MICROCHIP AN2714

MPLAB® Code Configurator CAN 2.0B Module for
PIC18 Microcontrollers

Introduction

Authors: Mary Tamar Tan, William Stuart, Microchip Technology Inc.

Microchip's MPLAB® Code Configurator (MCC) Enhanced CAN (ECAN™) module provides an easy-to-
use GUI for users who want to speed up the development of their PIC18 Controller Area Network (CAN)
projects. The main advantage of using the ECAN MCC module is that it eliminates the trouble of manually
calculating the individual acceptance masks, filter and Configuration register values. The user can add
and remove CAN RXx IDs easily without worrying about how to configure the ID-Filter-Mask-Buffer
combinations in the PIC18F registers. The ECAN MCC module can help designers save significant time
from the low-level CAN protocol implementation and focus on the development of higher level
applications.

The ECAN MCC module supports PIC18F 8-bit devices that contain the on-chip ECAN peripheral. One
such family of devices is the PIC18FXXK8X. The module supports the three ECAN functional modes:
Legacy (mode 0), Enhanced Legacy (mode 1) and Enhanced FIFO (mode 2). The MCC-generated APIs
depend on the mode specified by the user in the GUI. The PIC18F functional modules configure the
ECAN module's hardware to different settings, allowing flexibility in the module to meet the needs of
various users.

This document focuses on the features and implementation of the ECAN MCC module. It is assumed that
the reader has basic knowledge about the CAN protocol as well as the Enhanced Controller Area
Network (ECAN) peripheral on 8-bit PIC® MCUs. For consistency, this application note refers to the ECAN
MCC software library as 'ECAN MCC module' and the hardware ECAN module as 'ECAN peripheral'.

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 1

AN2714

Table of Contents

TaYiyoTo [N o1 1[0} o [OOSR 1
(R =T 1 (U] (=T SRR 3
2. ECAN MOAUIE GUI...uueniieeeeeeeeeeee et e e e e e e e e e 4
2.0 EASY SBIUP. .ttt bttt b e 5
2.2, REGISIEIS. ... et e e e e e e e e e e ——e e e e e e ——aeaeeeaatrateaeaaaaraeaaeaaanra 6
3. SUPPOIEA MOUES........uuiuuiiiiiiiii bbb e aaabaaeaaassasesbsssssssssssssssssssnsssnnes 7
3.1, MOdE 0 — LegaACY MOUE........eeeiiiiiieiteie ettt e e 7
3.2. Mode 1 —Enhanced Legacy MOUE...........coouiiiiiiiiiiii ettt st 7
3.3, Mode 2 —Enhanced FIFO MOGAE...........ocooiiiiiiiee ettt e e a e e e eaae e e e e e eanaes 8
O A e [3O 9
4.1. Sample Implementation of CAN Transmit and Receive Functions..............cccccocvieiiiiiiee e, 10
5. CAN Node USINg PICT8 ECAN......ouiiiiiiiiiiieetieeeeeeee et eeeeeees 13
LS =1 o o T PSR PU 14
6.1. TwO-NOdE NEtWOrK DEMO.......cco i e e e e e e e e e e e aaaaaaaaeeas 14
6.2. Three-Node NetWOrK DEMO.......ccoviiiiiiiie ettt e e e e e e e e e e e e e e e e e e arraeaeeeeees 30
6.3. Three-Node NetWork OQUEIPUL..........coiiiiiiiiiii e e e e e e e e e s neneeeas 38
A O] g To3 [V E=] o o 1 39
8. APPENDIX A: CalCulatioNns........ccuuueiiii i e e e e e eeaaans 40
8.1. APPENDIX A-1: Baud Rate PreSCaler...........coooiiiiiieeeeeeeeeeeee ettt 40
8.2. APPENDIX A-2: SAMPIE POINt......ooiiiiiiiiiiii ittt e e e e e e e e e e e e snnaeeeas 41
The MiIcroChip WED Site.......uuueiiiiieiiieieeeeeeeee e 42
Customer Change Notification ServiCe.............ueiviieiiiiiiiiiiieee e 42
L1013 (o0 0 1= TS 10T o] oo o VPP 42
Microchip Devices Code Protection Feature...........ccccooiiiiiiiiiiie 42
[I=To = 1 N o) 1o =TRSO PPPPPP 43
L= T =10 0T L TR 43
Quality Management System Certified by DNV........oooiiiiiiiiiieeeeee e 44
Worldwide Sales @nd SEIVICE..........uiiiiiee e 45

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 2

AN2714

Features

1. Features
The ECAN MCC module complements the hardware ECAN peripheral by providing the following features:

Selectable functional modes of operation between mode 0, mode 1 and mode 2

Automatic calculation of Baud Rate Control Register values based on the user-provided CAN bus
speed and device clock

Automatic bit segment calculation based on selected TQ multiplier and sample point
Automatic calculation of filter and mask values

A tabulated summary of entered CAN ID, ID Type, Mask, Filter and Buffer combinations
Verbose comments in the generated code that details the ECAN module's configuration

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 3

AN2714
ECAN Module GUI

2. ECAN Module GUI
The default ECAN module GUI is shown in the figure below.

Figure 2-1. ECAN"™ GUI Default View
ECAN

3
®|

£0% Easy Setup ‘ = Registers

v Bit Rate Settings

CAN BUS Speed [20kbps I;I Sync Jump Width [1xTQ I;l
Time Quanta I 8 | 7 I Sample Point I 75% | 7 |
Sync Segment 1xTQ Propagation Segment 1xTQ
Phase Segment 1 4xTQ Phase Segment 2 2xTQ

v General Settings

l:] Enable CAN Line Filter Wake-up
Enable CAN Bus Activity Wake-up

¥ CANTX Pin Drive Settings

MCC makes this unselectable because this option
when recessive | ~ ‘ Note: sets ENDRHI bit of CIOCON register to 1, which is
required for CANTX pin to properly drive to VDD.

CANTX pin will dri

TX Pin Drive

¥ Transmit-Receive Settings

¥ Transmit Settings

Transmit Buffer

Note: To deselect a Transmit Buffer, set it as receive buffer through the Receive Buffer menu.

- Selected Transmit Buffers TXBO, TXB1, TXB2

v Receive Mode I Legacy mode (Mode 0, default) | v I Note : On mode change, the content of table will be cleared.

Message ID 0x123 g ADD ‘ | 98 Remove

Filter - Mask IAcceptance Mask 0 I v l Receive Buffer -

v Message Acceptance Filter and Buffer Table

MESSAGE ID l ID TYPE I ACCEPTANCE FILTER I ACCEPTANCE MASK I RECEIVE BUFFER

No content in table

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 4

21

211

21.4
21.41

AN2714
ECAN Module GUI

Easy Setup

The Easy Setup tab allows the setting of different CAN bus parameters, enabling and disabling of CAN
wake-up features, and functional mode selection.

CAN BUS Settings

+ CAN BUS Speed — Provides the user the ability to select CAN Nominal Bit Rates (NBR) from 20
kbps to 1 Mbps.

Note: To enable multiple nodes to communicate on the same CAN BUS, the bit rate for all nodes on the
CAN BUS should be identical.

+ Time Quanta (TQ) — Provides selection of valid TQ multipliers. When a value is selected, the GUI
automatically updates with valid sample point options.

* Sync Segment — This field cannot be modified by the user. It is shown for completeness in
detailing the bit rate TQ breakdown. The Sync Segment is always equal to 1xTQ. The Sync
Segment’s purpose is to synchronize the various nodes on the bus.

* Propagation Segment — The Propagation Segment exists to compensate for physical delays
between nodes. This field can take a value between 1xTQ to 8xTQ.

 Phase Segment 1 (PS1) and Phase Segment 2 (PS2) — The two phase segments are used to
compensate for edge phase errors in the bus. PS1 can be lengthened or PS2 can be shortened by
resynchronization. The allowable value for PS1 and PS2 is from 1xTQ to 8xTQ.

* Sync Jump Width — Provides options for the Synchronization Jump Width (SJW) from 1xTQ to
4xTQ. SJW is an integral multiple of TQ that defines the maximum value of lengthening and
shortening of a bit’s length during resynchronization. The SJW adjusts the bit clock as necessary to
maintain synchronization with the transmitted message. To learn more on SJW refer to the data
sheet or application note AN00754, "Understanding Microchip’s CAN Module Bit Timing".

» Sample Point — Provides the actual sample point position for one bit period. The Sample Point is
the point of time at which the bus level is read and interpreted as the value of that respective bit. Bit
sampling takes place between PS1 and PS2.

General Settings

» CAN Activity wake-up — This check box enables/disables the CAN bus activity wake-up feature.
Enabling this option allows the peripheral to generate an interrupt when activity is detected on the
CAN bus while in internal Sleep mode.

* CAN Line Filter wake-up — This check box enables/disables the use of a low-pass filter function to
the RXCAN input line while in internal Sleep mode. This prevents the device from waking up due to
noise or short glitches in the bus.

CANTX Pin Drive Settings
By default, the ECAN MCC module sets the CANTX pin to drive Vpp when recessive. This configuration
is required to allow the CANTX pin to drive to Vpp properly.

Note: This section is only available for devices with Enable High Drive (ENDRHI) bit in the CAN 1/O
Control (CIOCON) register such as the PIC18FXXK80.
Transmit-Receive Settings

Transmit Settings

* Transmit Buffer — Shows all generic ECAN message buffers that are programmable to be used as
transmit or receive buffers. When the user selects a generic message buffer within MCC then it is

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 5

http://ww1.microchip.com/downloads/en/AppNotes/00754.pdf

21.4.2

2.2

AN2714
ECAN Module GUI

automatically set as a Tx buffer and the Selected Transmit Buffers text field is updated. This field
is disabled in mode 0, because functional mode 0 does not support the generic buffers which could
be configured into transmit buffers.

+ Selected Transmit Buffers — Shows all the buffers that will be used for transmit operation. By
default, only the dedicated transmit buffers are displayed.

Receive Mode

Mode selection allows the user to select between Legacy mode (mode 0, default), Enhanced Legacy
mode (mode 1) and Enhanced FIFO mode (mode 2). See section 3. Supported Modes for more
information.

The user should manually enter a valid CAN ID and select the associated Acceptance Filter, Acceptance
Mask and Receive Buffer for that ID. The ECAN MCC module has an ID validator feature designed in that
will only accept valid CAN receive IDs in hexadecimal format. This feature flags IDs that have invalid
characters (i.e., $, %, z), IDs that are out of range, and IDs already present in the Message Acceptance
Filter and Buffer Table. After valid ID entry, the user should click the Add button which will append a row
with the ID, ID Type, Mask-Filter-Buffer linkage to the Message Acceptance Filter and Buffer Table.

