
 2017-2022 Microchip Technology Inc. and its subsidiaries DS50002666D

PAC193X

 Microsoft® Windows® 10 and
Windows 11 Device Driver

User’s Guide

DS50002666D-page 2  2017-2022 Microchip Technology Inc. and its subsidiaries

This publication and the information herein may be used only
with Microchip products, including to design, test, and integrate
Microchip products with your application. Use of this informa-
tion in any other manner violates these terms. Information
regarding device applications is provided only for your conve-
nience and may be superseded by updates. It is your responsi-
bility to ensure that your application meets with your
specifications. Contact your local Microchip sales office for
additional support or, obtain additional support at https://
www.microchip.com/en-us/support/design-help/client-support-
services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS".
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,
RELATED TO THE INFORMATION INCLUDING BUT NOT
LIMITED TO ANY IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE, OR WARRANTIES RELATED TO
ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-
RECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSE-
QUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY
KIND WHATSOEVER RELATED TO THE INFORMATION OR
ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS
BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES
ARE FORESEEABLE. TO THE FULLEST EXTENT
ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON
ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION
OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF
ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP
FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applica-
tions is entirely at the buyer's risk, and the buyer agrees to
defend, indemnify and hold harmless Microchip from any and
all damages, claims, suits, or expenses resulting from such
use. No licenses are conveyed, implicitly or otherwise, under
any Microchip intellectual property rights unless otherwise
stated.

Note the following details of the code protection feature on Microchip products:

• Microchip products meet the specifications contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and
under normal conditions.

• Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of
Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
mean that we are guaranteeing the product is “unbreakable”. Code protection is constantly evolving. Microchip is committed to
continuously improving the code protection features of our products.

Trademarks
The Microchip name and logo, the Microchip logo, Adaptec,
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud,
CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO,
JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus,
maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo,
MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower,
PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch,
SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash,
Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O,
Vectron, and XMEGA are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions
Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight
Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3,
Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-
Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,
TimePictra, TimeProvider, TrueTime, WinPath, and ZL are
registered trademarks of Microchip Technology Incorporated in the
U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky,
BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive,
CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net,
Dynamic Average Matching, DAM, ECAN, Espresso T1S,
EtherGREEN, GridTime, IdealBridge, In-Circuit Serial
Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip
Connectivity, JitterBlocker, Knob-on-Display, maxCrypto, maxView,
memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo,
MPLIB, MPLINK, MultiTRAK, NetDetach, NVM Express, NVMe,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,
PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple
Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP,
SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI,
SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total
Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY,
ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks
of Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage
Technology, Symmcom, and Trusted Time are registered
trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany
II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in
other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2017-2022, Microchip Technology Incorporated and its subsidiar-
ies.

All Rights Reserved.

ISBN: 978-1-5224-9460-7For information regarding Microchip’s Quality Management Systems,
please visit www.microchip.com/quality.

https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services
www.microchip.com/quality
www.microchip.com/quality

PAC193X
DEVICE DRIVER

USER’S GUIDE
Table of Contents
Preface ... 5
Introduction.. 5

Document Layout .. 5

Conventions Used in this Guide .. 6

Recommended Reading.. 7

The Microchip Website.. 7

Customer Support ... 7

Document Revision History ... 8

Chapter 1. Product Overview
1.1 Introduction ... 9

Chapter 2. Driver Installation
2.1 Prerequisites .. 11

2.1.1 PAC193X Integration in the Host System ... 11
2.1.2 SpbCx Compliant I2C Bus Controller Device Driver 11

2.2 Driver Installation .. 11
2.2.1 Install Using Microsoft Windows Update or Device Manager 12
2.2.2 Install Using the DevCon Utility ... 12

Chapter 3. Device Instantiation and Initialization
3.1 Getting Started ... 13
3.2 Device Initial Configuration ... 14

Chapter 4. PAC193X Device Interfaces
4.1 Introduction ... 15
4.2 Energy Metering Interface .. 15
4.3 Device Control Interface ... 17

Chapter 5. PAC193X Driver Characteristics
5.1 Driver Characteristics ... 23
5.2 Multiple I/O Requests ... 23
5.3 Energy Metering Interfaces (EMI) vs. Device Control Interfaces 23
5.4 Energy Software Accumulators .. 24
5.5 Low-Power Mode and Power States .. 24

5.5.1 Low-Power Mode .. 25

Appendix A. Driver Revision History
A.1 Bug Fixes and Changes ... 27

Appendix B. PAC193X Device Control Interface
B.1 Introduction .. 30
B.2 PAC193X Device Definitions ... 30
 2017-2022 Microchip Technology Inc. and its subsidiaries DS50002666D-page 3

PAC193X Device Driver User’s Guide
B.3 Interface and IOCTL Definitions ... 34

Worldwide Sales and Service ...43
DS50002666D-page 4  2017-2022 Microchip Technology Inc.

PAC193X
DEVICE DRIVER

USER’S GUIDE
Preface
INTRODUCTION
This chapter contains general information that will be useful to know before using the
PAC193X Device Driver for Microsoft® Windows® 10 or Windows 11. Items discussed
in this chapter include:

• Document Layout
• Conventions Used in this Guide
• Recommended Reading
• The Microchip Website
• Customer Support
• Document Revision History

DOCUMENT LAYOUT
This document presents the PAC193X Windows Device Driver technical aspects that
users need to know in order to access the energy measurements reported by devices.
The manual layout is as follows:

• Chapter 1. “Product Overview” – Important information about the PAC193X
Windows Device Driver.

• Chapter 2. “Driver Installation” – Includes instructions on installing and starting
the PAC193X Windows Device Driver.

• Chapter 3. “Device Instantiation and Initialization” – Important Information
about the PAC193X Windows Device Driver initial configuration.

• Chapter 4. “PAC193X Device Interfaces” – Information about the PAC193X
Windows Device Driver interfaces.

• Chapter 5. “PAC193X Driver Characteristics” – Information about the
PAC193X Windows Device Driver features.

• Appendix A. “Driver Revision History” – Contains driver bug fixes and
changes.

• Appendix B. “PAC193X Device Control Interface” – Contains the C definitions
of EMI and control interface data structures.

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and
documentation are constantly evolving to meet customer needs, so some actual dialogs
and/or tool descriptions may differ from those in this document. Please refer to our website
(www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each
page, in front of the page number. The numbering convention for the DS number is
“DSXXXXXXXXA”, where “XXXXXXXX” is the document number and “A” is the revision level
of the document.

For the most up-to-date information on development tools, see the MPLAB® IDE online help.
Select the Help menu, and then Topics, to open a list of available online help files.
 2017-2022 Microchip Technology Inc. and its subsidiaries DS50002666D-page 5

PAC193X Device Driver User’s Guide
CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

Description Represents Examples

Arial font:

Italic characters Referenced books MPLAB® IDE User’s Guide

Emphasized text ...is the only compiler...

Initial caps A window the Output window

A dialog the Settings dialog

A menu selection select Enable Programmer

Quotes A field name in a window or
dialog

“Save project before build”

Underlined, italic text with
right angle bracket

A menu path File>Save

Bold characters A dialog button Click OK

A tab Click the Power tab

N‘Rnnnn A number in verilog format,
where N is the total number of
digits, R is the radix and n is a
digit.

4‘b0010, 2‘hF1

Text in angle brackets < > A key on the keyboard Press <Enter>, <F1>

Courier New font:

Plain Courier New Sample source code #define START

Filenames autoexec.bat

File paths c:\mcc18\h

Keywords _asm, _endasm, static

Command-line options -Opa+, -Opa-

Bit values 0, 1

Constants 0xFF, ‘A’

Italic Courier New A variable argument file.o, where file can be
any valid filename

Square brackets [] Optional arguments mcc18 [options] file
[options]

Curly brackets and pipe
character: { | }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0|1}

Ellipses... Replaces repeated text var_name [,
var_name...]

Represents code supplied by
user

void main (void)
{ ...
}

DS50002666D-page 6  2017-2022 Microchip Technology Inc. and its subsidiaries

Preface
RECOMMENDED READING

This user’s guide describes how to use the PAC193X Windows Device Driver. Other
useful documents are listed below. The following Microchip documents are available
and recommended as supplemental reference resources:

• PAC193X Application Note – AN2534, “PAC193X Integration Notes for
Microsoft® Windows® 10 and Windows 11 Driver Support” (DS00002534)

• PAC193X Data Sheet – “PAC1932/3/4 Multi-Channel DC Power/Energy
Monitor with Accumulator” (DS20005850)

• PAC1934 User Guide – “PAC1934 Evaluation Board (ADM00805) User’s
Guide” (DS50002673)

THE MICROCHIP WEBSITE

Microchip provides online support via our website at www.microchip.com. This website
is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the website contains the following
information:

• Product Support – Data sheets and errata, application notes and sample
programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical
support requests, online discussion groups, Microchip consultant program
member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative

• Local Sales Office

• Field Application Engineer (FAE)

• Technical Support

Customers should contact their distributor, representative or field application engineer
(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.

Technical support is available through the website at:
http://www.microchip.com/support.
 2017-2022 Microchip Technology Inc. and its subsidiaries DS50002666D-page 7

http://www.microchip.com/support

http://www.microchip.com/support

PAC193X Device Driver User’s Guide
DOCUMENT REVISION HISTORY

Revision D (January 2022)

• Added the PAC193X device driver support for Windows 11

• The information in this document applies to the PAC193X Driver Release 1.4.1,
1.4.2 and later

Revision C (April 2021)

• Updated Section 5.5 “Low-Power Mode and Power States”

• Updated Table A-1

• Updated Appendix B. “PAC193X Device Control Interface”

• The information in this document applies to the PAC193X Driver Release 1.4.0

Revision B (June 2019)

• Updated Section 2.2 “Driver Installation”

• Updated Chapter 3. “Device Instantiation and Initialization”

• Updated Table 4-2, Table 4-3 and Table 4-4

• Updated Section 4.3 “Device Control Interface”

• Updated Chapter 5. “PAC193X Driver Characteristics”

• Updated Table A-1

• Updated Section B.2 “PAC193X Device Definitions” and
Section B.3 “Interface and IOCTL Definitions”

• The information in this document applies to the PAC193X Driver Release 1.3

Revision A (September 2017)

• Initial release of this document.

• The information in this document applies to the following PAC193X driver
releases: 1.0, 1.1 and 1.2.
DS50002666D-page 8  2017-2022 Microchip Technology Inc. and its subsidiaries

PAC193X
DEVICE DRIVER

USER’S GUIDE
Chapter 1. Product Overview
1.1 INTRODUCTION

This document presents the PAC193X Windows Device Driver technical aspects that
users need to know in order to access the energy measurements reported by PAC193X
devices.

