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Purpose
This application note describes how to configure the weight values dynamically for the advanced high
performance bus (AHB) bus matrix masters to access the AHB bus matrix slave using the weighted
round-robin (WRR) arbitration in a SmartFusion®2 system-on-chip (SoC) field programmable gate array
(FPGA) device.

Introduction
SmartFusion2 SoC FPGA devices support the AHB bus matrix, which is a multi-layer AHB bus matrix.
The AHB bus matrix has ten masters and seven direct slaves. This application note provides a reference
design that has two fabric masters connected to the FIC_0 and FIC_1 interfaces. These two fabric
masters can access a single slave Embedded SRAM (eSRAM1) using the WRR arbitration.
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AHB Bus Matrix Overview
The connection of the masters and slaves to the AHB bus matrix is shown in Figure 1. The AHB bus
matrix allows multiple masters to access a single slave through an arbitration mechanism. 

Arbitration
Arbitration is performed at two levels when more than one master attempts to access a single slave at
the same time. At the first-level, the fixed higher priority masters (processor bus masters MM0, MM1,
MM2, and MM9) are evaluated for any access request to the slave. The non-processor buses are then
evaluated in a round-robin fashion for any access request to the slave. The arbitration mechanism uses
pure round-robin and the WRR techniques. 

The priority levels of each master are listed in Table 1. 

Figure 1 •  AHB Bus Matrix Block Diagram with all the 10 Masters and 7 Slaves (10 x 7)
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Table 1 • Master’s Priority During Slave Arbitration

MM Number Masters Priority

MM0 IC-Bus 2 Fixed

MM1 D-Bus 1 Fixed

MM2 S-Bus 3 Fixed

MM3 HPDMA 4 WRR

MM4 FIC_0 4 WRR

MM5 FIC_1 4 WRR

MM6 MAC 4 WRR

MM7 PDMA 4 WRR

MM8 USB 4 WRR

MM9 G 4 Fixed
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Introduction
Pure Round-Robin Arbitration
This is the default arbitration mode after reset wherein the programmable weight value for each of the
master is 1. In this mode, the arbitration scheme for each slave port is identical. The processor masters
have higher priority over the non-processor masters. Each non-processor master accessing a slave has
equal priority based on a round-robin fashion.

For locked transactions, the master issuing the lock retains ownership of the slave until the locked
transaction is complete. The priorities for masters in pure round-robin arbitration is shown in Figure 2.

Figure 2 • Pure Round Robin Arbitration Scheme
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WRR Arbitration
In this mode, the Programmable Weight (SW_WEIGHT_<master name>) can be configured to operate
as WRR. The slave arbiter operates on a round-robin basis with each of the master interfaces having a
maximum of N consecutive access opportunities to the slave in each “round” of arbitration. The value of
N is determined by the programmed weight for the master and the maximum latency of the eSRAM0/1
parameter.

Each master (except the D-Code processor bus) has a programmable weight value that can be
configured from 1 to 32. Maximum latency values for fixed priority masters can be configured from 1 to 8.
The D-code bus does not need a programmable weight because it has the highest priority. The
arbitration scheme of each slave on WRR arbitration is shown in Figure 3. 

References
The following list of references is used in this document:

• UG0331: SmartFusion2 Microcontroller Subsystem User Guide 

• TU0310: Interfacing User Logic with the Microcontroller Subsystem Tutorial 

Figure 3 • WRR and Fixed priority Slave Arbitration Scheme
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Design Requirements
Design Requirements
Table 2 lists the design requirements. 

Note: *For this application note, SoftConsole v3.4 SP1 is used. For using SoftConsole v4.0, see the
TU0546: SoftConsole v4.0 and Libero SoC v11.7 Tutorial.

Table 2 • Design Requirements

Design Requirements Description

Hardware Requirements

SmartFusion2 Advanced Development Kit:

• 12 V adapter

• USB A to mini-B cable
Rev B or later

Host PC or laptop Any 64-bit Windows operating system

Software Requirements

Libero® System-on-Chip (SoC) v11.7

SoftConsole v3.4 SP1*

USB to UART drivers –

One of the following serial terminal emulation programs:

• HyperTerminal

• TeraTerm

• PuTTY

–
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Design Description
The AHB bus matrix is configured with different weight values for multiple masters to access a single
slave. This configuration can be done in the microcontroller subsystem (MSS) block using the Libero
SoC software. Configuring weight values for masters from Libero SoC using the AHB Bus Matrix
configurator is shown in Figure 4.

