Altmel

TRAINING MANUAL

Low-power Capacitive Touch Detection using SAM4L
Sleepwalking

AN-4591

Prerequisites

e Hardware Prerequisites
o Atmel® SAM4L-EK Evaluation kit

e Software Prerequisites
e Atmel Studio 6.1 update 2.0 (build 2730) or higher
e Atmel Software Framework 3.11.0 or higher
e Latest J-Link / SAM-ICE™ Software and Documentation Pack

e Estimated Completion Time: 60 min

Introduction

The Goal of this Hands-on is to:

e Develop an application based on the SleepWalking feature of the SAM4L
Peripheral Event System

e |earn more about SAM4L features:
e Low Power techniques, Power Saving modes and Wake up sources
e Peripheral Event System Controller (PEVC)

e Asynchronous Timer (AST) and Capacitive Touch (CATB)
peripherals

42234A-SAM-01/2014

Table of Contents

PrereqUISITES ... 1
INEFOAUCTION ... 1
Icon Key 1dentifierscoooo oo 3
1. Training Module Architecturecccoooviiiiiiiiiiic e 4
1.1 Atmel Studio EXteNSION (LVSIX) ...eoeeeiieieiiii e 4
1.2 Atmel Training Executable (.€Xe).........ccovuiiiiiiiiiiiiiiiceee e 4
2. INtrodUCHON ..o 5
2.1 SleepWalking OVEIVIEWccoiuiiieiiiiieeeeiiiee et e s seaeee s 5
211 What does SleepWalking mean?cccoceiiiiiiiiiiiee e 5
2.2 Low Power Techniques OVEIVIEWcccccevvcieeeeiiieee e 7
2.3 Hands-on Application OVErvieW............cccccuvveeiiieiiiiciieeeeee e 8
2.3.2 Application Sequential Flow Chart............ccccccooiiiiiiiiieeieiee. 8
2.3.3 ALPOWET UD .o 9
2.3.4 ACTIVE MODE.......ci oottt e 10
2.3.5 INIT_SLEEPWALKINGcoiiiiiiiiieeeseee e 10
2.3.6 SLEEPWALKINGoooiiiiiiee et 10
2.3.7 INIT_ACTIVE_MODE........c.oitiiiiiie ettt 11
2.4 Hands-on Assignment OVEIVIEWcccovuiiieiiiiiieeniiee e 11
3. Assignment 1: Open and Review Your Projectccceee... 12
3.1 AtmMel EXteNSsion Case.......c.eoiiiiiiiiiiiiieeeeee e 12
3.2 Atmel Training Executable Casecccccceiiiiiiiiiii e 12
4. Assignment 2: Configure the Application Clock Settings.......... 15
Assignment 3: Configure Power Scaling Mode 1, the Fast Wake
Up Capability and WAIT Mode Entry...........cccciiiiiiiiiiiiiiiiiinne. 18
6. Assignment 4: SleepWalking Application Implementation........ 22
6.2 Initialize Capacitive Touch Module (CATB)ccceviiieiieriieeeeeeee, 23
6.3 Configure the Peripheral Event System Controller (PEVC)............... 26
6.4 Implement the State Machinecccoeviieiiiiicee, 29
7. Assignment 6: Compile and Run Your Application................... 30
7] o o3 U F-7 1] o RSP 32
ReVision HIiStOryeiiiiiiiii e 33
Atmel an-4591 - TRAINING MANUAL: 42234A-SAM-01/2014

Page 2 of 34

Icon Key Ildentifiers

Icons are used to identify different assignment sections and reduce complexity.

These icons are:

ﬂ INFO
TIPS

%¢ ToDpO
RESULT

n WARNING

a EXECUTE

Atmel

Delivers contextual information about a specific topic.

Highlights useful tips and techniques.

Highlights objectives to be completed.

Highlights the expected result of an assignment step.

Indicates important information.

Highlights actions to be executed out of the target when
necessary.

an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014
Page 3 of 34

1. Training Module Architecture

This training material can be retrieved through different Atmel deliveries:

e As an Atmel Studio Extension (.vsix file) usually found on the Atmel Gallery web site
(http://gallery.atmel.com/) or using the Atmel Studio Extension manager

e As an Atmel Training Executable (.exe file) usually provided during Atmel Training sessions

Depending on the delivery type, the different resources needed by this training material (hands-on
documentation, datasheets, application notes, software & tools) will be found on different locations.

1.1 Atmel Studio Extension (.vsix)

Once the extension installed, you can open and create the different projects using “New Example Project
from ASF..."in Atmel Studio.

n INFO The projects installed from an extension are usually under “Atmel Training >

Atmel Corp. Extension Name”.

There are different projects which can be available depending on the extension:

e Hands-on Documentation: contains the documentation as required resources
e Hands-on Assignment: contains the initial project that may be required to start

e Hands-on Solution: contains the final application which is a solution for this hands-on

n INFO Each time a reference is made to some resources in the following pages, the user
must refer to the Hands-on Documentation project folder.

1.2 Atmel Training Executable (.exe)

Depending where the executable has been installed, you will find the following architecture which is
composed by two main folders:

e AN-XXXX Hands-on: contains the initial project that may be required to start and a solution
® Resources: contains required resources (datasheets, software & tools...)