Starting with the Microsoft Windows 10 operating system, the energy consumption of
various components from PC laptops or other portable devices can be monitored in
order to identify the optimal configuration options that can maximize the battery life.
The Energy Estimation Engine (E3) service in Microsoft Windows 10 and Windows 11
uses estimation algorithms or the real-time energy measured by metering ICs
connected into various power rails of the system.

The metering ICs’s device drivers must report the energy measurements through a
standard software interface: Energy Metering Interface (EMI). The E3 service or the
user applications can access the energy data by calling a standard set of EMI IOCTL
services.

TABLE 1-1: GLOSSARY OF TERMS AND ACRONYMS

Term Description

ACPI Advanced Configuration and Power Interface

ASL ACPI Source Language

BIOS Basic Input/Output System

CPU Central Processing Unit

E3 Energy Estimation Engine

EC Embedded Controller

EMI Energy Metering Interface

Forced Shutdown Unscheduled Transition of the System G0/S0 to G2/S5 through ACPI
Power Button Override

GUID Globally Unique Identifier

I2C Inter-Integrated Circuit

IC Integrated Circuit

IOCTL I/O Control. The DeviceIoControl system call is a general purpose
interface that can send control codes to a device. Each control code
represents an operation for the device driver to perform.

OEM Original Equipment Manufacturer

OS Operating System

SMBus™ System Management Bus

SPB Simple Peripheral Bus

SoC System on Chip

SpbCx SPB Framework Extension

UUID Universal Unique Identifier

WDF Windows Driver Foundation
 2017-2022 Microchip Technology Inc. and its subsidiaries DS50002666D-page 9

PAC193X Device Driver User’s Guide
NOTES:
DS50002666D-page 10  2017-2022 Microchip Technology Inc. and its subsidiaries

PAC193X
DEVICE DRIVER

USER’S GUIDE
Chapter 2. Driver Installation
2.1 PREREQUISITES
Before installing the driver on the target system, the following driver dependencies
must be resolved:

• The PAC193X devices are integrated in the host system
• The I2C bus controller device driver is SPB Framework Extension (SpbCx) compliant

2.1.1 PAC193X Integration in the Host System

2.1.1.1 ACPI ASL

Refer to the indications listed in the PAC193X Application Note – AN2534, “PAC193X
Integration Notes for Microsoft® Windows® 10 and Windows 11 Driver Support”
(DS00002534) and make the necessary ACPI ASL changes to ensure that PAC193X
devices are enumerated by the Microsoft Windows Device Manager.

2.1.1.2 SLOW PIN

The PAC device VDD pin should be connected to a system power rail that is not shut
down by the system standby or power-down sequence. The SLOW pin should be
connected to a pin that is driven high when the system power is turned off.

The PAC193X Windows Device Driver supports the following SLOW pin use cases:

• A fail-safe mechanism that ensures that PAC devices are switched into the Slow
Sampling mode if the system crashes and is forcibly turned off by the operator or
by other fail-safe mechanism

• When the system power is turned back on, the slow transition high-to-low saves
into the device readable registers the data accumulated while the system was off

2.1.2 SpbCx Compliant I2C Bus Controller Device Driver

To access the I2C bus and communicate with the PAC devices, the PAC193X Windows
Device Driver uses the standard interface and protocol implemented by the Windows
SpbCx framework. This implies that the I2C bus controller must also have a Microsoft

Windows device driver compliant with the SpbCx framework. Usually, such driver is
created by the I2C controller manufacturer and provided through Microsoft Windows
installation or Microsoft Windows update.

2.2 DRIVER INSTALLATION
There are several options to install the PAC193X Windows Device Driver:

• Install through Microsoft Windows Update.
• Install using the Device Manager and the driver package downloaded from the

Microchip website.
• Use the DevCon utility and the driver package downloaded from the Microchip website.

CAUTION

Do not use the SLOW pin to change the device sampling rate during the normal system
operation. The Windows® driver doesn’t monitor the SLOW pin transitions while the
system is running in S0 state.
 2017-2022 Microchip Technology Inc. and its subsidiaries DS50002666D-page 11

PAC193X Device Driver User’s Guide
2.2.1 Install Using Microsoft Windows Update or Device Manager

For details about the driver installation through Microsoft Windows Update or Device
Manager, refer to the following Microsoft article: “How to: Install and Update Drivers in
Microsoft® Windows® 10”.

2.2.2 Install Using the DevCon Utility

The DevCon utility is provided with the Windows Driver Kit (WDK).

1. Based on the target system OS (32-bit or 64-bit), extract the following files from
the driver package:

• PAC193x.sys
• PAC193x.inf
• PAC193x.cat

2. Copy the driver files and the DevCon utility on the target system.

3. Open in an elevated command prompt, change directory to the folder where the
driver files have been copied and execute the command:

devcon.exe update pac193x.inf ACPI\MCHP1930

2.2.2.1 VERIFY THE INSTALLATION

To verify that the PAC193X Windows Device Driver installation was successfully
completed, open the Device Manager and check if the PAC193X devices are listed
under the “Microchip Energy Metering Devices” category and they are reported as
working properly. See Figure 2-1.

FIGURE 2-1: Device Manager Displaying the PAC193X Devices.

To open the Device Manager:

1. Click the bottom left Start button on the desktop, type device manager in the
search box and click Device Manager on the menu.

2. Press <Windows>+<X> to open the Quick Access Menu and select Device
Manager.
DS50002666D-page 12  2017-2022 Microchip Technology Inc. and its subsidiaries

https://answers.microsoft.com/en-us/insider/wiki/insider_wintp-insider_devices/how-to-install-and-update-drivers-in-windows-10/a97bbbd1-9973-4d66-9a5b-291300006293?auth=1
https://answers.microsoft.com/en-us/insider/wiki/insider_wintp-insider_devices/how-to-install-and-update-drivers-in-windows-10/a97bbbd1-9973-4d66-9a5b-291300006293?auth=1

PAC193X
DEVICE DRIVER

USER’S GUIDE
Chapter 3. Device Instantiation and Initialization
3.1 GETTING STARTED

The PAC193X devices connected to the system I2C buses are enumerated by the
Advanced Configuration and Power Interface (ACPI) in its role as a bus driver, as
ACPI\MCHP1930\<_UID>, where _UID is the value defined for each device in the
ACPI ASL code. The ACPI ASL code details specific for the PAC193X are listed in the
PAC193X Application Notes.

The PAC193X Windows Device Driver is a standard Kernel-Mode Driver Framework
(KMDF) function driver that, according to its INF, is instantiated by
the PnP Manager whenever a bus driver enumerates devices with the
Hardware ID: ACPI\MCHP1930.

During device initialization, the PAC193X Windows Device Driver evaluates the
device’s ACPI BIOS_DSM method, which is identified by the Universal Unique ID
(UUID): 033771E0-1705-47B4-9535-D1BBE14D9A09. The information that the
BIOS_DSM method returns includes:

• The value of the Shunt Resistor (RSENSE) for each channel, expressed in
milliohms and microohms:

- The resistor value is used for the energy calculations and must be an integer.

- RSENSE = 0 indicates a channel which is not connected to a power rail. The
driver reports no data for this channel.

• The Windows specified name for the power rail monitored by the channel:

- The driver creates EMI device interfaces for all the named channels. For
details, refer to the following Microsoft article: “Energy Metering Interface”.
The Windows E3 service can use the data exported by the EMI interfaces if
their names are compatible with Windows power rails’ taxonomy.

- If the channel name is an empty string, the driver does not create an EMI. The
data accumulated in the device for that channel are still collected, processed
and reported through the PAC193X control interface. There is one single
control interface created for each PAC193X device.

• EMI enable/disable bit mask indicating for which named channels the driver must
NOT create an EMI interface:

- This parameter is not available in DSM Rev. 0 and the driver assumes that no
EMI is masked out.

• Channel polarity indication bit mask:

- This bit mask has the same structure and functionality as the device NEG_PWR
register.

- This parameter is not available in DSM Rev. 0 and the driver configures all the
channels in Unipolar mode.

• The sampling frequency options the driver must use to configure the PAC device
when the system enters and exits the S0 Active state.

- These parameters are not available in DSM Rev. 0 and the driver assumes
1024 sps and 8 sps for the two options.
 2017-2022 Microchip Technology Inc. and its subsidiaries DS50002666D-page 13

https://msdn.microsoft.com/en-us/library/windows/hardware/dn957431(v=vs.85).aspx

PAC193X Device Driver User’s Guide
• The driver “watchdog” interval:

- If the system is Active, the driver must issue a new device REFRESH
command and save the accumulated data at the end of the configured time
period since the last REFRESH.

- This parameter is not available in DSM Rev. 0 and the driver sets this time
interval to 240 seconds.

3.2 DEVICE INITIAL CONFIGURATION

PAC193X Windows Device Driver preserves the device POR settings for some config-
uration options and applies the user configuration options provisioned by the BIOS ASL
code:

• I2C/SMBus™ interface is configured as I2C. SMBus is not supported currently by
Microsoft Windows. No communication settings change is allowed by the driver.

• Sample rate (SRN): Starting with DSM Rev. 1, the driver uses the BIOS ASL
provisioned parameters to configure the SRN setting when the system enters
Active mode and when the system exits the Active mode, respectively. For DSM
Rev. 0, the driver uses the default 1024 Hz for the system Active mode sampling
rate and the “Slow” 8 Hz sampling rate for non-Active mode.

• SLOW/ALERT pin is configured as Slow. No configuration change is allowed by
the driver.

• Slow signal transitions trigger limited REFRESH. The limited REFRESH triggered by
the SLOW pin is defined as all Results registers are updated and the accumulator
and accumulator count are reset, but no changes to the device configuration are
allowed.

• All the device channels are enabled, except the channels with 0Ω sense resistors,
which are disabled by the driver.

• All the channels are unidirectional by default. Starting with DSM Rev 1.0, the
driver uses the parameters provisioned by the BIOS ASL code to change the
polarity configuration for either VBUS, VSENSE or both. The driver arithmetic is
adjusted accordingly. Changing to signed measurements also implies a 1-bit
resolution loss for those measured values.

In addition, the driver takes the necessary configuration actions in order to implement
the work arounds for the errata affecting Silicon Revisions 0x01, 0x02 and 0x03 (silicon
revision values reported by REVISION ID register 0xFF). Refer to the “PAC193X Data
Sheet” for details regarding the Revision ID.
DS50002666D-page 14  2017-2022 Microchip Technology Inc. and its subsidiaries

PAC193X
DEVICE DRIVER

USER’S GUIDE
Chapter 4. PAC193X Device Interfaces
4.1 INTRODUCTION

A device interface contains the symbolic link name which the user applications use to
direct the Input/Output (I/O) requests into the device. When the driver creates the
interface, it also associates an interface class GUID (the interface type identifier).