In this application note, for demonstration purposes, instead of changing the weight values in the AHB
bus matrix configurator, the weight values for Fabric masters are configured at runtime by taking user
entered weight values from HyperTerminal and writing the same to the weight configuration registers
mentioned in Table 3 on page 7.

Figure 4 • AHB Bus Matrix Configurator
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Design Description
Table 3 provides the system registers that are used in this design for configuring the AHB bus matrix.

Figure 5 shows the block diagram of the complete design.

Table 3 • System Registers

Register Description

MASTER_WEIGHT0_CR Configures WRR master arbitration scheme for masters.

MASTER_WEIGHT1_CR Configures WRR master arbitration scheme for masters.

Figure 5 • Reference Design Block Diagram
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Hardware Implementation
The example design consists of two AHB masters in the FPGA fabric that write 32-bit data to the AHB
bus matrix slave eSRAM1. The Fabric_Master1 is connected to the slave interface of FIC_0 using
Bypass mode and the Fabric_Master2 is connected to the slave interface of FIC_1using Bypass mode.

Figure 6 and Figure 7 on page 9 show the FIC_0 and FIC_1 configuration with interface type as AHB-Lite
slave and the Use Bypass Mode option selected.

To implement WRR arbitration for fabric masters use only Bypass mode. Refer to the Fabric Interface
Controller chapter of the UG0331: SmartFusion2 Microcontroller Subsystem User Guide for more
information on Bypass mode. Figure 11 on page 11 gives the SmartDesign window of all the blocks.   

Figure 6 • FIC_0 Configuration for Bypass Mode
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Hardware Implementation
MSS is configured with MMUART0 connected to the fabric for the user interface to select the weight
values from HyperTerminal. At this stage, Fabric_Master1 and Fabric_Master2 are running at 100 MHz
clock.

Fabric_Master1 writes 1024 words to the eSRAM1 locations starting from the address 0x20008000 and
Fabric_Master2 writes 1024 words to the eSRAM1 locations starting from the address 0x2000C000.
Interrupt is generated when both masters complete 1024 transfers.

Number of accesses to slave for each master is displayed on HyperTerminal. Residual clock count for
each master in the last access is displayed on HyperTerminal. Number of accesses taken by each
master to complete 1024 transfers depends on weight configured for that master. Lesser weight master
needs more number of accesses and higher weight master needs less number of accesses to transfer
same number of words.

Figure 7 • FIC_1 Configuration for Bypass Mode
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Simulation Results
Simulation results for Fabric_Master1 and Fabric_Master2 with different weights are shown in Figure 8,
Figure 9, and Figure 10 on page 11.

Fabric_Master1 with weight 30 takes 35 accesses to write 1024 words to eSRAM1.In the last access
number of clock cycles left are 26.

Fabric_Master2 with weight 26 takes 40 accesses to write 1024 words to eSRAM1. In the last access,
number of clock cycles left are 16, as shown in Figure 8.

Fabric_Master1 with weight 10 takes 103 accesses to write 1024 words to eSRAM1. In the last access,
number of clock cycles left are 6. Fabric_Master2 with weight 12 takes 86 accesses to write 1024 words
to eSRAM1. In the last access number of clock cycles left are 8, as shown in Figure 9.

Figure 8 • Simulation Results for Fabric_Master1 with Weight 30 and Fabric_Master2 with Weight 26

Figure 9 • Simulation Results for Fabric_Master1 with Weight 10 and Fabric_Master2 with Weight 12
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Fabric_Master1 with weight 8 takes 128 accesses to write 1024 words to eSRAM1. In the last access
number of clock cycles left are 0. Fabric_Master2 with weight 7 takes 147 accesses to write 1024 words
to eSRAM1. In the last access, number of clock cycles left are 5, as shown in Figure 10.

Figure 11 illustrates the top-level hardware design. 

Figure 10 • Simulation Results for Fabric_Master1 with Weight 8 and Fabric_Master2 with Weight 7

Figure 11 • SmartDesign Window with Blocks in Hardware Design
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Software Implementation
The software design performs the following operations:

• Initializes the AHB bus matrix.

• Selects the weight values using HyperTerminal session.

• Displays the eSRAM1 accesses count and residual clock transfer count for each fabric master.

The following application program interface (APIs) are implemented in the application layer drivers of the
AHB bus matrix:

• AHBBus_init(): This API resets all the system registers of the AHB bus matrix mentioned in
Table 3 on page 7.

