
Application Note AC433

April 2024 1
© 2024 Microsemi Corporation

Using Zeroization in SmartFusion2 and IGLOO2
Devices - Libero SoC v2024.2

Table of Contents

Purpose
This application note describes how to use the built-in zeroization features and options of SmartFusion®2
system-on-chip (SoC) field programmable gate array (FPGA) and IGLOO®2 FPGA devices.

Introduction
Zeroization is a method of erasing electronically stored data by altering or deleting the contents of the
data storage to prevent the recovery of the data. It is a key feature in several security applications where
high-value assets are at risk.
Zeroization plays a key role in both financial and military applications, it also plays a key role in several
consumer, commercial, and industrial applications, where it is desired that the intellectual property
comprising the design itself is to be kept confidential.
The zeroization capability provides the designer with the ability to destroy the data in circumstances
where a tamper event is detected. The SmartFusion2 and IGLOO2 devices have built-in, easy to use
tamper detection and response capability.
The user can monitor the SmartFusion2 and IGLOO2 devices tamper detection flags and send
zeroization request to the system controller and erase the content inside the FPGA. The zeroization
requests to the system controller can be sent directly from the user logic in the FPGA fabric through the
user services interface (USI) or as system service from FPGA fabric or ARM® Cortex®-M3 processor
(SmartFusion2 only) through the COMM_BLK. The zeroization feature is supported in both S and non-S
versions of the SmartFusion2 and IGLOO2 devices.

Purpose . 1
Introduction . 1
References . 1
Design Requirements . 2
SmartFusion2 and IGLOO2 Zeroization Features . 3

SmartFusion2 and IGLOO2 Zeriozation Procedures . 4
SmartFusion2 and IGLOO2 Zeriozation Options . 4

Using Zeroization in SmartFusion2 and IGLOO2 Devices . 7
Using Tamper Macro to Set Zeroization Option . 7
Zeroization Request from FPGA Fabric through Tamper Macro . 10
Zeriozation Request through COMM_BLK using Cortex-M3 processor or FPGA Fabric 11

Design Description . 14
Design Example 1: Zeroize_M2GL090 Design . 14
Design Example 2: Zeroize_M2S090 Design . 22

Conclusion . 25
Appendix A: Design Files . 26
Appendix B: Running SmartDebug . 27
List of Changes . 29

Using Zeroization in SmartFusion2 and IGLOO2 Devices - Libero SoC v2024.2

2

References
The following documents are referenced in this document:

• UG0331: SmartFusion2 Microcontroller Subsystem User Guide
• UG0443: SmartFusion2 and IGLOO2 FPGA Security and Reliability User Guide
• UG0541: SmartFusion2 SoC FPGA Evaluation Kit User Guide
• UG0448: IGLOO2 FPGA High Performance Memory Subsystem User Guide
• UG0478: IGLOO2 FPGA Evaluation Kit User Guide
• Microsemi EnforcIT Security Monitor Product Overview

Note: A zeroization technical report is available under NDA and on a need-to-know basis.

Design Requirements
Table 1 shows the SmartFusion2 reference design requirements and details.

Table 2 shows the IGLOO2 reference design requirements and details.

Notes:
1. For more information about "Zeroization Support", refer to the device errata document.
2. The IGLOO2 design uses M2GL090TS-1FGG484 device in the IGLOO2 Evaluation Kit. However, the

official IGLOO2 Evaluation Kit uses M2GL010T-1FGG484 device. If you want to run the application
note design in M2GL010T-1FGG484, refer to the KB5659 for migrating M2GL090TS-1FGG484 to
M2GL010T-1FGG484.

