& Microsemi

4 QM'CROCH“: company Application Note AC433

Using Zeroization in SmartFusion2 and IGLOO2
Devices - Libero SoC v2024.2

Table of Contents

Purpose e 1
Introduction L e 1
References 1
Design Requirements e 2
SmartFusion2 and IGLOO2 Zeroization Features 0. 3
SmartFusion2 and IGLOO2 Zeriozation Procedures 4
SmartFusion2 and IGLOO2 Zeriozation Options it e 4
Using Zeroization in SmartFusion2 and IGLOO2 Devices 7
Using Tamper Macro to Set Zeroization Option 7
Zeroization Request from FPGA Fabric through TamperMacro 10
Zeriozation Request through COMM_BLK using Cortex-M3 processor or FPGA Fabric 11
Design Description L e e e e e 14
Design Example 1: Zeroize_ M2GL090 DESIgNottt e e e e 14
Design Example 2: Zeroize_M2S090 DeSIGNot ittt e e 22
Conclusion L e 25
Appendix A: Design Files L e 26
Appendix B: Running SmartDebug 27
Listof Changes e e 29
Purpose

This application note describes how to use the built-in zeroization features and options of SmartFusion®2
system-on-chip (SoC) field programmable gate array (FPGA) and IGLOO®2 FPGA devices.

Introduction

Zeroization is a method of erasing electronically stored data by altering or deleting the contents of the
data storage to prevent the recovery of the data. It is a key feature in several security applications where
high-value assets are at risk.

Zeroization plays a key role in both financial and military applications, it also plays a key role in several
consumer, commercial, and industrial applications, where it is desired that the intellectual property
comprising the design itself is to be kept confidential.

The zeroization capability provides the designer with the ability to destroy the data in circumstances
where a tamper event is detected. The SmartFusion2 and IGLOO2 devices have built-in, easy to use
tamper detection and response capability.

The user can monitor the SmartFusion2 and IGLOO2 devices tamper detection flags and send
zeroization request to the system controller and erase the content inside the FPGA. The zeroization
requests to the system controller can be sent directly from the user logic in the FPGA fabric through the
user services interface (USI) or as system service from FPGA fabric or ARM® Cortex®-M3 processor
(SmartFusion2 only) through the COMM_BLK. The zeroization feature is supported in both S and non-S
versions of the SmartFusion2 and IGLOO2 devices.

April 2024 1
© 2024 Microsemi Corporation

& Microsemi

a A%\ MicrocHIP company
Using Zeroization in SmartFusion2 and IGLOOZ2 Devices - Libero SoC v2024.2

References

The following documents are referenced in this document:
* UGO0331: SmartFusion2 Microcontroller Subsystem User Guide
* UG0443: SmartFusion2 and IGLOO2 FPGA Security and Reliability User Guide
* UG0541: SmartFusion2 SoC FPGA Evaluation Kit User Guide
+ UG0448: IGLOOZ2 FPGA High Performance Memory Subsystem User Guide
+ UGO0478: IGLOO2 FPGA Evaluation Kit User Guide
* Microsemi EnforclT Security Monitor Product Overview
Note: A zeroization technical report is available under NDA and on a need-to-know basis.

Design Requirements

Table 1 shows the SmartFusion2 reference design requirements and details.

Table 1« SmartFusion2 Reference Design Requirements and Details

Reference Design Requirements and Details Description

Hardware Requirements

SmartFusion2 Security Evaluation Kit (M2S090TS-EVAL-KIT) Rev D or later
* 12V adapter (provided along with the kit)
* FlashPro4 programmer (provided along with the kit)
+ M2S090TS-1FGG484 '

Host PC or Laptop Any 64-bit Windows Operating System

Software Requirements

Libero® System-on-Chip (SoC) v11.6

SoftConsole v3.4 SP1

Table 2 shows the IGLOO2 reference design requirements and details.

Table 2 » 1IGLOO2 Reference Design Requirements and Details

Reference Design Requirements and Details Description

Hardware Requirements

IGLOO2 Evaluation Kit (M2GL-EVAL-KIT) Rev C or later
* 12V adapter (provided along with the kit)
* FlashPro4 programmer (provided along with the kit)
+ M2GL090TS-1FGG484 -2

Host PC or Laptop Any 64-bit Windows Operating System
Software Requirements
Libero SoC v11.6

Notes:

1. For more information about "Zeroization Support", refer to the device errata document.

2. The IGLOO2 design uses M2GL090TS-1FGG484 device in the IGLOO2 Evaluation Kit. However, the
official IGLOO2 Evaluation Kit uses M2GL010T-1FGG484 device. If you want to run the application
note design in M2GLO10T-1FGG484, refer to the KB5659 for migrating M2GL090TS-1FGG484 to
M2GLO10T-1FGG484.

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132583
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132037
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=133574
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918
http://soc.microsemi.com/kb/article.aspx?id=SL5659
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132009
http://www.microsemi.com/document-portal/doc_download/132856-microsemi-enforcit-security-monitor-product-overview

& Microsemi

a A%\ MicrocHIP company
SmartFusion2 and IGLOQ2 Zeroization Features

SmartFusion2 and IGLOO2 Zeroization Features

The SmartFusion2 and IGLOO2 devices support two types of zeroization options: Like New and
Unrecoverable. For more information about these two zeroization options, refer to "SmartFusion2 and
IGLOOQO2 Zeriozation Options" section on page 4. The user can monitor the tamper detection flag and
then decide to trigger one of the two types of built-in zeroization request to zeroize the device or activate
one of the other predefined or user customized tamper responses.

Zeroization is a high priority system service to the system controller in the SmartFusion2 and IGLOO2
devices. When the system controller receives the high priority Zeroization command, it stops the
execution of a low priority command and service the Zeroization command.

The low priority command is aborted.

Figure 1 shows a block diagram of the SmartFusion2 and IGLOO2 devices. The user should enable
zeroization and set zeroization option (using Tamper macro) and then send a zeroization request from
FPGA fabric to system controller through the USI. Zeroization request can also be sent through the
COMM_BLK from FPGA fabric (for both the SmartFusion2 and IGLOO2 devices) or Cortex-M3
processor (for SmartFusion2 only).