Note: A valid Standard ID is any hexadecimal value in the range of '0x00-0x7FF'. A valid Extended ID is
any hexadecimal value in the range of '0x-1FFFFFFFXx', where the appended X' correspond to 'extended’
CAN identifiers.

The ECAN MCC module also does not allow changes to individual table cells. To modify, the user needs
to remove the entire row and add another row with the correct values. The ECAN module, however,
allows remapping of all entries for Acceptance Filter to a new Receive buffer.

In mode 2, the user can select the Rx FIFO size. All programmable buffers that are not part of the FIFO
are automatically configured as transmit buffers.

Registers

The Registers tab shows the different ECAN registers with their corresponding values based on the
parameters set by the user in the Easy Setup tab. The module also assigns default values based on the
specific device data sheet to registers that are not affected by the Easy Setup configuration. The register
values as well as the setting for each of the register bits are displayed in the GUI. Some of the register
bits settings can be modified by the user through the corresponding bit's choice box. The user is advised
to consult the specific device data sheet when modifying register values.

It is also under the Registers tab that the user can enable and disable interrupt features.

Note: The MCC has a Notifications tab that lists all the configuration warnings. Usually, this shows
notifications from all peripheral modules and libraries selected by the user, including the ECAN module.
The user must act on these warnings to avoid generation of incorrect code.

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 6

3.1

3.2

AN2714
Supported Modes

Supported Modes
The ECAN MCC module supports all three hardware ECAN functional modes.

Mode 0 — Legacy Mode

In mode 0, only the CAN ID and filter can be set by the user. There are three transmit buffers, two receive
buffers, two acceptance masks, and six acceptance filters. Filters 0 and 1, and Acceptance Mask 0, are
associated with RXBO. Filters 2, 3, 4 and 5, and Acceptance Mask 1 are associated with RXB1. Refer to
the figure below.

Figure 3-1. Mode 0 Buffer-Filter-Mask Association

JoAIBdsuel] NVD

NOTE 1: RXBO can overflow into RXB1

Mode 1 — Enhanced Legacy Mode

Compared to mode 0, mode 1 has ten additional acceptance filters, creating a total of 16 available filters,
as shown in Figure 3-2. Filter 15 can either be used as an acceptance filter or acceptance mask. There
are also six additional buffers (B0-B5) that can be programmed as either Tx or Rx. By default, these
buffers are configured as receive buffers. Each of these acceptance filters can be dynamically associated
with any of the receive buffers. Each filter can also be dynamically associated with available Acceptance

Masks.

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 7

3.3

AN2714
Supported Modes

Figure 3-2. Mode 1-Buffer-Filter-Mask Association

Tx Buffer 0
Tx Buffer 1 I:
Tx Buffer 2

NOTE 1:This can be configured as a Tx or a Rx buffer.
2:RXF15 can be used as a mask or a filter.

~

Mode 2 - Enhanced FIFO Mode

JaAl@osuURl] NVO

In mode 2, there is no one-to-one relationship between the receive buffer and acceptance filter registers.
Any selected filter that is linked to the FIFO receive buffer can generate acceptance and cause FIFO to
be updated. Two of the dedicated receive buffers in combination with one or more programmable
transmit/receive buffers are used to create a maximum of eight buffers deep FIFO.

Figure 3-3. Mode 2 Buffer-Filter-Mask Association

Buffer 1
Buffer 2
Buffer 3

FIFO

Tx Buffer 0
Tx Buffer 1 E
Tx Buffer 2

~~

NOTE 1: RXF15 can be used as a mask or a filter

JaAI@osuel] NYD

© 2018 Microchip Technology Inc. Application Note

DS00002714A-page 8

AN2714
APIs

APls

The generated APIs will vary based on the user selected ECAN functional mode. The APIs are composed
of global and local functions. Table 4-1 provides the global functions available in all modes. Local
functions are mode-specific and are not advised to be modified by the user.

Table 4-1. MCC-Generated Global Functions For ECAN™

S S S N

ECAN Initialize(

CAN sleep ()

CAN_ transmit ()

CAN receive ()

CAN messagesInBuffer ()

*tempCanMsg

*tempCanMsg

True if message was

loaded to transmit buffer.

Otherwise, returns
False.

True if a new message
is received. Otherwise,
returns False.

Total number of
messages in the buffers.

This routlne sets all the
ECAN" module register
(filter, mask, and timing)
values based on the set
parameters in the GUI.
Puts the ECAN" in
Configuration mode then
switch to Normal mode
after initializing the
ECAN" registers.

This routine enables the
wake-up from bus
activity feature before
putting the ECAN™ to
Sleep mode.

Looks for an empty
transmit buffer based on
prioritization. Sets the
Transmit Request Status
(TXREQ) bit after writing
the converted raw ID,
DLC, and eight data
bytes values to the
corresponding registers.

Checks the CAN buffers
for received message. If
a valid message is
received, the ECAN™
register values are
copied to temporary
software registers. The
ID register values are
automatically converted
to raw ID.

Checks for the number
of messages in the
buffer.

© 2018 Microchip Technology Inc.

Application Note

DS00002714A-page 9

4.1

411

AN2714
APIs

N e e e R

CAN isBusOff ()

CAN isRXErrorPassive () —

True if module is in
Bus-off. Otherwise
returns False.

True if module is in Rx
Error Passive.

Checks if module is in
Bus-off mode.

Checks if module is Rx
Error Passive.

Otherwise returns

False.

Note: MCC generates the APIs but the user is required to add the application code.

Sample Implementation of CAN Transmit and Receive Functions

The ECAN ID, ID Type and data bytes are arranged within a union of '"uCAN MSG' type. Every union
declared as 'uCAN_ MSG' is an instance of this type. Each member of an instance is accessed using the
<instance_name>.<struct name>.<member_name> format. To better understand the implementation,
two examples are provided below for transmitting and receiving a CAN message.

Transmitting a Message

The following figure shows how to transmit a single message with standard ID '0x123', and two bytes of
data: the high byte and low byte result of an ADC.

Figure 4-1. CAN Message Transmission

This is the general
process for transmitting
a message.

Transmit Flow

This is a sample implementation of the APIs
(right column) that correspond to the specific
transmit flow step (left column).

Transmit Flow Example

Create an instance of
uCAN_MSG

UCAN_MSG txAdcResult;

v

v

Assign values to uCAN_MSG
instance frame struct
members

txAdcResult.frame. idType = dSTANDARD_CAN_MSG_ID_2_0B;
txAdcResult.frame.id = 0x123;

txAdcResult.frame.dlc = 2;

txAdcResult.frame.data0 = ADCResult_HighByte;
txAdcResult.frame.datal = ADCResult_LowByte;

v

v

Queue message for
transmission

if (CAN_transmit(&txAdcResult)) {
// If statement is entered, then message was loaded
// into a TX buffer pending transmission

3

These are the MCC-generated APIs that
should be used when transmitting a
message.

MCC-Generated Transmit APIs

ecan.h

typedef union {

struct {
uint8_t idType;
uint32_t id;

uint8_t dlic;
uint8_t dataOl;
uint8_t datal;
uint8_t data2;
uint8_t data3;
uint8_t datad;
uint8_t data5;
uint8_t data6;
uint8_t data7;
} frame;
uint8_t array[14];
} uCAN_MSG;

ecan.c

— |uint8_t CAN_transmit(uCAN_MSG *tempCanMsg) ;

The 'CAN transmit ()'function accesses the value of its argument via a 'uCAN MSG' type pointer. It
uses a dereference 'uCAN MSG' type pointer (denoted by the dereference operator: '+') as parameter,
hence it takes a referenced 'uCAN MSG' type union as an argument (denoted by the address of operator:

's").

© 2018 Microchip Technology Inc.

Application Note

DS00002714A-page 10

AN2714
APIs

In this example, the address of txAdcResult (‘s txAdcResult') is used as argument to allow the CAN
transmit function to access each member of 'txAdcResult' utilizing the
txAdcResult.frame.<member_name> format. The function copies the value of each member to its
corresponding ECAN peripheral register.

The user can verify if a message was successfully queued for transmission by checking if the function
returns a value of '1', otherwise, the message is lost and might need retransmission.

Calling the 'CAN transmit ()'function does not necessarily mean that the message is sent immediately
to the bus. The message is simply queued for transmission through the next available transmit buffer
based on priority. The ECAN module will only send out the message when the higher priority transmit
buffers are empty.

Receiving a Message

The following example shows how to receive the message transmitted in the previous example. Here,
standard ID '0x123' is defined beforehand using a macro.

Figure 4-2. CAN Message Reception

This is the general
process for
receiving a

message.
Receive Flow

This is a sample implementation of the APIs (right
column) that correspond to the specific receive flow
step (left column).

These are the MCC-generated APIs that
should be used when receiving a
message.

Receive Flow Example MCC-Generated Receive APIs

Define Custom ID ‘ ‘ #define ROTATE_SPEED_ID 0x123

typedef union {
struct {

|ecanh |

Create an instance of uint8_t idType;
UCAN MSG UCAN_MSG rxMessage; — wint32_t id:
_ uint8_t dlic;

uint8_t dataOl;
uint8_t datal;

v

Check if a message is
received and stored in
the uCAN_MSG
instance.

if (CAN_receive(&rxMessage)){
// This line is executed if there is message on
// any of the buffers

3

uint8_t data2;
uint8_t data3;
uint8_t data4;

} frame;

uint8_t data5;
uint8_t data6;
uint8_t data7;

uint8_t array[14];

} UCAN_MSG;

v

uint8_t rotateSpeed_HighByte, rotateSpeed_LowByte; ecan.c
if (CAN_receive(&rxMessage)) {
if (rxMessage.frame.idType == dSTANDARD_CAN_MSG_ID_2_0B){
// Execute next line if standard message is received
if(rxMessage.frame.id == ROTATE_SPEED_ID) {
// Copy received data
rotateSpeed_HighByte = rxMessage.frame.data0;
rotateSpeed_LowByte = rxMessage.frame.datal;
// Use copied data here or process it later

Process received

uint8_t CAN_transmit(uCAN_MSG *tempCanMsg);
message —

b
3

b3

Similar with the transmit function, the 'CAN receive ()’ function accesses the value of its argument via a
'uCAN_MSG' type pointer. In this example, the argument — which is the address of the 'rxMessage' —is
written in the format 's rxMessage'. The use of pointer allows the value of each member of 'rxMessage'
to be modified inside the function.

In the example above, 'rxMessage' is declared as a 'uCAN MSG' type union. The actual received ID, ID
type, data length and data bytes of the message are transformed by the CAN receive function to the
appropriate data types and stored as members of 'rxMessage'.

Application Note DS00002714A-page 11

© 2018 Microchip Technology Inc.

