusive access to the eNVM as it fetches the data from the eNVM to
SRAM. In that case, no other masters, for example, SmartDebug, can access the eNVM until the fabric
master completes the access operation and releases the lock on the eNVM.

In the fabric master example, SmartDebug is used to read the data, not the Cortex-M3 processor.
SmartDebug reads the data from the eNVM and SRAM separately and validates both the data to be the
same.

Before the fabric master unlocking the access on the eNVM if SmartDebug accesses the eNVM, the
following error message is displayed:

Error: Unable to access embedded Flash Memory for your selected device: The firmware was unable to
obtain exclusive access to the eNVM within the allotted time.

To release the lock on the eNVM after the fabric master has completed its access operations, you need
to write 0x00 to REQACCESS register in eNVM control registers (address 0x600801FC) to release the
access. Refer to the fabric master code (aEBMASTER FIC.v)for more information.

j. Click Read Block to read the SRAM content in real-time from the device. The content of the
SRAM is displayed as shown in Figure 22. This is the same eNVM data, as shown in Figure 2 on
page 5, that is used to initialize the SRAM.

&
Memory Blocks Selection 5 X m |
Memory Blocks: l Select J | Live Probes I Active Probes I Memory Blocks I Probe Insertion ‘
RAM_with_wrapper_0/SRAM_64x8_0/SRA| Current Memory Block: RAM_with_wrapper_0/SRAM_64x8_0/SRAM_64x8_0/SRAM_64x8_SRAM_64x8_0_TPSRAM_ROCO/INST_RAMIK15_IP
Data bit Mode: 9
0000 001 002 003 004 005 005 053 OFF 053 OFF 055 0E2 0AA OF0 053 OFF ‘|
0010 053 OFF 055 0E2 DAA 0F0 053 OFF 053 OFF 055 0E2 ODAA OF0 053 OFF i
0020 053 OFF 055 0E2 0AA 0F0 053 OFF 053 OFF 0ol ooz 003 o004 005 00s
0030 053 OFF 055 0E2 0AA 0F0 053 0OFF 053 OFF 001 ooz 003 004 005 005
I 0040 164 0EC 102 051 074 oc7? 119 0A4 04C 04E 01 03B 037 0E4 144 0AB
| 0050 152 i1c3 05A 108 07D 08E 106 13D 154 022 036 187 049 108 0B3 08B
10060 032 1B 112 | OCC | 078 | ics | 048 | 157 | 154 | 018 | 083 | 127 | i3 | 7|
| Read Block | \Write Block
i 3
Help Close

Figure 22 « SRAM Content Read from the Device

23

& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.7

Customizing Wrapper Interface

This section describes how to customize SRAM initialization block.

The RAM_with_wrapper block presented in the design example can be modified based on the user
SRAM configuration. In addition, the software code needs to be modified based on the user SRAM
setting. Figure 23 on page 24 shows the RAM_with_wrapper block. It has three blocks as mentioned
below:

*+ SRAM_64x8 0: Two-port SRAM block with depth 64 and width 8.
* mem_apb_wrp_0: Creates APB3 wrapper on SRAM port.
» mux_blk_0: Creates the Muxing arbiter.

Depending on the user SRAM block configuration, the SRAM64x8 0 setting needs to be updated. In
addition, the DATA_WIDTH and ADDR_WIDTH parameter in mem_apb_wrp, and mux_blk file should be
modified according to their design requirement and the blocks should be re-connected, if needed.

Note: The wrapper interface used in the design example supports up to 32-bit DATA_WIDTH.

bk 0
% o 4
o wlk_uier b
e iner ek —
d_nble_it frmp— T EFTT R
_seiable_nit reserey dlats_cu_ind |74
ek _nit ridde5 10!
b et 540
“‘:_ § ot 70,
u:uwlss'g
wdatau m]
—
[lr-nﬁ'!_'n_nl[’ﬂ
mem_apb_wrp_0
pax rd_anibla fp
B P mem_data_out{740] s i
(BT BF_1 M_Q'*.IT
P’ giF—— |
S
e, data_n| 7:0 L]
#*

Figure 23 - RAM_with_wrapper Block

Conclusion

This design example shows how the SRAM blocks in SmartFusion2 SoC FPGA fabric can be initialized
after power-up either by using the Cortex-M3 processor as the master or by using a master in the fabric.
This example application uses an eNVM to initialize the SRAM after power-up. The eNVM can also be
updated using the methods of programming, flash loader, or writing to eNVM, if needed. This application
note presents an interface that can be instantiated into the user's design, performing the initialization at
power-up. The reference design utilizes a very small portion of the FPGA logic for implementation, and
does not affect the performance of the main design. The design in this document initializes a 64x8 SRAM
block, but can be easily modified to support memory organizations of different width and depth.

