

TRAINING MANUAL

Low‐power Capacitive Touch Detection using SAM4L
Sleepwalking

AN-4591

Prerequisites

• Hardware Prerequisites
• Atmel® SAM4L-EK Evaluation kit

• Software Prerequisites
• Atmel Studio 6.1 update 2.0 (build 2730) or higher
• Atmel Software Framework 3.11.0 or higher
• Latest J-Link / SAM-ICE™ Software and Documentation Pack

• Estimated Completion Time: 60 min

Introduction

The Goal of this Hands-on is to:

• Develop an application based on the SleepWalking feature of the SAM4L
Peripheral Event System

• Learn more about SAM4L features:
• Low Power techniques, Power Saving modes and Wake up sources
• Peripheral Event System Controller (PEVC)
• Asynchronous Timer (AST) and Capacitive Touch (CATB)

peripherals

42234A-SAM-01/2014

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 2 of 34

Table of Contents

Prerequisites ... 1

Introduction ... 1

Icon Key Identifiers ... 3

1. Training Module Architecture ... 4
1.1 Atmel Studio Extension (.vsix) ... 4

1.2 Atmel Training Executable (.exe) ... 4

2. Introduction .. 5
2.1 SleepWalking Overview ... 5

2.1.1 What does SleepWalking mean? ... 5

2.2 Low Power Techniques Overview ... 7

2.3 Hands-on Application Overview ... 8

2.3.2 Application Sequential Flow Chart ... 8

2.3.3 At Power Up ... 9

2.3.4 ACTIVE MODE ... 10

2.3.5 INIT_SLEEPWALKING .. 10

2.3.6 SLEEPWALKING ... 10

2.3.7 INIT_ACTIVE_MODE ... 11

2.4 Hands-on Assignment Overview ... 11

3. Assignment 1: Open and Review Your Project 12
3.1 Atmel Extension Case .. 12

3.2 Atmel Training Executable Case ... 12

4. Assignment 2: Configure the Application Clock Settings 15

5. Assignment 3: Configure Power Scaling Mode 1, the Fast Wake
Up Capability and WAIT Mode Entry .. 18

6. Assignment 4: SleepWalking Application Implementation 22
6.2 Initialize Capacitive Touch Module (CATB) 23

6.3 Configure the Peripheral Event System Controller (PEVC) 26

6.4 Implement the State Machine .. 29

7. Assignment 6: Compile and Run Your Application 30

8. Conclusion ... 32

9. Revision History ... 33

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 3 of 34

Icon Key Identifiers

Icons are used to identify different assignment sections and reduce complexity.
These icons are:

 Delivers contextual information about a specific topic.

 Highlights useful tips and techniques.

 Highlights objectives to be completed.

 Highlights the expected result of an assignment step.

 Indicates important information.

 Highlights actions to be executed out of the target when
necessary.

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 4 of 34

1. Training Module Architecture
This training material can be retrieved through different Atmel deliveries:

• As an Atmel Studio Extension (.vsix file) usually found on the Atmel Gallery web site
(http://gallery.atmel.com/) or using the Atmel Studio Extension manager

• As an Atmel Training Executable (.exe file) usually provided during Atmel Training sessions

Depending on the delivery type, the different resources needed by this training material (hands-on
documentation, datasheets, application notes, software & tools) will be found on different locations.

1.1 Atmel Studio Extension (.vsix)

Once the extension installed, you can open and create the different projects using “New Example Project
from ASF..." in Atmel Studio.

 The projects installed from an extension are usually under “Atmel Training >
Atmel Corp. Extension Name”.

There are different projects which can be available depending on the extension:

• Hands-on Documentation: contains the documentation as required resources

• Hands-on Assignment: contains the initial project that may be required to start

• Hands-on Solution: contains the final application which is a solution for this hands-on

 Each time a reference is made to some resources in the following pages, the user
must refer to the Hands-on Documentation project folder.

1.2 Atmel Training Executable (.exe)
Depending where the executable has been installed, you will find the following architecture which is
composed by two main folders:

• AN-XXXX_Hands-on: contains the initial project that may be required to start and a solution

• Resources: contains required resources (datasheets, software & tools…)

 Unless a specific location is specified, each time a reference is made to some
resources in the following pages, the user must refer to this Resources folder.

http://gallery.atmel.com/�

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 5 of 34

2. Introduction

2.1 SleepWalking Overview

2.1.1 What does SleepWalking mean?
As part of the Atmel picoPower® technology, SleepWalking adds intelligence to
the SAM4L peripherals. This allows a peripheral to determine if incoming data
requires use of the CPU or not. We call this SleepWalking because it allows
the CPU to sleep until a relevant event occurs.