AN2714
APIs

The user can then process the data by accessing the data members of 'rxMessage' using the
rxMessage.frame.<member_name> format. In this example, the two 8-bit data members are copied to
two locally defined 8-bit variables: 'rotateSpeed HighByte'and 'rotateSpeed LowByte'.

The user can declare as many instances of 'uCAN MSG' as the available data memory would allow.
Careful allocation might be necessary for large programs since each instance occupies 14 bytes of
memory.

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 12

AN2714
CAN Node Using PIC18 ECAN

CAN Node Using PIC18 ECAN

Figure 5-1 shows a typical node connection to the bus using a PIC18 MCU with embedded CAN
controller. MCC-generated APls and their implementation in the user application code falls in the OSI
model’s application layer.

The embedded CAN protocol controller (ECAN module) consists of a protocol engine and message
buffering and control. The ECAN module uses dedicated CANTX and CANRX pins to interface with a
CAN transceiver. The CAN transceiver then translates the digital signals from the controller to differential
output signals suitable for transmission over the bus.

Figure 5-1. CAN NODE Using PIC18 with ECAN™ Module

Node
PIC18 MCU
MCC-generated CAN L
APIs and User L ﬁ‘pp“CatIOn
Application Code ayer
ECAN™ Module | IE)ata Link
CANTX CANRX |||/ &Y'

v 1

CAN Transceiver — Physical Layer

—o _—— _
120Q g CAN BUS E 120Q

For a complete list of CAN transceivers from Microchip visit http://www.microchip.com/design-centers/
can. A detailed discussion about the CAN physical layer is also provided in AN228, "A CAN Physical
Layer Discussion" (DS00228).

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 13

http://www.microchip.com/design-centers/can
http://www.microchip.com/design-centers/can
http://ww1.microchip.com/downloads/en/AppNotes/00228a.pdf
http://ww1.microchip.com/downloads/en/AppNotes/00228a.pdf

6.1

AN2714

Demo

Demo
This demo is composed of two parts. The first example shows a network with two nodes. In the second
example, a third node will be added to the network.

Two-Node Network Demo

This section shows implementation of the ECAN MCC module to generate the driver for Node 1 of the
CAN network shown in the figure below.

Figure 6-1. Two-Node CAN Network

CANH * *
120Q 120Q
CANL

Automotive Networking

Board
+

PIC18F66K80 PIM

=+

MCP2542 Click

OptoLyzer® MOCCA FD

NODE 1 NODE 2

Node 1
The first node is comprised of an Automotive Networking Board with a PIC18F66K80 100-pin PIM and an

MCP2542 CAN Transceiver Click Board™. The Automotive Networking Board has provision for up to four
click boards. For this example, MCP2542 click is plugged in mikroBUS™ socket 2 with jumpers positioned
as shown in the following figure.

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 14

AN2714

Demo

Figure 6-2. Node 1 - PIC18F66K80 and MCP2542

MCP2542 Click
(MIKROE-2299)

g

5 & :

MCP2542 dick

. RIS
]

. -,;'
MICROCHIP

w

PIC18F66K80 100-pin
Plug-in Module
(MA180035)

(ing soard

¢
Automotive Networking Board (ADMO00716)

Node 2

The MOCCA FD from K2L is used as the second CAN node (see figure below). The MOCCA FD is

interfaced to a PC. The OptoLyzer® Studio software application is used to display real-time messages
transferred between all nodes connected on the bus.

Figure 6-3. Node 2 - MOCCA FD Tool Box

= <—12vDC

OptoLyzer® Studio

g49zA101dO § c’

OptoLyzer® MOCCA FD (B10456)

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 15

6.1.1

6.1.3

AN2714

Demo

Two-Node Network Details
The following figure shows the network details for the individual messages expected on the CAN bus for
the two-node network demo.

Figure 6-4. Two-Node CAN Network Details

Data

MsgID | Dir.| Type of Msg | DLC I = [osi | oe2 | oss [oea [oss | oms = { Message TX Trigger Details
Node 1 (PIC18F66k80 + i i Board)
0x100 TX |Periodic 8 ALL TX Msg Cnt ALL TX Periodic Msg Cnt 500 msec
0x110 TX [Periodic 4 ALL RX Msg Cnt 500 msec
0x120 TX |Periodic 4 Potentiometer 300 msec
0x12345x TX _|Periodic SW1 State ISWZ State |SW3 State |SW4 State 100 msec Switch state Press == 1 or Released ==0 is transmitted
0x150 TX |Event 4 SWO Count ISWl Count |SW2 Count |SW3 Count Press/release of any switch Counts show how many times the buttons were pressed and released
0x160 TX |Event 4 0x160 Msg Cnt Press/release of SW4
0x200 T [Event 2 |majorver Minor Ver Response to message 0x700 | Provides BUS the Application Software Version
0xD34FFx RX 1 Set LED Sets LEDs for this node. Maps the lower 5 bits to LEDS to LED1.
0x201FFx RX 1 Clear Counters Clears ALL message Counters
0x700 RX 1 Request Ver Get software version
Node 2 (CAN Tool
0x700 TX |Event 1 Request Ver
0x201FFx TX |Event 1 Clear Counters
0xD34FFx TX |Event 1 Set LED
All IDs RX The Tool will receive all messages on the network

The table shows the CAN message ID, direction (TX or RX), type (periodic or event-triggered), DLC, data
bytes, message trigger (if TX), and the more specific details for each message that should be taken care

of in the application software. This demo teaches how to configure the PIC18F66K80 ECAN module and

the MOCCA FD tool to communicate with each other using the messages provided in the table.

ECAN MCC System Requirements
« MPLAB X IDE v4.15 or newer
» MPLAB Code Configurator (MCC) Core v4.45 or newer
* MPLAB Code Configurator (MCC) PIC10/PIC12/PIC16/PIC18 Library v1.65.2 or newer
» Java JRE v1.8 or newer (follow MCC release note to setup MPLAB X for latest Java)

MCC Configuration Settings

The following steps will walk the user through the process of implementing the ECAN module from
configuration to code generation for Node 1.

Note: GUI appearance for the different modules may vary per each MCC Core, Plugin or Library
release. The screen shots used in this document were taken using MCC v3.45 and ECAN MCC v2.0.

1. In MPLAB X IDE, click on the MCC icon or navigate toTools>Embedded>MPLAB Code
Configurator v3: Open/Close to launch MCC version 3.
Note: Newer MCC versions (v3.55 and up) will ask the user to input the Configuration name
in .mc3 file format soon after launching MCC. If so, input “Node1” as the file name then click Save.

2. Under Project Resources, click System and select System Module (see Figure 6-5).

3. Inthe Easy Setup tab of the System Module, set Oscillator Select to 'EC oscillator (High power,
16 MHz—64 MHz)'. Set System Clock to 'FOSC' and External Clock to '8 MHZ'. Enable PLL and
disable the Watchdog Timer.

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 16

AN2714

Demo

Figure 6-5. PIC18F66K80 System Module

({an}]

System Module (2 RN

£0% Easy Setup | (=] Registers

v INTERNAL OSCILLATOR

Current System clock 32 MHz (4x PLL)

Oscillator Select ‘ EC oscillator (High power, 16 MHz - 64 MHz)

-]

Internal Clock 8MHz_HF 1 v o —PLL Capable Frequency

System Clock Select ‘ FOSC

External Clock 8 MHz

PLL Enabled | Software PLL Enabled
v WDT
Watchdog Timer Period 33.82503 s

Watchdog Timer Enable l WDT disabled in hardware; SWDTEN bit disabled

1:1048576] . l

Watchdog Timer Postscaler

4. Under Device Resources, select Peripherals>CAN>ECAN. The ECAN module should automatically
move to the Project Resources window.

5. Go to the ECAN module GUI.

6. Inthe CAN BUS settings, set CAN BUS Speed to '100 kbps' and Time Quanta to '10'. Notice that
once the Time Quanta is set, the different segments are also populated with the recommended
values. See figure below.

Figure 6-6. CAN Bus Settings

7.
8.

¥ Bit Rate Settings

CAN BUS Speed | 100kbps * | Sync Jump Width 1xTQ -
Time Quanta 10 * | Sample Point 80% -
Sync Segment 1xTQ Propagation Segment | 1 x TQ

Phase Segment 1 | 6x TQ Phase Segment 2 2xTQ

Set the Mode to 'Enhanced Legacy mode (Mode 1)'.

Edit the CAN ID Masks and Filters as shown in Figure 6-7. To remove a row, click anywhere within
the row that needs to be to removed and click Remove button. To add another row, input the ID on

© 2018 Microchip Technology Inc.

Application Note

DS00002714A-page 17

AN2714

Demo

the ID text field, select the corresponding Acceptance Mask, Filter and Buffer, then click Add.
The Extended IDs should be appended with an 'x'. For example, Extended 0xD34FF should be
inputted as OxD34FFx.

Figure 6-7. Receive Mode Selection and CAN Table

¥ Receive Mode I Enhanced Legacy mode (Mode 1) | v ‘ Note : On mode change, the content of table will be cleared.

Message ID 0x700 == ADD 98 Remove

Filter - Mask I Acceptance Mask 1 | v ‘ Receive Buffer

¥ Message Acceptance Filter and Buffer Table
MESSAGE ID ID TYPE ACCEPTANCE FILTER ACCEPTANCE MASK RECEIVE BUFFER
0x700 SID Filter 0 Acceptance Mask 0 RXBO
0xD34FF EID Filter 1 Acceptance Mask 1 RXB1
0x201FF EID Filter 2 Acceptance Mask 1 BO

9. Go to Device Resources and select ADC. Edit the ADC GUI as shown in the following figure.
Figure 6-8. ADC Module

ADC 9 @
405 Easy Setup | = Registers
Hardware Settings
Enable ADC
ADC Clodk i i
Result Alignment Right -
Clock Source FOSC/B4 | ~ Auto Conversion Trigger | ECCP1 -
Acguisition Time 2_Tad " | | Positive Voltage Ref AVDD -
1TAD 2.0 us .
Megative Voltage Ref AVES -
Sampling Frequency 357143 kHz
Conversion Time 28 us Meg Diff Input Channel | AVss -
|:| Enable ADC Interrupt

10. Under Device Resources, go to Libraries>Foundation Services>TIMEOUTDRIVER. The
TIMEOUTDRIVER and TMRO will be automatically added to Project Resources. The
TIMEOUTDRIVER will be used to create the timer callbacks for periodic ECAN TX messages,
based on the TMRAO tick.