SmartFusion2/IGLOO2
Zesr;iszt:;trrn COMM_BLK J—L COMM_BLK (sg‘;:i’l‘ls":':nz
Service only)
System Controller MSS/HPMS
AN
usi FICs

Tamper N

Macro
JaEy ggs and FPGA Fabric
tamper response

ports

Figure 1+ SmartFusion2 and IGLOO2 Block Diagram

& Microsemi

a A%\ MicrocHIP company
Using Zeroization in SmartFusion2 and IGLOOZ2 Devices - Libero SoC v2024.2

SmartFusion2 and IGLOO2 Zeriozation Procedures

In the SmartFusion2 and IGLOO2 devices, zeroization includes several erase and programming
operations to reduce any data remnants in the flash array to undetectable levels (that is, scrubbing). This
section describes zeroization procedure in the SmartFusion2 and IGLOO2 devices.

After receiving zeroization request, the system controller programs a set of non-volatile bits that act as
status flags during zeroization process. These status bits get updated throughout zeroization process to
maintain the current status.

These status bits are internal to FPGA, and are not available to the user. This procedure cannot be
bypassed once invoked. It is designed to complete even in the event of intentional tampering.

If zeroization cycle is interrupted prior to completion, the system controller resumes zeroization on the
next power-up of the device based on the state of the status bits. Along with programming of status bits,
the system controller initiates zeroization of the volatile memories of the FPGA first (that is, ECC
memory, PUF and PUF key management memory, Key buffers, Frame buffers, AES and SHA256
registers, JTAG /O buffer, MSS eSRAMs, and Fabric SRAMs), then the system controller performs
verification by reading back these memories, computing, and validating a digest. After the volatile
memories of the FPGA are zeroized, the non-volatile memory segments are destroyed starting with
eNVM.

The FPGA flash configuration array, user security segments, and factory security segments (if applicable,
depending on zeroization option selected) are erased. After all the relevant memories are cleared and
scrubbed, the system controller performs a read back operation on the memory segments and calculates
a digest for volatile memories, eNVM, security segments, and the fabric configuration flash. After both
the erase and verify portions of zeroization are complete, a secure protocol exists to confirm if zeroization
is completed successfully.

SmartFusion2 and IGLOO2 Zeriozation Options

The SmartFusion2 and IGLOO2 devices have several types of zeroization options to meet the user
application requirements. Table 3 shows the various zeroization options available in the SmartFusion2
and IGLOO2 devices. These options zeroize various FPGA components and security segments based
on user settings. This application note assumes user is familiar with the SmartFusion2 and IGLOO2
devices security segments and programming model, which are described in the UG0443: SmartFusion2
and IGLOO2 FPGA Security and Reliability User Guide.

Table 3 SmartFusion2 SoC and IGLOO2 FPGAs Zeroization Options

Zeroization Option What Remains Intact Comments
Like New Factory keys and factory The FPGA configuration is destroyed and the part
configuration segments. behaves similar to a new part from the factory.
Unrecoverable Nothing stays. All the configurations are destroyed and the device is
permanently disabled and unusable.

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132037
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132037
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132037
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132037
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132037
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132037

& Microsemi

a A%\ MicrocHIP company
SmartFusion2 and IGLOQ2 Zeroization Features

Like New Zeroization Mode

The first zeroization option is Like New, which destroys all the user programmed configuration data (that
is, it erases the user design information). This mode erases the device into a new device state. In other
words, the device behaves as it was when it was shipped from Microsemi originally, with no user design
or key information stored and is immediately ready for programming by the user.

There is no logistical impact beyond reprogramming the device to get back into operation. Selecting the
Like New zeroization mode may not be advisable for some high security applications, like a new part,
once zeroized the part can be reprogrammed by whoever has access to it.

The Like New zeroization mode is useful when devices go through repeated zeroization, such as when
an information assurance device is being intentionally erased after a mission, for routine re-keying.

During zeroization, a number of erase and write cycles are applied to the configuration NVM. Also, due to
the scrubbing process, each zeroization and subsequent reprogramming uses several erase and write
cycles. So, it is recommended not to use frequent zeroization.

Refer to the datasheet for the number of allowable zeroization cycle.

Unrecoverable Zeroization Mode

When Unrecoverable zeroization system services are activated, all the data in all NVMs in the device is
destroyed (excluding metal-mask ROMs).

The following factory keys are erased:
* Factory key (FK)
+ Default key-loading key (KLK)
« Factory ECC private key (SKFE, in larger devices)
* Pseudo-PUF secret (FPP)

Note: Also, one-half of the device serial number (DSN), namely the 64-bit serial number modifier (SNM),
is erased.

The eNVM data erased includes the factory segment, which is retained in the Like New Zeroization
Mode. The calibration data used to program devices is erased, and then the device intentionally puts
itself into an unrecoverable state where it does not respond to any programming commands. The
zeroization certification protocol is still active.

& Microsemi

a A%\ MicrocHIP company

Using Zeroization in SmartFusion2 and IGLOOZ2 Devices - Libero SoC v2024.2

Table 4 provides a summary of each block within the FPGA that is

which zeroization option initiates the erase and how it is cleared.

Table 4 + FPGA Components or Blocks Erased by Zeroization

erased by zeroization, along with,

FPGA Component or Block

Erase Protocol

Applicable Zeroization Options

System Controller Memory (including memories

Erased by zeroization

associated with ECC + PUF) command All Active Zeroization options
Programming Frame, Key, and JTAG 1/O Buffers Actively Cleared All Active Zeroization options
AES/SHA Accelerators — Registers and RAMs Actively Cleared All Active Zeroization options
MSS SRAM Actively Cleared All Active Zeroization options
Fabric SRAM Actively Cleared All Active Zeroization options

Fabric Registers

Removal of Power

All Active Zeroization options

Cortex-M3 processor Cache

N/A

N/A

Fabric Configuration Flash Cells

Erased + Scrubbed by
zeroization command

All Active Zeroization options

Note: The non-volatile memory segments are erased during zeroization. The eNVM segments are erased
and scrubbed. As certain eNVM segments contain factory provisioned data (such as, device
certificates and public keys), full erasure of eNVM sectors are executed according to the zeroization

options set by the user.