Table 1 • SmartFusion2 Reference Design Requirements and Details

Reference Design Requirements and Details Description

Hardware Requirements
SmartFusion2 Security Evaluation Kit (M2S090TS-EVAL-KIT)

• 12 V adapter (provided along with the kit)
• FlashPro4 programmer (provided along with the kit)
• M2S090TS-1FGG484 1

Rev D or later

Host PC or Laptop Any 64-bit Windows Operating System

Software Requirements

Libero® System-on-Chip (SoC) v11.6

SoftConsole v3.4 SP1

Table 2 • IGLOO2 Reference Design Requirements and Details

Reference Design Requirements and Details Description

Hardware Requirements

IGLOO2 Evaluation Kit (M2GL-EVAL-KIT)
• 12 V adapter (provided along with the kit)
• FlashPro4 programmer (provided along with the kit)
• M2GL090TS-1FGG484 1, 2

Rev C or later

Host PC or Laptop Any 64-bit Windows Operating System

Software Requirements

Libero SoC v11.6

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132583
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132037
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=133574
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918
http://soc.microsemi.com/kb/article.aspx?id=SL5659
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132009
http://www.microsemi.com/document-portal/doc_download/132856-microsemi-enforcit-security-monitor-product-overview

SmartFusion2 and IGLOO2 Zeroization Features

3

SmartFusion2 and IGLOO2 Zeroization Features
The SmartFusion2 and IGLOO2 devices support two types of zeroization options: Like New and
Unrecoverable. For more information about these two zeroization options, refer to "SmartFusion2 and
IGLOO2 Zeriozation Options" section on page 4. The user can monitor the tamper detection flag and
then decide to trigger one of the two types of built-in zeroization request to zeroize the device or activate
one of the other predefined or user customized tamper responses.
Zeroization is a high priority system service to the system controller in the SmartFusion2 and IGLOO2
devices. When the system controller receives the high priority Zeroization command, it stops the
execution of a low priority command and service the Zeroization command.
The low priority command is aborted.
Figure 1 shows a block diagram of the SmartFusion2 and IGLOO2 devices. The user should enable
zeroization and set zeroization option (using Tamper macro) and then send a zeroization request from
FPGA fabric to system controller through the USI. Zeroization request can also be sent through the
COMM_BLK from FPGA fabric (for both the SmartFusion2 and IGLOO2 devices) or Cortex-M3
processor (for SmartFusion2 only).

Figure 1 • SmartFusion2 and IGLOO2 Block Diagram

FPGA Fabric

MSS/HPMS

SmartFusion2/IGLOO2

USI

System Controller

COMM_BLKCOMM_BLKZeroization
System
Service

FICs

Tamper
Macro

Tamper flags and
tamper response

ports

Cortex-M3
(SmartFusion2

 only)

Using Zeroization in SmartFusion2 and IGLOO2 Devices - Libero SoC v2024.2

4

SmartFusion2 and IGLOO2 Zeriozation Procedures
In the SmartFusion2 and IGLOO2 devices, zeroization includes several erase and programming
operations to reduce any data remnants in the flash array to undetectable levels (that is, scrubbing). This
section describes zeroization procedure in the SmartFusion2 and IGLOO2 devices.
After receiving zeroization request, the system controller programs a set of non-volatile bits that act as
status flags during zeroization process. These status bits get updated throughout zeroization process to
maintain the current status.
These status bits are internal to FPGA, and are not available to the user. This procedure cannot be
bypassed once invoked. It is designed to complete even in the event of intentional tampering.
If zeroization cycle is interrupted prior to completion, the system controller resumes zeroization on the
next power-up of the device based on the state of the status bits. Along with programming of status bits,
the system controller initiates zeroization of the volatile memories of the FPGA first (that is, ECC
memory, PUF and PUF key management memory, Key buffers, Frame buffers, AES and SHA256
registers, JTAG I/O buffer, MSS eSRAMs, and Fabric SRAMs), then the system controller performs
verification by reading back these memories, computing, and validating a digest. After the volatile
memories of the FPGA are zeroized, the non-volatile memory segments are destroyed starting with
eNVM.
The FPGA flash configuration array, user security segments, and factory security segments (if applicable,
depending on zeroization option selected) are erased. After all the relevant memories are cleared and
scrubbed, the system controller performs a read back operation on the memory segments and calculates
a digest for volatile memories, eNVM, security segments, and the fabric configuration flash. After both
the erase and verify portions of zeroization are complete, a secure protocol exists to confirm if zeroization
is completed successfully.