WCHATMEL TRAINING

| e — — = — E

Organize = Include in library + Share with = » = = M @
&
0 Favorites |;| Blame
. Desktop . AN-XXXX_Hands-on
4 Downloads J Resources
i+ Dropbox
5| Recent Places
- 4 L L3

ﬂ INFO Unless a specific location is specified, each time a reference is made to some
resources in the following pages, the user must refer to this Resources folder.

Atmel- an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014

Page 4 of 34

http://gallery.atmel.com/�

2. Introduction

21 SleepWalking Overview

211 What does SleepWalking mean?

As part of the Atmel picoPower® technology, SleepWalking adds intelligence to
the SAMA4L peripherals. This allows a peripheral to determine if incoming data
requires use of the CPU or not. We call this SleepWalking because it allows
the CPU to sleep until a relevant event occurs.

Traditionally, the internal timer would wake up the microcontroller periodically to
check if certain conditions that require its attention have occurred or not. The
CPU and RAM consume majority of the power in active mode, and so waking
up the CPU to check for these conditions will consume a lot of power in the long
run. In some cases where the reaction time is too short, it might not even be
possible for the CPU to go back into sleep mode at all.

The Atmel SAM4L microcontroller solves this problem by enabling peripherals with SleepWalking.
SleepWalking allows the microcontroller to be put into deep sleep and wake up only upon a pre-qualified
event. The CPU no longer needs to check whether or not a specific condition has occurred, such as an
address match condition on the TWI (I2C) interface, or a sensor connected to an ADC has exceeded a
specific threshold.

With SleepWalking, this is done entirely by the peripherals themselves. The CPU and RAM will not wake up
until the condition is true.

SleepWalking allows reducing the total system power consumption in your application.

SleepWalking is achieved due to peripheral clock management and higher modularity in power consumption
versus performance ratio. This is done with its embedded features which the user needs to be familiar with.
These features are described below:

e Low power techniques: Power Saving and Power Scaling

e Peripheral Clock Management flexibility
e Peripheral Event System

o INFO SleepWalking is a particular mode which allows the Event System to handle
asynchronous events in various sleep modes by requesting a local clock module for
the duration of the Event processing. Once the event processing is done, the
requested clock is disserted and the module goes back to sleep. As a consequence
there are some peripherals which are not able to support SleepWalking.

Atmel- an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014

Page 5 of 34

Here is a peripheral event system matrix with a reduced peripheral list capable of SleepWalking:

USERS

‘ N

\
2
e

55’55

*if
/ vG AA

GPIO input pin change s
AST event

Analog comparator event

ADC EOC / window match ‘#“4

PICO UART character reception

GENERATORS

-

Therefore, before configuring the Peripheral Event System controller, the user must enable peripheral events
at generator level and at the User Interface level.

Next, the Generator will generate peripheral events periodically, and the Peripheral Event System will route
the peripheral events to the ADC Interface, which will perform ADC conversions or CATB sensing (e.g.) at the
selected intervals.

Atmel_ an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014
Page 6 of 34

2.2 Low Power Techniques Overview

The low power techniques are illustrated in the Figure 2-1 and are composed of:

Power Save modes intended to reduce the logic activity and to adapt the power configuration. See
the “Power Save Modes” chapter in the product datasheet. Figure 2-1 is taken from the SAM4L
product family datasheet, and gives a brief description on the power saving mode.

Power Scaling technique consists of adjusting the internal regulator output voltage (voltage
scaling) to reduce the power consumption. According to the requirements in terms of performance,
operating modes, and current consumption, the user can select the Power Scaling configuration
that fits the best with its application. See the “Power Scaling” chapter of the product datasheet.

Figure 2-1. Low Power Techniques Scheme for SAM4L

I POWER SCALING
Wax Frequency=36KHz Hax Frequency=12MHz Max Frequency=48kHz
Hormal Speed Flash Raduced Voltage M al .
Mominal Voltage Mormal Speed Flash High Spesed Fash
BPM.PMCON P3=0 B PRCON.PS5=1 IPRA PRACOM F

RESET —. | —

—— .

) T “
w .
8 | RNz RUN 2
= ﬁ / ;‘ 3\\
lg .‘f Sleep mode 0 | { ', Sleep mode 1 L/ : Sleep mode 2~ : \
z| | / [\, W\ /)
2 " Wait mode 0 || Wait mode 1 ~ *l Wait mode 2 /
e ——————— l—a‘
] . ; .
; \ Retention mode 0 \“i Retenﬂon mode 1 — ’(‘ Retention mode 2 —
o \ S
o M"‘ BACKUP mode O g BACKUP mode 1 # BACKUP mode 2 |
n INFO Regarding SleepWalking, PS1 is the best Power scaling mode in term of
performance/consumption ratio thanks to the internal regulator low power mode.
n INFO The Wait mode is the most interesting mode to perform SleepWalking in terms of power

consumption. All clock sources are stopped; the core and all the peripherals are stopped
except the modules running with the 32kHz clock if enabled. This is the lowest power
mode where SleepWalking is supported.

Once the power scaling and the power saving modes are identified to run SleepWalking, the next step is to
enable/disable the used/unused peripheral. This is possible due to the highly flexible nature of the SAM4L
clock management.