The user application can use the SetupDiEnumDeviceInterfaces function call to
discover the interfaces belonging to a certain GUID class, and then use the
SetupDiGetDeviceInterfaceDetail function call to obtain the symbolic link
names of the devices. (The two SetupDi… functions described in this paragraph are
implemented by setupapi.lib and are available since Microsoft Windows 2000.)

Next, the user application can pass the symbolic link names to the CreateFile kernel
function to open the device for I/O and receive the assigned file handle. The user
application can use the DeviceIoControl kernel function and the file handle to
communicate with the device, specifying the IOCTL code (the input/output control code)
which identifies the requested operation from the device. The device drivers translate the
request into device-specific operations and return the results back to the requester.

This chapter presents the class GUID and the IOCTL codes implemented by the
PAC193X Windows Device Driver for each type of interface it creates:

• Energy Metering Interface

• Device Control Interface

4.2 ENERGY METERING INTERFACE

The driver creates an EMI interface for each device channel with a non-empty Windows
rail name assigned in ACPI ASL. For details regarding the EMI interface, refer to the
following Microsoft article: “Energy Metering Interface”. The definition details are
available in the file, emi.h, distributed with the Microsoft Windows Driver Kit.

The GUID for the EMI device interface is:

45BD8344-7ED6-49cf-A440-C276C933B053
 2017-2022 Microchip Technology Inc. and its subsidiaries DS50002666D-page 15

https://msdn.microsoft.com/en-us/library/windows/hardware/dn957431(v=vs.85).aspx

PAC193X Device Driver User’s Guide
Appendix B. “PAC193X Device Control Interface” contains the C definitions of the
EMI interface data structures.

TABLE 4-1: EMI IOCTLS

IOCTL Name Description

IOCTL_EMI_GET_MEASUREMENT Retrieves the current energy measurement and the
time at which the measurement was taken.
• Input: None
• Output: EMI_MEASUREMENT_DATA

IOCTL_EMI_GET_METADATA Retrieves EMI metadata from a device.
• Input: None
• Output: EMI_METADATA

IOCTL_EMI_GET_METADATA_SIZE Retrieves the size of the EMI metadata object that can
be obtained from the device by issuing an
IOCTL_EMI_GET_METADATA request.
• Input: None
• Output: EMI_METADATA_SIZE

IOCTL_EMI_GET_VERSION Retrieves the current version of the EMI interface
supported by the device.
• Input: None
• Output: EMI_VERSION

TABLE 4-2: EMI ENUMERATIONS AND STRUCTURES

Topic Type Description

EMI_MEASUREMENT_DATA Output
Structure

Energy measurement and the time when the
measurement was taken, as reported by
IOCTL_EMI_GET_MEASUREMENT.
• Energy unit: 1 pWh
• Energy value and timestamp value: 64-bit

unsigned
• Timestamp unit: 100 ns

EMI_MEASUREMENT_UNIT Enumeration Represents the available units of energy
measurements that can be reported by
IOCTL_EMI_GET_MEASUREMENT.
• EMI V1 implements only 1 pWh unit

EMI_METADATA Output
Structure

Information about:
• The metering device: Hardware model

and revision
• The metered power rail: Rail name
as reported by IOCTL_EMI_GET_METADATA.

EMI_METADATA_SIZE Output
Structure

The size of the EMI_METADATA structure, as
reported by
IOCTL_EMI_GET_METADATA_SIZE.

EMI_VERSION Output
Structure

The EMI version supported by this device, as
reported by IOCTL_EMI_GET_VERSION.
• Only EMI V1 specification is currently

supported
DS50002666D-page 16  2017-2022 Microchip Technology Inc. and its subsidiaries

PAC193X Device Interfaces
4.3 DEVICE CONTROL INTERFACE

The driver creates one control interface for each enumerated PAC193X device.
Compared to the EMI interface, this interface accepts the IOCTL_PAC193x_*
requests, and provides users with access to much more data and device configuration
options:

• All the measured values (e.g., VBUS, VSENSE, in addition to the accumulated
energy)

• Data for all the channels, including the channels which are non-EMI

• Configuration options for each device and channel (sampling rate, channel
polarity, channel on/off)

The GUID for the control interface is:

4166FE9F-A865-4314-8942-7C12ABA290F6

NOTICE

Some device or channel configuration options are blocked by the driver either
temporarily or permanently:
• The SMB/I2C communication options or the SLOW/ALERT pin configuration

options are not accessible for the user
• The channel on/off control option is allowed only if there is no EMI interface open

for that channel

TABLE 4-3: DEVICE CONTROL IOCTLs

IOCTL Name Description

IOCTL_PAC193X_GET_DEVICE_
INFO_SIZE

Returns the size allocation requirements for the buffer
that must hold the device info data structure.
• Input buffer: None
• Output buffer: PAC193X_GET_DEVICE_INFO_SIZE

IOCTL_PAC193X_GET_DEVICE_INFO Returns information about the device version and about
the channel connections (rail names, sense resistors,
connection status).
• Input buffer: None
• Output buffer: PAC193X_GET_DEVICE_INFO

IOCTL_PAC193X_GET_CTRL Returns the content of the device registers: CTRL,
CTRL_ACT, CTRL_LAT.
• Input buffer: None
• Output buffer: PAC193X_GET_CTRL

IOCTL_PAC193X_SET_CTRL Provides user-limited control over some device
Configuration bits from CTRL registers: SRN, SLEEP and
SING. The driver rejects the configuration change
requests for SLEEP and SING if the device has open
EMI channels.
• Input buffer: PAC193X_SET_CTRL
• Output buffer: None (zero bytes returned)

IOCTL_PAC193X_GET_
MEASUREMENTS

Returns for all the channels the data measurements, the
timestamp and the device configuration at the sampling
time.
• Input buffer: None
• Output buffer: PAC193X_MEASUREMENTS
 2017-2022 Microchip Technology Inc. and its subsidiaries DS50002666D-page 17

PAC193X Device Driver User’s Guide
IOCTL_PAC193X_GET_
CHANNEL_CFG

Returns the content of the I2C/SMB and Channel On/Off
Configuration registers: CHANNEL_DIS,
CHANNEL_DIS_ACT, CHANNEL_DIS_LAT.
• Input buffer: None
• Output buffer: PAC193X_GET_CHANNEL_CFG

IOCTL_PAC193X_SET_
CHANNEL_CFG

Provides user-limited control over some Configuration bits
from CHANNEL_DIS registers: CH1, CH2, CH3 and CH4.

The driver ignores the requests to change the I2C/SMB
Configuration bits: TIMEOUT and BYTECOUNT, NOSKIP.
The driver ignores the requests to change the Pointer
Skip Configuration bit: NOSKIP.

The driver ignores the change values for those channels
which have open EMI channels.

• Input buffer: PAC193X_SET_CHANNEL_CFG
• Output buffer: None (zero bytes returned)

IOCTL_PAC193X_GET_NEG_
POWER

Returns the content of the Channel Polarity Configuration
registers: NEG_PWR, NEG_PWR_ACT and NEG_PWR_LAT.
• Input buffer: None
• Output buffer: PAC193X_GET_NEG_POWER

IOCTL_PAC193X_SET_NEG_
POWER

Provides user control over Channel Polarity Configura-
tion register: NEG_PWR. Channel polarity is set at the
driver initialization but can be changed by the user at
any moment, regardless of the EMI status.
• Input buffer: PAC193X_SET_NEG_POWER
• Output buffer: None (zero bytes returned)

IOCTL_PAC193X_GET_
OVERFLOW

Returns the status of the OVF bit from CTRL_ACT and
CTRL_LAT. Depending on the value of the input flag,
this request can also clear (reset to ‘0’) the OVF flag
from the CTRL register.
• Input buffer: PAC193X_GET_OVERFLOW
• Output buffer: PAC193X_GET_OVERFLOW

IOCTL_PAC193X_DATA_
REFRESH

Allows the device to report on measurements without
resetting the accumulator. Performs the update of the
software accumulators using the REFRESH_V device
command.
• Input buffer: None
• Output buffer: None (zero bytes returned)

IOCTL_PAC193X_DATA_
REFRESH_RESET

Performs the update of the software accumulators using
the REFRESH device command. Depending on the value
of the input flag, this request can also clear (reset to
zero) the software accumulators for the channels
without open EMI interfaces.
• Input buffer: PAC193X_REFRESH_FLAGS
• Output buffer: None (zero bytes returned)

TABLE 4-3: DEVICE CONTROL IOCTLs (CONTINUED)

IOCTL Name Description
DS50002666D-page 18  2017-2022 Microchip Technology Inc. and its subsidiaries

PAC193X Device Interfaces
IOCTL_PAC193X_DATA_
REFRESH_RESET_GLOBAL

Performs a global update of the software accumulators
for all the PAC193X devices in the system.

Depending on the value of the input flag, this request
can also clear (reset to ‘0’) the software accumulators
for the channels without open EMI interfaces.

Because Microsoft® Windows® SpbCx framework does
not support the I2C general call address (0x00), the
driver cannot implement this request using REFRESH_G
device commands. Instead, the driver implements this
request sending sequential REFRESH commands to all
the devices in the system.

• Input buffer: PAC193X_REFRESH_FLAGS
• Output buffer: None (zero bytes returned)

IOCTL_PAC193X_GET_LAST_
SLOW_DATA

Returns for all the channels all the data measurements
sampled by the last Slow signal HL transition
(Slow-triggered limited REFRESH) caused by the system
state transition to S0 from other non-powered state.
• Input buffer: None
• Output buffer: PAC193X_LAST_SLOW_DATA

IOCTL_PAC193X_GET_SLOW Returns the value of the SLOW register.

The configuration of the SLOW register is controlled
exclusively by the driver.

• Input buffer: None
• Output buffer: PAC193X_GET_SLOW

IOCTL_PAC193X_GET_INTERFACE_
REVISION

Returns the device control interface revision number.

This IOCTL is implemented starting with PAC193X
Driver Version 1.3, introducing the Interface Revision
Rev 0x2. It is assumed that previous driver versions
implement the Interface Revision Rev 0x1.

• Input buffer: None
• Output buffer: PAC193X_GET_INTF_REV

IOCTL_PAC193X_GET_RSENSE_
MICRO

Returns the sense resistor values for all channels as
microohm units.

A value of zero is returned for the unconnected sense
resistors and for the channels which are not available on
the devices with less than four channels.