SmartFusion2 and IGLOO2 Zeriozation Options
The SmartFusion2 and IGLOO2 devices have several types of zeroization options to meet the user
application requirements. Table 3 shows the various zeroization options available in the SmartFusion2
and IGLOO2 devices. These options zeroize various FPGA components and security segments based
on user settings. This application note assumes user is familiar with the SmartFusion2 and IGLOO2
devices security segments and programming model, which are described in the UG0443: SmartFusion2
and IGLOO2 FPGA Security and Reliability User Guide.

Table 3 • SmartFusion2 SoC and IGLOO2 FPGAs Zeroization Options

Zeroization Option What Remains Intact Comments

Like New Factory keys and factory
configuration segments.

The FPGA configuration is destroyed and the part
behaves similar to a new part from the factory.

Unrecoverable Nothing stays. All the configurations are destroyed and the device is
permanently disabled and unusable.

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132037
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132037
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132037
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132037
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132037
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132037

SmartFusion2 and IGLOO2 Zeroization Features

5

Like New Zeroization Mode
The first zeroization option is Like New, which destroys all the user programmed configuration data (that
is, it erases the user design information). This mode erases the device into a new device state. In other
words, the device behaves as it was when it was shipped from Microsemi originally, with no user design
or key information stored and is immediately ready for programming by the user.
There is no logistical impact beyond reprogramming the device to get back into operation. Selecting the
Like New zeroization mode may not be advisable for some high security applications, like a new part,
once zeroized the part can be reprogrammed by whoever has access to it.
The Like New zeroization mode is useful when devices go through repeated zeroization, such as when
an information assurance device is being intentionally erased after a mission, for routine re-keying.
During zeroization, a number of erase and write cycles are applied to the configuration NVM. Also, due to
the scrubbing process, each zeroization and subsequent reprogramming uses several erase and write
cycles. So, it is recommended not to use frequent zeroization.
Refer to the datasheet for the number of allowable zeroization cycle.

Unrecoverable Zeroization Mode
When Unrecoverable zeroization system services are activated, all the data in all NVMs in the device is
destroyed (excluding metal-mask ROMs).
The following factory keys are erased:

• Factory key (FK)
• Default key-loading key (KLK)
• Factory ECC private key (SKFE, in larger devices)
• Pseudo-PUF secret (FPP)

Note: Also, one-half of the device serial number (DSN), namely the 64-bit serial number modifier (SNM),
is erased.

The eNVM data erased includes the factory segment, which is retained in the Like New Zeroization
Mode. The calibration data used to program devices is erased, and then the device intentionally puts
itself into an unrecoverable state where it does not respond to any programming commands. The
zeroization certification protocol is still active.

Using Zeroization in SmartFusion2 and IGLOO2 Devices - Libero SoC v2024.2

6

Table 4 provides a summary of each block within the FPGA that is erased by zeroization, along with,
which zeroization option initiates the erase and how it is cleared.

Note: The non-volatile memory segments are erased during zeroization. The eNVM segments are erased
and scrubbed. As certain eNVM segments contain factory provisioned data (such as, device
certificates and public keys), full erasure of eNVM sectors are executed according to the zeroization
options set by the user.

Table 5 provides a summary for the FPGA security segments.

Table 4 • FPGA Components or Blocks Erased by Zeroization

FPGA Component or Block Erase Protocol Applicable Zeroization Options

System Controller Memory (including memories
associated with ECC + PUF)

Erased by zeroization
command All Active Zeroization options

Programming Frame, Key, and JTAG I/O Buffers Actively Cleared All Active Zeroization options

AES/SHA Accelerators – Registers and RAMs Actively Cleared All Active Zeroization options

MSS SRAM Actively Cleared All Active Zeroization options

Fabric SRAM Actively Cleared All Active Zeroization options

Fabric Registers Removal of Power All Active Zeroization options

Cortex-M3 processor Cache N/A N/A

Fabric Configuration Flash Cells
Erased + Scrubbed by
zeroization command All Active Zeroization options

Table 5 • Security Segments during Zeroization

FPGA Component Erase Method Applicable Zeroization Options

Security Segment – User Lock bits Actively Cleared + Scrubbed All Active Zeroization options

Security Segment – User Keys (UEK1&2,
Passkeys) Actively Cleared + Scrubbed All Active Zeroization options

