
Application Note AC388

SmartFusion2 SoC FPGA - Dynamic Configuration
of AHB Bus Matrix - Libero SoC v11.7

Table of Contents

Purpose
This application note describes how to configure the weight values dynamically for the advanced high
performance bus (AHB) bus matrix masters to access the AHB bus matrix slave using the weighted
round-robin (WRR) arbitration in a SmartFusion®2 system-on-chip (SoC) field programmable gate array
(FPGA) device.

Introduction
SmartFusion2 SoC FPGA devices support the AHB bus matrix, which is a multi-layer AHB bus matrix.
The AHB bus matrix has ten masters and seven direct slaves. This application note provides a reference
design that has two fabric masters connected to the FIC_0 and FIC_1 interfaces. These two fabric
masters can access a single slave Embedded SRAM (eSRAM1) using the WRR arbitration.

Purpose . 1
Introduction . 1

AHB Bus Matrix Overview . 2
Arbitration . 2
Pure Round-Robin Arbitration . 3
WRR Arbitration . 4

References . 4
Design Requirements . 5
Design Description . 6

Hardware Implementation . 8

Software Implementation . 12

Running the Design . 14
Board Settings . 14
Steps to Run the Design . 14

Conclusion . 17

Appendix: Design and Programming Files . 18

List of Changes . 19
February 2016 1

© 2016 Microsemi Corporation

SmartFusion2 SoC FPGA - Dynamic Configuration of AHB Bus Matrix - Libero SoC v11.7
AHB Bus Matrix Overview
The connection of the masters and slaves to the AHB bus matrix is shown in Figure 1. The AHB bus
matrix allows multiple masters to access a single slave through an arbitration mechanism.

Arbitration
Arbitration is performed at two levels when more than one master attempts to access a single slave at
the same time. At the first-level, the fixed higher priority masters (processor bus masters MM0, MM1,
MM2, and MM9) are evaluated for any access request to the slave. The non-processor buses are then
evaluated in a round-robin fashion for any access request to the slave. The arbitration mechanism uses
pure round-robin and the WRR techniques.

The priority levels of each master are listed in Table 1.

Figure 1 • AHB Bus Matrix Block Diagram with all the 10 Masters and 7 Slaves (10 x 7)

AHB Bus Matrix
(10x7)

MS5 MM8

eSRAM_0
AHB

Controller

eSRAM_1
AHB

Controller

eNVM_0
AHB

Controller

eNVM_1
AHB

Controller

System
Controller

G

Cache
Controller

S D IC

Processor
ARM® Cortex® -M3

S D I

MSS DDR Bridge

PDMA

MS0 MS1MS3MS2MM9MM0MM1MM2MS6

MM3 MM7

AHB To AHB Bridge with Address
Decoder

USB

HPDMA

APB_0 APB_1 FIC_2SysRegTriple Speed
Ethernet MAC

FIC_0 FIC_1

MM4 MS4 MM5 MM6

IDC

DS

AHB Bus

Table 1 • Master’s Priority During Slave Arbitration

MM Number Masters Priority

MM0 IC-Bus 2 Fixed

MM1 D-Bus 1 Fixed

MM2 S-Bus 3 Fixed

MM3 HPDMA 4 WRR

MM4 FIC_0 4 WRR

MM5 FIC_1 4 WRR

MM6 MAC 4 WRR

MM7 PDMA 4 WRR

MM8 USB 4 WRR

MM9 G 4 Fixed
2

Introduction
Pure Round-Robin Arbitration
This is the default arbitration mode after reset wherein the programmable weight value for each of the
master is 1. In this mode, the arbitration scheme for each slave port is identical. The processor masters
have higher priority over the non-processor masters. Each non-processor master accessing a slave has
equal priority based on a round-robin fashion.

For locked transactions, the master issuing the lock retains ownership of the slave until the locked
transaction is complete. The priorities for masters in pure round-robin arbitration is shown in Figure 2.