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 18

AN2714

Demo
Figure 6-9. Time-Out Driver Module
Project Resou..., G- | = | - | TIMEOUTDRIVER @ @
¥ System .
Interrupt Module iGe Easy Setup
Pin Module Hardware Settings
System Module Select Timer | TMRO -
¥ Peripherals
@ T™R1
&y ADC
Lt ECAN
@ T™™RO
¥ Libraries
¥ Foundation Services
() TIMEOUTDRIVER
11. Configure TMRO as shown below.
Figure 6-10. TMRO Module
TMRO PYNE
£0% Easy Setup | (=] Registers
Hardware Settings
Enable Timer
Timer Clock Timer Period
Enable Prescaler [1:256 I - I Requested Period : 32 us < 8192 ms < 8192 ms
Timer mode: [8-bit I .] Actual Period : 8192 ms
Clock Source: l FOSC/4 | = ‘
Increment On: { ncrement_hi_lo l v J
External Frequency : 100 kHz
Enable Timer Interrupt
Software Settings
Callback Function Rate 0x0 x Time Period = Os

12. In this example, Timer1 is used to debounce the switches by delayed sampling. Select TMR1 and
configure as shown below.

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 19

AN2714

Demo

Figure 6-11. TMR1 Module
TMR1

©

£0% Easy Setup | = Registers

Hardware Settings

Enable Timer
Timer Clock Timer Period
Clock Source | FOSC/4 u Timer Period 250 ns < 15ms < 16.384 ms
External Frequency 32.768 kHz Period count 0x0 = 0x15A < OxFFFF
Prescaler I 12 | . ‘ Calculated Period 15ms

Enable Synchronization

D Enable Gate

D Enable Gate Toggle

Gate Signal Source

D Enable Gate Single-Pulse mode ~ Gate Polarity

Enable Timer Interrupt
D Enable Timer Gate Interrupt

Software Settings

Callback Function Rate 0

x Time Period = Os

Figure 6-12.

13. Go to Project Resources and select Pin Module. Make sure that the pins are configured similar to

© 2018 Microchip Technology Inc.

Application Note

DS00002714A-page 20

AN2714

Demo
Figure 6-12. Pin Module
Pin Module L2 JIRE]
£5% Easy Setup || [Registers
Selected Package : TQFP64
PinName 4| Module Function | Custom Name | Start High Analog Output WPU oD 10C
RAO ADC AND POT O O
RAS Pin Module |GPIO 5 O]]
RE2 ECAN CANTX O
RE3 ECAN CANRX O] O
RE4 Pin Module GPIO <1]] L] L] -
RES Pin Module |GPIO . 0 O] -
RCT Pin Module |GPIO o4 O O
RDO Pin Module |GPIO LED.D1]]
RD1 Pin Module |GPIO LED.D2 O n
RDZ Pin Module |GPIO LED.D3]]
RD3 Pin Module |GPIO LED_D4 O n
RD4 Pin Module |GPIO LED. DS J
RDS Pin Module |GPIO LED.D6 O
RD6 Pin Module |GPIO LED.D7 O
RD7 Pin Module |GPIO LED_D8]

14. Check the Notifications[MCC] tab for any warnings. 'Severe' type notifications should always be
resolved by the user on their respective modules.

15. Next to Project Resources, click the Generate button.
Note: If you haven't set the MCC configuration file name after launching MCC, a pop-up window
will appear asking for the configuration settings to be saved in a .mc3 file format. Input “Node1” as

the file name, then click Save.

16. The MCC configuration is now complete. Figure 6-13 shows all the files that will be added to the
user's project upon code generation.

© 2018 Microchip Technology Inc.

Application Note

DS00002714A-page 21

AN2714

Demo

Figure 6-13. MCC Generated Files

Projects x | Files Resour...

~-(LJ ECAN_K80_Nodel_v2
= E] Header Files

= E] MCC Generated Files

adc.h
ecan.h

mcc.h
pin_manager.h
timeout.h
tmr0.h
tmr1.h
» ﬁ Important Files

T Makefile

[Nodel.mc3
+ @ Linker Files
» E] Source Files

E] main.c

BREEBPRBE

{+

{1

=-[g) MCC Generated Files

adc.c
device_config.c
ecan.c

mcc.c
pin_manager.c

[08 02 (B (B (B R (D @)

interrupt_manager.h

interrupt_manager.c

timeout.c
tmr0.c
tmril.c
& -([§§ Libraries
- ([@@ Loadables
6.1.4 Application Code
Edit the main file as shown in example below.
Example 6-1. PIC18F66K80 Main File
#include "mcc generated files/mcc.h"
#define MilliSeconds (uint32 t)31 // 32us=1 tick, this means 31 ticks=1ms
#define PRESSED 1
#define NOT_ PRESSED 0
#define MASK 32BITS 0x000000FF
#define MASK 8BITS 0x01
#define MAJOR VERSION 1
#define MINOR VERSION 0
#define REQ VERSION 1
0

#define

typedef

CLEAR_COUNTERS

struct switchStat({

bool status;
uint8 t port;

© 2018 Microchip Technology Inc.

Application Note

DS00002714A-page 22

AN2714

Demo

uint8_t pressCount;

uint8 t state;

uint8 t samplelLevel;
}switchstat t;

// Function prototypes for periodic messages and heartbeat
void add PeriodicMessages (void) ;

uint32 t send TxRxMsgCount (void *payload);

uint32 t send PotStatus(void *payload);

uint32 t send SwitchStatus (void *payload);

void send TxMsgCount (void) ;

void send RxMsgCount (void) ;

void heartbeat (void);

// Function prototypes for event-triggered messages

bool checkButton (switchStat_t *switchNumber, uint8_ t port);
void send SwitchPressCount (void);

void send Switch4PressCount (void);

void send softwareVersion (void);

// Function prototypes for receive message
void processRxMessage (void) ;

void LED Display (uint8 t ledStat);

void clear Counters (void);

// Local variables

switchStat t sl, s2, s3, s4;
uint32 t rxMessageCount = 0;
uint32 t txMessageCount = 0;
uint32 t txPeriodicMessageCount = 0;
uint32 t s4MsgCount = 0;

uint8 t LEDs;

uCAN_MSG txMessage;
uCAN MSG rxMessage;

timerStruct t periodicTxMessages[3] = {
{send TxRxMsgCount},
{send_PotStatus},
{send SwitchStatus}

}i

/*
Main application
=)
void main (void)
{
SYSTEM Initialize();

INTERRUPT GloballInterruptEnable () ;

INTERRUPT PeripherallInterruptEnable () ;
TMR1_SetInterruptHandler (send_SwitchPressCount) ;
add PeriodicMessages () ;

while (1)
{
if (CAN_receive (&rxMessage)) {
processRxMessage () ;
rxMessageCount++;

}
timeout callNextCallback();

}

void add PeriodicMessages (void) {
timeout create (&periodicTxMessages[0], 500 * MilliSeconds);
timeout create (&periodicTxMessages([1l], 300 * MilliSeconds);
timeout create (&periodicTxMessages([2], 100 * MilliSeconds);

}

uint32 t send TxRxMsgCount (void* payload) {
send TxMsgCount () ;
send RxMsgCount () ;
heartbeat () ;
return 500 * MilliSeconds;

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 23

AN2714

Demo

// Periodic TX Messages

void send TxMsgCount (void) {
txMessage.frame.idType = dSTANDARD CAN MSG_ID 2 0B;
txMessage.frame.id = 0x100;

txMessage.frame.dlc = 8;

txMessage.frame.data0 = (txMessageCount >> 24) & MASK 32BITS;
txMessage.frame.datal = (txMessageCount >> 16) & MASK 32BITS;
txMessage.frame.data2 = (txMessageCount >> 8) & MASK 32BITS;

txMessage.frame.data3

txMessage.

frame.

data4

(txMessageCount)

& MASK 32BITS;

(txPeriodicMessageCount >> 24)

& MASK 32BITS;

txMessage.frame.datab (txPeriodicMessageCount >> 16) & MASK:32BITS;

txMessage.frame.data6
CAN transmit (&txMessage) ;

txMessageCount++;
txPeriodicMessageCount++;

}

void send RxMsgCount (void) {
txMessage.frame.idType = dSTANDARD CAN MSG_ID 2 0B;
txMessage.frame.id = 0x110;

txMessage.frame.dlc = 4;

txMessage.frame.data0 = (rxMessageCount >> 24) & MASK 32BITS;
txMessage.frame.datal = (rxMessageCount >> 16) & MASK 32BITS;
txMessage.frame.data2 = (rxMessageCount >> 8) & MASK 32BITS;
txMessage.frame.data3 = (rxMessageCount) & MASK 32BITS;

CAN transmit (&txMessage) ;

txMessageCount++;
txPeriodicMessageCount++;

}

uint32 t send PotStatus (void* payload) {
ADC_GetConversion (channel ANO);

txMessage.frame.idType = dSTANDARD CAN MSG_ID 2 0B;
txMessage.frame.id = 0x120;

txMessage.frame.dlc = 2;

txMessage.frame.data0 = ADRESH;
txMessage.frame.datal = ADRESL;

CAN transmit (&txMessage);

txMessageCount++;
txPeriodicMessageCount++;
return 300 * MilliSeconds;

}

void heartbeat (void) {
LED D8 Toggle();
}

// Event triggered messages

uint32 t send SwitchStatus (void* payload) {
txMessage.frame.idType = dEXTENDED CAN MSG ID 2 0B;
txMessage.frame.id = 0x12345;
txMessage.frame.dlc = 4;

txMessage.frame.data0 = (bit) ~S1_PORT;
txMessage.frame.datal = (bit) ~S2 PORT;
txMessage.frame.data2 = (bit) ~S3_PORT;
txMessage.frame.data3 = (bit) ~S4_ PORT;

CAN transmit (&txMessage) ;

txMessageCount++;
txPeriodicMessageCount++;
return 100 * MilliSeconds;

}

void send SwitchPressCount (void) {

sl.status = checkButton(&sl, S1_ PORT);

s2.status = checkButton(&s2, S2_PORT) ;
)
)

’

s3.status = checkButton(&s3, S3_PORT
sd4.status = checkButton(&s4, S4 PORT

’

(txPeriodicMessageCount >> 8) & MASK 32BITS;
txMessage.frame.data7 = (txPeriodicMessageCount) & MASK 32BITS;

© 2018 Microchip Technology Inc.