Table 5 provides a summary for the FPGA security segments.

Table 5 « Security Segments during Zeroization

FPGA Component

Erase Method

Applicable Zeroization Options

Security Segment — User Lock bits

Actively Cleared + Scrubbed

All Active Zeroization options

Passkeys)

Security Segment — User Keys (UEK1&2,

Actively Cleared + Scrubbed

All Active Zeroization options

Security Segment — Factory Keys

Actively Cleared + Scrubbed

Unrecoverable Zeroization
Options

provisioned data

Security Segment — Device unique factory

Actively Cleared + Scrubbed

Unrecoverable Zeroization
Option

eNVM — Factory Data

Actively Cleared

Unrecoverable Zeroization
Options

& Microsemi

a A%\ MicrocHIP company
Using Zeroization in SmartFusion2 and IGLOO2 Devices

Using Zeroization in SmartFusion2 and IGLOO2 Devices

This section describes the procedure to configure and run zeroization system service in the
SmartFusion2 and IGLOO2 devices. The first step is to enable zeroization and set the zeroization option
using the Tamper macro.

The Tamper macro exposes the built-in tamper detection and response signals and also allows the
designer to enable zeroization and to set the zeroization option. Add the Tamper macro in the design in
order to use zeroization feature.

Using Tamper Macro to Set Zeroization Option

To configure zeroization option, drag and configure the tamper macro from the IP catalog window, as
shown in Figure 2 .

Project File Edit View Design Tools Help

Catalog 5 X
[@& ~ [simulation Mode G~

MName Version
> Arithmetic
> Bus Interfaces
> Clock & Management
> DSP
» /O
» Macro Library
» Memaory & Controllers
> Peripherals
* Processors
> SC/Tamper
4 Tamper
Tamper2 2.1.300

Mo core selected

| Design ... I Design Hierar... Stimulus Hiera... Catalog | Files |

Figure 2 » Tamper Macro in IP Catalog Window

& Microsemi

a A%\ MicrocHIP company
Using Zeroization in SmartFusion2 and IGLOOZ2 Devices - Libero SoC v2024.2

Figure 3 shows the option to enable and set zeroization option in Tamper macro configurator for the
SmartFusion2 and IGLOO2 (M2S050 and M2GL050) and smaller devices.

Configuring TAMPER_O {TAMPER - 2.1.200) =] B S

Configuration
Enable LOCKDOWN_ALL Function [
Enable DISABLE_ALL_IOS Function [

Enable RESET Function [

Zeroization

Enable ZEROIZE Function

Digest check on power up

FABRIC digest check on power Up [

ENVM_0 digest chedk on power Up [—]

Help [oK ” Cancel]

Figure 3 » Tamper Macro Configurator for SmartFusion2 and IGLOO2 (M2S050 and M2GL050) and Smaller
Devices

& Microsemi

a A%\ MicrocHIP company
Using Zeroization in SmartFusion2 and IGLOO2 Devices

Figure 4 shows the option to enable and set zeroization option in Tamper macro configurator for
M2S090, M2S150, M2GL090, and M2GL150 devices.

[EL Configuring TAMPER2_0 (TAMPERZ - 2.1.300) (=] B i

Configuration

Enable LOCKDOWN_ALL Function []
Enable DISABLE_ALL_IOS Function []

Enable RESET Function (]

Zeroization

Enable ZEROIZE Function |

Clk Frequency Error Detection

Enable CLK Frequency Error Detection [

o

Tolerance 25%

Digest check on power up

FABRIC digest check on power Up [
ENVM_0 digest check on power Up [

ENVM_1 digest check on power Up [

Coc) [omm]

Figure 4 - Tamper Macro Configurator for M2S090, M2S150, M2GL090, and M2GL150 Devices
When zeroization is enabled and the zeroization option is set, user can send zeroization request in the
following two ways:
» Send zeroization request from the FPGA fabric through the tamper macro.
» Send zeroization request through the COMM_BLK using Cortex-M3 processor or FPGA fabric.

& Microsemi

a A%\ MicrocHIP company

Using Zeroization in SmartFusion2 and IGLOOZ2 Devices - Libero SoC v2024.2

Zeroization Request from FPGA Fabric through Tamper Macro

In the SmartFusion2 and IGLOQ2 devices, zeroization request is triggered using the Tamper macro. The
Tamper macro uses the USI bus to send zeroization request from the FPGA fabric to system controller,
as shown in Figure 5.

The system controller block performs all the functions required for setting status flags and executing
zeroization process.

SmartFusion2/IGLOO2
Zesr;isztztr:fn COMM_BLK J—L COMM_BLK (sgg:;ﬁs“f:nz
Service only)
A
[}
:
:
[}
1System Controller MSS/HPMS
’
E
L}
:
AN
FICs
Tamper, NS
Macro §
Tamper flags and FPGA Fabric
tamper response
ports

Figure 5 » Zeroization Request through USI Bus

The Tamper macro exposes the built-in tamper detection and responses and also allows enabling
zeroization and setting the zeroization option. It also provides one control pin (ZEROIZE_N) that initiates
zeroization process.

Figure 6 shows the Tamper macro with zeroization input in Libero SoC software canvas. The user can
apply an active low signal to ZEROIZE_N input and trigger zeroization.

Do not assert this pin. Microsemi recommends that the user use test modes and debug their logic
connected to ZEROIZE_N to ensure proper functionality prior to connecting it to the Tamper macro
ZEROIZE_N pin.

Note: During debug, the part requires re-programming after zeroization.

10

& Microsemi

a A%\ MicrocHIP company
Using Zeroization in SmartFusion2 and IGLOO2 Devices

TAMPER_O

I ZEROIZE_N JTAG_ACTIVE
LOCK_TAMPER_DETECT
MESH_SHORT_ERROR
DETECT_CATEGORY[3:0]
DETECT_ATTEMPT
DETECT_FAIL
DIGEST_ERROR
5C_ROM_DIGEST_ERROR
TAMPER_CHANGE_STROBE

@'IP

Figure 6 » Tamper Macro with Zeroization Input in Libero SoC Software Canvas

Zeriozation Request through COMM_BLK using Cortex-M3
processor or FPGA Fabric

The SmartFusion2 zeroization is initiated through the communication block (COMM_BLK) in the
microcontroller subsystem (MSS). There are two COMM_BLK instances one in the MSS and the other in
the system controller, which communicate with each other.