Figure 2 • Pure Round Robin Arbitration Scheme

HMASTLOCK

Dcode
M1

System
Controller

M9

S-Bus
M2

Icode
M0

USB – M8

MAC M6 FIC_1 M5

PDMA – M7 FIC_0 M4

Fixed Priority Masters

Round Robin Masters

HMASTLOCK

HMASTLOCK

HMASTLOCK

HPDMA M3
3

SmartFusion2 SoC FPGA - Dynamic Configuration of AHB Bus Matrix - Libero SoC v11.7
WRR Arbitration
In this mode, the Programmable Weight (SW_WEIGHT_<master name>) can be configured to operate
as WRR. The slave arbiter operates on a round-robin basis with each of the master interfaces having a
maximum of N consecutive access opportunities to the slave in each “round” of arbitration. The value of
N is determined by the programmed weight for the master and the maximum latency of the eSRAM0/1
parameter.

Each master (except the D-Code processor bus) has a programmable weight value that can be
configured from 1 to 32. Maximum latency values for fixed priority masters can be configured from 1 to 8.
The D-code bus does not need a programmable weight because it has the highest priority. The
arbitration scheme of each slave on WRR arbitration is shown in Figure 3.

References
The following list of references is used in this document:

• UG0331: SmartFusion2 Microcontroller Subsystem User Guide

• TU0310: Interfacing User Logic with the Microcontroller Subsystem Tutorial

Figure 3 • WRR and Fixed priority Slave Arbitration Scheme

HMASTLOCK

Dcode
M1

System
Controller

M9

S-Bus
M2

Icode
M0

USB – M8 HPDMA M3

MAC M6 FIC_1
M5

PDMA – M7 FIC_0
M4

HMASTLOCK

HMASTLOCK

HMASTLOCK

PrgWeight

PrgWeight

PrgWeight

PrgWeight

PrgWeight

PrgWeight

Fixed Priority Masters

Round Robin Masters
4

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=131549

Design Requirements
Design Requirements
Table 2 lists the design requirements.

Note: *For this application note, SoftConsole v3.4 SP1 is used. For using SoftConsole v4.0, see the
TU0546: SoftConsole v4.0 and Libero SoC v11.7 Tutorial.

Table 2 • Design Requirements

Design Requirements Description

Hardware Requirements

SmartFusion2 Advanced Development Kit:

• 12 V adapter

• USB A to mini-B cable
Rev B or later

Host PC or laptop Any 64-bit Windows operating system

Software Requirements

Libero® System-on-Chip (SoC) v11.7

SoftConsole v3.4 SP1*

USB to UART drivers –

One of the following serial terminal emulation programs:

• HyperTerminal

• TeraTerm

• PuTTY

–

5

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=133700

SmartFusion2 SoC FPGA - Dynamic Configuration of AHB Bus Matrix - Libero SoC v11.7
Design Description
The AHB bus matrix is configured with different weight values for multiple masters to access a single
slave. This configuration can be done in the microcontroller subsystem (MSS) block using the Libero
SoC software. Configuring weight values for masters from Libero SoC using the AHB Bus Matrix
configurator is shown in Figure 4.

In this application note, for demonstration purposes, instead of changing the weight values in the AHB
bus matrix configurator, the weight values for Fabric masters are configured at runtime by taking user
entered weight values from HyperTerminal and writing the same to the weight configuration registers
mentioned in Table 3 on page 7.

Figure 4 • AHB Bus Matrix Configurator
6

Design Description
Table 3 provides the system registers that are used in this design for configuring the AHB bus matrix.

Figure 5 shows the block diagram of the complete design.

Table 3 • System Registers

Register Description

MASTER_WEIGHT0_CR Configures WRR master arbitration scheme for masters.

MASTER_WEIGHT1_CR Configures WRR master arbitration scheme for masters.

Figure 5 • Reference Design Block Diagram

AHB BUS Matrix

ARM Cortex-M3
Processor

MSS

eSRAM1
(Data)

M M

M S

Fabric
Fabric_Master1

FIC_1FIC_0

Fabric_Master2

AHB lite AHB lite

S S

M M
7

SmartFusion2 SoC FPGA - Dynamic Configuration of AHB Bus Matrix - Libero SoC v11.7
Hardware Implementation
The example design consists of two AHB masters in the FPGA fabric that write 32-bit data to the AHB
bus matrix slave eSRAM1. The Fabric_Master1 is connected to the slave interface of FIC_0 using
Bypass mode and the Fabric_Master2 is connected to the slave interface of FIC_1using Bypass mode.