Traditionally, the internal timer would wake up the microcontroller periodically to
check if certain conditions that require its attention have occurred or not. The
CPU and RAM consume majority of the power in active mode, and so waking
up the CPU to check for these conditions will consume a lot of power in the long
run. In some cases where the reaction time is too short, it might not even be

possible for the CPU to go back into sleep mode at all.

The Atmel SAM4L microcontroller solves this problem by enabling peripherals with SleepWalking.
SleepWalking allows the microcontroller to be put into deep sleep and wake up only upon a pre-qualified
event. The CPU no longer needs to check whether or not a specific condition has occurred, such as an
address match condition on the TWI (I2C) interface, or a sensor connected to an ADC has exceeded a
specific threshold.

With SleepWalking, this is done entirely by the peripherals themselves. The CPU and RAM will not wake up
until the condition is true.

SleepWalking allows reducing the total system power consumption in your application.

SleepWalking is achieved due to peripheral clock management and higher modularity in power consumption
versus performance ratio. This is done with its embedded features which the user needs to be familiar with.
These features are described below:

• Low power techniques: Power Saving and Power Scaling
• Peripheral Clock Management flexibility
• Peripheral Event System

 SleepWalking is a particular mode which allows the Event System to handle
asynchronous events in various sleep modes by requesting a local clock module for
the duration of the Event processing. Once the event processing is done, the
requested clock is disserted and the module goes back to sleep. As a consequence
there are some peripherals which are not able to support SleepWalking.

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 6 of 34

Here is a peripheral event system matrix with a reduced peripheral list capable of SleepWalking:

Therefore, before configuring the Peripheral Event System controller, the user must enable peripheral events
at generator level and at the User Interface level.

Next, the Generator will generate peripheral events periodically, and the Peripheral Event System will route
the peripheral events to the ADC Interface, which will perform ADC conversions or CATB sensing (e.g.) at the
selected intervals.

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 7 of 34

2.2 Low Power Techniques Overview
The low power techniques are illustrated in the Figure 2-1 and are composed of:

• Power Save modes intended to reduce the logic activity and to adapt the power configuration. See
the “Power Save Modes” chapter in the product datasheet. Figure 2-1 is taken from the SAM4L
product family datasheet, and gives a brief description on the power saving mode.

• Power Scaling technique consists of adjusting the internal regulator output voltage (voltage
scaling) to reduce the power consumption. According to the requirements in terms of performance,
operating modes, and current consumption, the user can select the Power Scaling configuration
that fits the best with its application. See the “Power Scaling” chapter of the product datasheet.

Figure 2-1. Low Power Techniques Scheme for SAM4L

 Regarding SleepWalking, PS1 is the best Power scaling mode in term of
performance/consumption ratio thanks to the internal regulator low power mode.

 The Wait mode is the most interesting mode to perform SleepWalking in terms of power
consumption. All clock sources are stopped; the core and all the peripherals are stopped
except the modules running with the 32kHz clock if enabled. This is the lowest power
mode where SleepWalking is supported.

Once the power scaling and the power saving modes are identified to run SleepWalking, the next step is to
enable/disable the used/unused peripheral. This is possible due to the highly flexible nature of the SAM4L
clock management.

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 8 of 34

2.3 Hands-on Application Overview
After the main initialization, the hands-on application is based on a state machine sequence (as described in
Figure 2-3) which allows the user to jump from one state to another through interrupts triggered by:

• The QTouch® key sensor (CS0) - used to wake up the SAM4L device from the WAIT mode using
SleepWalking

• The Push Button (PB0) - used to go back to WAIT mode with SleepWalking enabled

Figure 2-2. PB0 and CS0 Board Implementation

 Any application can be coupled with Sleepwalking.
In this example a real time watch application is used.