The COMM_BLK consists of an APB interface, an eight byte transmit FIFO, and an eight byte receive
FIFO. Refer to COMM_BLK chapter in UG0331: SmartFusion2 Microcontroller Subsystem User Guide.

The COMM_BLK provides a bi-directional message passing facility between the MSS and the system
controller. To initiate zeroization, set up the MSS COMM_BLK register in byte mode and send the
zeroization command (0xFO0). The system controller reads the command from its COMM_BLK interface
port and use the zeroization option set by the Tamper macro and start zeroization. The user can send
zeroization system service request either from Cortex-M3 processor or through a FPGA fabric master.

11

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918

& Microsemi

a A%\ MicrocHIP company
Using Zeroization in SmartFusion2 and IGLOOZ2 Devices - Libero SoC v2024.2

Figure 7 shows the SmartFusion2 zeroization initiation flow and the blocks used for initiating zeroization
in this method.

Programming

System Controller
Y POR_ Resat
. "| Controller Mss ARM
Random Number Oscillator Cortex-M3
Generator Control JTAG
- SWD S D |
Cryplographic | || COMM_BLK COMM_BLK “ :
DEVRST_N Services - t
-R)(FIFO TX FIFO
.......| APB 1 Cache Controller
SPI Signals for | 1 TX FIFO »|Rx FIFQ)| ool B
- SP 1 i i A
P ——
AHB :
JTAG Signals JTAG Sil Master ™SIl Master [+ AL1B Bus Matrix
A
:: Zeroization request
: US| UJTAG from CoreTex-M3
Oscillators Zeroization request
from fabric master
FPGA Fabric Fabric Master

Figure 7 » System Controller Block in SmartFusion2 Device

Microsemi provides system service driver and CoreSysServices soft IP to run zeroization operation in
SmartFusion2. As a result, the user need not create software code from scratch in M3 or create a
complex master in fabric to run zeroization system services.

CoreSysServices provides a simple user interface in one side and an AHB-Lite master interface on the
FIC side to use any system services through the COMM_BLK.

For more information about CoreSysServices, refer to the CoreSysServices IP Handbook, which can be
accessed through Libero SoC software.

In IGLOO2, the COMM_BLK in the system controller communicates with COMM_BLK in high-
performance memory subsystem (HPMS). To initiate zeroization through COMM_BLK in IGLOO2, use a
fabric master.

Microsemi provides the CoreSysServices Directcore IP that acts as fabric master to use zeroization
service. The CoreSysServices soft IP communicates with the COMM_BLK through one of the FICs, and
sends zeroization service request.

12

& Microsemi

a A%\ MicrocHIP company

Using Zeroization in SmartFusion2 and IGLOO2 Devices

Figure 8 shows the IGLOO2 zeroization request flow and the blocks used for initiating zeroization system
service in this method.

DEVRST_N

SPI Signals for
Fr;\grarn ming

JTAG Signals

HPMS

AHH Bus Matrix

System Controller POR_ Reset
Random Mumber Oseillator leckcod
Generator Control
Cryptographic COMM_ELR. ool
Services RX FIFO IT)(FIF!.‘Jl
ot X FIFDI1I w| R FIFO I
JTAG Sl Master - Slliil-'aasler ; [
‘ Zeroization request
ust UITAG from fabric master
Dagillators

FPGA Fabric

Fabric Master II

Figure 8 » System Controller Block in the IGLOO2 Device

The following steps describe how to run zeroization:
Step1: Use Tamper macro and turn on zeroization and set the zeroization option.
Step2: Send zeroization request using the following method:

SmartFusion2 has three options to send zeroization request:
Send through the USI from FPGA fabric
Send through the COMM_BLK using Cortex-M3 as a master
Send through the COMM_BLK using a fabric master or CoreSysServices IP
IGLOO2 has two options to send zeroization request:
Send through the USI from FPGA fabric
Send through the COMM_BLK using a fabric master or CoreSysServices IP

Use Tamper macro to send zeroization request, as this provides a simple and easy to use interface to

the user.

13

& Microsemi

a A%\ MicrocHIP company
Using Zeroization in SmartFusion2 and IGLOOZ2 Devices - Libero SoC v2024.2

Design Description

This application note includes two design examples for demonstrating zeroization:

+ Zeroize_M2GL090 design example. Demonstrates running zeroization system service in the
IGLOO2 device using the tamper macro.

+ Zeroize_M2S090 design example. Demonstrates running zeroization system service in the
SmartFusion2 device using the system driver firmware code supplied by Microsemi and also
using the tamper macro.

The SmartFusion2 device design is implemented on the SmartFusion2 Security Evaluation Kit Board
using an M2S090TS-1FGG484 device and the IGLOO2 device design is implemented on the IGLOO2
Evaluation Kit Board using an M2GL090TS-1FGG484 device.

Design Example 1: Zeroize_M2GL090 Design

This design allows zeroizing IGLOO2 device using ZEROIZE_N input in the tamper macro. The design
example uses eNVM, SRAM, and FPGA fabric. The ZEROIZE_N input is triggered through the
USER_TAMPER_FLAG_0 input (connected to SW3) or using a tamper detect event.

The FlashPro4/5 read_idcode operation generates a tamper detection flag and initiates zeroization
service through the ZEROIZE_N input. The FPGA components are zeroized using Like New option.

The design example allows viewing eNVM content before and after zeroization.

Hardware Implementation

Figure 9 shows the top level block diagram of the IGLOO2 design example. It includes the following
components:

« TAMPER_O0: This is the tamper macro, configured with Like New option. The tamper macro
exposes the tamper response input, called ZEROIZE_N. It also exposes the various tamper
detection flags. In the design example, the JTAG_ACTIVE output is used as one of the input to
initialize zeroization.