Figure 6 and Figure 7 on page 9 show the FIC_0 and FIC_1 configuration with interface type as AHB-Lite
slave and the Use Bypass Mode option selected.

To implement WRR arbitration for fabric masters use only Bypass mode. Refer to the Fabric Interface
Controller chapter of the UG0331: SmartFusion2 Microcontroller Subsystem User Guide for more
information on Bypass mode. Figure 11 on page 11 gives the SmartDesign window of all the blocks.

Figure 6 • FIC_0 Configuration for Bypass Mode
8

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918

Hardware Implementation
MSS is configured with MMUART0 connected to the fabric for the user interface to select the weight
values from HyperTerminal. At this stage, Fabric_Master1 and Fabric_Master2 are running at 100 MHz
clock.

Fabric_Master1 writes 1024 words to the eSRAM1 locations starting from the address 0x20008000 and
Fabric_Master2 writes 1024 words to the eSRAM1 locations starting from the address 0x2000C000.
Interrupt is generated when both masters complete 1024 transfers.

Number of accesses to slave for each master is displayed on HyperTerminal. Residual clock count for
each master in the last access is displayed on HyperTerminal. Number of accesses taken by each
master to complete 1024 transfers depends on weight configured for that master. Lesser weight master
needs more number of accesses and higher weight master needs less number of accesses to transfer
same number of words.

Figure 7 • FIC_1 Configuration for Bypass Mode
9

SmartFusion2 SoC FPGA - Dynamic Configuration of AHB Bus Matrix - Libero SoC v11.7
Simulation Results
Simulation results for Fabric_Master1 and Fabric_Master2 with different weights are shown in Figure 8,
Figure 9, and Figure 10 on page 11.

Fabric_Master1 with weight 30 takes 35 accesses to write 1024 words to eSRAM1.In the last access
number of clock cycles left are 26.

Fabric_Master2 with weight 26 takes 40 accesses to write 1024 words to eSRAM1. In the last access,
number of clock cycles left are 16, as shown in Figure 8.

Fabric_Master1 with weight 10 takes 103 accesses to write 1024 words to eSRAM1. In the last access,
number of clock cycles left are 6. Fabric_Master2 with weight 12 takes 86 accesses to write 1024 words
to eSRAM1. In the last access number of clock cycles left are 8, as shown in Figure 9.

Figure 8 • Simulation Results for Fabric_Master1 with Weight 30 and Fabric_Master2 with Weight 26

Figure 9 • Simulation Results for Fabric_Master1 with Weight 10 and Fabric_Master2 with Weight 12
10

Fabric_Master1 with weight 8 takes 128 accesses to write 1024 words to eSRAM1. In the last access
number of clock cycles left are 0. Fabric_Master2 with weight 7 takes 147 accesses to write 1024 words
to eSRAM1. In the last access, number of clock cycles left are 5, as shown in Figure 10.

Figure 11 illustrates the top-level hardware design.

Figure 10 • Simulation Results for Fabric_Master1 with Weight 8 and Fabric_Master2 with Weight 7

Figure 11 • SmartDesign Window with Blocks in Hardware Design

SmartFusion2 SoC FPGA - Dynamic Configuration of AHB Bus Matrix - Libero SoC v11.7
Software Implementation
The software design performs the following operations:

• Initializes the AHB bus matrix.

• Selects the weight values using HyperTerminal session.

• Displays the eSRAM1 accesses count and residual clock transfer count for each fabric master.

The following application program interface (APIs) are implemented in the application layer drivers of the
AHB bus matrix:

• AHBBus_init(): This API resets all the system registers of the AHB bus matrix mentioned in
Table 3 on page 7.

• void master_select(): This API takes weight values as inputs and decides the system registers
to be modified. It calculates the value of weight to be set for the system register
MASTER_WEIGHT0_CR/ MASTER_WEIGHT1_CR.

• void set_weight(): In this API, the weight values calculated are assigned to the register
MASTER_WEIGHT0_CR or the MASTER_WEIGHT1_CR based on the decision made in the
above API.

The following firmware drivers are used in this application:

• SmartFusion2 MSS general-purpose input/output (GPIO) driver

• SmartFusion2 MSS Multi-Mode universal asynchronous receiver/transmitter (MMUART) driver:

– To communicate with the serial terminal program running on host PC.
12

Software Implementation
Figure 12 shows the flow of sample example implemented in main.c.