This IOCTL is implemented starting with PAC193X
Driver Version 1.3, introducing the Interface Revision
Rev 0x2.

• Input buffer: None
• Output buffer: PAC193X_GET_RENSE_MICRO

TABLE 4-3: DEVICE CONTROL IOCTLs (CONTINUED)

IOCTL Name Description
 2017-2022 Microchip Technology Inc. and its subsidiaries DS50002666D-page 19

PAC193X Device Driver User’s Guide
TABLE 4-4: DEVICE CONTROL STRUCTURES

Structure Name Type Description

PAC193X_GET_
DEVICE_INFO_SIZE

Output The size of the PAC193X_GET_DEVICE_INFO
structure, as reported by
IOCTL_PAC193X_GET_DEVICE_INFO.

PAC193X_GET_DEVICE_INFO Output Device and channel information returned by
IOCTL_PAC193X_GET_DEVICE_INFO:
• Manufacturer ID, product ID, silicon revision
• Number of connected channels and their on/off

status
• Per channel rail name, sense resistor value

expressed in milliohm units, EMI interface
status (created or not)

CAUTION: This structure is variable in size,
depending on how many channels the device has
and the size of the channel name.

PAC193X_GET_CTRL Output Control registers’ content returned by
IOCTL_PAC193X_GET_CTRL.
• CTRL
• CTRL_ACT
• CTRL_LAT

PAC193X_SET_CTRL Input CTRL register value the user must provide to
IOCTL_PAC193X_SET_CTRL.

PAC193X_MEASUREMENTS Output Data structure returned by
IOCTL_PAC193X_GET_MEASUREMENTS
containing device registers’ values:
• ACC_COUNT
• VPOWERn_ACC
• VBUSn, VBUSn_AVG
• VSENSEn, VSENSEn_AVG
• VPOWERn
• NEG_PWR_LAT
• CTRL_LAT
• CHANNEL_DIS_LAT and the Software registers

implemented by the device driver:
• Last sample report timestamp
• Software accumulator count
• Unsigned software accumulator
• Signed software accumulator

CAUTION: If the bidirectional voltage and/or current
is enabled for certain channels, the binary format of
the reported values is in two’s complement (the
MSB is a sign bit). The reported value must be cast
to the necessary data type for the subsequent
processing.

The driver already implements the work around for
the VPOWER_ACC and VPOWERN errata which affects
the devices with Revision ID = 0x01.

PAC193X_GET_CHANNEL_CFG Output Channel Control registers’ values returned by
IOCTL_PAC193X_GET_CHANNEL_CFG:
• CHANNEL_DIS
• CHANNEL_DIS_ACT
• CHANNEL_DIS_LAT
DS50002666D-page 20  2017-2022 Microchip Technology Inc. and its subsidiaries

PAC193X Device Interfaces
Appendix B. “PAC193X Device Control Interface” contains the C definition of the
control interface data structures.

PAC193X_SET_CHANNEL_CFG Input CHANNEL_DIS register value the user must provide
to IOCTL_PAC193X_SET_CHANNEL_CFG.

PAC193X_GET_NEG_POWER Output Channel Polarity Configuration registers returned by
IOCTL_PAC193X_GET_NEG_POWER:
• NEG_PWR
• NEG_PWR_ACT
• NEG_PWR_LAT

PAC193X_SET_NEG_POWER Output NEG_PWR register value the user must provide to
IOCTL_PAC193X_SET_NEG_POWER

PAC193X_GET_OVERFLOW Input/
Output

Input/output structure for
IOCTL_PAC193X_GET_OVERFLOW, containing one
input and two output flags:

• The input flag, if non-zero, requests the Reset
of the OVF bit from CTRL.

• The output flags return the OVF bits from
CTRL_ACT and CTRL_LAT

PAC193X_REFRESH_FLAGS Input Input structure for
IOCTL_PAC193X_DATA_REFRESH_RESET and
IOCTL_PAC193X_DATA_REFRESH_RESET_GLOBAL
requests containing one input flag. The flag
value set to
PAC193X_REFRESH_FLAG_RESET_ACCUMULATORS
(defined as one) indicates the request to also clear the
software accumulators.

PAC193X_LAST_SLOW_DATA Output Data structure returned by
IOCTL_PAC193X_GET_LAST_SLOW_DATA
containing device registers’ values sampled by the
Slow signal HL transition (Slow-triggered limited
REFRESH) caused by the system state transition to
S0 from other non-powered state:
• ACC_COUNT
• VPOWERn_ACC
• VBUSn, VBUSn_AVG
• VSENSEn, VSENSEn_AVG
• VPOWERn
• NEG_PWR_LAT
• CTRL_LAT
• CHANNEL_DIS_LAT

PAC193X_GET_SLOW Output Slow register value returned by
IOCTL_PAC193X_GET_SLOW.

PAC193X_GET_INTF_REV Output The device control interface revision number,
as reported by
IOCTL_PAC193X_GET_INTERFACE_REVISION.

PAC193X_GET_RENSE_MICRO Output The sense resistor values for all channels,
expressed in microohm units, as returned by
IOCTL_PAC193X_GET_RSENSE_MICRO.

TABLE 4-4: DEVICE CONTROL STRUCTURES (CONTINUED)

Structure Name Type Description
 2017-2022 Microchip Technology Inc. and its subsidiaries DS50002666D-page 21

PAC193X Device Driver User’s Guide
NOTES:
DS50002666D-page 22  2017-2022 Microchip Technology Inc. and its subsidiaries

PAC193X
DEVICE DRIVER

USER’S GUIDE
Chapter 5. PAC193X Driver Characteristics
5.1 DRIVER CHARACTERISTICS

This section provides information about the driver features which can affect the design
decisions for the user applications processing the data reported by the driver.

• Multiple I/O Requests

• Energy Metering Interfaces (EMI) vs. Device Control Interfaces

• Energy Software Accumulators

• Low-Power Mode and Power States

5.2 MULTIPLE I/O REQUESTS

Windows E3 module and multiple other user applications (or multiple instances of the
same application) may concurrently issue data report requests or device configuration
commands. The driver is queuing all the requests and executes them one at a time,
sequentially, in a run-to-completion way, ensuring the consistency of the I2C
transactions.

5.3 ENERGY METERING INTERFACES (EMI) VS. DEVICE CONTROL INTERFACES

For each PAC device, the PAC193X Windows Device Driver creates one
control interface and zero or more EMI interfaces, one for each connected channel
(RSENSE > 0). Each channel has a non-empty EMI power rail name ACPI ASL
parameter which is not explicitly turned off by ACPI ASL EMI enable/disable flags.

The EMI interfaces are reporting only the positive energy accumulation and the
timestamp of the last measurement.

The control interface reports all the measurements performed by the PAC193X
devices, including the energy and timestamp figures reported by the EMI interfaces.

The Windows Energy Estimation Engine (E3) collects only the energy figures reported
by the EMI interfaces (the EMI power rail names must comply with Microsoft naming
conventions in order to ensure that E3 is properly using the data).

The user applications can collect the data from EMI, control or both interface types:

• EMI interface has Microsoft defined control codes and data structures, which
make the application capable of collecting data from any EMI compliant metering
device vendor

• Control interface provides much more information using Microchip defined control
codes and data structures

The control interface also provides access to the device Configuration registers with
some restrictions:

• Some device configuration options are controlled exclusively by the driver: I2C
interface parameters, pointer skip, ALERT and SLOW pin configuration

• The channel enable/disable status change is accepted only if there is no EMI
interface open for the channels affected by the configuration change.
 2017-2022 Microchip Technology Inc. and its subsidiaries DS50002666D-page 23

PAC193X Device Driver User’s Guide
5.4 ENERGY SOFTWARE ACCUMULATORS

The driver implements a set of energy software accumulators for each PAC device to:

• Measure the real energy figure, computed by the driver from the device power
product accumulator value, RSENSE value and sampling rate. This is the energy
value reported through the EMI and control interface, expressed in
pico-watt-hours (pWh).

• Extend the energy accumulation time limit beyond the device capabilities. The
64-bit resolution of the software accumulators should extend the 17 minutes
minimum accumulation time, until register saturation, to about two years until the
software accumulator overflows.

The device Sample Counter register has a software sample counter companion
implemented by the driver.

Every time the driver receives an energy report request, it reads the device
Accumulator registers, updates the software accumulators and clears the device
accumulators.

For instance, the Windows E3 module is typically collecting the EMI energy every few
minutes. But even if there is no EMI interface and no user application to request energy
reports, the driver has an internal Watchdog Timer, and it still can update the software
accumulators periodically and clear the device accumulators. The driver configures the
Watchdog Timer interval with the value provided by the ACPI DSM Rev. 1 function, if
the value is less than 900 seconds and more than 60 seconds. If the value is not
compliant or the DSM revision is 0, the driver configures the Watchdog Timer to the
default 240-second interval.

5.5 LOW-POWER MODE AND POWER STATES

The recommended integration scenario with Windows 10 and Windows 11 systems
described for the PAC193X devices assumes that the devices receive power regard-
less of the power state of the host operating system. If the power is not physically
removed from the system, the PAC193X devices continue to accumulate the energy
data. (For details about the device integration with the host system refer the chapter
Chapter 2. “Driver Installation”) Therefore, there are several aspects that must be
addressed by the device driver once the operating system returns to working state (S0)
or exits the working state:

• Determine if the device has gone through a Power-On Reset (POR). In this case,
the device was initialized and must be applied additional configuration options.
However, the device registers contain valid data which can be added to the soft-
ware accumulators.

• Collect the data latched by the SLOW pin transition from high-to-low. The power
was not removed from the PAC193X devices, but the operating system is return-
ing to the working state (S0) from one of the following low power states:

- Shut down – S5

- Hibernate or Hybrid sleep or Hybrid shutdown – S4

- Sleep – S1/S2/S3

• Configure the PAC193X device into a low power mode (Idle) whenever the system
exits the working state (S0) in order to reduce its own power consumption. Please
refer to the Microsoft article System Power States for a detailed description of the
power states.
DS50002666D-page 24  2017-2022 Microchip Technology Inc. and its subsidiaries

https://docs.microsoft.com/en-us/windows/win32/power/system-power-states?redirectedfrom=MSDN

PAC193X Driver Characteristics
5.5.1 Low-Power Mode

The PAC193X own device power consumption is proportional with the data sampling
frequency. But the sampling frequency can be reduced when the operating system
exits the working state (S0), without affecting the measurements.

The device driver uses three sampling rate configuration options:

• Active sampling rate, if the system is running in working state – S0. The active
sampling rate value is initialized with the parameter reported by the ACPI BIOS
DSM, but the user application can change it using IOCTL_PAC193X_SET_CTRL
control interface operations.