Atmel

an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014
Page 7 of 34

2.3 Hands-on Application Overview

After the main initialization, the hands-on application is based on a state machine sequence (as described in
Figure 2-3) which allows the user to jump from one state to another through interrupts triggered by:

e The QTouch® key sensor (CS0) - used to wake up the SAM4L device from the WAIT mode using
SleepWalking

e The Push Button (PBO0) - used to go back to WAIT mode with SleepWalking enabled

Figure 2-2. PB0 and CS0O Board Implementation

= User Push Button (PBO)
User QTouch Button (CS0)

n INFO Any application can be coupled with Sleepwalking.
In this example a real time watch application is used.

2.3.2 Application Sequential Flow Chart
Figure 2-3 sums up the SAM4L SleepWalking application flow Chart:

Figure 2-3. SleepWalking Application Sequential Flow Chart

Main function

App_init();

Setclockime

Vlhhu.lpENuntI[
GonwKUp sTaTe ()

Wit fior Qliouch detachion on ﬂ
080 4

o - -

N

ACTIVE MODE

While no action on PBO
Display Clock

Wit for External Intemupt

Tough PBO
)
INIT Extsrmal Intanupt |
SLEEPWALKING Go to IMIT_SLEEPWALKING
prepare_to_sleepwalking();
A t m el. an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014

Page 8 of 34

2.3.3 At Power Up

The application initialization (App_init()) function is called after a power up and executes the following
functions:

Figure 2-4. App_int Flow Chart

App_init();

sysclk_init();
L & v
board_init();

\. A
o~ * ™y
init_gtouch();

e * A
init_lcdaq);

. & 7
init_pdca();

- o

v

set_clock_time();
L 7

v

CATB_PEVC_init()

- 4

v

PDCA_PEVC_init()
A

¥

init_ast();

~

~

e sysclk_init(): The main clock is the PLL using the main oscillator running @48MHz

e board_init():Initializes the SAM4L-EK board

e init_gtouch():Initializes the Capacitive Touch (CATB) Module and the QTouch Library
e init_lcda():Initializes the Segment LCD Controller (LCDCA) to display the clock time
e init_pdca():Initializes the Peripheral DMA (PDCA)

e set clock_time():Set Clock Time

e CATB_PEVC_init():Initializes the CATB module as a SleepWalking User peripheral with the AST as
generator

e PDCA_PEVC._init():Initializes the PDCA module as another SleepWalking User peripheral with the
AST as generator

Atmel. an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014

Page 9 of 34

234

2.3.5

2.3.6

Atmel

n INFO Peripheral Event System is enabled, allowing the interconnection between one
generator and one user:

e AST (Asynchronous Timer) as generator
e CATB (Capacitive Touch Module) as user
e PDCA as user

e init_ast():Initializes the AST in calendar mode.

As described in the application flow Chart (Figure 2-3), after the application initialization function, the user will
either use a push button or a QTouch button to change the state of the sequential state machine implemented
in the code. The different states are described below.

ACTIVE MODE

This state is the RUN mode of the application where:

e The main clock is 48MHz
e The LCD display is ON with the clock time displayed on it
e We stay in this mode until an external interrupt event (EIC controller) is detected (PBO pushed)

INIT_SLEEPWALKING

This state allows preparing the SAM4L device to go back to Wait mode, and configure peripherals to perform
SleepWalking. The following actions are performed:

e Disable PDCA used to manage transfer data to the LCD while the LCD is OFF to avoid extra power
consumption in SleepWalking

e Restore the slow clock running @12MHz with FastRC as clock source (PS1 available)

e Enable the CATB module clock to allow QTouch interrupt

e |[nitialize the AST

e Enable the Peripheral Event Controller to interconnect AST and CATB

e Disable the LCD clock and the LCD Back Light to avoid extra power consumption in SleepWalking

e Disable the External Interrupt Controller (EIC) to avoid interrupt coming from PB0O

e Set the State machine to SLEEPWALKING state

SLEEPWALKING

In this mode, the CPU clock is OFF, and only the 32kHz oscillator is enabled for the AST trigger event activity.
The PEVC is the peripheral which makes the SleepWalking available by interconnecting the AST as
Generator and the CATB as user.

an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014
Page 10 of 34

2.3.7

24

Atmel

INIT_ACTIVE_MODE

This is an intermediary state, just after wake up (touch on CS0) and allows configuring the peripherals used in
ACTIVE state such as:

Switch the clock to full speed to have a powerful data processing
Disable the CATB module clock

Enable PDCA used to manage transfer data to the LCD

Enable and Initialize the LCD controller

Enable the External Interrupt Controller (EIC)

Enable LCD Back Light to display the time

Set the State machine to ACTIVE_MODE state

Hands-on Assignment Overview

Here is the hands-on outline which describes how a SleepWalking based application should be implemented.

The attendee will setup the application using the ASF library by:

Configuring the main System Clock setting to use the PLLO using the main oscillator as clock
source to have a 48MHz running frequency

Configuring the application to jump in Wait mode:
e Allowing Fast wake up
e Power Scaling set to PS1
Configuring the Peripheral and setting their related peripheral clocks and clocks sources

Configuring the Peripheral Event System Controller to interconnect the AST trigger event to the
CATB autonomous QTouch sensing

The last assignment of this hands-on will implement the State machine described in the Figure 2-3

After these main steps, the SleepWalking application will be ready to run.

an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014
Page 11 of 34

3.

3.1

3.2

Atmel

Assignment 1: Open and Review Your Project

M
E—‘" TO DO Open the Hands-on Assignment project.