Figure 12 • Flow Chart of the Application in the main.c File

Y

Initialize the AHB Bus
Matrix, GPIO’s, MMUART

Configure the System Registers of AHB
Bus Matrix Based on the Masters and

the Weight Values Selected

Start

Start the Write Operations
from Selected Masters to

the Slave eSRAM1

Keep the Masters Idle for
Ten Clock Cycles

Displays No of Accesses
given to each Master
and Clock Cycles Left

in the Last Access

Stop

Power Off

Entered are Valid
Options?

No

Display the
Menu Options on
HyperTerminal

Display the Menu for the
Selection of Weight Values

Enable Fabric Masters
Interrupts

Yes

Clear the Interrupts

Wait for Fabric
Interrupts
13

SmartFusion2 SoC FPGA - Dynamic Configuration of AHB Bus Matrix - Libero SoC v11.7
Running the Design
This section describes the board settings and steps to run the design.

Board Settings
Connect the jumpers on the SmartFusion2 Advanced Development Kit, as described in Table 4. While
making the jumper connections, the power supply switch SW7 on the board must be in OFF position.

Steps to Run the Design
The following steps describe how to run the design:

1. Connect the host PC to the J33 connector using the USB A to mini-B cable. The USB to UART
bridge drivers are automatically detected. From the detected four COM ports, right-click one of
the COM ports and select Properties. The selected COM port properties window is displayed as
shown in Figure 13. Ensure that the Location in the Properties window is displayed as "on USB
FP5 Serial Converter C", refer to Figure 13.

2. Install the USB Driver, if USB drivers are not detected.

Table 4 • SmartFusion2 Advanced Development Kit Jumper Settings

Jumper Pin (From) Pint (To) Comments

J116, J353, J354, J54 1 2 These are the default jumper settings of the Advanced
Development Kit board. Ensure that these jumpers are set
accordingly.

J123 2 3

J124, J121, J32 1 2 JTAG programming through FTDI.

Figure 13 • Properties Window
14

Running the Design
3. For serial terminal communication through the future technology devices international (FTDI) mini
USB cable, install the FTDI D2XX driver. The drivers and installation guide can be downloaded
from www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip. Connect the
power supply to the J42 connector and change the power supply switch SW7 to ON.

4. Start HyperTerminal session and select com port (as shown in Figure 14) with a 115,200 baud
rate, 8 data bits, 1 stop bit, no parity, and no flow control. If the HyperTerminal program is not
available in the system, use other free serial terminal emulation programs such as PuTTY or
TeraTerm. Refer to the Configuring Serial Terminal Emulation Programs tutorial for configuring
HyperTerminal, TeraTerm, or PuTTY.

5. Program the SmartFusion2 Advanced Development Kit with the provided programming file (refer
to "Appendix: Design and Programming Files" section on page 18) using FlashPro software and
power cycle the board after successful programming. A welcome message is displayed as shown
in Figure 14.

Figure 14 • Welcome Message and Weight Selection in HyperTerminal Session
15

http://www.microsemi.com/soc/documents/Configuring_Serial_Terminal_Emulation_Programs.pdf
http://www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip

SmartFusion2 SoC FPGA - Dynamic Configuration of AHB Bus Matrix - Libero SoC v11.7
6. Enter the weight values for the Fabric masters, as shown in Figure 15.

7. After entering the weight values, number of accesses taken by each master to write 1024 words
to eSRAM1 and clock cycles left in the last access are displayed on HyperTerminal as shown in
Figure 16 and Figure 17 on page 17.

Figure 15 • Entering Weight Values

Figure 16 • Displaying Number of eSRAM1 Accesses
16

Conclusion
Note: The menu keeps repeating till the board is powered-down.

Conclusion
This application note shows the capabilities of the in-built AHB bus matrix of SmartFusion2 SoC FPGAs.
The application level drivers described in this application note allow dynamic configuration of the AHB
bus matrix master weight values as per the design requirements.