24

& Microsemi

Appendix: Design and Programming Files

Appendix: Design and Programming Files

The user can download the design files from the Microsemi website:
http.//soc.microsemi.com/download/rsc/?f=m2s_ac392_liberov11p7_df pf

The design file consists Libero Verilog projects, SoftConsole software project, and programming files
(*.stp) for SmartFusion2 Security Evaluation Kit. Two programming files are included: the Cortex-M3

processor as the master (Top M3 Master.stp), and the fabric master (Top Fabric Master.stp) files.
Refer to the Readme . txt file included in the design file for the directory structure and description.

25

https://www.microchip.com/en-us/application-notes/ac392

& Microsemi

SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.7

List of Changes
The following table shows important changes made in this document for each revision:

Revision* Changes Page

Revision 10 Updated the document for Libero v11.7 software release (SAR 76443). NA

(March 2016)

Revision 9 Updated the document for Libero v11.6 software release (SAR 68375). NA

(October 2015)

Revision 8 Updated the document for Libero v11.5 software release (SAR 62937). NA

(January 2015)

Revision 7 Removed all instances of and references to M2S100 device from Table 2 2

(December 2014) | (SAR 62858).

Revision 6 Updated the document for Libero v11.4 software release (SAR 59071). NA

(September 2014) Updated the document for SmartFusion2 Evaluation Kit details (SAR 59071). NA

Revision 5 Added "Purpose” section (SAR 51324) 1

(March 2014) Updated Figure 1, Figure 2, Figure 5, Figure 6, and Figure 8 (SAR 51324) 4,5, 9, 10,

and 13

Updated "SRAM Initialization Reference Designs" section (SAR 51324) 7
Added "Cortex-M3 Processor as Master" section (SAR 51324) 7
Updated "Running the Design with Cortex-M3 Processor as Master" section (SAR| 14
51324)
Added "Initializing SRAM using Fabric Master" section (SAR 51324) 17
Added "Simulating Reference Design with a Fabric as Master" section (SAR 51324) (19
Added "Running the Design with a Fabric Master" section (SAR 51324) 21
Updated "Appendix: Design and Programming Files" section (SAR 51324) 25

Revision 4 Updated Figure 1 and Figure 8 (SAR 51324). 4,13

(December 2013)

Revision 3 Modified "Introduction” section (SAR 48177). 1

(June 2013) Modified "SmartFusion2 eNVM Controller for Data Storage" section (SAR 48177). 3
Modified "SRAM Initialization Reference Designs" section (SAR 48177). 7
Modified "Fabric Master" section (SAR 48177). 8
Modified "Appendix: Design and Programming Files" section (SAR 48177). 25
Modified Table 2 (SAR 48177). 2
Added Figure 5, Figure 6 and Figure 8 (SAR 48177). 9,10,13

Revision 2 Updated the document for Libero SoC v11.0 beta SP1 release and made required NA

(March 2013) changes for better usage of the term 'SEL’ (SAR 45591).

Revision 1 Updated "Introduction" section. (SAR 42893) 1

(November 2012) | ypdated "Appendix: Design and Programming Files" section (SAR 42893) 25

26

Microsemi.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136

Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2016 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

Microsemi Corporation (Nasdaqg: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense & security, aerospace and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world’s standard for time; voice
processing devices; RF solutions; discrete components; Enterprise Storage and
Communication solutions, security technologies and scalable anti-tamper products; Ethernet
Solution; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and
services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 4,800
employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or
the suitability of its products and services for any particular purpose, nor does Microsemi assume any
liability whatsoever arising out of the application or use of any product or circuit. The products sold
hereunder and any other products sold by Microsemi have been subject to limited testing and should not
be used in conjunction with mission-critical equipment or applications. Any performance specifications are
believed to be reliable but are not verified, and Buyer must conduct and complete all performance and
other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely
on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's
responsibility to independently determine suitability of any products and to test and verify the same. The
information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire
risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or
implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such
information itself or anything described by such information. Information provided in this document is
proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

51900260-10/03.16

mailto:sales.support@microsemi.com
www.microsemi.com

	SmartFusion2 SoC FPGA SRAM Initialization from eNVM - Libero SoC v11.7
	Purpose
	Introduction
	References
	Design Requirements
	Embedded SRAM Blocks in SmartFusion2 SoC FPGAs
	SmartFusion2 eNVM Controller for Data Storage
	SRAM to APB3 Wrapper

	SRAM Initialization Reference Designs
	Cortex-M3 Processor as Master
	Fabric Master

	Initializing SRAM Using Cortex-M3 Processor as Master
	Hardware Implementation
	Firmware and Application Code Software Implementation
	Simulating Reference Design with Cortex-M3 Processor as Master
	Running the Design with Cortex-M3 Processor as Master

	Initializing SRAM using Fabric Master
	Hardware Implementation
	Simulating Reference Design with a Fabric as Master
	Running the Design with a Fabric Master

	Customizing Wrapper Interface
	Conclusion
	Appendix: Design and Programming Files
	List of Changes