2.3.2 Application Sequential Flow Chart
Figure 2-3 sums up the SAM4L SleepWalking application flow Chart:

Figure 2-3. SleepWalking Application Sequential Flow Chart

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 9 of 34

2.3.3 At Power Up
The application initialization (App_init()) function is called after a power up and executes the following
functions:

Figure 2-4. App_int Flow Chart

• sysclk_init(): The main clock is the PLL using the main oscillator running @48MHz
• board_init():Initializes the SAM4L-EK board
• init_qtouch():Initializes the Capacitive Touch (CATB) Module and the QTouch Library
• init_lcda():Initializes the Segment LCD Controller (LCDCA) to display the clock time
• init_pdca():Initializes the Peripheral DMA (PDCA)
• set_clock_time():Set Clock Time
• CATB_PEVC_init():Initializes the CATB module as a SleepWalking User peripheral with the AST as

generator
• PDCA_PEVC_init():Initializes the PDCA module as another SleepWalking User peripheral with the

AST as generator

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 10 of 34

 Peripheral Event System is enabled, allowing the interconnection between one
generator and one user:

• AST (Asynchronous Timer) as generator
• CATB (Capacitive Touch Module) as user
• PDCA as user

• init_ast():Initializes the AST in calendar mode.

As described in the application flow Chart (Figure 2-3), after the application initialization function, the user will
either use a push button or a QTouch button to change the state of the sequential state machine implemented
in the code. The different states are described below.

2.3.4 ACTIVE MODE
This state is the RUN mode of the application where:

• The main clock is 48MHz
• The LCD display is ON with the clock time displayed on it
• We stay in this mode until an external interrupt event (EIC controller) is detected (PB0 pushed)

2.3.5 INIT_SLEEPWALKING
This state allows preparing the SAM4L device to go back to Wait mode, and configure peripherals to perform
SleepWalking. The following actions are performed:

• Disable PDCA used to manage transfer data to the LCD while the LCD is OFF to avoid extra power
consumption in SleepWalking

• Restore the slow clock running @12MHz with FastRC as clock source (PS1 available)
• Enable the CATB module clock to allow QTouch interrupt
• Initialize the AST
• Enable the Peripheral Event Controller to interconnect AST and CATB
• Disable the LCD clock and the LCD Back Light to avoid extra power consumption in SleepWalking
• Disable the External Interrupt Controller (EIC) to avoid interrupt coming from PB0
• Set the State machine to SLEEPWALKING state

2.3.6 SLEEPWALKING
In this mode, the CPU clock is OFF, and only the 32kHz oscillator is enabled for the AST trigger event activity.
The PEVC is the peripheral which makes the SleepWalking available by interconnecting the AST as
Generator and the CATB as user.

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 11 of 34

2.3.7 INIT_ACTIVE_MODE
This is an intermediary state, just after wake up (touch on CS0) and allows configuring the peripherals used in
ACTIVE state such as:

• Switch the clock to full speed to have a powerful data processing
• Disable the CATB module clock
• Enable PDCA used to manage transfer data to the LCD
• Enable and Initialize the LCD controller
• Enable the External Interrupt Controller (EIC)
• Enable LCD Back Light to display the time
• Set the State machine to ACTIVE_MODE state

2.4 Hands-on Assignment Overview
Here is the hands-on outline which describes how a SleepWalking based application should be implemented.

The attendee will setup the application using the ASF library by:

• Configuring the main System Clock setting to use the PLL0 using the main oscillator as clock
source to have a 48MHz running frequency

• Configuring the application to jump in Wait mode:
• Allowing Fast wake up
• Power Scaling set to PS1

• Configuring the Peripheral and setting their related peripheral clocks and clocks sources
• Configuring the Peripheral Event System Controller to interconnect the AST trigger event to the

CATB autonomous QTouch sensing
• The last assignment of this hands-on will implement the State machine described in the Figure 2-3

After these main steps, the SleepWalking application will be ready to run.

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 12 of 34

3. Assignment 1: Open and Review Your Project

 Open the Hands-on Assignment project.

3.1 Atmel Extension Case
• Add the Hands-on Assignment project to the Hands-on Documentation solution

3.2 Atmel Training Executable Case
• Double click on the Hands-on Assignment.atsln project file which is located in: “AN-

4591_SAM4L-EK_SleepWalking_QTouch\assignments” (relative path in the Atmel Training
installation folder)

 The project is now opened, as shown below:

Figure 3-1. Atmel Studio 6 IDE Window after Opening a Project File

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 13 of 34

 From your solution explorer window and directly under the src directory, you can see
that the project includes two files in addition to the main.c file:
sleepwalking_example.c and sleepwalking_example.h

These files implement several functions related to the Segment LCD Controller and
Peripheral Event System management that won’t be described during this hands-on.