• Idle sampling rate if the system enters one of the low power states:

- Sleep power states: S1, S2 or S3

- Hibernation, Hybrid sleep or Hybrid shutdown: S4

- Modern Standby: S0 low-power idle

The Idle sampling frequency value is initialized with the parameter reported by the
ACPI BIOS DSM and the user applications cannot change it.

• SINGLE_SHOT sampling mode if the system is shut down (S5). This configura-
tion can provide several benefits, depending on what PAC193X system integra-
tion options have been implemented and assuming that the device continues to
receive power while the system is shut down (S5):

- If the SLOW pin is activated by hardware during system S5, the device accu-
mulates energy at 8 samples per second.

- If the SLOW pin is not activated during system S5, the device is doing no con-
version cycle, effectively entering the Sleep mode since there is no
REFRESH command from the system to process.

- While the host system is shutdown the PAC193X device can still service com-
mands received from a different I2C controller. For example, an external
debug kit may be connected for assessing the system energy consumption
during S5 power state.

Windows 10 and Windows 11 operating systems implement the Modern Standby sys-
tem power model which can deliver superior user experience while reducing the overall
system energy consumption: Instant On device availability, background processing and
connectivity. This model has specific requirements for the hardware peripherals and
their device drivers. On such systems the Sleep power states (S1/S2/S3) have been
replaced by the S0 low power idle state.

The PAC193X device driver supports the Modern Standby power model by:

• Registering itself to the Windows Directed Power Management Framework (DFx).

• Registering the display state and the user presence Power Setting Callback
functions (GUID_CONSOLE_DISPLAY_STATE and GUID_GLOBAL_USER_
PRESENCE).

If the driver detects both PowerMonitorOff and PowerUserInactive events it configures
the device sampling frequency to the Idle ACPI BIOS DSM parameter value. The driver
reverts the device sampling frequency to the Active value if detects that either the con-
sole display state is PowerMonitorOn or the user presence state is PowerUserActive.
 2017-2022 Microchip Technology Inc. and its subsidiaries DS50002666D-page 25

PAC193X Device Driver User’s Guide
Table 5-1 summarizes the operating power states and the corresponding PAC193X
device sampling frequency.

TABLE 5-1: PAC193X DEVICE SAMPLING FREQUENCY

Windows®
Power State

PAC193X
Sample Frequency

Comments

S0 Active • Initialized with ACPI BIOS DSM “Active”
sample frequency parameter.

• User can change it with
IOCTL_PAC193X_SET_CTRL

S0 low-power idle Idle • ACPI BIOS DSM “Idle” sample frequency
parameter

S1, S2, S3 Idle
or

SLOW

• ACPI BIOS DSM “Idle” sample frequency
parameter
or

• 8 Hz if SLOW pin is activated

S4 Idle
or

SLOW

• ACPI BIOS DSM “Idle” sample frequency
parameter
or

• 8 Hz if SLOW pin is activated

S5 SINGLE_SHOT
or

SLOW

• No sampling
or

• 8 Hz if SLOW pin is activated
DS50002666D-page 26  2017-2022 Microchip Technology Inc. and its subsidiaries

PAC193X
DEVICE DRIVER
USER’S GUIDE

Appendix A. Driver Revision History
A.1 BUG FIXES AND CHANGES

TABLE A-1: DRIVER RELEASE HISTORY

Releases Date Description

1.4.2 20 August 2021 • Added the PAC193X device driver support for Windows® 11

1.4.1 26 April 2021 • Improved the support for the DFx/RTD3 power state: the sampling rate is set
to low sps only if the system power state is changed to a low-power state
(S1/S2/S3/S4/S5 hybrid or CS).

• The driver ensures that non-supported channels on the devices with less
than 4 channels are disabled. The user requests to change the channel’s
ON/OFF setting for the non-supported channels are ignored.

• Included code optimizations to reduce the number of I2C transfers when
entering D0 power state and when reporting the device ID values.

• Improved sampling rate configuration code (makes it resilient against poten-
tial initialization issue).

1.4.0 28 April 2020 • Added support for Windows® DFx (Directed Power Framework) and RTD3
power state.

• Issue fix: Fixed the measurement report time-stamp jump ahead observed
after about 26 hours from the machine cold boot. Note: the time-stamp now
is reported as a count of 100-nanosecond intervals since January 1, 1601.
 2017-2022 Microchip Technology Inc. and its subsidiaries DS50002666D-page 27

PAC193X Microsoft® Windows® 10 Driver User’s Guide
1.3 22 May 2019 • Added support for one-channel device – PAC1931.
• Added support for microohm Sense Resistors (RSENSE).
• Added support for ACPI DSM Rev. 1, which provides additional driver and

device initialization options while preserving the backward compatibility with
DSM Rev. 0:
- RSENSE value expressed as microohm units.
- EMI interface enable/disable bit mask. The channels with non-empty

EMI names, but disabled EMI interface, are still functional as “private”
channels and they keep their name string. So the private channels can
be easy to identify now.

- Channel polarity bit mask with the same structure and meaning as the
device NEG_PWR register.

- Device “Active” and “Idle” sampling frequency.
- Driver Watchdog Timer interval.

• Added new IOCTL reporting the control interface revision number –
IOCTL_PAC193X_GET_INTERFACE_REVISION.

• Added new IOCTL reporting the Sense Resistor (RSENSE) values as
microohm units.

• Restriction removed: Sample frequency can be changed even if the device
has open EMI channels (non-private).

• Restriction removed: Private channels’ status can be changed
(enabled/disabled) and the software counters for the private channels can be
reset, even if other channels on the device are EMI channels (non-private).

• I2C communication optimization (eliminate redundant commands and
reduce the delay between “REFRESH” command and the subsequent device
data read).

• Device power optimization: turn off the channels with 0Ω Sense Resistor
(RSENSE).

• Consistent use of _ACT registers for device operating state checks.
• Issue fix concerning bipolar channel data computation: The very first data

sample is computed as an unsigned number.
• Issue fix – reject the EMI IOCTL requests issued to the control interface.
• IOCTL_PAC193X_DATA_REFRESH_RESET_GLOBAL control code changed

in order to define it as read/write code.
• Implemented the software work around for the silicon errata that prevents

the reduction of the device internal power consumption between sample
processing, affecting the Silicon Revisions 0x02 and 0x03 (Revision ID
register 0xFF).

TABLE A-1: DRIVER RELEASE HISTORY (CONTINUED)

Releases Date Description
DS50002666D-page 28  2017-2022 Microchip Technology Inc. and its subsidiaries

Bill of Materials (BOM)
First Public
Release

07 September 2017 • Three Latch registers added to the LAST_SLOW_DATA.
• The SET_NEG_POWER IOCTL allows register setting regardless of the

presence of public channels on the device.
• The SET_CHANNEL_CFG IOCTL allows enabling or disabling individual

private channels, rather than requiring no public channels on the device.
• The ByteCount and Timeout fields can no longer be set by the user with the
SET_CHANNEL_CFG IOCTL.

• TotalAccumulationCount is cached from the previous cycle to properly
support REFRESH_V.

• SoftwareAccumulatorCount is cleared when the clear option is specified to
the REFRESH_RESET IOCTL.

• Single Shot mode is supported.
• The polling timer is rearmed only when the hardware accumulators are

cleared, not when an IOCTL is received.
• Fixed an outstanding issue with resource rebalancing (issue was present

during the HLKs).
• Added support for the second hardware revision.
• PACTest accommodates and displays IOCTL changes.

TABLE A-1: DRIVER RELEASE HISTORY (CONTINUED)

Releases Date Description
 2017-2022 Microchip Technology Inc. and its subsidiaries DS50002666D-page 29

PAC193X
DEVICE DRIVER

USER’S GUIDE
Appendix B. PAC193X Device Control Interface
B.1 INTRODUCTION

PAC193X device control interface created by the PAC193X Windows Device Driver is
defined by the example C header files described in this appendix:

• PAC193x_HW.h: Contains PAC193X device-specific definitions

• PAC193x_INTF.h: Contains the interface and the IOCTL definitions

B.2 PAC193X DEVICE DEFINITIONS

EXAMPLE B-1: PAC193X_HW.h HEADER FILE

///
// (C) 2017-2021 Microchip Technology Inc. and its subsidiaries.
// (C) Copyright 2016-2017 OSR Open Systems Resources, Inc.
//
// Subject to your compliance with these terms, you may use Microchip software
// and any derivatives exclusively with Microchip products. You're responsible
// for complying with 3rd party license terms applicable to your use of 3rd party
// software (including open source software) that may accompany Microchip software.
// SOFTWARE IS “AS IS.” NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY,
// APPLY TO THIS SOFTWARE, INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,
// MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP
// BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS,
// DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE SOFTWARE, HOWEVER
// CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE
// FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY
// ON ALL CLAIMS RELATED TO THE SOFTWARE WILL NOT EXCEED AMOUNT OF FEES, IF ANY,
// YOU PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
//
// MODULE:
// PAC193x_HW.h
//
// ABSTRACT:
// Device-Specific Hardware Interface for the Microchip PAC193x EMI Driver
//
// AUTHOR(S):
// OSR Open Systems Resources, Inc.
// Microchip Technology, Inc.
//
// REVISION:
// v1.4.2
//
///
#pragma once

////////////////////////
// DEVICE CONSTANTS //
////////////////////////
 2017-2022 Microchip Technology Inc. and its subsidiaries DS50002666D-page 30

PAC193X Device Control Interface
EXAMPLE B-1: PAC193X_HW.h HEADER FILE (CONTINUED)

#define PAC_MAXIMUM_CHANNELS 4

/////////////////////////////////////
// DEVICE REGISTER VALUE CONSTANTS //
/////////////////////////////////////
#define PAC_PRODUCT_ID_1934 0x5B
#define PAC_PRODUCT_ID_1933 0x5A
#define PAC_PRODUCT_ID_1932 0x59
#define PAC_PRODUCT_ID_1931 0x58

#define PAC_MANUFACTURER_ID 0x5D
#define PAC_REVISION 0x01

///////////////////////////////
// DEVICE REGISTER ADDRESSES //
///////////////////////////////

//
// Main control registers
//
#define PAC_REGISTER_REFRESH 0x00
#define PAC_REGISTER_CONTROL 0x01

//
// Measurement registers
//
#define PAC_REGISTER_ACC_COUNT 0x02
#define PAC_REGISTER_CH1_ACC_COUNT 0x03
#define PAC_REGISTER_CH2_ACC_COUNT 0x04
#define PAC_REGISTER_CH3_ACC_COUNT 0x05
#define PAC_REGISTER_CH4_ACC_COUNT 0x06