Atmel Extension Case

¢ Addthe Hands-on Assignment project to the Hands-on Documentation solution

Atmel Training Executable Case

e Double click on the Hands-on Assignment.atsln project file which is located in: “AN-
4591 SAMAL-EK SleepWalking QOTouch\assignments” (relative path in the Atmel Training
installation folder)

RESULT The project is now opened, as shown below:

Figure 3-1. Atmel Studio 6 IDE Window after Opening a Project File

W AT7114 samaL- 1
File Edit View VAssisti ASF
el e P 828
ISP AL UM s r|uSa@ g T |F--1 0T

Buid Debug Toos Window Help

- L1 B | B W [Debug =/ 1% | SLEEPWALIING STATE e BB Ok T 2 #lild old ol Bids

] o B -E e = M ATSAMMLCAC T SWD on J-Link [D004B0009216) -

“ATTIIA_SAMAL-EX_SleepWalking (1 project)
114_SAMAL-EK SleepWalking

il Dependencen

& Output Files

i Libraries

Selutien

Explorer
Windew

@ 0Errors | _f} B Warmings | i

Description e Line olumn Project

Output Windew

an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014
Page 12 of 34

Figure

INFO From your solution explorer window and directly under the src directory, you can see
that the project includes two files in addition to the main.c file:
sleepwalking_example.c and sleepwalking_example.h

These files implement several functions related to the Segment LCD Controller and
Peripheral Event System management that won’t be described during this hands-on.

Solution Explorer
=1
Ji Solution ‘AT7114_SAM4L-EK_SleepWalking" (1 project)
4 ¥ || AT7114 SAMAL-EK SleepWalking
b (=4 Dependencies
[Zd Output Files
> [= Libraries
4 & src
{83 ASF
[config
[qtouch
¢ |n] asf.h
B/c] main.c
¢ c] sleepwalking_example.c
#|h] sleepwalking_example.h

TO DO Review app _init () and main () functions:

e Double click on main.c file to open it in the Editor window:

3-2. Opening a File in the Atmel Studio 6.1 Edition

main.c X

=/

100% -

% CATBPEVC_init e | -[@co
=

YFile .

‘brief sleep Walking Hands-on =
after the application initialization function, the user will use
these buttons to change the state of the sequential state machine
implemented in the code as follow:
After having set the Clock
* (58 used to wake up the SAMAL device from the Sleepwalking™ mode
* PB@ used to go back in Sleepwalking™
The 7segments LCD display is used to display the state if the state

machine is in Sleepwalking or in Active State
At power up, the application jumps directly in Sleepwalking state
with the Peripheral Event System enabled, allowing the
interconnection between peripherals. 2 different configuratiens
(the last one is optional) are implemented in the code:
* 1 generator and 1 user:

AST as generator

CATB as user
1 generator and 2 users (optional)

AST as generator

CATB as user
. ADCIFE as user

LR TR

.

‘mainpage User Application template doxygen documentation
\par Empty user application template

Bare minimum empty user application template

\par Content

-# Include the ASF header files (through asf.h)

-# Minimal main function that starts with a call to beard_init()
-# "Insert application code here" comment

Atmel

an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014
Page 13 of 34

e Find app init () function:

As you can see, this function is implemented as described in Figure 2-4 - App_int Flow Chart:

B/**
* Initialize the Application System and Peripherals for the example.
*/

Elstatic void app_init(wvoid)

{

/* Initialize the System Clock */
sysclk_init();

/¥ Initialize the SAM4L-EK board */
board_init();

/* Initialize the CATB module and the Qtouch Library */
init_qtouch();

/* Initialize the LCDA to display time */
init_leda();

/* Initialize the PDCA */
init_pdca();

/* set the clock time */
set_clock_time();

/* Initialize the peripheral Event System Controller allowing
* Peripherals to request theirs clocks */

CATB_PEVC_init();

PDCA_PEVC_init();

/* Initialize & configure the AST */
init_ast();

e Findmain () function:

As you can see, the main function for now, only calls the app_init () function as described below:

/ /
* MAIN Function */

=lint main(wveid)

{
app_init();
)
n INFO The main function will have to be completed to implement the state machine

described in Figure 2-3 - SleepWalking Application Sequential Flow Chart.

RESULT Let’s get started on the SleepWalking application implementation.

Atmel. an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014

Page 14 of 34

4. Assignment 2: Configure the Application Clock Settings

In this assignment, the conf_clock.h file (src\config\conf_clock.h) will be used to configure the PLL using
the main oscillator to have a running frequency @48MHz.

n INFO To do that no additional ASF modules are needed since all the functions are already
part of the project and are available in the osc.c & osc.h files
(\src\ASF\common\services\clock\sam4l\).

The switch_to_slower_clock() function, which is implemented in the
sleepwalking_example.c file, is then used to call the osc_enable() (described in the
osc.c file) function with the parameter specified in the conf_clock.h file.

l—l-| &
k—" TO DO Open and Modify the conf_clock.h file located in the src\config\conf _clock.h
folder:

e Open the conf_clock.h file by clicking on the file from the solution explorer window and modify it to
enable the PLLO as main clock source.