 Review app_init() and main() functions:

• Double click on main.c file to open it in the Editor window:

Figure 3-2. Opening a File in the Atmel Studio 6.1 Edition

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 14 of 34

• Find app_init() function:

As you can see, this function is implemented as described in Figure 2-4 - App_int Flow Chart:

• Find main() function:

As you can see, the main function for now, only calls the app_init() function as described below:

 The main function will have to be completed to implement the state machine
described in Figure 2-3 - SleepWalking Application Sequential Flow Chart.

 Let’s get started on the SleepWalking application implementation.

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 15 of 34

4. Assignment 2: Configure the Application Clock Settings
In this assignment, the conf_clock.h file (src\config\conf_clock.h) will be used to configure the PLL using
the main oscillator to have a running frequency @48MHz.

 To do that no additional ASF modules are needed since all the functions are already
part of the project and are available in the osc.c & osc.h files
(\src\ASF\common\services\clock\sam4l\).

The switch_to_slower_clock() function, which is implemented in the
sleepwalking_example.c file, is then used to call the osc_enable() (described in the
osc.c file) function with the parameter specified in the conf_clock.h file.

 Open and Modify the conf_clock.h file located in the src\config\conf_clock.h
folder:

• Open the conf_clock.h file by clicking on the file from the solution explorer window and modify it to
enable the PLL0 as main clock source.

• Scroll down to configure the main oscillator (OSC0) as PLL clock source and to correctly configure
the PLL parameters to run the system at 48MHz as described below:

 Build, program and run the application.

• In order to build the project, click on the Build button:

 Make sure the SAM4L-EK board is connected to your PC with a micro-USB cable
through the J1 connector.

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 16 of 34

• Then download the program in the internal flash of the SAM4L by clicking on the Start Debugging

and break button:
Atmel Studio will ask you to select the Debug Tool.

• Select the on-board J-Link (note that the serial number in parentheses differs from one board to

another):

• Once programmed, start the code execution by clicking on the green arrow:

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 17 of 34

 Set the clock of your application by using PB0.

• Press PB0 to set the Minutes

• Hold PB0 for a short duration (~2 seconds) to set Hours

• Press PB0 to set the Hours

• Hold PB0 for a short duration (~2 seconds) to start the clock

 The application is running correctly and uses the PLL + OSC0 oscillator to run
@48MHz.

 When the debug session is running, the Stop button stops program execution
and exits the debug session. If you want to stop the program but keep the debug

session active, simply click on the Pause button .

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 18 of 34

5. Assignment 3: Configure Power Scaling Mode 1, the Fast Wake Up Capability
and WAIT Mode Entry
In this assignment, the function enter_wait_mode() in the main.c will be modified in order to configure the
WAIT mode correctly.

The entry into WAIT mode is performed by configuring two specific registers:

• The Power Mode Control Register of the Backup Power Manager Interface (BPM)
• The SCR register where the SLEEPDEEP_mode bit field has to be set to 1

The fast wake up capability can be enabled by setting the FASTWKUP bit in the BPM.PMCON register.

The power scaling mode must be changed to PS1and the Fast wakeup capability has to be enabled before
entering in WAIT mode.

To do that, the enter_wait_mode() in the main.c file is used to call the related ASF functions which are:

• bpm_power_scaling_cpu()

• bpm_enable_fast_wakeup()

• bpm_sleep()

 These functions are already included in your project.

 Browsing the bpm.h & bpm.c files (\src\ASF\sam\drivers\bpm\) would allow you to
find the related ASF functions to enter the Wait Mode with fast Wake up capability.

 Go to the enter_wait_mode(void) function in main.c file and implement the related
ASF functions to configure the BPM interface in order to enter wait mode with the fast
wake up capability enabled.

 You may choose to copy/paste the following lines of code to save time.

• Call the bpm_power_scaling_cpu()function to set the Power Scaling mode 1 before entering in
WAIT mode.