Security Segment – Factory Keys Actively Cleared + Scrubbed
Unrecoverable Zeroization
Options

Security Segment – Device unique factory
provisioned data Actively Cleared + Scrubbed

Unrecoverable Zeroization
Option

eNVM – Factory Data Actively Cleared
Unrecoverable Zeroization
Options

Using Zeroization in SmartFusion2 and IGLOO2 Devices

7

Using Zeroization in SmartFusion2 and IGLOO2 Devices
This section describes the procedure to configure and run zeroization system service in the
SmartFusion2 and IGLOO2 devices. The first step is to enable zeroization and set the zeroization option
using the Tamper macro.
The Tamper macro exposes the built-in tamper detection and response signals and also allows the
designer to enable zeroization and to set the zeroization option. Add the Tamper macro in the design in
order to use zeroization feature.

Using Tamper Macro to Set Zeroization Option
To configure zeroization option, drag and configure the tamper macro from the IP catalog window, as
shown in Figure 2 .

Figure 2 • Tamper Macro in IP Catalog Window

Using Zeroization in SmartFusion2 and IGLOO2 Devices - Libero SoC v2024.2

8

Figure 3 shows the option to enable and set zeroization option in Tamper macro configurator for the
SmartFusion2 and IGLOO2 (M2S050 and M2GL050) and smaller devices.

Figure 3 • Tamper Macro Configurator for SmartFusion2 and IGLOO2 (M2S050 and M2GL050) and Smaller
Devices

Using Zeroization in SmartFusion2 and IGLOO2 Devices

9

Figure 4 shows the option to enable and set zeroization option in Tamper macro configurator for
M2S090, M2S150, M2GL090, and M2GL150 devices.

When zeroization is enabled and the zeroization option is set, user can send zeroization request in the
following two ways:

• Send zeroization request from the FPGA fabric through the tamper macro.
• Send zeroization request through the COMM_BLK using Cortex-M3 processor or FPGA fabric.

Figure 4 • Tamper Macro Configurator for M2S090, M2S150, M2GL090, and M2GL150 Devices

Using Zeroization in SmartFusion2 and IGLOO2 Devices - Libero SoC v2024.2

10

Zeroization Request from FPGA Fabric through Tamper Macro
In the SmartFusion2 and IGLOO2 devices, zeroization request is triggered using the Tamper macro. The
Tamper macro uses the USI bus to send zeroization request from the FPGA fabric to system controller,
as shown in Figure 5.
The system controller block performs all the functions required for setting status flags and executing
zeroization process.

The Tamper macro exposes the built-in tamper detection and responses and also allows enabling
zeroization and setting the zeroization option. It also provides one control pin (ZEROIZE_N) that initiates
zeroization process.
Figure 6 shows the Tamper macro with zeroization input in Libero SoC software canvas. The user can
apply an active low signal to ZEROIZE_N input and trigger zeroization.
Do not assert this pin. Microsemi recommends that the user use test modes and debug their logic
connected to ZEROIZE_N to ensure proper functionality prior to connecting it to the Tamper macro
ZEROIZE_N pin.
Note: During debug, the part requires re-programming after zeroization.

Figure 5 • Zeroization Request through USI Bus

FPGA Fabric

MSS/HPMS

SmartFusion2/IGLOO2

USI

System Controller

COMM_BLKCOMM_BLKZeroization
System
Service

FICs

Tamper
Macro

Tamper flags and
tamper response

ports

Cortex-M3
(SmartFusion2

only)

Using Zeroization in SmartFusion2 and IGLOO2 Devices

11

Zeriozation Request through COMM_BLK using Cortex-M3
processor or FPGA Fabric
The SmartFusion2 zeroization is initiated through the communication block (COMM_BLK) in the
microcontroller subsystem (MSS). There are two COMM_BLK instances one in the MSS and the other in
the system controller, which communicate with each other.
The COMM_BLK consists of an APB interface, an eight byte transmit FIFO, and an eight byte receive
FIFO. Refer to COMM_BLK chapter in UG0331: SmartFusion2 Microcontroller Subsystem User Guide.
The COMM_BLK provides a bi-directional message passing facility between the MSS and the system
controller. To initiate zeroization, set up the MSS COMM_BLK register in byte mode and send the
zeroization command (0xF0). The system controller reads the command from its COMM_BLK interface
port and use the zeroization option set by the Tamper macro and start zeroization. The user can send
zeroization system service request either from Cortex-M3 processor or through a FPGA fabric master.