//#define CONFIG_SYSCLK SOURCE SYSCLK_SRC_RCSYS Comment

NEL0 SYSLULK SUUKLE ST oL LK SHL (IS0
define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_PLL®

uncomment

T 10_SYSCULK_SUURCE SYSCLK_SRC_DFLL
//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_RC80M
//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_RCFAST
//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_RC1M

e Scroll down to configure the main oscillator (OSCO0) as PLL clock source and to correctly configure
the PLL parameters to run the system at 48MHz as described below:

[| #define conr1c_pLLG Source PLL_SRC_0SCo) uncomment
fr Eolle e (eoll* DL gyl) DL i)
#define CONFIG_PLL® MUL (43000000UL / BOARD_0SC@_HZ)
define CONFIG PLL® DIV 1 uncomment

l—l]‘
L TO DO Build, program and run the application.

e In order to build the project, click on the Build button:

0 WARNING Make sure the SAM4L-EK board is connected to your PC with a micro-USB cable
through the J1 connector.

Atmel. an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014

Page 15 of 34

e Then download the program in the internal flash of the SAMA4L by clicking on the Start Debugging

and break button: bl
Atmel Studio will ask you to select the Debug Tool.

e Select the on-board J-Link (note that the serial number in parentheses differs from one board to

another):
(Select Tool u1
Flease choose one of the tools below to start debugging.
Tools and Simulators Status ATSAMALCAC Support
g J-Link (000450008960) Connected Yes

8 Simulatar Connected No

P

e Once programmed, start the code execution by clicking on the green arrow:

Atmel. an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014

Page 16 of 34

s
TO DO Set the clock of your application by using PBO.

User Push Button (PBO)

e Hold PBO for a short duration (~2 seconds) to set Hours

e Press PBO0 to set the Hours

e Hold PBO for a short duration (~2 seconds) to start the clock

RESULT The application is running correctly and uses the PLL + OSCO oscillator to run
@48MHz.

TIPS When the debug session is running, the Stop button 4 stops program execution
and exits the debug session. If you want to stop the program but keep the debug

session active, simply click on the Pause button Ul .

Atmel- an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014

Page 17 of 34

5. Assignment 3: Configure Power Scaling Mode 1, the Fast Wake Up Capability
and WAIT Mode Entry

In this assignment, the function enter_wait_mode() in the main.c will be modified in order to configure the
WAIT mode correctly.

The entry into WAIT mode is performed by configuring two specific registers:
e The Power Mode Control Register of the Backup Power Manager Interface (BPM)
e The SCR register where the SLEEPDEEP_mode bit field has to be set to 1
The fast wake up capability can be enabled by setting the FASTWKUP bit in the BPM.PMCON register.

The power scaling mode must be changed to PS1and the Fast wakeup capability has to be enabled before
entering in WAIT mode.

To do that, the enter_wait_mode() in the main.c file is used to call the related ASF functions which are:
e bpm_power_scaling_cpu()
e bpm_enable fast wakeup()

e bpm_sleep()
n INFO These functions are already included in your project.

n INFO Browsing the bpm.h & bpm.c files (\src\ASF\sam\drivers\bpm\) would allow you to
find the related ASF functions to enter the Wait Mode with fast Wake up capability.

M
k—" TO DO Go to the enter_wait_mode(void) function in main.c file and implement the related
ASF functions to configure the BPM interface in order to enter wait mode with the fast
wake up capability enabled.

TIPS You may choose to copy/paste the following lines of code to save time.

e (Call the bpm_power_scaling_cpu()function to set the Power Scaling mode 1 before entering in
WAIT mode.
/**
* Function used to enter in wait mode used in Sleepwalking state
* with power scaling 1 and Fast wake up enabled

*/
void enter_wait_mode(void)
{
/*Change Power scaling to be in very low power mode */
bpm_power_scaling cpu(BPM, BPM_PS_1);
/Itmel- an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014

Page 18 of 34

e (Call the BPM_UNLOCK() macro definition to unlock the PMCON register.

/* Unlock the BPM PMCON register before modifying it */
BPM_UNLOCK (PMCON) ;

e (Call the bpm_enable_fast_wakeup() function to enable the fast wake up capability before entering
in WAIT mode.

/*enable the fast wake up capability by setting the FASTWKUP bit in the PMCON
register*/
bpm_enable_fast_wakeup(BPM);

e (Call the bpm_sleep()function to enter in WAIT mode as described on the next page.

/* Enter in wait mode */
bpm_sleep(BPM, BPM_SM WAIT);

RESULT Your enter_wait_mode(void) function has to look like this:

ll,l'**
* Function used to enter in wait mode used in Sleepwalking state
* with power scaling 1 and Fast wake up enabled
*/

veid snter.wait mode(void)

1

/*Change Power scaling to be in very low power mode */

bom.power.s5aling. cpu(BPM, BPM_PS_1);

/* Unlock the BPM PMCON register before modifying it */
BPM_UNLOCK (PMCON) ;

/*enable the fast wake up capability by setting the FASTWKUP bit in the PMCON
register®/

bpm_ enable, fast wakeup(BPM);

/* Enter in wait mode */

bpm_sleep(BPM, BPM_SM_WAIT);

AtmeL an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014

Page 19 of 34

Atmel

0 WARNING Now the application is configured to enter wait mode with FAST wake up for the
Power Scaling Mode 1 (PS1).

But the SAM4L product family supports PS1 only for frequencies <=12MHz.

To see the wait mode current consumption on the on-board monitor, the frequency
must then be reduced to 12MHz before entering wait mode.