/**
 * Function used to enter in wait mode used in Sleepwalking state
 * with power scaling 1 and Fast wake up enabled
 */
void enter_wait_mode(void)
{
 /*Change Power scaling to be in very low power mode */
 bpm_power_scaling_cpu(BPM, BPM_PS_1);

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 19 of 34

• Call the BPM_UNLOCK() macro definition to unlock the PMCON register.

/* Unlock the BPM PMCON register before modifying it */
 BPM_UNLOCK(PMCON);

• Call the bpm_enable_fast_wakeup() function to enable the fast wake up capability before entering
in WAIT mode.

/*enable the fast wake up capability by setting the FASTWKUP bit in the PMCON
register*/
 bpm_enable_fast_wakeup(BPM);

• Call the bpm_sleep()function to enter in WAIT mode as described on the next page.

 /* Enter in wait mode */
 bpm_sleep(BPM, BPM_SM_WAIT);

}

 Your enter_wait_mode(void) function has to look like this:

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 20 of 34

 Now the application is configured to enter wait mode with FAST wake up for the
Power Scaling Mode 1 (PS1).

But the SAM4L product family supports PS1 only for frequencies <=12MHz.

To see the wait mode current consumption on the on-board monitor, the frequency
must then be reduced to 12MHz before entering wait mode.

 Switch the system clock to 12MHz and enter Wait mode.

• Comment the app_init() calling line in main() function:

/***/
/* MAIN Function */
/***/
int main(void)
{
 //app_init();
}

• Call switch_to_slower_clock(); to change the main clock source and to reduce the frequency:

switch_to_slower_clock();//change the main clock source (RCFAST) and
reduce the frequency (12MHz)

 This function is declared in the sleepwalking_example.h file and used to reduce the
system frequency by switching the PLL+OSC0 current configuration to the RCFAST
running @12MHz.

• Call the enter_wait_mode(void) function previously modified:

enter_wait_mode();//go in wait mode with PS1 and Fast wake up enabled

 Your main() function should look like this:

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 21 of 34

 Build, program and run the application.

 Don’t forget to press stop to avoid extra power consumption by the debugger.

 Your are successfully able to enter wait mode as seen by the current consumption
displayed on the on-board monitor OLED:

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 22 of 34

6. Assignment 4: SleepWalking Application Implementation
In the following assignment, the AST and the CATB will be configured as SleepWalking Peripheral Event
Generator and User respectively.

• 1 generator and 1 user:
• Asynchronous System Timer (AST) as a SleepWalking Peripheral Event Generator
• Hardware Touch Module (CATB) as a SleepWalking Peripheral Event User

The aim is to start a QTouch acquisition after an AST trigger event, and to generate an interrupt once
detection occurred from the CS0 QTouch sensor, as shown in the Figure 6-1.

Here is the related timing diagram:

Figure 6-1. SleepWalking Peripheral and Core Activity

 Once detection occurs, the CATB interrupt is reached and a LED (LED0) is
switched ON.

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 23 of 34

6.2 Initialize Capacitive Touch Module (CATB)
The main steps to configure the CATB module are listed below:

• First enable the CATB Peripheral Clock which is not enabled by default after a RESET (unlike the
AST)

• Enable the software reset to reinitialize the CATB module
• Enable the CATB clock at cell level
• Enable Peripheral event in CATB module
• Enable Interrupt at core level
• Enable Interrupt at Peripheral level

 The QTouch library configuration will not be covered in this hands-on. But it is
already implemented in the code, QTouch functions are mandatory to set the sensor
threshold value, discharge time, etc. The GPIO settings are available in the
touch_sensors_init() function described in the touch.c file located in /src/qtouch
folder.

 In the main.c file, go to the init_qtouch(void)function to modify the code to configure
the CATB module as described previously:

 You may choose to copy/paste the following lines of code to save time.