+ Zeroize_interface_0: This block uses the USER_TAMPER_FLAG_0 and JTAG_ACTIVE signals
and generate ZEROIZE_N signal. The other tamper detection flags are connected to this block,
but not used in this design example. In addition, the JTAG_FLAG_GATING_SIGNAL is used to
block the JTAG_ACTIVE signal from accidentally zeroizing the device.

* RAM._init_top_0: This block includes HPMS block and clock input. It also includes
RAM _init_top_0 block to store the eNVM data after power up, as shown in Figure 9. The
AHBMASTER_FIC_0 inside RAM_init_top_0 block acts as an AHB master and moves data from
eNVM to SRAM after power up. The RAM_init_top_0 uses 50 MHz RC oscillator as clock input
and a fabric PLL is used to generate a 100 MHz clock from the 50 MHz RC oscillator clock. This
100 MHz clock is used as the base clock for the HPMS and also for the fabric.

+ Counter28_0: The counter block is used to show that the device is up and running.

14

& Microsemi

a A%\ MicrocHIP company
Design Description

— 1"

counter28 0
clk cntout[27-24] p crfouf[77747 |
nreset
.
RAM_init_top_0
DEVRST_N SEL
4B sTaRT INT_OUT
ahb_busy
ram_init_don
FIC_0_CLK
HPMS_READY
RESF_err{1:0]
l TAMPER_0
ZEROIZE_N G_ACTIVE JTAG ACTIVE
LOCK_TAMPER_DETECT OCK FER I
e MESH_SHORT_ERROR
LRI s DETECT_ATIEMPT DETECT ATTEMPT
JTAG_ACTIVE ZEROIZE N DETECT_FAIL
ZEROIZE_LIKE_NEW_N DIGEST_ERROR
clk SC_ROM_DIGEST_ERROR
nreset TAMPER_CHANGE_STROBE I TANFER CHANGE SIROBE |
DIP_swich0 DETECT_CATEGORY[3:0]
[raln ?w

Figure 9 *» Zeroize_M2GL090 Top Level Block Diagram

Figure 10 shows the RAM_init_top_0 sub-block. It includes HPMS, 50 MHz RC oscillator, fabric PLL and
some fabric logic.
The AHBMASTER_FIC_0 inside RAM _init_top_0 block acts as an AHB master and moves data from the
eNVM to SRAM after power up. The RAM_init_top_0 uses 50 MHz RC oscillator as clock input and a
fabric PLL is used to generate a 100 MHz clock from the 50 MHz RC oscillator clock. This 100 MHz clock
is used as the base clock for the HPMS (my_hpms_top_0) and also for the fabric.

15

& Microsemi

a A%\ MicrocHIP company
Using Zeroization in SmartFusion2 and IGLOOZ2 Devices - Libero SoC v2024.2

l my_hpms top 0
DEVRST DEVRST_N HPMS_READY
FIC_0_CLK
[id
w
—
wr
=L
EI
i
o
o',
=
25
Sz
& T& 450
[———m
=
e
o
RAM with wrapper 0
PRESETN INT_OUT THT_OUT
1 PCLK SEL SEL
= & FIC 0 _CLK
L HPWMS _REALY
om
AHBMASTER FIC 0
HCLK ahb_busy
HRESETn ram_init_done
START RESP_err1:0] PRESP errl1:0] |

Figure 10 - RAM_init_top Block

16

& Microsemi

a AX\MicrocHIP company
Design Description

Running the Design
The following steps describe how to run the design example on the M2GL_M2S-EVAL Kit board using
the M2GL090TS-1FGG484 device:

1. Connect the power supply to the IGLOO2 Evaluation Kit with M2GL090TS-1FGG484 Device.

2. Plug the FlashPro4 ribbon cable into JTAG Programming Header on the SmartFusion2 Security
Evaluation Kit board.

3. Program the SmartFusion2 Evaluation board with the provided STAPL file and power cycle the
device. For more information about STAPL file, refer to "Appendix A: Design Files" section on

page 26.
Connect to
‘ 05 JTAG Programming Fesal ETM Trace
FP4 Header Thacilatar Headar Heaar Swich Debug
Haader
e §
Switch
AVIAR
Connect to :> P Doty
Supply Input
Power cord i
11001000
Conmactor Sha)
Pairs
USE-UART
Terminal
(=]
Headar
MicroUSE
oG
SERDES
Aetarance
Clock m
W1 il = s 5Pl Currant
SmartFusong Flash | hleasunement
x1 PCle Edge On Board LP Currant
Conmecior 128 Mhz Crystals Maasuramant SW3 sW2

Figure 11 « IGLOO2 Evaluation Kit with M2GL090TS-1FGG484 Device

4. Read the eNVM or SRAM content using the steps shown in "Appendix B: Running SmartDebug"
section on page 27. Power cycle the device after you exit from SmartDebug tool, so that JTAG
port gets de-activated.

17

& Microsemi

a AX\MicrocHIP company
Using Zeroization in SmartFusion2 and IGLOOZ2 Devices - Libero SoC v2024.2

B Flash Memory E - - . m

Retrieve Flash Memory Content from Device:

From blodk |0 - <no efc> +

Select | <Page Rangez ~ |2] Read from Device *

Start Page: 18 (address Dx800)
End Page: 16 (1 page, 128 bytes)
Latest Content Retrieved from Device: Tue Aug 19 09:47:03 2014

Retrieved Content: at Page 16, 128 bytes starting from address 0x800
View Detailed Status

Go to Address (hex):

Content
o 12z 3]l 45|l 7zls]alalelclo|e]c-r
oosoofoo o1 02 03 04 05 06 07 08 03 OA OB OC 0D OE OF

Page Mumber | Address

00310} 10 11 12 13 14 15 16 17 13 19 1A 1B 1c D 1E 1F

00320| 20 21 22 23 24 25 26 27 28 29 2A 2B 2C s} 2E 2F

Q0830) 30 3 32 33 34 35 36 37 e 39 3A B 3D 3E F

-
00840| 00 a0 o0 a0 an ula] ala] o0 a0 an ula] ala] ao an a0 an

00350| 00 i1} 00 i1} o a0 0o 00 i1} 0o a0 0o a0 0o 00 i1}

00360| 00 i1} 00 i1} ao ao 0o 00 i1} oo ao 0o ao oo 00 [uli}

ala|afla|la|s |5

. anoand an An A An an A An A An an A An An an A A

»

m

s

Figure 12 » SmartDebug Showing eNVM Content before Zeroization

18

& Microsemi

a AX\MicrocHIP company
Design Description

5. Change the DIP switch 1 to ON to allow JTAG_ACTIVE to initiate zeroization. This DIP switch 1
signal is used as gating logic for JTAG_ACTIVE signal.

