

Windowed Watchdog Timer on PIC® Microcontrollers

Author: Ashutosh Tiwari

Microchip Technology Inc.

INTRODUCTION

The Windowed Watchdog Timer (WWDT) is an enhanced Watchdog Timer found on PIC® microcontrollers. This is an extension of the existing Watchdog Timer (WDT) on PIC microcontrollers. Microchip's WDT has both a configurable upper-time threshold limit and a fixed lower-time threshold of '0'. WWDT's both upper and lower-time threshold limits are configurable in software.

WWDT OVERVIEW

FIGURE 1: PERIPHERAL BLOCK DIAGRAM

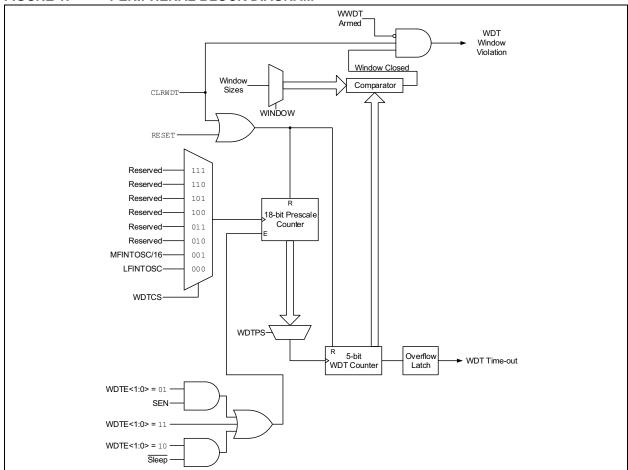


Figure 1 shows the block diagram for the WWDT.

The timer is set for time delay, which is required for one worst-case pass through the program main loop. The timer is configurable through the Control register. The user's application should periodically issue a CLRWDT instruction before the timer reaches its set maximum count and it overflows. If the user's application fails to reset the timer using the CLRWDT instruction, the watchdog overflows and resets the program execution back to the program entry point. This also resets the TO bit (Time-out bit) in the STATUS register and the RWDT bit in the PCON (Power Control) register to '0', which indicates that watchdog Reset has occurred. The WWDT is usually used to prevent a program execution lock-up or blocking caused by an infinite loop, code freeze or thread blocks. It is used as an ultimate fail-safe protection system for user code.

The PIC microcontroller supports the following watchdog modes as explained in Table 1.

TABLE 1: WWDT MODES

WWDT Modes	Explanation
WWDT always ON	WWDT is always ON and operational, including Sleep mode
WWDT OFF in Sleep	WWDT is always ON, except in Sleep mode
WWDT controlled by software	WWDT operation (i.e., the ON and OFF state for the WWDT is controlled through software using the WWDT Enable/Disable bit in the WWDT Control register)
WWDT always OFF	WWDT is always OFF irrespective of the CPU state

The WWDT is an extension to the existing WWDT as explained below (see Figure 2):

- The WWDT period is divided into two smaller time slots.
- The first part of the WWDT period is called window close time. If the CLRWDT instruction is executed during this period, the program execution will reset to the program entry point and the WDTWV (WWDT Window Violation) bit in the PCON register will reset to '0'.
- The second part of the WWDT period is called window open time. The CLRWDT instruction should be executed; otherwise, the WWDT time-out occurs and will reset the program execution. The TO bit in the STATUS register and the RWDT bit in the PCON register will reset to '0'.
- The window close time and window open time represent the complete WWDT period.
- 5. The window size is configurable in the WDTCON1 register as shown in Table 2. For example, if the WDTCON1 window size bits set to 101b, the window open time will be the last 75% of the total WWDT period, and the window close time will be the initial 25% of the WWDT period.

ARMING OF THE WWDT

The WWDT is armed by reading the WDTCON0 register. Before executing the CLRWDT instruction, the WWDT must be armed in Windowed mode (WINDOW<2:0> = 111). There is no timing requirement as to the moment the timer is armed and the CLRWDT instruction is executed (i.e., the two events can be separated by any number of instructions). Executing the CLRWDT instruction without arming generates a window violation Reset. The STATE bit in the WDTTMR register determines if the WWDT is armed successfully.