.
%5 TO DO Switch the system clock to 12MHz and enter Wait mode.

e Commentthe app init () calling line in main() function:

/***/

/* MAIN Function */
J A e L L e L L ey

int main(void)

{
}

//app_init();

e Call switch_to_slower_clock(); to change the main clock source and to reduce the frequency:

switch_to_slower_clock();//change the main clock source (RCFAST) and
reduce the frequency (12MHz)

n INFO This function is declared in the sleepwalking _example.h file and used to reduce the
system frequency by switching the PLL+OSCO current configuration to the RCFAST
running @12MHz.

e Call the enter_wait_mode(void) function previously modified:

enter_wait_mode();//go in wait mode with PS1 and Fast wake up enabled

RESULT Your main() function should look like this:

.l'll***f‘l

i* MAIMN Function *f
II,I'***‘f

int main(wveid)
1

/PR Anis();
switeh o slower. clock();//change the main clock source (RCFAST) and reduce the
frequency (12MHz)

enter wait mode();//go in wait mode with PS1 and Fast wake up enabled
h

an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014
Page 20 of 34

e
k—"’ TO DO Build, program and run the application.
0 WARNING Don't forget to press stop to avoid extra power consumption by the debugger. 4

RESULT Your are successfully able to enter wait mode as seen by the current consumption
displayed on the on-board monitor OLED:

Atmel_ an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014
Page 21 of 34

6. Assignment 4: SleepWalking Application Implementation

In the following assignment, the AST and the CATB will be configured as SleepWalking Peripheral Event
Generator and User respectively.

e 1 generator and 1 user:

e Asynchronous System Timer (AST) as a SleepWalking Peripheral Event Generator
e Hardware Touch Module (CATB) as a SleepWalking Peripheral Event User

The aim is to start a QTouch acquisition after an AST trigger event, and to generate an interrupt once
detection occurred from the CSO QTouch sensor, as shown in the Figure 6-1.

Here is the related timing diagram:

Figure 6-1. SleepWalking Peripheral and Core Activity

H
AST
V Trig event

- Y

/

CATB
Sampling
Activily [~~~~~~~""~~""""F—— | T TTTTTTTTTT W TTTtttTTTTTYTT

-

i i i !
'y ' ' i
gteonu:ohr Tdisma;r_glﬂoo short (> i i
Activity I : e
' Qtouch detection on GS0O
; (
» Wake-up Event !
Cortex M-4 @ P
activity t = ’ Go to WKUP_STATE
Wake Upl (Active
SleepWalking ™ (Wait Mode) Mode)
1
n INFO Once detection occurs, the CATB interrupt is reached and a LED (LEDO) is
switched ON.
Atmel. an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014

Page 22 of 34

6.2

Atmel

Initialize Capacitive Touch Module (CATB)

The main steps to configure the CATB module are listed below:

First enable the CATB Peripheral Clock which is not enabled by default after a RESET (unlike the
AST)

Enable the software reset to reinitialize the CATB module
Enable the CATB clock at cell level

Enable Peripheral event in CATB module

Enable Interrupt at core level

Enable Interrupt at Peripheral level

o INFO The QTouch library configuration will not be covered in this hands-on. But it is

already implemented in the code, QTouch functions are mandatory to set the sensor
threshold value, discharge time, etc. The GPIO settings are available in the
touch_sensors_init() function described in the touch.c file located in /src/qtouch
folder.

l-l-l &
TO DO In the main.c file, go to the init_qtouch(void)function to modify the code to configure

the CATB module as described previously:

TIPS You may choose to copy/paste the following lines of code to save time.

Use the ASF function to set the CATB bit in the Power Manager Clock Mask Register System to
enable the CATB Peripheral Clock:

Vik
* Initialize the CATB and the Qtouch library for the example.
*/

static void init_qgtouch(void)

{

/*Enable CATB clock at peripheral level */
sysclk_enable_peripheral_clock(CATB);

Enable the software reset to reinitialize the CATB module by setting the SWRST bit field of the
CATB configuration register:

/*Perform a gtouch Soft reset */
CATB->CATB_CR|=CATB_CR_SWRST;

an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014
Page 23 of 34

e Set the EN bit in CATB configuration Register to enable the CATB Clock at Cell level:

/*enable CATB clock at cell level in the control register(EN bit) */
CATB->CATB_CR|=CATB_CR_EN;

e Set the ETRIG bit in CATB configuration Register, to enable Peripheral event in CATB module:

/*Enable Peripheral event in CATB module by setting the ETRIG bit */
CATB->CATB_CR|=CATB_CR_ETRIG;

e |nitialize the Qtouch Library by calling the touch_autonomous_sensor_enable() function:

/*Configure the QTouch Library to enable the autonomous QTouch detection*/
touch_autonomous_sensor_enable();

e Adjust the CSO0 sensor sensitivity by setting the CR.ESAMPLE register bitfield:

/* Adjust the Qtouch sensitivity */
CATB->CATB_CR |= CATB_CR_ESAMPLES(13);

e Enable CATB Interrupt at core level:

/*Enable CATB IRQN interrupts at core level (NVIC)*/
NVIC_ClearPendingIRQ(CATB_IRQn);
NVIC_SetPriority(CATB_IRQn,9);
NVIC_EnableIRQ(CATB_IRQn);

e Enable CATB Interrupt at peripheral level by setting the INTCH bit for an In Touch detection as
described on the next page:

/*Enable the in touch (INTCH) IT at Peripheral Level*/
CATB->CATB_IER|=CATB_IER_INTCH;

Atmel. an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014

Page 24 of 34

RESULT

RESULT

II,I'**
* Initialize the CATB and the Qipuch library for the example.