• Use the ASF function to set the CATB bit in the Power Manager Clock Mask Register System to
enable the CATB Peripheral Clock:

/**
 * Initialize the CATB and the Qtouch library for the example.
 */
static void init_qtouch(void)
{

 /*Enable CATB clock at peripheral level */
 sysclk_enable_peripheral_clock(CATB);

• Enable the software reset to reinitialize the CATB module by setting the SWRST bit field of the
CATB configuration register:

/*Perform a qtouch Soft reset */
CATB‐>CATB_CR|=CATB_CR_SWRST;

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 24 of 34

• Set the EN bit in CATB configuration Register to enable the CATB Clock at Cell level:

/*enable CATB clock at cell level in the control register(EN bit) */
CATB‐>CATB_CR|=CATB_CR_EN;

• Set the ETRIG bit in CATB configuration Register, to enable Peripheral event in CATB module:

/*Enable Peripheral event in CATB module by setting the ETRIG bit */
CATB‐>CATB_CR|=CATB_CR_ETRIG;

• Initialize the Qtouch Library by calling the touch_autonomous_sensor_enable() function:

/*Configure the QTouch Library to enable the autonomous QTouch detection*/
touch_autonomous_sensor_enable();

• Adjust the CS0 sensor sensitivity by setting the CR.ESAMPLE register bitfield:

/* Adjust the Qtouch sensitivity */
CATB‐>CATB_CR |= CATB_CR_ESAMPLES(13);

• Enable CATB Interrupt at core level:

/*Enable CATB IRQN interrupts at core level (NVIC)*/
NVIC_ClearPendingIRQ(CATB_IRQn);
NVIC_SetPriority(CATB_IRQn,0);
NVIC_EnableIRQ(CATB_IRQn);

• Enable CATB Interrupt at peripheral level by setting the INTCH bit for an In Touch detection as
described on the next page:

/*Enable the in touch (INTCH) IT at Peripheral Level*/
CATB‐>CATB_IER|=CATB_IER_INTCH;

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 25 of 34

 The CATB is now configured with the peripheral event as trigger sources, to provide
an interrupt on an “In touch” event on CS0.

 Your init_qtouch(void) function should look like this:

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 26 of 34

6.3 Configure the Peripheral Event System Controller (PEVC)
The aim of this assignment is to interconnect the AST trigger event to the CATB autonomous QTouch sensing
as described below:

Figure 6-2. Peripheral Event System Matrix when AST and CATB are Interconnected

The main steps to do this are listed below:

• Initialize the PEVC
• Enable the PEVC Peripheral Clock which is not enabled by default after a RESET (unlike the AST)
• Configure the PEVC channel to link the AST - Periodic Event 0 (Generator Channel no. 8) to the

CATB - Trigger one autonomous touch sensing Event (User Channel no. 6), refer to the datasheet
for more details

• Enable the PEVC channel which corresponds to CATB trigger one autonomous touch sensing

 In the main.c file, go to the CATB_PEVC_init(void) and update the code to
configure the PEVC module as described previously:

• Declare a dedicated structure to configure your Peripheral Event channel:
/**
 * Initialize the Peripheral Event Controller for the CATB.
 */
void CATB_PEVC_init(void)
{
 /*Initialize the peripheral event module */
 struct events_ch_conf ch_config;

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 27 of 34

• Enable the PEVC Peripheral Clock:
 /*Enable the PEVC Peripheral Clock which is not
 enabled by default after a RESET (contrary to the AST) */
 events_enable();

• Configure the PEVC channel to link the AST - Periodic Event 0 (Generator Channel no. 8) to the
CATB - Trigger one autonomous touch sensing Event (User Channel no. 6):
/*Configure the PEVC channel to link the AST Periodic
 event 0 to the Peripheral Event system CATB trigger one autonomous
 touch sensing */
 events_ch_get_config_defaults(&ch_config);

 ch_config.channel_id = PEVC_ID_USER_CATB;
 ch_config.generator_id = PEVC_ID_GEN_AST_2;
 ch_config.shaper_enable = true;

• Apply your new channel parameters:
/* call the events_ch_configure() function, defined
 in events.h to apply the PEVC channel new parameters*/
 events_ch_configure(&ch_config);

• Enable the CATB - Trigger one autonomous touch sensing channel as follow:
 /*Enable the channel*/
 events_ch_enable(PEVC_ID_USER_CATB);
}

 AST event and CATB autonomous touch sensing are now interconnected through
the Peripheral Event system as described in Figure 6-2.

Your CATB_PEVC_init(void) function should look like this:

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 28 of 34

 At this moment, before compiling your application you have to modify your main
function to only use the app_init() function.

 Go to the main function and modify it as described below:

int main(void)
{
 app_init();

 //switch_to_slower_clock();//change the main clock source (RCFAST)
and reduce the frequency (12MHz)
 //enter_wait_mode();//go in wait mode with PS1 and Fast wake up
enabled

}

 Your program is now ready to be built.

