

APPLICATION NOTE

Protection against Pulses Exceeding the Rated Tolerance

ATA6823C/ATA6824C

Scope of Document

This document provides additional information designed to protect Atmel[®] ATA6823C/ATA6824C integrated circuits from exceeding the maximum pulse rating.

Preface

Pulses exceeding the maximum rating cause damage to integrated circuits. Some pins are subject to greater risk when deployed in an automotive environment.

The pins involved:

- The VRES charge pump pin
- The S1 and S2 sense pins

1. Hints for Protecting the Pins

1.1 Charge Pump Pin VRES

The purpose of the charge pump is to provide adequate voltage to control the external high side MOSFETs.

In an H-bridge configuration, the high side MOSFETs are referred to the H-bridge supply voltage PBAT while in high side ON phase.

The charge pump capacitor CVRES should therefore be referred to the PBAT bridge supply pin (see Figure 1-1 on page 2).

Figure 1-1. Charge Pump Block Diagram

H-bridge supply PBAT **PGND** - C_{VRES} CCP - CP C_{VG} **VBAT** PBAT VG **CPLO** CPHI **VRES** 12V HS Charge Pump Driver Regulator LS CPOK ATA6823C/ATA6824C Driver V_{THOV} Logic Control

The charge pump works for VBAT voltages below the overvoltage threshold V_{THOV} . In the event of overvoltage at VBAT (voltage higher than V_{THOV}), the charge pump switches off.

1.1.1 Charge Pump Switch-off

The charge pump can only switch off when overvoltage is detected. The overvoltage is only monitored at the VBAT pin.

In the event of a voltage peak at the PBAT pin, the charge pump would not switch off but would still pump VRES voltage about 15V higher than the PBAT voltage level. If the VRES pin maximum rating voltage of 40V is exceeded, this increase would continue until the VRES pin is destroyed.

The procedure for avoiding this is to switch off the charge pump via the VBAT pin. For this reason, the VBAT supply pin needs to be connected with at least one diode to the PBAT charge pump reference pin.

1.1.2 Adapting VRES Energy

In the event of overvoltage at VBAT (voltage higher than V_{THOV}), the charge pump switches off. Switching off is delayed by internal filtering about 100 μ s. Based on a charge pump frequency of 100kHz, the filtering delay leads to 10 additional shuffle cycles.

It is not possible to avoid the additional pump cycles.

Compared to the 100µs switch-off delay time, automotive jump start pulses are slow. Jump start pulses would therefore not cause any damage.

In a DC motor environment, faster voltage peaks can occur. To avoid destruction, we recommend adapting the size of the CCP shuffle capacitor and CVRES charge pump capacitor according to the external MOSFETs and PWM frequency being used.

1.1.3 The S1 and S2 Sense Pins

The maximum ratings for the S1 and S2 sense pins are mandatory. Voltages exceeding this will lead to destruction. To reduce energy into S1 and S2, serial resistances of a few ohms are sufficient. In the event of an additional sense resistor, the cross conduction timer needs to be adapted.

For further details please refer to the Atmel[®] datasheets ATA6823C/ATA6824C or contact info@atmel.com

1600 Technology Drive, San Jose, CA 95110 USA

F: (+1)(408) 436.4200

www.atmel.com

Atmel Corporation

© 2014 Atmel Corporation. / Rev.: 9227B-AUTO-04/14

T: (+1)(408) 441.0311

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.