=
-
.
o
o
]

4 e
e B9/CANd | 11 10GMBRS LINK
d-50FC1 388

=

TAG_SEL) | pevastl K

e J
a BI

Figure 13 « DIP Switch in M2GL_M2S-EVAL Kit Board

6. Right-click on Run PROGRAM Action and select Configure Action/Procedures. Figure 15
shows Select Action and Procedures Window.

* FProgram Design
@‘ Configure Bitstream
@‘ Generate Bitstream

|E Rup DRAGRAKL Actinm

» Debug
,Q Ide
@ Sm

» Hando
Exp
Exp
+[1 Bp
+L| Exp
+[1 Bp

Update and Run
Run
Clean and Run All

Clean

View Report

Configure Action/Procedures...

Help

Figure 14 « Configuring Program Design Action

19

& Microsemi

a AX\MicrocHIP company
Using Zeroization in SmartFusion2 and IGLOOZ2 Devices - Libero SoC v2024.2

7. Select READ_IDCODE under Action drop-down list and click OK.

Action: 1

[PROGRAM =
PROGRAM

ERASE

VERIFY

EMC_DATA_ALTHEMTICATION
Al IDCOD

DEVICE_INFO
[DO_VERIFY

DO _EXIT

o] (o

Figure 15 * Select Action and Procedures Window

The Program action changes to Run READ_IDCODE Action.

4 P Program Design
@‘ Configure Bitstream

Figure 16 - Run READ_IDCODE Action

8. Double-click Run READ_IDCODE Action and system controller detects this action as tamper
event and it activates the JTAG_ACTIVE signal. The JTAG_ACTIVE and DIP switch 1 signal
asserts a low signal to ZEROIZE_N input and initiate zeroization.

The counter stops counting as the device gets zeroized. Power cycle the device and you can then read
the eNVM content using SmartDebug, similar to step 4 and verify that the actual content is zeroized.

20

& Microsemi

a AX\MicrocHIP company
Design Description

Figure 17 shows eNVM content after zeroization. Press the SW3 (connected to
USER_TAMPER_FALG_0 signal) on the M2GL_M2S-EVAL Kit board to initiate zeroization instead of
reading the IDCODE operation.

] Flash Memory m

Retrieve Flash Memory Content from Device:
From block |0 - <no efc> ~

Select | <Page Range> ~ |2) Read from Device *

Start Page: 16 (address 0x300)
End Page: 15 (1 page, 128 bytes)
Latest Content Retrieved from Device: Tee fug 19 09:55:05 2014

Retrieved Content: at Page 16, 128 bytes starting from address 0x800

View Detailed Status
Go to Address (hex):

Page Mumber | Address

Content

»

00800| 00 o0 ula] an an an an a0 a0 o0 o0 a0 o0 ala] ula] an

00310} 00 00 a0 a0 ao 0o 0o [ili} 00 00 00 [ili} 00 [ili} a0 ao

00z20| 00 00 a0 a0 ao oo oo [ui} [} 00 00 [ui} 00 i} a0 ao

m

00830) Q0 o0 ul] an an oo oo a0 a0 o0 o0 a0 o0 ala] ul] an

00340] 00 00 a0 a0 o 0o 0o i1} 00 00 00 i1} 00 i1} a0 o

00350| 00 00 ao a0 ao oo oo i1} 00 00 00 i1} 00 ili} ao ao

- ERE R R

00860| 00 o0 ul] an an oo oo a0 a0 o0 o0 a0 o0 ala] ul] an

=

Figure 17 » SmartDebug Showing eNVM Content after Zeroization

21

& Microsemi

a A%\ MicrocHIP company
Using Zeroization in SmartFusion2 and IGLOOZ2 Devices - Libero SoC v2024.2

Design Example 2: Zeroize_M2S090 Design

This design allows initiating zeroization in the SmartFusion2 device in two ways:

Using C routine in the MSS
Using ZEROIZE_N signal in tamper macro

A universal asynchronous receiver/transmitter (MMUART_0) in the MSS is used to display the initiation

of zero

ization system service when using C routine. When using ZEROIZE_N signal, the Flash pro

READ_IDCODE action initiates zeroization service, similar to IGLOO2 design.
The design example uses eNVM, SRAM, and FPGA fabric similar to IGLOO2 design. These components

zeroize

d using Like New option.

Hardware Implementation

Figure

18 shows the top level block diagram of the design example. It includes three main components:

TAMPER_O: This is the tamper macro, configured with Like New option. The tamper macro
exposes the tamper response input, called ZEROIZE_N. It also exposes the various tamper
detection flags. In the design example, the JTAG_ACTIVE output is used as one of the input to
initialize zeroization.

Zeroize_interface_0: This block uses the USER_TAMPER_FALG_0 and JTAG_ACTIVE signals
and generate ZEROIZE_N signal. The other tamper detection flags are connected to this block,
but not used in this design example. In addition, the JTAG_FLAG_GATING_SIGNAL is used to
block the JTAG_ACTIVE signal from accidentally zeroizing the device.

Top_M3_Master_0: This block includes MSS, RC Oscillator as clock input, and various fabric
resources. The 50 MHz RC oscillator as clock input and a fabric PLL is used to generate a 100
MHz clock from the 50 MHz RC oscillator clock. This 100 MHz clock is used as the base clock for
the MSS and also for the fabric. The Top_M3_Master_0 includes a RAM _init_top_0 block that is
used to store the eNVM data after power-up.