#define PAC_REGISTER_VBUS1 0x07
#define PAC_REGISTER_VBUS2 0x08
#define PAC_REGISTER_VBUS3 0x09
#define PAC_REGISTER_VBUS4 0x0A

#define PAC_REGISTER_VSENSE1 0x0B
#define PAC_REGISTER_VSENSE2 0x0C
#define PAC_REGISTER_VSENSE3 0x0D
#define PAC_REGISTER_VSENSE4 0x0E

#define PAC_REGISTER_VBUS1_AVG 0x0F
#define PAC_REGISTER_VBUS2_AVG 0x10
#define PAC_REGISTER_VBUS3_AVG 0x11
#define PAC_REGISTER_VBUS4_AVG 0x12

#define PAC_REGISTER_VSENSE1_AVG 0x13
#define PAC_REGISTER_VSENSE2_AVG 0x14
#define PAC_REGISTER_VSENSE3_AVG 0x15
#define PAC_REGISTER_VSENSE4_AVG 0x16

#define PAC_REGISTER_VPOWER1 0x17
#define PAC_REGISTER_VPOWER2 0x18
#define PAC_REGISTER_VPOWER3 0x19
#define PAC_REGISTER_VPOWER4 0x1A

//
// Various other control registers
//
 2017-2022 Microchip Technology Inc. and its subsidiaries DS50002666D-page 31

PAC193X Device Driver User’s Guide

DS
EXAMPLE B-1: PAC193X_HW.h HEADER FILE (CONTINUED)

#define PAC_REGISTER_CHANNEL_DIS 0x1C
#define PAC_REGISTER_NEG_PWR 0x1D
#define PAC_REGISTER_REFRESH_G 0x1E
#define PAC_REGISTER_REFRESH_V 0x1F
#define PAC_REGISTER_SLOW 0x20
#define PAC_REGISTER_CTRL_ACT 0x21
#define PAC_REGISTER_CHANNEL_DIS_ACT 0x22
#define PAC_REGISTER_NEG_PWR_ACT 0x23
#define PAC_REGISTER_CTRL_LAT 0x24
#define PAC_REGISTER_CHANNEL_DIS_LAT 0x25
#define PAC_REGISTER_NEG_PWR_LAT 0x26

//
// Chip IDs
//
#define PAC_REGISTER_PRODUCT_ID 0xFD
#define PAC_REGISTER_MANUFACTURER_ID 0xFE
#define PAC_REGISTER_CHIP_REVISION 0xFF

/////////////////////////////////
// DEVICE REGISTER DEFINITIONS //
/////////////////////////////////

#pragma push(pack:1)
typedef struct _PAC193X_CTRL_REGISTER {
 UCHAR Overflow : 1;
 UCHAR OverflowAlert : 1;
 UCHAR AlertConversion : 1;
 UCHAR AlertPin : 1;
 UCHAR SingleShotMode : 1;
 UCHAR Sleep : 1;
 UCHAR SampleRateNormalMode : 2;
} PAC193X_CTRL_REGISTER, *PPAC193X_CTRL_REGISTER;

typedef struct _PAC193X_CHANNEL_DIS_ACT_REGISTER {
 UCHAR : 1;
 UCHAR NoSkip : 1;
 UCHAR ByteCount : 1;
 UCHAR Timeout : 1;
 UCHAR Channel4Off : 1;
 UCHAR Channel3Off : 1;
 UCHAR Channel2Off : 1;
 UCHAR Channel1Off : 1;
} PAC193X_CHANNEL_DIS_REGISTER, *PPAC193X_CHANNEL_DIS_REGISTER;

typedef struct _PAC193X_NEG_PWR_REGISTER {
 UCHAR Channel4BIDV : 1;
 UCHAR Channel3BIDV : 1;
 UCHAR Channel2BIDV : 1;
 UCHAR Channel1BIDV : 1;
 UCHAR Channel4BIDI : 1;
 UCHAR Channel3BIDI : 1;
 UCHAR Channel2BIDI : 1;
 UCHAR Channel1BIDI : 1;
} PAC193X_NEG_PWR_REGISTER, *PPAC193X_NEG_PWR_REGISTER;
50002666D-page 32  2017-2022 Microchip Technology Inc. and its subsidiaries

PAC193X Device Control Interface
EXAMPLE B-1: PAC193X_HW.h HEADER FILE (CONTINUED)

typedef struct _PAC193X_SLOW_REGISTER {
 UCHAR PowerOnReset : 1;
 UCHAR RefreshVFall : 1;
 UCHAR RefreshFall : 1;
 UCHAR RefreshVRise : 1;
 UCHAR RefreshRise : 1;
 UCHAR SlowHighLow : 1;
 UCHAR SlowLowHigh : 1;
 UCHAR Slow : 1;
} PAC193X_SLOW_REGISTER, *PPAC193X_SLOW_REGISTER;
#pragma pop(pack)
 2017-2022 Microchip Technology Inc. and its subsidiaries DS50002666D-page 33

PAC193X Device Driver User’s Guide
B.3 INTERFACE AND IOCTL DEFINITIONS

EXAMPLE B-2: PAC193X_INTF.h HEADER FILE

///
// (C) 2017-2021 Microchip Technology Inc. and its subsidiaries.
// (C) Copyright 2016-2017 OSR Open Systems Resources, Inc.
//
// Subject to your compliance with these terms, you may use Microchip software
// and any derivatives exclusively with Microchip products. You're responsible
// for complying with 3rd party license terms applicable to your use of 3rd party
// software (including open source software) that may accompany Microchip software.
// SOFTWARE IS "AS IS." NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY,
// APPLY TO THIS SOFTWARE, INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,
// MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP
// BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS,
// DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE SOFTWARE, HOWEVER
// CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE
// FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY
// ON ALL CLAIMS RELATED TO THE SOFTWARE WILL NOT EXCEED AMOUNT OF FEES, IF ANY,
// YOU PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
//
// MODULE:
// PAC193x_INTF.h
//
// ABSTRACT:
// Device-Specific Interface and IOCTL definitions for
// the Microchip PAC193x EMI Driver
//
// AUTHOR(S):
// OSR Open Systems Resources, Inc.
// Microchip Technology, Inc.
//
// REVISION:
// v1.4.2
//
///

#pragma once

#include <initguid.h>
#include <emi.h>

// {4166FE9F-A865-4314-8942-7C12ABA290F6}
// Identifies the control (non-EMI) portion of the interface
//
#define GUID_PAC193X_CONTROL_INTERFACE_STR L"{4166FE9F-A865-4314-8942-7C12ABA290F6}"
DEFINE_GUID(GUID_PAC193X_CONTROL_INTERFACE,
 0x4166fe9f, 0xa865, 0x4314, 0x89, 0x42, 0x7c, 0x12, 0xab, 0xa2, 0x90, 0xf6);

//
// Register definitions
//
#include "..\Inc\PAC193x_HW.h"

#define FILE_DEVICE_PAC193X 0x913E
DS50002666D-page 34  2017-2022 Microchip Technology Inc. and its subsidiaries

PAC193X Device Control Interface
EXAMPLE B-2: PAC193X_INTF.h HEADER FILE (CONTINUED)

///
// IOCTL_PAC193X_GET_DEVICE_INFO_SIZE
//
// Returns the size allocation requirements for the buffer that must hold
// the device info data structure.
// - input buffer: none
// - output buffer: PAC193X_GET_DEVICE_INFO_SIZE
///
typedef struct _PAC193X_GET_DEVICE_INFO_SIZE {
 ULONG BufferSize;
}PAC193X_GET_DEVICE_INFO_SIZE, *PPAC193X_GET_DEVICE_INFO_SIZE;

#define IOCTL_PAC193X_GET_DEVICE_INFO_SIZE CTL_CODE(FILE_DEVICE_PAC193X,\
 1929,\
 METHOD_BUFFERED,\
 FILE_READ_DATA)

///
// IOCTL_PAC193X_GET_DEVICE_INFO
//
// Returns information about the device version and about the channel
// connections (rail names, sense resistors, connection status).
// - input buffer: none
// - output buffer: PAC193X_GET_DEVICE_INFO
///
typedef struct _PAC193X_DEVICE_CHANNEL_INFO {
 ULONG NextChannelInfoOffset;

 BOOLEAN ChannelInUse; // TRUE if EMI is created
 // (the channel is named)

 ULONG RsenseMOhm; // Rsense in milliohms
 // 0 indicates non-connected channel

 WCHAR ChannelName[ANYSIZE_ARRAY]; // EMI channel name.
 // If the string is empty (""),
 // EMI is not created for this channel
 // reported also as
 // EMI_METADATA.MeteredHardwareName
} PAC193X_DEVICE_CHANNEL_INFO, *PPAC193X_DEVICE_CHANNEL_INFO;

typedef struct _PAC193X_GET_DEVICE_INFO {
 UCHAR ProductId; // PRODUCT ID register value
 UCHAR ManufacturerId; // MANUFACTURER ID register value
 UCHAR ProductRevision; // REVISION ID register value
 // reported also as EMI_METADATA.HardwareRevision
 UCHAR ChannelDescRegister; // CHANNEL_DIS register value
 ULONG ChannelCount; // the number of "connected"
 // channels (Rsense > 0)

 PAC193X_DEVICE_CHANNEL_INFO ChannelInfo; // there are 2,3 or 4
 // "CHANNEL_INFO" structures
 // depending on device type:
 // PAC1932, PAC1933 or PAC1934
} PAC193X_GET_DEVICE_INFO, *PPAC193X_GET_DEVICE_INFO;

#define IOCTL_PAC193X_GET_DEVICE_INFO CTL_CODE(FILE_DEVICE_PAC193X,\
 1930,\
 METHOD_BUFFERED,\
 FILE_READ_DATA)
 2017-2022 Microchip Technology Inc. and its subsidiaries DS50002666D-page 35

PAC193X Device Driver User’s Guide
EXAMPLE B-2: PAC193X_INTF.h HEADER FILE (CONTINUED)

///
// IOCTL_PAC193X_GET_CTRL
//
// Returns the content of the device registers CTRL, CTRL_ACT, CTRL_LAT
// - input buffer: none
// - output buffer: PAC193X_GET_CTRL
///
typedef struct _PAC193X_GET_CTRL {
 PAC193X_CTRL_REGISTER ControlRegister; // CTRL register value
 PAC193X_CTRL_REGISTER ControlAct; // CTRL_ACT register value
 PAC193X_CTRL_REGISTER ControlLat; // CTRL_ACT register value
} PAC193X_GET_CTRL, *PPAC193X_GET_CTRL;