Application Note

DS00002714A-page 24

AN2714

Demo

if(s4.status || s3.status || s2.status || sl.status) {
txMessage.frame.idType = dSTANDARD CAN MSG_ID 2 0B;
txMessage.frame.id = 0x150;
txMessage.frame.dlc = 4;

txMessage.frame.datal0 = sl.pressCount;
txMessage.frame.datal = s2.pressCount;
txMessage.frame.data2 = s3.pressCount;
txMessage.frame.data3 = s4.pressCount;
CAN transmit (&txMessage) ;
txMessageCount++;

}
if (s4.status) {
s4MsgCount++;
send Switch4PressCount () ;

}

void send Switch4PressCount (void) {
txMessage.frame.idType = dSTANDARD CAN MSG_ID 2 0B;
txMessage.frame.id = 0x160;

txMessage.frame.dlc = 4;

txMessage.frame.data0 = (s4MsgCount >> 24) & MASK 32BITS;
txMessage.frame.datal = (s4MsgCount >> 16) & MASK 32BITS;
txMessage.frame.data2 = (s4MsgCount >> 8) & MASK 32BITS;
txMessage.frame.data3 = (s4MsgCount) & MASK 32BITS;

CAN transmit (&txMessage);

txMessageCount++;

}

void send softwareVersion (void) {
txMessage.frame.idType = dSTANDARD CAN MSG_ID 2 0B;
txMessage.frame.id = 0x200;
txMessage.frame.dlc = 2;
txMessage.frame.data0 = MAJOR_VERSION;
txMessage.frame.datal = MINOR VERSION;
CAN transmit (&txMessage) ;
txMessageCount++;

}

bool checkButton (switchStat t *switchNumber, uint8 t port) {
uint8 t previousSample;

previousSample = switchNumber->samplelLevel;
switchNumber->sampleLevel = port;

if ((switchNumber->samplelevel == previousSample) &&
(switchNumber->sampleLevel != switchNumber->state)) {
if (switchNumber->samplelevel == LOW) {

(switchNumber->pressCount) ++;
switchNumber->state = switchNumber->samplelLevel;
return true;
}
switchNumber->state = switchNumber->samplelLevel;
return false;
telse(
return false;
}
}

// Receive Functions

void processRxMessage (void) ({
if (rxMessage.frame.idType == dSTANDARD CAN MSG ID 2 O0B) {
switch (rxMessage.frame.id) {
case 0x700:
if (rxMessage.frame.data0 == REQ VERSION) {
send softwareVersion() ;
}
break;
}
LED D6 Toggle();
} else if (rxMessage.frame.idType == dEXTENDED CAN MSG ID 2 O0B) {
switch (rxMessage.frame.id) {
case 0OxD34FF:
LEDs = rxMessage.frame.data0l;
LED Display (LEDs) ;

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 25

AN2714

Demo

break;
case 0x201FF:

if (rxMessage.frame.data0 == CLEAR COUNTERS) {

clear Counters();

}

break;

}
LED D7 Toggle();

}

void LED Display (uint8 t ledStat) {
LED7D57LAT = (ledStat >> 4) & MASK78BITS;
LED D4 LAT = (ledStat >> 3) & MASK 8BITS;
LED D3 LAT = (ledStat >> 2) & MASK_8BITS;
LED7D27LAT = (ledStat >> 1) & MASK78BITS;
LED D1 LAT = ledStat & MASK 8BITS;

}

void clear Counters (void) {
rxMessageCount
txMessageCount
txPeriodicMessageCount

:O;
= 0;

0;

sl.pressCount = 0;
s2.pressCount = 0;
s3.pressCount = 0;
s4.pressCount = 0;

s4MsgCount = 0;

6.1.5 OptoLyzer MOCCA FD Settings

To proceed with the next discussion, the user should be familiar with the OptoLyzer Studio and OptoLyzer
MOCCA FD tool. To review the different features of the tool: in OptoLyzer Studio, go to File>Help>Help.

1. In OptoLyzer Studio, go to View>Device Manager. Set up the OptoLyzer MOCCA FD as shown in
the following figure.
Figure 6-14. OptoLyzer® MOCCA FD Settings
W Device Manager O x
Hide 2 deactivated devices
p MOCCA-FD Optolyzer MOCCA FD - 1608080390 -
¥) Twinkle Deactivate Flash Device Standalone -
4 CAN Transceiver Bit Rate
4 Automotive Networking Board High Speed 100 = khit/s
Current Custom Bit Rate
Prescaler 20 20
TSeg 4 5 4 Set 5
TSegz 4 Reset » 4
SIW 1 1
Bit Rate 100 kbit/s @ 100 kbit/s
Sample Point 0.00 % 0.00 %6
L
< >
2. Create a new 'CAN Data Frame' activity as shown below. The IDs shown are hexadecimal values.

© 2018 Microchip Technology Inc.

Application Note

DS00002714A-page 26

AN2714

Demo

Figure 6-15. CAN Demo Activity Window

[@ Node2_Activities.olsactivity™ v X

4 |E4Send| Request Version: Datal = 1

¥ I Sendvia MOCCA-FD - Automotive Networking Board ~ Type: CAN Data Message ~
CANID: 700 2 []Exended DataLength: 1

Data | Parameter

Byte 886 81 82 83 4 85 ec 07 ASCII
> Goeeee o1

3

[4Send| Clear Counters: Datal = 0

n
[N

¥ I Sendvia MOCCA-FD - Automotive Networking Board ~ Type: CAN Data Message ~
CANID: 201FF

2 [v] Extended DataLength: 1
Data | Parameter

Byte 86 @1 82 03 4 65 ec 07 ASCII
> OoGoee e

3

4 |EASend| SetLED: Node 1LED<5:1> = Data0 5 LSh

¥ I Sendvia MOCCA-FD - Automotive Networking Board ~ Type: CAN Data Message ~

CAN ID: D34FF s [¥] Extended Data Length: 1

Data | Parameter

Byte 86 01 82 ©3 84 e5 ec 07 ASCII
> 00Geee o1

|
3. In Optolyzer® Studio press the Start button.

>

Start

6.1.6 Automotive Networking Demo Board LEDs Display for Heartbeat and Received Messages
The figure below shows the function of each of the eight LEDs in Node 1.

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 27

AN2714

Demo

Figure 6-16. Automotive Networking Board LEDs Display

D7

D& D5

D D3

D D

4
e

2
j O 0

D&
|l I”I

1
: |

SET_LE D Command Display
Displays 5 LSBs of RX Message EID 0xD34FF
Data Byte 0

CAN Standard ID RX Indicator
Toggles on Standard CAN |0 Frame Reception

CAN Extended ID RX Indicator
Toggles on Extended CAN ID Frame Reception

Heartbeat Indicator
Toggles at2Hz=

On-board LED D8 is toggled every 500 ms and acts as a heartbeat to indicate that the PIC18F66K80
ECAN is actively transmitting and monitoring messages on the bus. LEDs D7 and D6 act as Extended
and Standard message RX indicator, respectively. LEDs D5 to D1 display the five LSBs of the RX
message with Extended ID 0xD34FF. By default, LEDs D7 to D1 are turned off.

6.1.7 Periodic Message Transmission
1. Refer to the OptoLyzer Log window. Upon pressing the START button, only the periodic data
frames should be displayed on the log window.

Figure 6-17. Periodic TX Messages

Type

® CAN Data Frame
® CAN Data Frame
@ CAN Data Frame

® CAN Data Frame

Count
12
4
2
2

Time Device

28:34:23.964.673 MOCCA-FD
20:34:23.560.130 MOCCA-FD
2@:34:23.159.788 MOCCA-FD
20:34:23.160.577 MOCCA-FD

Channel

Automotive Metworking Board
Automotive Networking Board
Automotive Networking Board

Automotive Networking Board

Summary D

Bx80812345 (Extended) Bxeeal1234s5
ox128 (standard) ax12e
0x10@ (Standard) 0x180
ex119 (Standard) ex11e

Data Length Data
x4 20 08 8e 8.
@x2 @F FF
Ox8 20 02 80 1F 80 ea 00 1F
Bx4 22 28 82 ea

Note: All values in this example are expressed in hexadecimal, unless otherwise stated.

ID 0x100 shows the count of transmitted messages from Node 1. The number of TX messages are
mapped on DB0-DB3 while the number of periodic TX messages are mapped on DB4-DB7. The TX
message count and periodic TX message should remain equal until a non-periodic (event-

triggered) message is transmitted.

2. Rotate the potentiometer and observe ID 0x120 data. The data should show the result of the right-
justified 12-bit ADC in which the high byte and low byte results are mapped to DBO and DB1,
respectively. Rotating the potentiometer clockwise increases the display value. Data should range

between 00 00 and OF FF.

6.1.8 Event-Triggered Message Transmission
1. Press switch S1. A new row should appear with CAN message ID 0x150. This frame maps the
press/release count of the four on-board switches, S1 to S4 of the Automotive Networking Board, to

© 2018 Microchip Technology Inc.

Applicati

on Note

DS00002714A-page 28

AN2714

Demo

DBO to DB3, respectively. Each switch count ranges from 00 to FF. The count restarts to 00 when
FF is exceeded.

Upon pressing S1, DBO should display 01. Notice also that ID 0x100 DB3 is now greater than DB7
because a non-periodic message has already been transmitted.

Figure 6-18. S1-Triggered TX Message

® CAN Data Frame 1 20:35:29.511.553 MOCCA-FD Automotive Networking Board éx15@ (Standard) 2x158 @x4 @1 8a 22 oo

Press S2, DB1 should set to 01. Press S3, DB2 should set to 01. Press S4, DB3 should setto 01
and a new row with CAN ID 0x160 should appear.
Figure 6-19. Switch-Triggered TX Message

® CAN Data Frame 4 20:36:05.981.172 MOCCA-FD Automotive Networking Board @x15@ (Standard) Bx158 x4 @1 @1 01 @1

® CAN Data Frame 1 20:36:05.082.832 MOCCA-FD Automotive Networking Board @x168 (Standard) Bx168 Ox4 80 00 00 01

Notice that CAN ID 0x160 DB3 is equal to CAN ID 0x150 DB3. This is because the CAN ID 0x160
frame simply counts the number of S4 press/release. The only difference is that four bytes are
allocated for S4 press/release count, which means that the count will range from 00 00 00 00 to
FF FF FF FF.

Press any of the switches and observe that the count for each corresponding ID 0x150 data byte
increments by one on every press/release, while IDx160 data only increments on every S4 press/
release.

Notice that when you press any of the switches, the corresponding CAN ID 0x12345x data bytes
display the status of the pressed switch. The example below indicates that S3 is currently pressed.
Figure 6-20. Switch-State TX Message

® CAN Data Frame 334 20:36:32.877.980 MOCCA-FD Automotive Networking Board ©x@0012345 (Extended) ©x00012345 9x4 99 90 91 B0

6.1.9 Transmit Messages from OptoLyzer Studio

1.

Open the CAN Demo Activity (Figure 6-15). Send the Request Version message with CAN ID 700
and DBO = 01. CAN ID 0x110 DB3 that maps the RX message count’s LSB should display 01
which means that Node 1 received the first message from another node. A couple of rows should
be added to the log window. One corresponds to the ID 0x700 and the other is the response
transmitted by Node 1 with ID 0x200. The example below shows that Node 1 application software is
major version 01 and minor version 00. Notice also that LED D6 is now turned on (toggled from
OFF state) because a Standard message is received.