Note: When Windowed mode is used while interrupts are enabled, follow either of the two steps below:

- 1. Arm the WWDT before returning from the ISR
- Outside the ISR, disable global interrupts, arm the WWDT, execute the CLRWDT instruction and re-enable the interrupts.

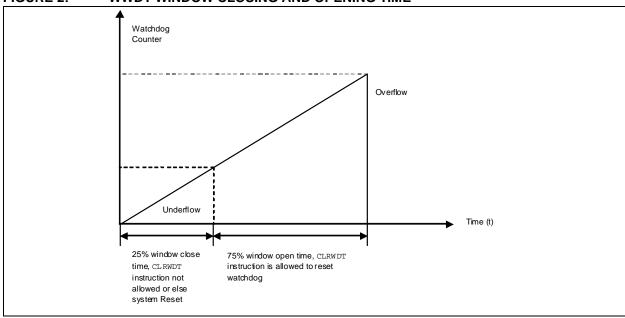


TABLE 2: WINDOW SIZE IN WWDT

WDTCON1 (WINDOW<2:0>)	Window Delay/Window Closed Time in %	Window Opening Time in %		
111		100		
110	12.5	87.5		
101	25	75		
100	37.5	62.5		
011	50	50		
010	62.5	37.5		
001	75	25		
000	87.5	12.5		

FIGURE 3: WINDOWED WATCHDOG TIMER WINDOW OVERFLOW AND UNDERFLOW/ WINDOW VIOLATION

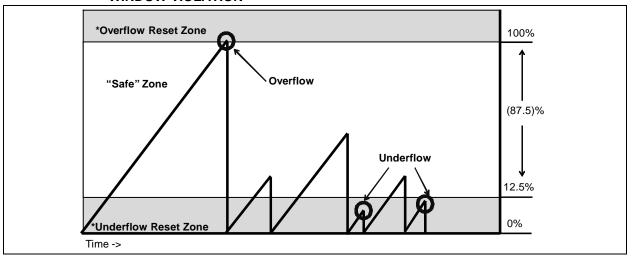


Figure 3 illustrates three cases of Overflow Reset and Underflow Reset conditions:

- Case 1: an Overflow Reset has occurred because
 of the WWDT time-out. If the CLRWDT instruction
 is not executed during the WWDT window open
 duration, Overflow Reset occurs. The zone above
 the WWDT period is the Overflow Reset zone.
- Case 2 and case 3: Underflow Resets have occurred triggered by the watchdog window violation (i.e., the execution of the CLRWDT instruction was done during the WWDT window closed duration).

The WWDT can be used in safety critical applications or in real-time applications such as the ones listed below:

- 1. Software execution is stuck or stalled.
- The CPU main loop execution is too fast because of resource lock by threads, for example circular deadlock or blocked child threads
- Real-time functions, where one has to locate the source of the problem, for example in diagnostic functions for peripherals or critical system functions – Watchdog Reset (underflow) occurs soon after entering the function or it does not reset the watchdog (overflow).

- Class B security standard implementation the WWDT can be used for time slot monitoring as mentioned in the H.2.18.10.4 standard of the IEC60730. Some scenarios are given below:
 - a) Volatile memory testing with CRC and nonvolatile memory destructive testing, where every test takes a predetermined amount of time which can be tested with WWDT's window setting.
 - b) Interrupt testing for timers, CPU registers and program counter
 - c) The WDTWV bit in PCON will reset if WWDT window violation occurs. The bit in the STATUS register and the bit in the PCON register will reset if WWDT overflows. These bits can be checked after the program restarts for Fail conditions of class B test.

In all the above-mentioned scenarios, the WWDT can be used to reset the system as an ultimate Fail-Safe tool or for failure recovery.

HOW TO CONFIGURE THE PERIPHERAL

The WWDT Configuration Special Function registers and Configuration Words are given in **Appendix A:** "WWDT Registers".