#define IOCTL_PAC193X_GET_CTRL CTL_CODE(FILE_DEVICE_PAC193X,\
 1931,\
 METHOD_BUFFERED,\
 FILE_READ_DATA)

///
// IOCTL_PAC193X_SET_CTRL
//
// Provides user limited control over some device configuration bits from
// CTRL register: SRN, SLEEP and SING. The driver rejects the configuration
// requests if the device has open EMI channels.
// - input buffer: PAC193X_SET_CTRL
// - output buffer: none (zero bytes returned)
///
typedef struct _PAC193X_SET_CTRL {
 PAC193X_CTRL_REGISTER ControlRegister; // value to be written in
 // CTRL register
} PAC193X_SET_CTRL, *PPAC193X_SET_CTRL;

#define IOCTL_PAC193X_SET_CTRL CTL_CODE(FILE_DEVICE_PAC193X,\
 1932,\
 METHOD_BUFFERED,\
 FILE_WRITE_DATA)

///
// IOCTL_PAC193X_GET_MEASUREMENTS
//
// Returns the measured values (voltage, power, accumulated power, sample count
// and timestamp.
// - input buffer: none
// - output buffer: PAC193X_MEASUREMENTS
///
typedef struct _PAC193X_MEASUREMENTS {
 ULONG AccumulatorCount; // ACC_COUNT register value

 // unipolar or bipolar registers - section begin
 ULONGLONG AccumulatorOutput[PAC_MAXIMUM_CHANNELS];

 // VPOWERn_ACC registers values
 USHORT VBus[PAC_MAXIMUM_CHANNELS]; // VBUSn register values
 USHORT VSense[PAC_MAXIMUM_CHANNELS]; // VSENSEn registers values
 USHORT VBusAvg[PAC_MAXIMUM_CHANNELS]; // VBUSn_AVG registers values
 USHORT VSenseAvg[PAC_MAXIMUM_CHANNELS]; // VSENSEn_AVG registers
values
 ULONG VPower[PAC_MAXIMUM_CHANNELS]; // VPOWERn registers values
DS50002666D-page 36  2017-2022 Microchip Technology Inc. and its subsidiaries

PAC193X Device Control Interface
EXAMPLE B-2: PAC193X_INTF.h HEADER FILE (CONTINUED)

 // CAUTION: If the bidirectional voltage and/or current is enabled for
 // certain channels the binary format of the reported values is in
 // 2's complement (the MSB is a sign bit).
 // So, please make sure to cast the reported value to the necessary
 // data type for the subsequent processing.

 // REMARK: the driver already implements the workaround for the VPOWER_ACC
 // and VPOWERN errata which affects the devices with RevisionID = 0x01
 // unipolar or bipolar registers - section end

 // software accumulators - section begin
 // The driver accumulates in software accumulators the values reported by
 // devices and clears the device accumulators in order to avoid the
 // devices accumulators saturation
 ULONGLONG SofwareAccumulatorCount; // software sample counter value

 ULONGLONG SofwareAccumulator[PAC_MAXIMUM_CHANNELS];
 // Energy accumulator, as defined by EMI.
 // If the channel is configured as bi-polar, only the
 // positive energy increments are accumulated.
 // The energy energy is reported in pico-watt-hours (pWh).
 // Same values are also reported by
 // EMI_MEASUREMENT_DATA.AbsoluteEnergy

 LONGLONG SignedSoftwareAccumulator[PAC_MAXIMUM_CHANNELS];
 // Signed energy accumulator (MSB is sign bit).
 // Both positive and negative energy values are accumulated.
 // There is one bit resolution loss due to sign bit but
 // this allows bipolar energy measurements.
 // The energy energy is reported in pico-watt-hours (pWh).
 // software accumulators - section end

 PAC193X_NEG_PWR_REGISTER NegPowerLat; // NEG_PWR_LAT register value
 PAC193X_CTRL_REGISTER CtrlLat; // CTRL_LAT register value
 PAC193X_CHANNEL_DIS_REGISTER ChannelDisLat; // CHANNEL_DIS_LAT register value

 ULONGLONG Timestamp; // timestamp of the last measurements
 // reported in multiples of 100ns.
 // The timestamp is created by the driver
 // by reading the system performance counter
 // (high resolution timer, <1us)
 // Same values are also reported by
 // EMI_MEASUREMENT_DATA.AbsoluteTime
}PAC193X_MEASUREMENTS, *PPAC193X_MEASUREMENTS;

#define IOCTL_PAC193X_GET_MEASUREMENTS CTL_CODE(FILE_DEVICE_PAC193X,\
 1933,\
 METHOD_BUFFERED,\
 FILE_READ_DATA)
 2017-2022 Microchip Technology Inc. and its subsidiaries DS50002666D-page 37

PAC193X Device Driver User’s Guide

DS
EXAMPLE B-2: PAC193X_INTF.h HEADER FILE (CONTINUED)
///
// IOCTL_PAC193X_GET_CHANNEL_CFG
//
// Returns the content of the I2C/SMB and channel ON/OFF configuration registers:
// CHANNEL_DIS, CHANNEL_DIS_ACT, CHANNEL_DIS_LAT
// - input buffer: none
// - output buffer: PAC193X_GET_CHANNEL_CFG
///
typedef struct _PAC193X_GET_CHANNEL_CFG {
 PAC193X_CHANNEL_DIS_REGISTER ConfigRegister;
 // CHANNEL_DIS register value
 PAC193X_CHANNEL_DIS_REGISTER ConfigAct; // CHANNEL_DIS_ACT register value
 PAC193X_CHANNEL_DIS_REGISTER ConfigLat; // CHANNEL_DIS_LAT register value
} PAC193X_GET_CHANNEL_CFG, *PPAC193X_GET_CHANNEL_CFG;

#define IOCTL_PAC193X_GET_CHANNEL_CFG CTL_CODE(FILE_DEVICE_PAC193X,\
 1934,\
 METHOD_BUFFERED,\
 FILE_READ_DATA)

///
// IOCTL_PAC193X_SET_CHANNEL_CFG
//
// Provides user limited control over some configuration bits from CHANNEL_DIS
// register: CH1, CH2, CH3 and CH4.
// Notes:
// - The driver ignores the requests to change the I2C/SMB configuration bits:
// TIMEOUT and BYTECOUNT, NOSKIP
// - The driver ignores the requests to change the pointer skip configuration
// bit: NOSKIP
// - The driver ignores the change values for those channels which has
// open EMI channels.
//
// - input buffer: PAC193X_SET_CHANNEL_CFG
// - output buffer: none (zero bytes returned)
///
typedef struct _PAC193X_GET_SET_CHANNEL_CFG {
 PAC193X_CHANNEL_DIS_REGISTER ConfigRegister;
} PAC193X_SET_CHANNEL_CFG, *PPAC193X_SET_CHANNEL_CFG;

#define IOCTL_PAC193X_SET_CHANNEL_CFG CTL_CODE(FILE_DEVICE_PAC193X,\
 1935,\
 METHOD_BUFFERED,\
 FILE_WRITE_DATA)

///
// IOCTL_PAC193X_GET_NEG_POWER
//
// Returns the content of the channel polarity configuration registers NEG_PWR,
// NEG_PWR_ACT, NEG_PWR_LAT
// - input buffer: none
// - output buffer: PAC193X_GET_NEG_POWER
///
typedef struct _PAC193X_GET_NEG_POWER {
 PAC193X_NEG_PWR_REGISTER NegPowerRegister; // NEG_PWR register value
 PAC193X_NEG_PWR_REGISTER NegPowerAct; // NEG_PWR_ACT register value
 PAC193X_NEG_PWR_REGISTER NegPowerLat; // NEG_PWR_LAT register value
} PAC193X_GET_NEG_POWER, *PPAC193X_GET_NEG_POWER;

#define IOCTL_PAC193X_GET_NEG_POWER CTL_CODE(FILE_DEVICE_PAC193X,\
 1936,\
 METHOD_BUFFERED,\
 FILE_READ_DATA)
50002666D-page 38  2017-2022 Microchip Technology Inc. and its subsidiaries

PAC193X Device Control Interface
EXAMPLE B-2: PAC193X_INTF.h HEADER FILE (CONTINUED)
///
// IOCTL_PAC193X_SET_NEG_POWER
//
// Provides user control over channel polarity configuration register: NEG_PWR.
// Channel polarity is set to unipolar at the driver initialization but can be
// changed by the user at any moment, regardless the EMI status.
// - input buffer: PAC193X_SET_NEG_POWER
// - output buffer: none (zero bytes returned)
///
typedef struct _PAC193X_SET_NEG_POWER {
 PAC193X_NEG_PWR_REGISTER NegPowerRegister; // value to be written in
 // NEG_PWR register
} PAC193X_SET_NEG_POWER, *PPAC193X_SET_NEG_POWER;

#define IOCTL_PAC193X_SET_NEG_POWER CTL_CODE(FILE_DEVICE_PAC193X,\
 1937,\
 METHOD_BUFFERED,\
 FILE_WRITE_DATA)

///
// IOCTL_PAC193X_GET_OVERFLOW
//
// Returns the status of the OVF bit from CTRL_ACT and CTRL_LAT.
// Depending on the value of the input flag, this request can also clear
// (reset to 0) the OVF flag from CTRL register.
// - input buffer: PAC193X_GET_OVERFLOW
// - output buffer: PAC193X_GET_OVERFLOW
///
typedef struct _PAC193X_GET_OVERFLOW {
 UCHAR OvfClear; // In: the user set nonzero value to request the driver
 // to clear the OVF flag (in device CTRL register)

 UCHAR OvfActual; // Out: the IOCTL_PAC193X_GET_OVERFLOW driver returns in
 // the LSB the value of the OVF bit from CTRL_ACT

 UCHAR OvfLatch; // Out: the IOCTL_PAC193X_GET_OVERFLOW driver returns in
 // the LSB the value of the OVF bit from CTRL_ACT
} PAC193X_GET_OVERFLOW, *PPAC193X_GET_OVERFLOW;

#define IOCTL_PAC193X_GET_OVERFLOW CTL_CODE(FILE_DEVICE_PAC193X,\
 1938,\
 METHOD_BUFFERED,\
 FILE_READ_DATA | FILE_WRITE_DATA)

///
// IOCTL_PAC193X_DATA_REFRESH
//
// Performs the update of the software accumulators using the REFRESH_V
// device command
// - input buffer: none
// - output buffer: none (zero bytes returned)
///
#define IOCTL_PAC193X_DATA_REFRESH CTL_CODE(FILE_DEVICE_PAC193X,\
 1939,\
 METHOD_BUFFERED,\
 FILE_READ_DATA)
 2017-2022 Microchip Technology Inc. and its subsidiaries DS50002666D-page 39