Figure 6 • Tamper Macro with Zeroization Input in Libero SoC Software Canvas

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918

Using Zeroization in SmartFusion2 and IGLOO2 Devices - Libero SoC v2024.2

12

Figure 7 shows the SmartFusion2 zeroization initiation flow and the blocks used for initiating zeroization
in this method.

Microsemi provides system service driver and CoreSysServices soft IP to run zeroization operation in
SmartFusion2. As a result, the user need not create software code from scratch in M3 or create a
complex master in fabric to run zeroization system services.
CoreSysServices provides a simple user interface in one side and an AHB-Lite master interface on the
FIC side to use any system services through the COMM_BLK.
For more information about CoreSysServices, refer to the CoreSysServices IP Handbook, which can be
accessed through Libero SoC software.
In IGLOO2, the COMM_BLK in the system controller communicates with COMM_BLK in high-
performance memory subsystem (HPMS). To initiate zeroization through COMM_BLK in IGLOO2, use a
fabric master.
Microsemi provides the CoreSysServices Directcore IP that acts as fabric master to use zeroization
service. The CoreSysServices soft IP communicates with the COMM_BLK through one of the FICs, and
sends zeroization service request.

Figure 7 • System Controller Block in SmartFusion2 Device

Fabric Master

Zeroization request
from CoreTex-M3

Zeroization request
from fabric master

Using Zeroization in SmartFusion2 and IGLOO2 Devices

13

Figure 8 shows the IGLOO2 zeroization request flow and the blocks used for initiating zeroization system
service in this method.

The following steps describe how to run zeroization:
Step1: Use Tamper macro and turn on zeroization and set the zeroization option.
Step2: Send zeroization request using the following method:

• SmartFusion2 has three options to send zeroization request:
– Send through the USI from FPGA fabric
– Send through the COMM_BLK using Cortex-M3 as a master
– Send through the COMM_BLK using a fabric master or CoreSysServices IP

• IGLOO2 has two options to send zeroization request:
– Send through the USI from FPGA fabric
– Send through the COMM_BLK using a fabric master or CoreSysServices IP

Use Tamper macro to send zeroization request, as this provides a simple and easy to use interface to
the user.

Figure 8 • System Controller Block in the IGLOO2 Device

Zeroization request
from fabric master

Using Zeroization in SmartFusion2 and IGLOO2 Devices - Libero SoC v2024.2

14

Design Description
This application note includes two design examples for demonstrating zeroization:

• Zeroize_M2GL090 design example. Demonstrates running zeroization system service in the
IGLOO2 device using the tamper macro.

• Zeroize_M2S090 design example. Demonstrates running zeroization system service in the
SmartFusion2 device using the system driver firmware code supplied by Microsemi and also
using the tamper macro.

The SmartFusion2 device design is implemented on the SmartFusion2 Security Evaluation Kit Board
using an M2S090TS-1FGG484 device and the IGLOO2 device design is implemented on the IGLOO2
Evaluation Kit Board using an M2GL090TS-1FGG484 device.

Design Example 1: Zeroize_M2GL090 Design
This design allows zeroizing IGLOO2 device using ZEROIZE_N input in the tamper macro. The design
example uses eNVM, SRAM, and FPGA fabric. The ZEROIZE_N input is triggered through the
USER_TAMPER_FLAG_0 input (connected to SW3) or using a tamper detect event.
The FlashPro4/5 read_idcode operation generates a tamper detection flag and initiates zeroization
service through the ZEROIZE_N input. The FPGA components are zeroized using Like New option.
The design example allows viewing eNVM content before and after zeroization.

Hardware Implementation
Figure 9 shows the top level block diagram of the IGLOO2 design example. It includes the following
components:

• TAMPER_0: This is the tamper macro, configured with Like New option. The tamper macro
exposes the tamper response input, called ZEROIZE_N. It also exposes the various tamper
detection flags. In the design example, the JTAG_ACTIVE output is used as one of the input to
initialize zeroization.