Figure 6-21. Request Version Message and Response

® CAN Data Frame 1 20:36:58.437.857 MOCCA-FD Automotive Networking Board @x70@ (Standard) ax788 ex1 a1

® CAN Data Frame 1 20:36:58.438.817 MOCCA-FD Automotive Networking Board @x200 (Standard) Bx288 ex2 @1 o8

Send the “Clear Counters” message with CAN ID 201FF and DBO = 00. This will clear all the
message counters in Node 1. LED D7 should be toggled from OFF state because an Extended
message is received. Press S4 and notice that the counters have reset to 00.

Figure 6-22. First Message After Node 1 Clears Its Message Counters

@ CAN Data Frame 18 20:37:44.423.080 MOCCA-FD Automotive Networking Board @x150 (Standard) ex15e Ox4 00 @2 00 81

@ CAN Data Frame 3 20:37:44.423.938 MOCCA-FD Automotive Networking Board @x16@ (Standard) ex168 ex4 20 00 00 81

Send the “Set LED” message with CAN ID D34FF and DBO = 01. Notice that LED D7 switches off
and D1 turns on. Replace DBO value with FF. Send the new message. LED D7 and LEDs D5 to D1
should turn on. Try changing DBO with other values and notice that the 5 LSBs are displayed on
LEDs D5 to D1, while D7 toggles on every message transmission.

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 29

6.1.10

6.2

AN2714

Demo

Two-Node Network Output

The figure below shows a log window summary for the two-node demo. The output should display all the
messages defined in the table in Figure 6-4.

Figure 6-23. Two-Node Network CAN Messages

Type Count Time Device Channel Summary 9] Data Length Data

@ CAN Data Frame 912 20:48:24.285.0839 MOCCA-FD Automotive Networking Board 0x88012345 (Extended) ©x000812345 @xd 80 68 00 @0
® CAN Data Frame 304 20:49:23.722.843 MOCCA-FD Automotive Networking Board axi12e (Standard) ox120 ox2 @F FF

® CAN Data Frame 182 20:48:23,314.211 MOCCA-FD Automotive Networking Board ex1ee (Standard) eax1ee OxE 20 99 02 CA 0P 80 02 C8
@ CAN Data Frame 182 20:48:23.315.880 MOCCA-FD Automotive Networking Board @x11@ (Standard) ax11e 2x4 00 00 00 83
® CAN Data Frame 1@ 20:37:44.423.088 MOCCA-FD Automotive Networking Board @x150 (Standard) @x158 axd 09 68 09 a1
® CAN Data Frame 3 20:37:44.423,938 MOCCA-FD Automotive Networking Board ex16@ (Standard) axlee @xd @9 82 o2 al
® CAN Data Frame 1 20:36:58.437.057 MOCCA-FD Automotive Networking Board @x7e@ (Standard) ax7ea axl @1

® CAN Data Frame 1 20:36:58.438,017 MOCCA-FD Automotive Networking Board @x200 (Standard) @x200 @x2 el e

@ CAN Data Frame 1 20:37:38.799.798 MOCCA-FD Automotive Networking Board ex@pe201FF (Extended) Ox008281FF axl ee

® CAN Data Frame 2 20:39:14.399.036 MOCCA-FD Automotive Networking Board OxeeeD34FF (Extended) Ox000DIAFF oxl FF

Three-Node Network Demo

A three-node CAN network is created by adding a third node to the existing network, as shown in the
figure below. The previous configuration of Nodes 1 and 2 are retained in this example. There is no need
to change Node 1 software when adding Node 3 to allow both nodes to interact with each other.

Figure 6-24. Three-Node Network

CANH —e
%1200“’
CANL —

120"

W\ ¢

Automotive Networking Curiosity HPC Board

Board "
+
®
PIC18F66KS0 PIM Optolyzer® MOCCA FD P|C18li26K83
+

MCP2542 Click ATA6563 Click

NODE 1 NODE 2 NODE 3

Note:
1. These 120Q termination resistors are already included in the CAN transceiver clicks used.

Node 3
Node 3 consists of a Curiosity HPC Development Board and an ATA6563 CAN Transceiver Click Board
as shown in the following figure.

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 30

6.2.1

AN2714

Demo

Figure 6-25. Node 3 — PIC18F26K83 and ATA6563

ATAB563 Click
(MIKROE-2334)

Curiosity HPC Developrrtent Board (DM164137)

Three-Node Network Details

The following figure shows the network details for the individual messages expected on the CAN bus for
the three-node network demo.

Figure 6-26. Three-Node Network Details

) Data))
MsgID | Dir. | Type of Msg. | DLC } BBO l DAL l DE2 I DB3 I DBE | DAS DB6 I D7 I Message TX Trigger | Details
Node 1 (PIC18F66k80 + i i Board)
0x100 TX |Periodic 8 ALL TX Msg Cnt ALL TX Periodic Msg Cnt 500 msec
0x110 TX |Periodic 4 ALL RX Msg Cnt 500 msec
0x120 TX |Periodic 4 Potentiometer 300 msec
0x12345x TX |Periodic SW1 State ISWZ State |SW3 State |SW4 State 100 msec Switch state Press == 1 or Released == 0 is transmitted
0x150 TX [Event 4 SWO Count ISWl Count_|SW2 Count |SW3 Count Press/release of any switch Counts show how many times the buttons were pressed and released
0x160 TX |Event 4 0x160 Msg Cnt Press/release of SW4
0x200 TX [Event 2 Major Ver Minor Ver Response to message 0x700 _|Provides BUS the Application Software Version
(0xD34FFx RX 1 Set LED Sets LEDs for this node. Maps the lower 5 bits to LEDS to LED1.
0x201FFx RX 1 Clear Counters Clears ALL message Counters
0x700 RX 1 Request Ver Get software version
Node 2 (CAN Tool|
0x700 TX [Event 1 Request Ver
0x201FFx TX [Event 1 Clear Counters
(0xD34FFx [TX [Event 1 Set LED
All IDs RX The Tool will receive all messages on the network
Node 3 (PIC18F26k83 + HPC Curosity Board)
0x105 TX |Periodic 8 ALL TX Msg Cnt ALL TX Periodic Msg Cnt 500 msec
0x115 TX |Periodic 4 ALL RX Msg Cnt 500 msec
0x125 TX |Periodic 4 Potentiometer 300 msec
0x155 TX |Event 2 SW1 Count SW2 Count Press/release of any switch
(0xD34FFx TX [Event 1 Set LED Press/release of any switch SW1: Set LED = 0x00 or SW2: Set LED = OxFF
0x205 TX [Event 2 Major Ver Minor Ver Response to message 0x700 |Response to message 0x700
0x201FFx RX 1 Clear Counters Clears ALL message Counters
Sets LEDs based on Node 1's switch actions. Maps Node 1's SW3 and
0x12345x RX 4 SWO State SW1State |SW2State |[SW3 State
SW4 to Node 3's LEDs D2 and D3.
0x700 RX 1 Request Ver Get software version

The table shows the same messages for Node 1 and Node 2 from Figure 6-4 in the two-node demo. The
only difference is that new rows are added for Node 3 messages. This demo shows how the three nodes
will communicate with each other when a third node is added to the CAN bus without any changes on the
application software and configuration of the nodes from the previous demo.

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 31

6.2.2

AN2714

Demo

PIC18F26K83 MCC Configuration Settings

A summary of the MCC peripheral configuration for the PIC16F26K83 is shown in the following figure.
Figure 6-27. PIC18F26K83 MCC Peripheral Settings

System Module

\2‘ ‘Q\

ECAN

| 55 Easy Setup | [Registers

Easy Setup | (] Registers |

v INTERNAL OSCILLATOR

v Bit Rate Settings

CAN BUS Speed | 100kbps Sync Jump Width

Current System clock 32 MHz

o [EON e [
Oscillator Select | HFINTOSC -
SyncSegment | 1xTQ Propagation Segment | 3xTQ
Ph: S t1 8x T Ph: Se t2 4xTC
External Clock Select | Oscillator not enabled - ose Segment 1| 8x7Q 3¢ Segmen xme

HF Internal Clock 32_MHz - o —PLL Capable Frequency

External Clock

v General Settings

[] Enable CAN Line Filter Wake-up
Enable CAN Bus Activity Wake-up

1 MHz

EN

Clock Divider v Transmit-Receive Settings

v Transmit Settings

v WWDT

Transmit Buffer

Note: To deselect a Transmit Buffer, set it as receive buffer through the Receive Buffer menu.

¥ Receive Mode | Enhanced FIFO mode(Mode 2) - Note : On mode change, the content of table will be cleared.

FIFO Size

Selected Transmit Buffers ~ TXBO, TXB1, TXB2

Watchdog Timer Enable I WDT Disabled; SWDTEN is ignored

Clock

Clock Source

Window Open Time software control; keyed access not required Message ID | 0<700 8 Remove

Filter

R Receive Buffer
control of WDTPS

Time-out Period

| Divider ratio 1

6.2.3

Clock Source:

FOSC/4

Clock Source

Clock Negative Reference

External Frequency : 100 kHz

17D 17 Auto-conversion Trigger | disabled [-]

Enable Synchronisation
yne Sampling Frequency 51.1500kHz [_] Enable Continuous Operation
Enable Timer Interrupt Conversion Time =11.5*TAD = 19.55us D Enable Stop on Interrupt
St Acquisition Count 0 < | 0 < 8191
[] Enable Double Sample

Callback Function Rate 00 xTime Period = 0 Acquisition Time 05

v Message Acceptance Filter and Buffer Table
- . MESSAGE ID 1D TYPE ACCEPTANCEFILTER | ACCEPTANCEMASK | RECEIVE BUFFER
LgRmming, 0x201FF €D Filter 0 Acceptance Mask0 |FIFO
, 0x12345 EID Filter 1 Acceptance Mask 1 |FIFO
Low-voltage Programming Enable - -
0x700 SID Filter 2 Filter 15 FIFO
Project Resourc... | Gener.. | Imp. | E<. | TIMEOUTDRIVER @ |[© || Pin Modute e@
v System — £53 Basy Setup | 5 Registers
Interrupt Module 0 Easy Setup | Selected Package : SPDIP28
Pin Module Hardware Settings Pin Name 4 Module Function | Custom Name| Start High Analog WPU oD 10C
RAO ADCC ANAO - =
System Module Select Timer = . - O [L]
v Peripherals RA4 Pin Module |GPIO LED_D2 [O] O l e | - ‘
& T™RI RAS Pin Module |GPIO LED_D3 O O =] O l = | - ‘
% ADCC [PIC10/ PIC12 / PIC16 / PIC18 MCUs B RAG Pin Module (GPIO LED D4 O O] O [rone [-]
1+ ECAN RAT Pin Module |GPIO LED_DS O O] O l e | - ‘
& T™MRO Re4 Pin Module |GPIO) O O O O O [rore [-]
v Libraries RCS PinModule |GPIO %2 O O O O O [= | = ‘
¥ Foundation Services Fo Ry i 0O 0 0O l | ‘
v V] none | ~
() TIMEOUTDRIVER
: s RCT ECAN CANRX O O] O W] [e | - ‘
TMRO @ © ||abcc /8
453 Easy Setup | = Registers | 53 Easy Setup | = Registers
Hardware Settings Hardware Settings N
Enable Timer Enable ADC
T e oy [Smme]
Clock prescaler 1:256 - Requested Period : 32 us < 8192 ms <81%2ms v ADC
Actual Period : 8192ms
posscaer 11 - 20¢ o Resut Agment e [
Timer mode: Positive Reference oD

Application Code

Edit the main file as shown in the example below.