• void master_select(): This API takes weight values as inputs and decides the system registers
to be modified. It calculates the value of weight to be set for the system register
MASTER_WEIGHT0_CR/ MASTER_WEIGHT1_CR.

• void set_weight(): In this API, the weight values calculated are assigned to the register
MASTER_WEIGHT0_CR or the MASTER_WEIGHT1_CR based on the decision made in the
above API.

The following firmware drivers are used in this application:

• SmartFusion2 MSS general-purpose input/output (GPIO) driver

• SmartFusion2 MSS Multi-Mode universal asynchronous receiver/transmitter (MMUART) driver: 

– To communicate with the serial terminal program running on host PC.
12



Software Implementation
Figure 12 shows the flow of sample example implemented in main.c.

Figure 12 • Flow Chart of the Application in the main.c File
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Running the Design
This section describes the board settings and steps to run the design.

Board Settings
Connect the jumpers on the SmartFusion2 Advanced Development Kit, as described in Table 4. While
making the jumper connections, the power supply switch SW7 on the board must be in OFF position.

Steps to Run the Design
The following steps describe how to run the design:

1. Connect the host PC to the J33 connector using the USB A to mini-B cable. The USB to UART
bridge drivers are automatically detected. From the detected four COM ports, right-click one of
the COM ports and select Properties. The selected COM port properties window is displayed as
shown in Figure 13. Ensure that the Location in the Properties window is displayed as "on USB
FP5 Serial Converter C", refer to Figure 13.

2. Install the USB Driver, if USB drivers are not detected.

Table 4 • SmartFusion2 Advanced Development Kit Jumper Settings

Jumper Pin (From) Pint (To) Comments

J116, J353, J354, J54 1 2 These are the default jumper settings of the Advanced 
Development Kit board. Ensure that these jumpers are set 
accordingly.

J123 2 3

J124, J121, J32 1 2 JTAG programming through FTDI.

Figure 13 • Properties Window
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Running the Design
3. For serial terminal communication through the future technology devices international (FTDI) mini
USB cable, install the FTDI D2XX driver. The drivers and installation guide can be downloaded
from www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip. Connect the
power supply to the J42 connector and change the power supply switch SW7 to ON.

4. Start HyperTerminal session and select com port (as shown in Figure 14) with a 115,200 baud
rate, 8 data bits, 1 stop bit, no parity, and no flow control. If the HyperTerminal program is not
available in the system, use other free serial terminal emulation programs such as PuTTY or
TeraTerm. Refer to the Configuring Serial Terminal Emulation Programs tutorial for configuring
HyperTerminal, TeraTerm, or PuTTY.

5. Program the SmartFusion2 Advanced Development Kit with the provided programming file (refer
to "Appendix: Design and Programming Files" section on page 18) using FlashPro software and
power cycle the board after successful programming. A welcome message is displayed as shown
in Figure 14.

Figure 14 • Welcome Message and Weight Selection in HyperTerminal Session
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6. Enter the weight values for the Fabric masters, as shown in Figure 15.

7. After entering the weight values, number of accesses taken by each master to write 1024 words
to eSRAM1 and clock cycles left in the last access are displayed on HyperTerminal as shown in
Figure 16 and Figure 17 on page 17. 

Figure 15 • Entering Weight Values

Figure 16 • Displaying Number of eSRAM1 Accesses
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Conclusion
Note: The menu keeps repeating till the board is powered-down.

Conclusion
This application note shows the capabilities of the in-built AHB bus matrix of SmartFusion2 SoC FPGAs.
The application level drivers described in this application note allow dynamic configuration of the AHB
bus matrix master weight values as per the design requirements.

Figure 17 • Displaying Residual Clock Transfers
17
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Appendix: Design and Programming Files
Download the design files from the Microsemi website: 
http://soc.microsemi.com/download/rsc/?f=m2s_ac388_liberov11p7_df 

The design file consists of Libero VHDL, SoftConsole software project, and programming files (*.stp) for
SmartFusion2 Advanced Development Kit. 
Refer to the Readme.txt file included in the design file for the directory structure description and the
changes to be done in the application code if the project is regenerated.

Download the programming files from the Microsemi SoC Products Group website: 
http://soc.microsemi.com/download/rsc/?f=m2s_ac388_liberov11p7_pf 

The programming file consists of STAPL programming file (*.stp) for SmartFusion2 Advanced
Development Kit.
18
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