• Zeroize_interface_0: This block uses the USER_TAMPER_FLAG_0 and JTAG_ACTIVE signals
and generate ZEROIZE_N signal. The other tamper detection flags are connected to this block,
but not used in this design example. In addition, the JTAG_FLAG_GATING_SIGNAL is used to
block the JTAG_ACTIVE signal from accidentally zeroizing the device.

• RAM_init_top_0: This block includes HPMS block and clock input. It also includes
RAM_init_top_0 block to store the eNVM data after power up, as shown in Figure 9. The
AHBMASTER_FIC_0 inside RAM_init_top_0 block acts as an AHB master and moves data from
eNVM to SRAM after power up. The RAM_init_top_0 uses 50 MHz RC oscillator as clock input
and a fabric PLL is used to generate a 100 MHz clock from the 50 MHz RC oscillator clock. This
100 MHz clock is used as the base clock for the HPMS and also for the fabric.

• Counter28_0: The counter block is used to show that the device is up and running.

Design Description

15

.

Figure 10 shows the RAM_init_top_0 sub-block. It includes HPMS, 50 MHz RC oscillator, fabric PLL and
some fabric logic.
The AHBMASTER_FIC_0 inside RAM_init_top_0 block acts as an AHB master and moves data from the
eNVM to SRAM after power up. The RAM_init_top_0 uses 50 MHz RC oscillator as clock input and a
fabric PLL is used to generate a 100 MHz clock from the 50 MHz RC oscillator clock. This 100 MHz clock
is used as the base clock for the HPMS (my_hpms_top_0) and also for the fabric.

Figure 9 • Zeroize_M2GL090 Top Level Block Diagram

Using Zeroization in SmartFusion2 and IGLOO2 Devices - Libero SoC v2024.2

16

Figure 10 • RAM_init_top Block

Design Description

17

Running the Design
The following steps describe how to run the design example on the M2GL_M2S-EVAL Kit board using
the M2GL090TS-1FGG484 device:

1. Connect the power supply to the IGLOO2 Evaluation Kit with M2GL090TS-1FGG484 Device.
2. Plug the FlashPro4 ribbon cable into JTAG Programming Header on the SmartFusion2 Security

Evaluation Kit board.
3. Program the SmartFusion2 Evaluation board with the provided STAPL file and power cycle the

device. For more information about STAPL file, refer to "Appendix A: Design Files" section on
page 26.

4. Read the eNVM or SRAM content using the steps shown in "Appendix B: Running SmartDebug"
section on page 27. Power cycle the device after you exit from SmartDebug tool, so that JTAG
port gets de-activated.

Figure 11 • IGLOO2 Evaluation Kit with M2GL090TS-1FGG484 Device

Connect to
Power cord

Connect to
FP4 Header

Using Zeroization in SmartFusion2 and IGLOO2 Devices - Libero SoC v2024.2

18

Figure 12 • SmartDebug Showing eNVM Content before Zeroization

Design Description

19

5. Change the DIP switch 1 to ON to allow JTAG_ACTIVE to initiate zeroization. This DIP switch 1
signal is used as gating logic for JTAG_ACTIVE signal.

6. Right-click on Run PROGRAM Action and select Configure Action/Procedures. Figure 15
shows Select Action and Procedures Window.

Figure 13 • DIP Switch in M2GL_M2S-EVAL Kit Board

Figure 14 • Configuring Program Design Action

Using Zeroization in SmartFusion2 and IGLOO2 Devices - Libero SoC v2024.2

20

7. Select READ_IDCODE under Action drop-down list and click OK.

The Program action changes to Run READ_IDCODE Action.

8. Double-click Run READ_IDCODE Action and system controller detects this action as tamper
event and it activates the JTAG_ACTIVE signal. The JTAG_ACTIVE and DIP switch 1 signal
asserts a low signal to ZEROIZE_N input and initiate zeroization.

The counter stops counting as the device gets zeroized. Power cycle the device and you can then read
the eNVM content using SmartDebug, similar to step 4 and verify that the actual content is zeroized.