PAC193X Device Driver User’s Guide
EXAMPLE B-2: PAC193X_INTF.h HEADER FILE (CONTINUED)
///
// IOCTL_PAC193X_DATA_REFRESH_RESET
//
// Performs the update of the software accumulators using the REFRESH device
// command. Depending on the value of the input flag, this request can also clear
// (reset to 0) the software accumulators for the channels without open EMI
// interfaces.
// - input buffer: PAC193X_REFRESH_FLAGS
// - output buffer: none (zero bytes returned)
///
#define PAC193X_REFRESH_FLAG_RESET_ACCUMULATORS (1 << 0)
typedef struct _PAC193X_REFRESH_FLAGS {
 ULONG Flags; // In: the user set the value of this field to
 // PAC193X_REFRESH_FLAG_RESET_ACCUMULATORS (1) in order to
 // request the driver to clear the software accumulators
 // - SofwareAccumulatorCount
 // - SofwareAccumulator[PAC_MAXIMUM_CHANNELS]
 // - SignedSoftwareAccumulator[PAC_MAXIMUM_CHANNELS]
 //
 // CAUTION: SofwareAccumulator and SignedSoftwareAccumulator
 // for the EMI channels are not reset
} PAC193X_REFRESH_FLAGS, *PPAC193X_REFRESH_FLAGS;

#define IOCTL_PAC193X_DATA_REFRESH_RESET CTL_CODE(FILE_DEVICE_PAC193X,\
 1940,\
 METHOD_BUFFERED,\
 FILE_READ_DATA | FILE_WRITE_DATA)

///
// IOCTL_PAC193X_DATA_REFRESH_RESET_GLOBAL
//
// Performs a global update of the software accumulators for all the PAC193x
// devices in the system. Depending on the value of the input flag, this request
// can also clear (reset to 0) the software accumulators for the channels without
// open EMI interfaces.
// - input buffer: PAC193X_REFRESH_FLAGS
// - output buffer: none (zero bytes returned)
//
// NOTE: because Windows SpbCx framework does not support the I2C general call
// address (0x00), the driver cannot implement this request using REFRESH_G
// device commands. Instead, the driver implements this request sending
// sequential REFRESH commands to all the devices in the system.
///
#define IOCTL_PAC193X_DATA_REFRESH_RESET_GLOBAL CTL_CODE(FILE_DEVICE_PAC193X,\
 1941,\
 METHOD_BUFFERED,\
 FILE_READ_DATA | FILE_WRITE_DATA)
 //in the interface revision 0x01 was:
 //FILE_READ_DATA)
DS50002666D-page 40  2017-2022 Microchip Technology Inc. and its subsidiaries

PAC193X Device Control Interface
EXAMPLE B-2: PAC193X_INTF.h HEADER FILE (CONTINUED)
///
// IOCTL_PAC193X_GET_LAST_SLOW_DATA
//
// Returns for all the channels all the data measurements sampled by the last
// SLOW signal HL transition (SLOW triggered “limited” refresh) caused by the
// system state transition to S0 from other non-powered state.
// - input buffer: none
// - output buffer: PAC193X_LAST_SLOW_DATA
///
typedef struct _PAC193X_LAST_SLOW_DATA {
 ULONG AccumulatorCount; // ACC_COUNT register value

 // unipolar or bipolar registers - section begin
 ULONGLONG AccumulatorOutput[PAC_MAXIMUM_CHANNELS];
 // VPOWERn_ACC registers values
 USHORT VBus[PAC_MAXIMUM_CHANNELS]; // VBUSn register values
 USHORT VSense[PAC_MAXIMUM_CHANNELS]; // VSENSEn registers values
 USHORT VBusAvg[PAC_MAXIMUM_CHANNELS]; // VBUSn_AVG registers values
 USHORT VSenseAvg[PAC_MAXIMUM_CHANNELS]; // VBUSn_AVG registers values
 ULONG VPower[PAC_MAXIMUM_CHANNELS]; // VPOWERn registers values

 // CAUTION: If the bidirectional voltage and/or current is enabled for
 // certain channels the binary format of the reported values is in
 // 2's complement (the MSB is a sign bit). So, please make sure
 // to cast the reported value to the necessary data type for the
 // subsequent processing.
 //
 // REMARK: the driver already implements the workaround for the VPOWER_ACC
 // and VPOWERN errata which affects the devices with
 // Revision ID = 0x01
 // unipolar or bipolar registers - section end

 PAC193X_NEG_PWR_REGISTER NegPowerLat; // NEG_PWR_LAT register value
 PAC193X_CTRL_REGISTER CtrlLat; // CTRL_LAT register value
 PAC193X_CHANNEL_DIS_REGISTER ChannelDisLat; // CHANNEL_DIS_LAT register value
}PAC193X_LAST_SLOW_DATA, *PPAC193X_LAST_SLOW_DATA;

#define IOCTL_PAC193X_GET_LAST_SLOW_DATA CTL_CODE(FILE_DEVICE_PAC193X,\
 1942,\
 METHOD_BUFFERED,\
 FILE_READ_DATA)

///
// IOCTL_PAC193X_GET_SLOW
//
// Returns the value of the SLOW register.
// Note: the configuration of the SLOW register is controlled exclusively
// by the driver.
// - input buffer: none
// - output buffer: PAC193X_GET_SLOW
///
typedef struct _PAC193X_GET_SLOW {
 PAC193X_SLOW_REGISTER SlowRegister; // SLOW register value
} PAC193X_GET_SLOW, *PPAC193X_GET_SLOW;

#define IOCTL_PAC193X_GET_SLOW CTL_CODE(FILE_DEVICE_PAC193X,\
 1943,\
 METHOD_BUFFERED,\
 FILE_READ_DATA)
 2017-2022 Microchip Technology Inc. and its subsidiaries DS50002666D-page 41

PAC193X Device Driver User’s Guide
EXAMPLE B-2: PAC193X_INTF.h HEADER FILE (CONTINUED)
///
// IOCTL_PAC193X_GET_INTERFACE_REVISION
//
// Returns the driver private interface revision number.
//
// - input buffer: none
// - output buffer: PAC193X_GET_INTF_REV
///
typedef struct _PAC193X_GET_INTF_REV {
 USHORT PrivIntfRev; // private interface revision value
} PAC193X_GET_INTF_REV, *PPAC193X_GET_INTF_REV;

#define IOCTL_PAC193X_GET_INTERFACE_REVISION CTL_CODE(FILE_DEVICE_PAC193X,\
 1944,\
 METHOD_BUFFERED,\
 FILE_READ_DATA)

///
// IOCTL_PAC193X_GET_RSENSE_MICRO
//
// Returns the sense resistor values for all channels as micro-ohms values.
// NOTE: returns 0 for the un-connected sense resistors and for the channels
// which are not available on the devices with less than four channels.
//
// - input buffer: none
// - output buffer: PAC193X_GET_RSENSE_MICRO
///
typedef struct _PAC193X_GET_RSENSE_MICRO {
 ULONG RsenseCH1; //micro-ohms
 ULONG RsenseCH2; //micro-ohms
 ULONG RsenseCH3; //micro-ohms
 ULONG RsenseCH4; //micro-ohms
} PAC193X_GET_RSENSE_MICRO, *PPAC193X_GET_RSENSE_MICRO;

#define IOCTL_PAC193X_GET_RSENSE_MICRO CTL_CODE(FILE_DEVICE_PAC193X,\
 1945,\
 METHOD_BUFFERED,\
 FILE_READ_DATA)
DS50002666D-page 42  2017-2022 Microchip Technology Inc. and its subsidiaries

DS50002666D-page 43  2017-2022 Microchip Technology Inc. and its subsidiaries

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733

China - Beijing
Tel: 86-10-8569-7000

China - Chengdu
Tel: 86-28-8665-5511

China - Chongqing
Tel: 86-23-8980-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-2943-5100

China - Nanjing
Tel: 86-25-8473-2460

China - Qingdao
Tel: 86-532-8502-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenyang
Tel: 86-24-2334-2829

China - Shenzhen
Tel: 86-755-8864-2200

China - Suzhou
Tel: 86-186-6233-1526

China - Wuhan
Tel: 86-27-5980-5300

China - Xian
Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160

Japan - Tokyo
Tel: 81-3-6880- 3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870

Philippines - Manila
Tel: 63-2-634-9065

Singapore
Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching
Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-72400

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7288-4388

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Gothenberg
Tel: 46-31-704-60-40

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

09/14/21

http://support.microchip.com
http://www.microchip.com

	Table of Contents
	Preface
	Introduction
	Document Layout
	Conventions Used in this Guide
	Documentation Conventions

	Recommended Reading
	The Microchip Website
	Customer Support
	Document Revision History
	Revision D (January 2022)
	Revision C (April 2021)
	Revision B (June 2019)
	Revision A (September 2017)

	Chapter 1. Product Overview
	1.1 Introduction
	Table 1-1: Glossary of Terms and Acronyms

	Chapter 2. Driver Installation
	2.1 Prerequisites
	2.1.1 PAC193X Integration in the Host System
	2.1.2 SpbCx Compliant I2C Bus Controller Device Driver

	2.2 Driver Installation
	2.2.1 Install Using Microsoft Windows Update or Device Manager
	2.2.2 Install Using the DevCon Utility
	Figure 2-1: Device Manager Displaying the PAC193X Devices.

	Chapter 3. Device Instantiation and Initialization
	3.1 Getting Started
	3.2 Device Initial Configuration

	Chapter 4. PAC193X Device Interfaces
	4.1 Introduction
	4.2 Energy Metering Interface
	Table 4-1: EMI IOCTLs
	Table 4-2: EMI Enumerations and Structures

	4.3 Device Control Interface
	Table 4-3: Device Control IOCTLs (Continued)
	Table 4-4: Device Control Structures (Continued)

	Chapter 5. PAC193X Driver Characteristics
	5.1 Driver Characteristics
	5.2 Multiple I/O Requests
	5.3 Energy Metering Interfaces (EMI) vs. Device Control Interfaces
	5.4 Energy Software Accumulators
	5.5 Low-Power Mode and Power States
	5.5.1 Low-Power Mode
	Table 5-1: PAC193X Device Sampling Frequency

	Appendix A. Driver Revision History
	A.1 Bug Fixes and Changes
	Table A-1: Driver Release History

	Appendix B. PAC193X Device Control Interface
	B.1 Introduction
	B.2 PAC193X Device Definitions
	B.3 Interface and IOCTL Definitions

	Worldwide Sales and Service