© 2018 Microchip Technology Inc.

Application Note

DS00002714A-page 32

AN2714

Demo

Example 6-2. PIC18F26K83 Main File

#include "mcc_generated files/mcc.h"

#define MilliSeconds (uint32 t)31 // 32us=1 tick, this means 31 ticks=1ms
#define PRESSED 1

#define NOT PRESSED 0

#define MASK 32BITS 0x000000FF

#define MASK 8BITS 0x01

#define MAJOR VERSION 1
#define MINOR _VERSION 0
#define REQ VERSION 1
#define CLEAR COUNTERS O

typedef struct switchStat{
bool status;
uint8 t pressCount;
uint8 t state;
uint8 t sampleLevel;
}switchStat t;

// Function prototypes for periodic messages and heartbeat
void add PeriodicMessages (void) ;

uint32 t send TxRxMsgCount (void *payload);

uint32 t send PotStatus(void *payload);

void send TxMsgCount (void) ;

void send RxMsgCount (void) ;

void heartbeat (void) ;

// Function prototypes for event-triggered messages

bool checkButton (switchStat t *switchNumber, uint8_t port);
void send SwitchPressCount (void);

void send softwareVersion (void);

void send setNodelLeds (void);

void send clearNodelLeds (void);

// Function prototypes for receive message
void processRxMessage (void) ;
void clear Counters (void);

// Local variables
switchStat t sl, s2;

uint32_t rxMessageCount = 0;
uint32 t txMessageCount = 0;
uint32 t txPeriodicMessageCount = 0;

uCAN_MSG txMessage;
uCAN_MSG rxMessage;

timerStruct t periodicTxMessages[] = {
{send_ TxRxMsgCount},
{send PotStatus},

}i

/%
Main application
v
void main (void)
{
SYSTEM Initialize();

INTERRUPT GlobalInterruptEnable () ;
TMR1 SetInterruptHandler (send SwitchPressCount) ;
add PeriodicMessages () ;

while (1)
{
if (CAN_receive (&rxMessage)) {
processRxMessage () ;
rxMessageCount++;

}
timeout callNextCallback();

© 2018 Microchip Technology Inc. Application Note

DS00002714A-page 33

AN2714

Demo

void add PeriodicMessages (void) {
timeout create (&periodicTxMessages[0], 500 * MilliSeconds);
timeout create (&periodicTxMessages[1l], 300 * MilliSeconds);

}
// Periodic TX Messages

uint32 t send TxRxMsgCount (void* payload) {
send TxMsgCount () ;
send RxMsgCount () ;
heartbeat () ;
return 500 * MilliSeconds;

}

void send TxMsgCount (void) {
txMessage.frame.idType = dSTANDARD CAN MSG_ID 2 0B;
txMessage.frame.id = 0x105;

txMessage.frame.dlc = 8;
txMessage.frame.data0 = (txMessageCount >> 24) & MASK 32BITS;
txMessage.frame.datal = (txMessageCount >> 16) & MASK 32BITS;

(txMessageCount >> 8) & MASK 32BITS;
(txMessageCount) & MASK 32BITS;
(txPeriodicMessageCount >> 24) & MASK 32BITS;

txMessage.frame.dataz
txMessage.frame.data3
txMessage.frame.data4d

txMessage.frame.data5 = (txPeriodicMessageCount >> 16) & MASK 32BITS;
txMessage.frame.data6 = (txPeriodicMessageCount >> 8) & MASK 32BITS;
txMessage.frame.data7 = (txPeriodicMessageCount) & MASK 32BITS;

CAN transmit (&txMessage) ;

txMessageCount++;
txPeriodicMessageCount++;

}

void send RxMsgCount (void) {
txMessage.frame.idType = dSTANDARD CAN MSG_ID 2 0B;
txMessage.frame.id = 0x115;

txMessage.frame.dlc = 4;

txMessage.frame.data0 = (rxMessageCount >> 24) & MASK 32BITS;
txMessage.frame.datal = (rxMessageCount >> 16) & MASK 32BITS;
txMessage.frame.data2 = (rxMessageCount >> 8) & MASK 32BITS;
txMessage.frame.data3 = (rxMessageCount) & MASK 32BITS;

CAN transmit (&txMessage) ;
txMessageCount++;
txPeriodicMessageCount++;

}

uint32 t send PotStatus (void* payload) {
ADCC_GetSingleConversion (POT) ;

txMessage.frame.idType = dSTANDARD CAN MSG_ID 2 0B;
txMessage.frame.id = 0x125;

txMessage.frame.dlc = 2;

txMessage.frame.data0 = ADRESH;
txMessage.frame.datal = ADRESL;

CAN transmit (&txMessage);

txMessageCount++;
txPeriodicMessageCount++;
return 300 * MilliSeconds;

}

void heartbeat (void) {
LED D5 Toggle();
}

// Event triggered messages
void send SwitchPressCount (void) {

sl.status = checkButton(&sl, S1_PORT);
s2.status = checkButton(&s2, S2_PORT) ;

if (s2.status || sl.status) {
txMessage.frame.idType = dSTANDARD CAN MSG_ID 2 0B;
txMessage.frame.id = 0x155;
txMessage.frame.dlc = 2;
txMessage.frame.datal0 = sl.pressCount;

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 34

AN2714

Demo

txMessage.frame.datal = s2.pressCount;
CAN transmit (&txMessage) ;
txMessageCount++;

}

if (sl.status) {
send clearNodelLeds () ;
lelse if (s2.status) {
send_setNodelLeds () ;
}
}

void send setNodellLeds (void) {
txMessage.frame.idType = dEXTENDED CAN MSG ID 2 0B;
txMessage.frame.id = OxD34FF;
txMessage.frame.dlc = 1;
txMessage.frame.datal0 = OxFF;
CAN transmit (&txMessage) ;
txMessageCount++;

}

void send clearNodellLeds (void) {
txMessage.frame.idType = dEXTENDED CAN MSG ID 2 0B;
txMessage.frame.id = OxD34FF;
txMessage.frame.dlc = 1;
txMessage.frame.datal0 = 0x00;
CAN transmit (&txMessage) ;
txMessageCount++;

}

void send softwareVersion (void) {
txMessage.frame.idType = dSTANDARD CAN MSG_ID 2 0B;
txMessage.frame.id = 0x205;
txMessage.frame.dlc = 2;
txMessage.frame.data0 = MAJOR VERSION;
txMessage.frame.datal = MINOR VERSION;
CAN transmit (&txMessage);
txMessageCount++;

}

bool checkButton (switchStat t *switchNumber, uint8 t port) {
uint8 t previousSample;

previousSample = switchNumber->sampleLevel;
switchNumber->samplelLevel = port;

if ((switchNumber->samplelLevel == previousSample) &&
(switchNumber->samplelLevel != switchNumber->state)) {
if (switchNumber->samplelLevel == LOW) {
(switchNumber->pressCount) ++;
switchNumber->state = switchNumber->samplelevel;

return true;

}
switchNumber->state = switchNumber->samplelevel;
return false;

lelse(
return false;

}

}

// Receive Functions
void processRxMessage (void) {
if (rxMessage.frame.idType == dSTANDARD CAN MSG ID 2 O0B) {
switch (rxMessage.frame.id) {
case 0x700:
if (rxMessage.frame.data0 == REQ VERSION) {
send softwareVersion() ;
}
break;
}
} else if (rxMessage.frame.idType == dEXTENDED CAN MSG ID 2 OB) {
switch (rxMessage.frame.id) {
case 0x12345:
LED_D2_ LAT rxMessage.frame.data2;
LED D3 LAT = rxMessage.frame.data3;
break;

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 35

AN2714

Demo

case 0x201FF:
if (rxMessage.frame.data0 == CLEAR COUNTERS) {
clear Counters();
}
break;
}
}
LED D4 Toggle();
}

void clear Counters (void) {

rxMessageCount = 0;
txMessageCount = 0;
txPeriodicMessageCount = 0;

sl.pressCount =

,O;
s2.pressCount = 0;

6.2.4 Curiosity HPC Demo Board LEDs Display for Heartbeat and Received Messages
The figure below shows the function of each of the four LEDs in Node 3.
Figure 6-28. Curiosity HPC Demo Board LEDs Display

Ds D4 D3 D2
L I“l I“l I“l I|
I

NODE_1 S3 Press Indicator
Lights up when Node 1 Switch S3 is pressed

NODE_1 S4 Press Indicator
Lights up when Node 1 Switch S4 is pressed

CAN Message RX Indicator
Toggles on CAN Frame Reception

Heartbeat Indicator
Toggles at 2Hz

On-board LED D5 is toggled every 500 ms and acts as a heartbeat to indicate that the PIC18F26K83
ECAN is actively transmitting and monitoring messages on the bus. LED D4 acts as a CAN RX indicator
and toggles on every message reception (both Extended and Standard). LEDs D2 to D3 indicate the
status of Node 1 switches S3 and S4.

6.2.5 Node 3 Message Transmission
1. Refer to the OptoLyzer Log window. Upon connecting Node 3, three rows will be added to the log
window. One each for Node 3 periodic messages with IDs 0x125, 0x105 and 0x115. Notice that IDs
0x105 and 0x115 constantly increment. These IDs simply mirror the behavior of IDs 0x100 (TX
message count) and 0x110 (RX message count) of Node 1.

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 36

AN2714

6.2.6 Node

2.