Figure 15 • Select Action and Procedures Window

Figure 16 • Run READ_IDCODE Action

Design Description

21

Figure 17 shows eNVM content after zeroization. Press the SW3 (connected to
USER_TAMPER_FALG_0 signal) on the M2GL_M2S-EVAL Kit board to initiate zeroization instead of
reading the IDCODE operation.

Figure 17 • SmartDebug Showing eNVM Content after Zeroization

Using Zeroization in SmartFusion2 and IGLOO2 Devices - Libero SoC v2024.2

22

Design Example 2: Zeroize_M2S090 Design
This design allows initiating zeroization in the SmartFusion2 device in two ways:

• Using C routine in the MSS
• Using ZEROIZE_N signal in tamper macro

A universal asynchronous receiver/transmitter (MMUART_0) in the MSS is used to display the initiation
of zeroization system service when using C routine. When using ZEROIZE_N signal, the Flash pro
READ_IDCODE action initiates zeroization service, similar to IGLOO2 design.
The design example uses eNVM, SRAM, and FPGA fabric similar to IGLOO2 design. These components
zeroized using Like New option.

Hardware Implementation
Figure 18 shows the top level block diagram of the design example. It includes three main components:

• TAMPER_0: This is the tamper macro, configured with Like New option. The tamper macro
exposes the tamper response input, called ZEROIZE_N. It also exposes the various tamper
detection flags. In the design example, the JTAG_ACTIVE output is used as one of the input to
initialize zeroization.

• Zeroize_interface_0: This block uses the USER_TAMPER_FALG_0 and JTAG_ACTIVE signals
and generate ZEROIZE_N signal. The other tamper detection flags are connected to this block,
but not used in this design example. In addition, the JTAG_FLAG_GATING_SIGNAL is used to
block the JTAG_ACTIVE signal from accidentally zeroizing the device.

• Top_M3_Master_0: This block includes MSS, RC Oscillator as clock input, and various fabric
resources. The 50 MHz RC oscillator as clock input and a fabric PLL is used to generate a 100
MHz clock from the 50 MHz RC oscillator clock. This 100 MHz clock is used as the base clock for
the MSS and also for the fabric. The Top_M3_Master_0 includes a RAM_init_top_0 block that is
used to store the eNVM data after power-up.

Figure 18 • Zeroize_M2S090 Top Level Block Diagram

Design Description

23

Figure 19 shows the block diagram of Top_M3_Master_0. The counter block is used to show that the
device is up and running. After zeroization, the LED does not blink.

Figure 19 • Top_M3_Master_0 Block

Using Zeroization in SmartFusion2 and IGLOO2 Devices - Libero SoC v2024.2

24

Software Implementation
The software design example performs the following operations:

1. Initialize the System Controller Enable
2. Initialize MMUART_0
3. Move eNVM data to SRAM
4. Perform zeroize cryptography services

MSS_SYS_zeroize_device();
The MSS_SYS_zeroize_device() function initiates zeroization system service and destroys the FPGA
contents.

nvm_access();
The nvm_access() function copies the data from the eNVM data client and moves it to Fabric SRAM.

Running the Design
The following steps describe how to run the design example on the M2GL_M2S-EVAL Kit board using
the M2S090TS-1FGG484 device:

1. Connect the power supply to the M2GL_M2S-EVAL Kit board.
2. Plug the FlashPro4 ribbon cable into the JTAG Programming Header on the SmartFusion2

Security Evaluation Kit board.
3. Program the SmartFusion2 Evaluation board with the provided STAPL file. For more information

about STAPL file, refer to "Appendix A: Design Files" on page 26.
4. Connect the host PC to the J18 connector using the USB mini-B cable.

5. Invoke the SoftConsole integrated design environment (IDE), open the softconsole project, and
launch the debugger.

Figure 20 • M2GL_M2S-EVAL Kit Board

Connect to
PC USB

Connect to
Power cord

Connect to
FP4 Header

Conclusion

25

6. Start a HyperTerminal session with 57600 baud rate, 8 data bits, 1 stop bit, no parity, and no flow
control. If the computer does not have the HyperTerminal program, any free serial terminal
emulation program such as PuTTY or TeraTerm can be used. Refer to Configuring Serial Terminal
Emulation Programs Tutorial for configuring HyperTerminal, TeraTerm, or PuTTY.