The code in Example 1 is an illustration for configuring the WWDT.

EXAMPLE 1:

```
WDTCON0bits.WDTPS = 0b01011 //WWDT set for 2s interval, upper limit
WDTCON0bits.SEN = 1 //WWDT is enabled
WDTCON1bits.WDTCS = 0b000 //LFINTOSC at 31 kHz as clock source for WWDT
WDTCON1bits.WINDOW = 0b000 //WWDT lower time limit for WWDT window is set for last 12.5% of 2s
```

The WDTPS bits select the upper-time limit or threshold for the WWDT rollover. The SEN bit is a Software Enable bit for the WWDT. The WDTCS bit selects the clock source for the WWDT. The WINDOW bits select the percent of time of the total interval or upper-time limit threshold for which the WWDT timer clear window will open (i.e., the CLRWDT instruction can be issued).

The WWDT can also be configured using the Configuration bits of the CONFIG3 register shown in Table A-2. The WWDT modes explained in Table 1 are present in the WDTE<1:0> bits of the CONFIG3 register. The user application can use the WDTCON registers to program WWDT in software only if the WDTE is set to '01,' (i.e., the WWDT is controlled by software). If WDTE is set to any other modes, the bit setting of WDTCON has no effect on the WWDT and will work according to the bit settings in CONFIG.

DEPENDENCY ON OTHER PERIPHERALS

The WWDT is not directly dependent on any on-chip peripheral other than the internal oscillator. The WWDT uses the Low-Frequency Internal Oscillator (LFINTOSC) for counting, and the system clock is used for execution of the CLRWDT instruction, which clears the WWDT. The tolerance of LFINTOSC and accuracy of the system clock will have a direct impact on the precision of the WWDT. Refer to each device specific data sheet for the tolerance value of LFINTOSC and the system clock.

CONCLUSION

This technical brief explains the difference between the WDT and WWDT operation illustrating its different uses in applications. The code snippet for the configuration of the WWDT and the register definitions are also provided in this technical brief. The WWDT peripheral is very useful for applications as an ultimate Fail-Safe function and failure recovery, especially when real-time applications can benefit from this feature. It can also be used in safety critical applications and diagnostic testing such as Class B testing as explained in IEC 60730.

APPENDIX A: WWDT REGISTERS

Table A-1 lists the registers used to set the WWDT and Table A-2 lists the Configuration bits.

TABLE A-1: SPECIAL FUNCTION REGISTERS SUMMARY FOR WWDT

Reg Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OSCCON	SPLLEN	IRCF<3:0>				_	SCS<1:0>	
PCON	STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RI	POR	BOR
STATUS	_	_	_	TO	PD	Z	DC	С
WDTCON0	_	_	WDTPS<4:0> SEI					SEN
WDTCON1	_	WDTCS<2:0>			_	WINDOW<2:0>		
WDTPSL	PSCNT<7:0>							
WDTPSH	PSCNT<15:8>							
WDTTMR	_	WDTTMR<4:0>				STATE	PSCNT	<17:16>

TABLE A-2: WWDT CONFIGURATION BITS

Config. Reg	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0
CONFIG 1	13:8	_	_	-	_	CLKOUTEN	BOREN<1:0>		_
	7:0	CP	MCLRE	PWRTE	_		— FOSC		<1:0>
CONFIG 3	13:8	_	-	WDTCCS<2:0>			WDTCWS<2:0>		0>
	7:0	_	WDT	E<1:0>		WDT	CPS<4:0>		

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELoQ, KEELoQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63276-966-4

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd.

Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/

support Web Address:

www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087

Fax: 774-760-0088 Chicago

Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi. MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles

Mission Vieio, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong

Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511

Fax: 86-28-8665-7889 China - Chongging

Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou

Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR

Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai

Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-3019-1500

Japan - Osaka

Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo

Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu

Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung

Tel: 886-7-213-7830

Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf

Tel: 49-2129-3766400

Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice

Tel: 39-049-7625286

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw

Tel: 48-22-3325737

Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm

Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800

Fax: 44-118-921-5820

03/25/14