The CATB is now configured with the peripheral event as trigger sources, to provide
an interrupt on an “In touch” event on CSO0.

Your init_qtouch(void) function should look like this:

static weid jpit gtouch(void)

1

Atmel

/*Enable CATB clock at peripheral lewvel */

sysslk. snable. peripheral clock(CATE);

/*Perform a gtouch Soft reset *f
CATB->CATB_CR|=CATB_CR_SWRST;

/*enable CATB clock at cell lewvel in the control register(EN bit) */
CATB->CATBE_CR|=CATB_CR_EN;

/*Enable Peripheral event in CATB module by setting the ETRIG bit */
CATB->CATB_CR|=CATB_CR_ETRIG;

/*Configure the QTouch Library to enable the autonomous QTough detection®/

touch. autonomous, sensor. enable();

/* Adjust the Qtpuch sensitivity */
CATB->CATB_CR |= CATB_CR_ESAMPLES(13);

/*Enable CATB IRQN interrupts at core level (NWIC)*/
WVIC. ClearPendingIRO(CATE. IRAN) ;

WVIC. 2ekPrigrity (CATB_IRQn,2);

WVIC. EnableIRQ(CATE. IRON) S

/*Enable the in touch (INTCH) IT at Peripheral Lewvel®/
CATB->CATB_IER|=CATB_IER_INTCH;

an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014
Page 25 of 34

6.3 Configure the Peripheral Event System Controller (PEVC)

The aim of this assignment is to interconnect the AST trigger event to the CATB autonomous QTouch sensing
as described below:

Figure 6-2. Peripheral Event System Matrix when AST and CATB are Interconnected

USERS
‘ R
g

7
ey,
) 112

@ GPIO input pin change s
E AST event ® .

é Analog comparator event r P

1]

= ADC EOC / window match f

o PICC UART character reception

N

The main steps to do this are listed below:

e |[nitialize the PEVC
e Enable the PEVC Peripheral Clock which is not enabled by default after a RESET (unlike the AST)

e Configure the PEVC channel to link the AST - Periodic Event O (Generator Channel no. 8) to the
CATB - Trigger one autonomous touch sensing Event (User Channel no. 6), refer to the datasheet
for more details

e Enable the PEVC channel which corresponds to CATB trigger one autonomous touch sensing

=S
k—"’ TO DO In the main.c file, go to the CATB_PEVC _init(void) and update the code to
configure the PEVC module as described previously:

e Declare a dedicated structure to configure your Peripheral Event channel:

/**

* Initialize the Peripheral Event Controller for the CATB.
*/

void CATB_PEVC_init(void)

{

/*Initialize the peripheral event module */
struct events_ch_conf ch_config;

Atmel. an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014

Page 26 of 34

Atmel

Enable the PEVC Peripheral Clock:
/*Enable the PEVC Peripheral Clock which is not
enabled by default after a RESET (contrary to the AST) */
events_enable();

Configure the PEVC channel to link the AST - Periodic Event 0 (Generator Channel no. 8) to the
CATB - Trigger one autonomous touch sensing Event (User Channel no. 6):
/*Configure the PEVC channel to link the AST Periodic

event © to the Peripheral Event system CATB trigger one autonomous

touch sensing */

events_ch_get_config defaults(&ch_config);

ch_config.channel_id = PEVC_ID_USER_CATB;
ch_config.generator_id = PEVC_ID_GEN_AST_2;
ch_config.shaper_enable = true;

Apply your new channel parameters:

/* call the events_ch_configure() function, defined
in events.h to apply the PEVC channel new parameters*/
events_ch_configure(&ch_config);

Enable the CATB - Trigger one autonomous touch sensing channel as follow:
/*Enable the channel*/
events_ch_enable(PEVC_ID_USER_CATB);

}

RESULT AST event and CATB autonomous touch sensing are now interconnected through

the Peripheral Event system as described in Figure 6-2.

Your CATB_PEVC_init(void) function should look like this:

void CATB.PEVC..init(void)
{

f*Initialize the peripheral event module */

shruct syents choconf choconfig;

/*Enable the PEVC Peripheral Clock which is not
enabled by default after a RESET (contrary to the AST) */

svents. .enabls();

f*Configure the PEVC channel to link the AST Periodic
event @ to the Peripheral Event system CATE trigger one autonomous
touch sensing */

suents.choget. config defaults(&ch config);

sh.senfig.channgl.id = PEVC_ID_USER_CATB;
sh.sonfig.generator. id = PEVC_ID GEN_AST_2;
choconfig.sharper enable = true;

/* call the gyents_ch configure() function, defined
in gyenks.h to configure the PEVC channel new parameters®/

events.ch.configure(&ch config);

/*¥Enable the channel*®/

gvents.ch.enable (PEVC_ID_USER CATB);

an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014
Page 27 of 34

WARNING At this moment, before compiling your application you have to modify your main
function to only use the app_init() function.

s
k—"’ TO DO Go to the main function and modify it as described below:

int main(void)
{
app_init();

//switch_to_slower_clock();//change the main clock source (RCFAST)

and reduce the frequency (12MHz)
//enter_wait_mode();//go in wait mode with PS1 and Fast wake up

enabled

}

RESULT Your program is now ready to be built.
s
k—"’ TO DO Build, program and run the application.