7. Run the debugger in the SoftConsole tool. The HyperTerminal window shows the options to run
the zeroize operation. Follow the instructions as shown in Figure 21 to run the example.

The flow for zeroizing the device using tamper macro is similar to the IGLOO2 design example.

Conclusion
This application note describes the zeroization usage, features, and options of the SmartFusion2 and
IGLOO2 devices. Zeroize_M2GL090 and Zeroize_M2S090 design examples are also provided.

Figure 21 • Zeroization System Service Design Example using HyperTerminal

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815

Using Zeroization in SmartFusion2 and IGLOO2 Devices - Libero SoC v2024.2

26

Appendix A: Design Files
The design files can be downloaded from the Microsemi SoC Products Group website:
http://soc.microsemi.com/download/rsc/?f=m2s_m2gl_ac433_liberov11p6_df.
The design file consists of Libero SoC Verilog project, SoftConsole software project, and programming
files (*.stp) for SmartFusion2 Security Evaluation Kit board. Refer to the Readme.txt file included in the
design file for the directory structure and description.

http://soc.microsemi.com/download/rsc/?f=m2s_m2gl_ac433_liberov11p6_df

Appendix B: Running SmartDebug

27

Appendix B: Running SmartDebug
The following steps describe how to read the eNVM or SRAM content.

1. Launch SmartDebug by selecting the SmartDebug Design option from the Design Flow window
as shown in Figure 22. The SmartDebug window is displayed.

2. Click View Flash Memory Content to retrieve the eNVM content from the device using the
SmartDebug window as shown in Figure 23. The Flash Memory window is displayed.

Figure 22 • SmartDebug Design Option in Design Flow Window

Figure 23 • SmartDebug GUI

Using Zeroization in SmartFusion2 and IGLOO2 Devices - Libero SoC v2024.2

28

3. Enter the Start Page and End Page as 16, because the data storage client is stored in page 16.
Page 16 is used for demonstration purposes.

4. Click Read from Device as shown in Figure 24. SmartDebug reads eNVM content and display it
in the GUI.

5. Click Close to close the Flash Memory window.
6. Click Close to close the Debug FGPA Array window.

Figure 24 • SmartDebug GUI Showing Flash Memory

List of Changes

29

List of Changes
The following table shows important changes made in this document for each revision.

Revision* Changes Page

Revision 3
(May 2024)

Updated the document for Libero SoC v2024.2 software release.
De-featured Recoverable option in Libero SoC v2024.2. Accordingly deleted
Recoverable instances from the document.

3, 5, 6

Revision 2
(October 2015)

Updated the document for Libero v11.6 software release (SAR 71463) N/A

Revision 1
(February 2015)

Initial release. N/A

Note: *The revision number is located in the part number after the hyphen. The part number is displayed at the bottom
of the last page of the document. The digits following the slash indicate the month and year of publication.

51900301-3/05.24

Microsemi Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

©2024 Microsemi, a wholly owned
subsidiary of Microchip Technology Inc. All
rights reserved. Microsemi and the
Microsemi logo are registered trademarks of
Microsemi Corporation. All other trademarks
and service marks are the property of their
respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi
Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

mailto:sales.support@microsemi.com
http://www.microsemi.com

	Using Zeroization in SmartFusion2 and IGLOO2 Devices - Libero SoC v2024.2
	Purpose
	Introduction
	References
	Design Requirements
	SmartFusion2 and IGLOO2 Zeroization Features
	SmartFusion2 and IGLOO2 Zeriozation Procedures
	SmartFusion2 and IGLOO2 Zeriozation Options

	Using Zeroization in SmartFusion2 and IGLOO2 Devices
	Using Tamper Macro to Set Zeroization Option
	Zeroization Request from FPGA Fabric through Tamper Macro
	Zeriozation Request through COMM_BLK using Cortex-M3 processor or FPGA Fabric

	Design Description
	Design Example 1: Zeroize_M2GL090 Design
	Design Example 2: Zeroize_M2S090 Design

	Conclusion
	Appendix A: Design Files
	Appendix B: Running SmartDebug
	List of Changes