 Build, program and run the application.

 Don’t forget to press stop to avoid extra power consumption by the debugger.

• Set your application clock time by using the PB0 Push button as done before

 By touching CS0, you should now be able to switch ON the LED0 of the SAM4L-EK
board as displayed below:

 The LED0 will ONLY switch ON once.

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 29 of 34

6.4 Implement the State Machine
The app() function implements the state machine described previously by the Figure 2-3 - SleepWalking
Application Sequential Flow Chart.

 In the main.c file, modify the main function as follows to implement your final
Sleepwalking application:

/***/
/* MAIN Function */
/***/
void main(void)
{
 /* Initialize the System and the App */
 app_init();

 while (1) {
 app();
 }

}

 Congratulations!!! Your application is now ready to be compiled and executed!
 Let’s start to play with it!

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 30 of 34

7. Assignment 6: Compile and Run Your Application

 Build, program and run the application.

 Don’t forget to press stop to avoid extra power consumption by the debugger.

 The application is being executed and you should see the LCD display ON:

 Push the PB0 Button to enter WAIT mode.

Figure 7-1. PB0 and CS0 Board Implementation

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 31 of 34

 You should see that the LCD display backlight is switched OFF. Then from the OLED
display you should observe a current consumption difference:

 The current consumption trace activity shows the AST trigger events.

 Touch the CS0 QTouch Button to wake up the device.

 You should see that the LCD display is switched ON and you should see the time
counting should have been continued during the sleepwalking.

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 32 of 34

8. Conclusion
In this Hands-on you have learned about the main features used to perform SleepWalking such as:

• Low power techniques: Power Saving & Power Scaling
• Peripheral Clock Management flexibility
• Peripheral Event System
• QTouch library and CATB module

These features make the SAM4L more flexible in terms of peripheral clock management and higher
modularity in power consumption versus performance ratio.

You are now familiar with the use of AST to generate a trigger event clock source.

You configured the Peripheral Event System controller (PEVC) to link this trigger source to a user such as
CATB and you finally enabled the interrupt to wake up the core or to go back to wait mode.

All these features are mandatory to benefit from the SAM4L SleepWalking mode.

an-4591 – TRAINING MANUAL: 42234A-SAM-01/2014
Page 33 of 34

9. Revision History
Doc. Rev. Date Comments

42234A 01/2014 Initial document release

Atmel Corporation
1600 Technology Drive
San Jose, CA 95110
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

Atmel Japan G.K.
16F Shin-Osaki Kangyo Bldg.
1-6-4 Osaki, Shinagawa-ku
Tokyo 141-0032
JAPAN
Tel: (+81)(3) 6417-0300
Fax: (+81)(3) 6417-0370

© 2014 Atmel Corporation. All rights reserved. / Rev.: 42234A-SAM-01/2014

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, picoPower®, QTouch®, and others are registered trademarks or trademarks of
Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

http://www.atmel.com/�

	1. Training Module Architecture
	1.1 Atmel Studio Extension (.vsix)
	1.2 Atmel Training Executable (.exe)

	2. Introduction
	2.1 SleepWalking Overview
	2.1.1 What does SleepWalking mean?

	2.2 Low Power Techniques Overview
	2.3 Hands-on Application Overview
	2.3.2 Application Sequential Flow Chart
	2.3.3 At Power Up
	2.3.4 ACTIVE MODE
	2.3.5 INIT_SLEEPWALKING
	2.3.6 SLEEPWALKING
	2.3.7 INIT_ACTIVE_MODE

	2.4 Hands-on Assignment Overview

	3. Assignment 1: Open and Review Your Project
	3.1 Atmel Extension Case
	3.2 Atmel Training Executable Case

	4. Assignment 2: Configure the Application Clock Settings
	5. Assignment 3: Configure Power Scaling Mode 1, the Fast Wake Up Capability and WAIT Mode Entry
	6. Assignment 4: SleepWalking Application Implementation
	6.2 Initialize Capacitive Touch Module (CATB)
	6.3 Configure the Peripheral Event System Controller (PEVC)
	6.4 Implement the State Machine

	7. Assignment 6: Compile and Run Your Application
	8. Conclusion
	9. Revision History