DEVRST N

Top_M3_Masdter_0
DEVRST_N INT_CUT|
SEL

|
l TAMPER_0 S
ZERDEE N JTAG_ACTIVE] [TAG ACTL,

LOCHK_TAMPER_DETECT
IVESH_SHORT_ERROR p—1—
DETECT_ATTBMPT DETECT ATTENPT
DETECT_FAIL | - @EINMIART 0 FABRIC
P P& CHANGE STROBE

FC_0_CLK|
NES_READY
cntout[27:24]

WMUART_0_FABRE Bl

5C_RONM DIGEST_ERROR
TANPER_CHANGE_STROI
DETECT_CATEGORY[2:0]

il

Zeroize_interface_0
ZEROZE |

i ok

rreset

USER TANMPER FALG 0
JIAG FLAG GATING SIGMAL

USER_TAINFER_FALG 0
JTRG FLAG_GATING_SGNAL

L JRGACTVE
LOCK_TANPER_DETECT
VESH_SHORT_ERRCR
DETECT_CATEGORY [2:0]
DETECT_ATTENFT
DETECT_FAIL

b CIGEST ERROR

b SC_RON_DIGEST_ERROR

P TALFER _CHANGE STROSE

Figure 18 » Zeroize_M2S090 Top Level Block Diagram

22

& Microsemi

a A%\ MicrocHIP company
Design Description

Figure 19 shows the block diagram of Top_M3_ Master_0. The counter block is used to show that the
device is up and running. After zeroization, the LED does not blink.

4B FAB_RESET N FIC_0_LOCK
WSS_READY
MMUART_0_FABRICE ~@ENHUART 0 FABRIC |
MMUART_O_TXD_W2F -
MMUART_O_RXD_F2M @ --
INIT_PINSE

my_mss_top_0
DEVRST N DEVRST_N FIC_0_CLK
x

SLAVE O

3 AMBA
by

counter28_0

clk cntout[27:24]
nreset

FIC 0 CLK
MSS READY
cotout[27:24]

A-Bslave

COREAHBTOAPB3 0

HCLK
HRESETN

APBmaster

CoreAPB3 0
L3

RAM_with_wrapper_0

PRESETN INT_OUT| @
PCLK SEL

Figure 19 » Top_M3_Master_0 Block

23

& Microsemi

a AX\MicrocHIP company
Using Zeroization in SmartFusion2 and IGLOOZ2 Devices - Libero SoC v2024.2

Software Implementation
The software design example performs the following operations:
1. Initialize the System Controller Enable
2. Initialize MMUART_0
3. Move eNVM data to SRAM
4. Perform zeroize cryptography services
MSS_SYS_zeroize_device();

The MSS_SYS_zeroize_device() function initiates zeroization system service and destroys the FPGA
contents.

nvm_access();
The nvm_access() function copies the data from the eNVM data client and moves it to Fabric SRAM.

Running the Design
The following steps describe how to run the design example on the M2GL_M2S-EVAL Kit board using
the M2S090TS-1FGG484 device:

1. Connect the power supply to the M2GL_M2S-EVAL Kit board.

2. Plug the FlashPro4 ribbon cable into the JTAG Programming Header on the SmartFusion2
Security Evaluation Kit board.

3. Program the SmartFusion2 Evaluation board with the provided STAPL file. For more information
about STAPL file, refer to "Appendix A: Design Files" on page 26.

4. Connect the host PC to the J18 connector using the USB mini-B cable.

Connect to
‘ {5 JTAG Pragramming FAesat ETM Trace
FP4 Header Cocllatar Headar Header Swich Debg
Header

OOl
Switch

AVILAR
O
Connect to :kf:p:w Dobvig
i Input
Power cord ki
1010041000
Etharmat
B8 SEADES
Conmactor SMA
Pairs
Connect to :> Uss-UasT
Terminal
PC USB e
Haadear
MicrolsE
oG
SERDES
Aetarance
Clock ke
s LI s &l Gument
SmartFusong Flash | bleasunerment
%1 PCle Edge On Board LP Currant
Conmecior 128 Mhz Crystals Maasuramant SW3 sW2

Figure 20 - M2GL_M2S-EVAL Kit Board

5. Invoke the SoftConsole integrated design environment (IDE), open the softconsole project, and
launch the debugger.

24

& Microsemi

a A%\ MicrocHIP company
Conclusion

6. Start a HyperTerminal session with 57600 baud rate, 8 data bits, 1 stop bit, no parity, and no flow
control. If the computer does not have the HyperTerminal program, any free serial terminal
emulation program such as PuTTY or TeraTerm can be used. Refer to Configuring Serial Terminal
Emulation Programs Tutorial for configuring HyperTerminal, TeraTerm, or PuTTY.

7. Run the debugger in the SoftConsole tool. The HyperTerminal window shows the options to run
the zeroize operation. Follow the instructions as shown in Figure 21 to run the example.

4 COM24:57600baud - Tera Term VT s & & o] [

File Edit Setup Control Window Help

wxsimartFusion2: Zeroization Design example s
-0 ~3aE- 30 ~JoE ~3f-Jof o -0 ~Jof ~3nE-Jof o -Jf-Jof ~3nE-Jo o ~JuE-Jof ~3oE-Jof-Iof-JnE-Jof-IoE-Juf-of - IoE-Juf-eE-JuE-Jof-IoE-Juf-Iof-IeE-TeE-E
wrxsimartFusion2: Start SRAM Initialization»eseoss
xsimartFusion2: SHAM Initialization done s
-uE-3of -3nE -0 -JoF -3f-Jof -oE -3 -Jof -3nE-Jof-3oE -Jf-Jof -oE 3o 3o -JuE-Jof -IoE-Juf-Jof-JnE-Jof-JoE-Jf-Jof - JoE-Juf-ef-JuE-Jof-JoE-Juf-Jof-JeE-JeE-BE

Press '1’' to execute Zeroization

Key Pressedl

Figure 21 + Zeroization System Service Design Example using HyperTerminal

The flow for zeroizing the device using tamper macro is similar to the IGLOO2 design example.