WARNING Don't forget to press stop to avoid extra power consumption by the debugger. 4

e Set your application clock time by using the PBO Push button as done before

RESULT By touching CSO0, you should now be able to switch ON the LEDO of the SAM4L-EK
board as displayed below:

WARNING The LEDO will ONLY switch ON once.

/Itmel_ an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014
Page 28 of 34

6.4

Atmel

Implement the State Machine

The app() function implements the state machine described previously by the Figure 2-3 - SleepWalking
Application Sequential Flow Chart.

.
k—" TO DO In the main.c file, modify the main function as follows to implement your final
Sleepwalking application:

/***/

/* MAIN Function */
[/ sk sk sk sk skl skl sk ok sk ok ksl sk sk sk skl kol kol skl skl sk sk sk skl sk skl kol kol kol koot ok ok

void main(void)

{
/* Initialize the System and the App */
app_init();
while (1) {
app();
¥
¥

RESULT Congratulations!!! Your application is now ready to be compiled and executed!
Let’s start to play with it!

an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014
Page 29 of 34

7. Assignment 6: Compile and Run Your Application

M
L’ TO DO Build, program and run the application.
WARNING Don't forget to press stop to avoid extra power consumption by the debugger. 4

RESULT The application is being executed and you should see the LCD display ON:

s
TO DO Push the PB0 Button to enter WAIT mode.

Figure 7-1. PB0 and CS0 Board Implementation

User Push Button (PBQ)
User QTouch Button (CS0)

Atmel- an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014

Page 30 of 34

RESULT

B o
%¢ ToDpO

RESULT

Atmel

You should see that the LCD display backlight is switched OFF. Then from the OLED
display you should observe a current consumption difference:

The current consumption trace activity shows the AST trigger events.

Touch the CS0 QTouch Button to wake up the device.

You should see that the LCD display is switched ON and you should see the time
counting should have been continued during the sleepwalking.

an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014
Page 31 of 34

8. Conclusion
In this Hands-on you have learned about the main features used to perform SleepWalking such as:
e Low power techniques: Power Saving & Power Scaling
e Peripheral Clock Management flexibility

e Peripheral Event System
e QTouch library and CATB module

These features make the SAM4L more flexible in terms of peripheral clock management and higher
modularity in power consumption versus performance ratio.

You are now familiar with the use of AST to generate a trigger event clock source.

You configured the Peripheral Event System controller (PEVC) to link this trigger source to a user such as
CATB and you finally enabled the interrupt to wake up the core or to go back to wait mode.

All these features are mandatory to benefit from the SAM4L SleepWalking mode.

Atmel_ an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014
Page 32 of 34

9. Revision History

Doc. Rev. m Comments
T VU RGGSGSGSSSSSS L |

| 42234A | 01/2014 ' Initial document release |

AtmeL an-4591 — TRAINING MANUAL: 42234A-SAM-01/2014

Page 33 of 34

AtmeL Enabling Unlimited Possibilities®

Atmel Corporation Atmel Asia Limited Atmel Munich GmbH Atmel Japan G.K.

1600 Technology Drive Unit 01-5 & 16, 19F Business Campus 16F Shin-Osaki Kangyo Bldg.
San Jose, CA 95110 BEA Tower, Millennium City 5 Parkring 4 1-6-4 Osaki, Shinagawa-ku
USA 418 Kwun Tong Road D-85748 Garching b. Munich Tokyo 141-0032

Tel: (+1)(408) 441-0311 Kwun Tong, Kowloon GERMANY JAPAN

Fax: (+1)(408) 487-2600 HONG KONG Tel: (+49) 89-31970-0 Tel: (+81)(3) 6417-0300
www.atmel.com Tel: (+852) 2245-6100 Fax: (+49) 89-3194621 Fax: (+81)(3) 6417-0370

Fax: (+852) 2722-1369

© 2014 Atmel Corporation. All rights reserved. / Rev.: 42234A-SAM-01/2014

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, picoPower®, QTouch®, and others are registered trademarks or trademarks of
Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

http://www.atmel.com/�

	1. Training Module Architecture
	1.1 Atmel Studio Extension (.vsix)
	1.2 Atmel Training Executable (.exe)

	2. Introduction
	2.1 SleepWalking Overview
	2.1.1 What does SleepWalking mean?

	2.2 Low Power Techniques Overview
	2.3 Hands-on Application Overview
	2.3.2 Application Sequential Flow Chart
	2.3.3 At Power Up
	2.3.4 ACTIVE MODE
	2.3.5 INIT_SLEEPWALKING
	2.3.6 SLEEPWALKING
	2.3.7 INIT_ACTIVE_MODE

	2.4 Hands-on Assignment Overview

	3. Assignment 1: Open and Review Your Project
	3.1 Atmel Extension Case
	3.2 Atmel Training Executable Case

	4. Assignment 2: Configure the Application Clock Settings
	5. Assignment 3: Configure Power Scaling Mode 1, the Fast Wake Up Capability and WAIT Mode Entry
	6. Assignment 4: SleepWalking Application Implementation
	6.2 Initialize Capacitive Touch Module (CATB)
	6.3 Configure the Peripheral Event System Controller (PEVC)
	6.4 Implement the State Machine

	7. Assignment 6: Compile and Run Your Application
	8. Conclusion
	9. Revision History