Figure 17 • Displaying Residual Clock Transfers
17

SmartFusion2 SoC FPGA - Dynamic Configuration of AHB Bus Matrix - Libero SoC v11.7
Appendix: Design and Programming Files
Download the design files from the Microsemi website:
http://soc.microsemi.com/download/rsc/?f=m2s_ac388_liberov11p7_df

The design file consists of Libero VHDL, SoftConsole software project, and programming files (*.stp) for
SmartFusion2 Advanced Development Kit.
Refer to the Readme.txt file included in the design file for the directory structure description and the
changes to be done in the application code if the project is regenerated.

Download the programming files from the Microsemi SoC Products Group website:
http://soc.microsemi.com/download/rsc/?f=m2s_ac388_liberov11p7_pf

The programming file consists of STAPL programming file (*.stp) for SmartFusion2 Advanced
Development Kit.
18

https://www.microchip.com/en-us/application-notes/ac388
https://www.microchip.com/en-us/application-notes/ac388
https://www.microchip.com/en-us/application-notes/ac388
https://www.microchip.com/en-us/application-notes/ac388

List of Changes
List of Changes
The following table shows important changes made in this document for each revision.

Revision* Changes Page

Revision 10

(February 2016)

Updated the document for Libero SoC v 11.7 software release (SAR 76537) NA

Revision 9
(October 2015)

Updated the document for Libero SoC v 11.6 software release (SAR 71672). NA

Revision 8
(February 2015)

Updated the document for Libero SoC v 11.5 software release (SAR 64192). NA

Revision 7
(September 2014)

Updated the document for Libero SoC v 11.4 software release (SAR 61049). NA

Updates made to maintain the style and consistency of the document. NA

Revision 6
(May 2014)

Updated Figure 11(SAR 57101). 11

Added "Design Requirements" section (SAR 57101). 5

Revision 5
(November 2013)

Updated the document for Libero SoC v 11.2 software release (SAR 52886) NA

Revision 4
(June 2013)

Updated the document for Libero SoC v11.0 software release (SAR 47624 and
46110).

NA

Revision 3
(March 2013)

Updated for Libero SoC v11.0 beta SP1 release (SAR 45835).

The Release Mode section was removed along with Figures 10 and 11 that were
updated in November 2012.

NA

Revision 2
(November 2012)

Added Release Mode section (SAR 42988). 15

Modified "Running the Design" section (SAR 42988). 14

Revision 1
(November 2012)

Modified "Introduction" section (SAR 42846). 1

Updated Figure 5, Figure 11, Figure 14, Figure 15, Figure 16, Figure 10, and Figure
11 (SAR 42846).

n/a

Modified "Hardware Implementation" section (SAR 42846). 8

Modified "Software Implementation" section (SAR 42846). 12

Modified "Appendix: Design and Programming Files" section (SAR 42846). 18

Note: *The revision number is located in the part number after the hyphen. The part number is displayed at the bottom
of the last page of the document. The digits following the slash indicate the month and year of publication.
19

51900256-10/02.16

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense & security, aerospace and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world’s standard for time; voice
processing devices; RF solutions; discrete components; Enterprise Storage and
Communication solutions, security technologies and scalable anti-tamper products; Ethernet
Solution; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and
services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 4,800
employees globally. Learn more at www.microsemi.com.

© 2016 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or
the suitability of its products and services for any particular purpose, nor does Microsemi assume any
liability whatsoever arising out of the application or use of any product or circuit. The products sold
hereunder and any other products sold by Microsemi have been subject to limited testing and should not
be used in conjunction with mission-critical equipment or applications. Any performance specifications are
believed to be reliable but are not verified, and Buyer must conduct and complete all performance and
other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely
on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's
responsibility to independently determine suitability of any products and to test and verify the same. The
information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire
risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or
implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such
information itself or anything described by such information. Information provided in this document is
proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

mailto:sales.support@microsemi.com
www.microsemi.com

	SmartFusion2 SoC FPGA - Dynamic Configuration of AHB Bus Matrix - Libero SoC v11.7
	Purpose
	Introduction
	AHB Bus Matrix Overview
	Arbitration
	Pure Round-Robin Arbitration
	WRR Arbitration

	References
	Design Requirements
	Design Description
	Hardware Implementation
	Software Implementation
	Running the Design
	Board Settings
	Steps to Run the Design

	Conclusion
	Appendix: Design and Programming Files
	List of Changes