Conclusion

This application note describes the zeroization usage, features, and options of the SmartFusion2 and
IGLOO2 devices. Zeroize_M2GL090 and Zeroize_M2S090 design examples are also provided.

25

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815

& Microsemi

a A%\ MicrocHIP company
Using Zeroization in SmartFusion2 and IGLOOZ2 Devices - Libero SoC v2024.2

Appendix A: Design Files

The design files can be downloaded from the Microsemi SoC Products Group website:
http://soc.microsemi.com/download/rsc/?f=m2s_m2gl_ac433_liberov11p6_df.

The design file consists of Libero SoC Verilog project, SoftConsole software project, and programming
files (*.stp) for SmartFusion2 Security Evaluation Kit board. Refer to the rReadme. txt file included in the
design file for the directory structure and description.

26

http://soc.microsemi.com/download/rsc/?f=m2s_m2gl_ac433_liberov11p6_df

& Microsemi

a A%\ MicrocHIP company
Appendix B: Running SmartDebug

Appendix B: Running SmartDebug

The following steps describe how to read the eNVM or SRAM content.

1. Launch SmartDebug by selecting the SmartDebug Design option from the Design Flow window
as shown in Figure 22. The SmartDebug window is displayed.

4 F Lebug Design
20 Identify Debug Design

€ SrnartDebug Design

4 andott Llesign for Frod
% Export Bitstream
% Export Programming Job
+L| Export Pin Report
+L| Export BSDL
+L| Export IBIS Model
4 p Handoff Design for Firmware Developn
& Configure Firmware Cores
B: Export Firmware

uction

Jesign Flow | Design Hierarchy | Stimulus Hierarchy |

Figure 22 » SmartDebug Design Option in Design Flow Window

2. Click View Flash Memory Content to retrieve the eNVM content from the device using the
SmartDebug window as shown in Figure 23. The Flash Memory window is displayed.

© SmartDebug =B
File View Help
Device: | M2GLOIOTS (M2 Programmer: | 91166 {ush31166) -]
ID code read from device 1F8071CF
[View Device Status, .. l [Debug FPGA Array... l
I View Flash Memory Content.., ‘ l Debug SERDES. .. ‘
Log H X
€3 Errors 4, Warnings i Info
| |

Figure 23 « SmartDebug GUI

27

& Microsemi

a A%\ MicrocHIP company
Using Zeroization in SmartFusion2 and IGLOOZ2 Devices - Libero SoC v2024.2

3. Enter the Start Page and End Page as 16, because the data storage client is stored in page 16.
Page 16 is used for demonstration purposes.

4. Click Read from Device as shown in Figure 24. SmartDebug reads eNVM content and display it
in the GUI.

" Flash Memory D

Retrieve Flash Memory Content from Device:

Select | <Page Range= - |2 Read from Device *

Start Page: 16 (address 0x800)
End Page: 16 (1page, 128 bytes)
Latest Content Retrieved from Device: Wed Sep 23 14:54:57 2015

Retrieved Content: at Page 16, 128 bytes starting from address 0x800

View Detailed Status
Go to Address (hex):

Page Number | Address Content
o { 4+ | 2| 3 |l as) s 11718 lo lals lclp lelF
15 o0aoof oo o1 02 03 04 05 06 07 08 09 0A 08 oC oD OE oF
1 o010 10 11 12 13 14 15 16 17 13 19 14 18 1c 1D 1E IF
1 00820 20 21 2 23 24 35 % 7 s 2 24 % c ey ® *
1 00830 30 31 2 33 4 35 3% 7 38 39 34 B i D E F
1 00840 00 o0 o0 00 00 00 00 00 00 00 00 00 00 00 00 00
1 00850 00 o0 o0 00 00 00 00 00 00 00 00 00 00 00 00 00
1 00850 00 o0 o0 00 00 00 00 00 00 00 00 00 00 00 00 00
1 00870 00 o0 o0 00 00 00 00 00 00 00 00 00 00 00 00 00

Figure 24 » SmartDebug GUI Showing Flash Memory

5. Click Close to close the Flash Memory window.
6. Click Close to close the Debug FGPA Array window.

28

& Microsemi

a A%\ MicrocHIP company

List of Changes
List of Changes
The following table shows important changes made in this document for each revision.
Revision* Changes Page
Revision 3 Updated the document for Libero SoC v2024.2 software release. 3,56
(May 2024) De-featured Recoverable option in Libero SoC v2024.2. Accordingly deleted
Recoverable instances from the document.
Revision 2 Updated the document for Libero v11.6 software release (SAR 71463) N/A
(October 2015)
Revision 1 Initial release. N/A
(February 2015)

Note: *The revision number is located in the part number after the hyphen. The part number is displayed at the bottom
of the last page of the document. The digits following the slash indicate the month and year of publication.

29

& Microsemi

a A%\ MicrocHI® company

Microsemi Headquarters

One Enterprise, Aliso Viejo,

CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136

Fax: +1 (949) 215-4996

Email: sales.support@microsemi.com
Www.microsemi.com

©2024 Microsemi, a wholly owned
subsidiary of Microchip Technology Inc. All
rights reserved. Microsemi and the
Microsemi logo are registered trademarks of
Microsemi Corporation. All other trademarks
and service marks are the property of their
respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

51900301-3/05.24

mailto:sales.support@microsemi.com
http://www.microsemi.com

	Using Zeroization in SmartFusion2 and IGLOO2 Devices - Libero SoC v2024.2
	Purpose
	Introduction
	References
	Design Requirements
	SmartFusion2 and IGLOO2 Zeroization Features
	SmartFusion2 and IGLOO2 Zeriozation Procedures
	SmartFusion2 and IGLOO2 Zeriozation Options

	Using Zeroization in SmartFusion2 and IGLOO2 Devices
	Using Tamper Macro to Set Zeroization Option
	Zeroization Request from FPGA Fabric through Tamper Macro
	Zeriozation Request through COMM_BLK using Cortex-M3 processor or FPGA Fabric

	Design Description
	Design Example 1: Zeroize_M2GL090 Design
	Design Example 2: Zeroize_M2S090 Design

	Conclusion
	Appendix A: Design Files
	Appendix B: Running SmartDebug
	List of Changes