6.2.7 Node
1.

Demo
Figure 6-29. CAN Messages After Adding Node 3
Type Count Time Device Channel Summary D Data Length Data
® CAN Data Frame 386 20:45:41.873.290 MOCCA-FD Automotive Networking Board @xeee12345 (Extended) exe@e12345 @x4 00 02 o0 o9
® CAN Data Frame 182 20:45:41.819.228 MOCCA-FD Automotive Networking Board @x12@ (standard) exlze ex2 OF FF
® CAN Data Frame 61 20:45:41.416.780 MOCCA-FD Automotive Networking Board @x10@ (Standard) ax1ee exs 00 90 21 AD 00 00 81 AR
@ CAN Data Frame 61 20:45:41.417.648 MOCCA-FD Automotive Networking Board @x11@ (Standard) ax11e ex4 60 0 20 83
® CAN Data Frame 9 20:43:53,.448.843 MOCCA-FD Automotive Networking Board @xi15@ (Standard) ax15e ox4 02 82 83 82
® CAN Data Frame 2 20:43:49,345,747 MOCCA-FD Automotive Networking Board @x168 (Standard) eax16e ex4 00 oo eo o2
@ CAN Data Frame 1 20:44:00.009.517 MOCCA-FD Automotive Networking Board @x7e0@ (Standard) ax7ee axl o1
® CAN Data Frame 1 209:44:00.910.468 MOCCA-FD Automotive Networking Board @x208 (Standard) Bx200 9x2 91 @0
® CAN Data Frame 1 20:44:04.993.823 MOCCA-FD Automotive Networking Board ©x@00201FF (Extended) @x0@e201FF ex1 e
® CAN Data Frame 2 20:44:15.562.689 MOCCA-FD Automotive Networking Board Bx@ean34FF (Extended) @xeeen3arF exl FF
® CAN Data Frame 245 20:45:42.995.908 MOCCA-FD Automotive Networking Board @x125 (Standard) ax125 exz ea 95
@ CAN Data Frame 147 2@:45:42.886.881 MOCCA-FD Automotive Networking Board ©x105 (Standard) ax1e5 exg 00 08 @2 18 00 08 @2 18
® CAN Data Frame 147 20:45:42.887.716 MOCCA-FD Automotive Networking Board @x115 (Standard) @x115 ex4 00 00 o0 BY

LED D4 should blink at a rate of approximately 100 ms - the same rate that Node1 transmits the
periodic message for the switch state with ID 0x12345x.

Rotate Node 3 potentiometer and observe ID 0x125 data. Rotating the potentiometer
counterclockwise will increase the output value display. Data should range between 00 00 and OF
FF.

Press switch S1. A new row should appear for ID 0x155. DBO corresponds to the S1 press/release
count and should display 01.

Figure 6-30. Node 3 S1-Triggered TX Message

® CAN Data Frame 1 20:46:21.260.293 MOCCA-FD Automotive Networking Board @x155 (Standard) @x155 x2 01 8o

Also observe that pressing S1 sets the CAN ID 0xD34FF DBO to 00. This clears LEDs D5 to D1 of
Node 1.

Figure 6-31. Node 1 Set LEDs RX Message

® CAN Data Frame 3 20:46:21.279.899 MOCCA-FD Automotive Networking Board ©x@@8D34FF (Extended) @x000D3AFF ex1 88

Press S2 and notice that CAN ID 0xD34FF DBO is now set to FF. Node 1 LEDs D5 to D1 should
turn on.
Figure 6-32. Node 3 S2-Triggered TX Message

® CAN Data Frame 4 20:47:31.359.651 MOCCA-FD Automotive Metworking Board @x@00D34FF (Extended) Ox000D34FF ax1 FF

Since both S1 and S2 were already pressed once, ID 0x155 data should also update accordingly.
Figure 6-33. Node 3 Switch Press Count TX Message

® CAN Data Frame 2 20:47:31.358.827 MOCCA-FD Automotive Networking Board ©x155 (Standard) 8x155 ex2 a1 a1

1 Event-Triggered Message Transmission

Press and hold Node 1 switch S3. Message ID 0x12345x DB2 is set to 01 and Node 3 LED D2
lights up.

Figure 6-34. Node 1 Switch State TX Message

® CAN Data Frame 772 29:48:48.440.787 MOCCA-FD Automotive Wetworking Board @x@@@12345 (Extended) @x@ea12345 @x4 8a e @1 ee

Do the same for Node 1 switch S4 and notice that Node 3 LED D3 lights up while the switch is held.

2 Event-Triggered Message Transmission

Open the same CAN Demo Activity (Figure 6-15) used in the two-node demo. Send the “Request
Version” message with CAN ID 700 and DBO = 01. A new row should be added to the log window
with ID 0x205. The example below shows that Node 2 application software is major version 01 and
minor version 00.

© 2018

Microchip Technology Inc. Application Note DS00002714A-page 37

6.3

AN2714

Demo

Figure 6-35. Request Version Response

® (AN Data Frame 1 20:49:21.853.122 MOCCA-FD Automotive Networking Board @x205 (Standard) Bx285 ex2? @1 oo

Send the “Clear Counters” message with CAN ID 201FF and DBO = 00. This will clear all the
message counters in Node 1 and Node 2. Press S2 and notice that the counters have reset to 00.

Figure 6-36. First Message After Node 3 Clears Its Message Counters

® CAN Data Frame 3 20:50:08.751.481 MOCCA-FD Automotive Networking Board @x155 (Standard) @x155 e2x2 @9 a1

Three-Node Network Output

The following figure shows a sample log after adding Node 3 and executing the steps described above.
The output should display all the messages defined in the table in Figure 6-26.

Figure 6-37. Three-Node Network CAN Messages

Type
CAN
CAN
CAN
CAN
CAN
CAN
CAN

® ® & 0 & 0 0 0 000 0 0
o
=
=

Count = Time Device Channel Summary ID Data Length Data
Data Frame 1144 20:51:17.372.994 MOCCA-FD Automotive Networking Board ©0x00012345 (Extended) ©x00012345 0x4 00 00 00 00
Data Frame 381 20:51:16.771.760 MOCCA-FD Automotive Networking Board ©x120 (Standard) 0x120 0x2 OF FF
Data Frame 228 20:51:15.560.605 MOCCA-FD Automotive Networking Board ox10e (Standard) 0x100 OX8 00 00 01 2F 00 00 01 2F
Data Frame 228 20:51:15.561.463 MOCCA-FD Automotive Networking Board ©x11@ (Standard) ox110 0x4 00 00 00 02
Data Frame 10 20:48:44.695.746 MOCCA-FD Automotive Networking Board ox150 (Standard) 0x150 0x4 00 00 01 00
Data Frame 2 20:43:49.345.747 MOCCA-FD Automotive Networking Board 0x160 (Standard) 0x160 Ox4 00 00 00 02
Data Frame 2 20:49:21.852.395 MOCCA-FD Automotive Networking Board ©0x700 (Standard) 0Xx700 ox1 o1
Data Frame 2 20:49:21.853.812 MOCCA-FD Automotive Networking Board ox200 (Standard) 0Xx200 0x2 01 00
Data Frame 2 20:50:05.443.822 MOCCA-FD Automotive Networking Board ©x000201FF (Extended) ©x000201FF ox1 0o
Data Frame 5 20:50:08.752.217 MOCCA-FD Automotive Networking Board ©x000D34FF (Extended) ©x0@00D34FF ox1 FF
Data Frame 1368 20:51:17.443.962 MOCCA-FD Automotive Networking Board ox125 (Standard) 0x125 0x2 OF FF
Data Frame 820 20:51:16.993.618 MOCCA-FD Automotive Networking Board ox105 (Standard) 0x105 0X8 00 00 02 10 00 00 02 OF
Data Frame 820 20:51:16.994.453 MOCCA-FD Automotive Networking Board ©x115 (Standard) ox115 Ox4 00 00 00 B4
Data Frame 3 20:50:08.751.401 MOCCA-FD Automotive Networking Board @x155 (Standard) 0x155 0x2 00 01
Data Frame 1 20:49:21.853.122 MOCCA-FD Automotive Networking Board ©ox205 (Standard) 0x205 0x2 01 00

© 2018 Microchip Technology Inc.

Application Note

DS00002714A-page 38

AN2714

Conclusion

Conclusion

This application note covers all the basic details about the ECAN MCC module. Two sample
implementations were included to demonstrate the use of the ECAN MCC module on two different 8-bit
microcontrollers from Microchip Technology Inc. These implementations were demonstrated with the CAN
tool hardware and GUI from K2L GmbH & Co. KG. Proper ECAN MCC module use can help save
significant application development time, especially for users who do not want to dig into all the intricacies
of setting up the ECAN peripheral.

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 39

8.1

AN2714
APPENDIX A: Calculations

APPENDIX A: Calculations

The ECAN MCC module frees the user from tedious calculation of the different ECAN register values.
The following sections provide supplementary information on how the ECAN module works in the
background to define the values of the different registers and bits based on the user’s settings in the GUI.

APPENDIX A-1: Baud Rate Prescaler

The following calculations show how the module derives the Baud Rate Prescaler (BRP) based on the
available parameters in the GUI.

First, Nominal Bit Rate (NBR) needs to be defined. NBR is the number of bits per second transmitted in
the absence of resynchronization as expressed in the following equation.
Equation 8-1. Nominal Bit Rate
1
NBR = fpiy = —
where ty;; is the Nominal Bit Time (NBT), which is the summation of nonoverlapping segments as shown
in Equation 8-2.
Equation 8-2. Nominal Bit Time
NBT = tp; = tsyncseg t trropseg 1 tps1 t tps2

Each time segment is an exact integer multiple of one Time Quantum (TQ). As shown in Equation 8-3,
TQ is a function of BRP and the system frequency, Fosc.

Equation 8-3. Time Quanta
o= 2% (BRP + 1)
Fosc

Since NBT is composed of time segments which are multiples of TQ, therefore NBT is also an integer
multiple of TQ. Using a TQ multiplier n, NBR can also be expressed as shown in Equation 8-4.

Equation 8-4. Nominal Bit Rate as a Function of TQ

1 1

NBR = NBT = 7xT0

Manipulating Equation 8-4 will give another equation for TQ (see equation below).

Equation 8-5. Relationship Between TQ and NBR

1
TQ_nXNBR

Equating Equation 8-3 and Equation 8-5 will lead to a single equation for the BRP as a function of the
given parameters in the GUI (see the following equation).

Equation 8-6. Nominal Bit Rate as a Function of TQ

Fosc

BRP = o NBRxn ~

1

The ECAN module will generate a warning notification if it cannot calculate a valid BRP based on the
entered parameters in the GUI.

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 40

8.2

AN2714
APPENDIX A: Calculations

APPENDIX A-2: Sample Point

The Sample Point is always located at the end of PS1. The calculation of sample point as percentage of
one bit time is shown in the equation below.

Equation 8-7. Sample Point

tSyncSeg + tPropSeg + tps1
tSyncSeg + tPropSeg +tps1 + tps2

% SamplePoint = X 100 %

tSyncSeg + tPropSeg + tps1
thit

% SamplePoint = x 100 %

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 41

AN2714

The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as
a means to make files and information easily available to customers. Accessible by using your favorite
Internet browser, the web site contains the following information:

* Product Support — Data sheets and errata, application notes and sample programs, design
resources, user’s guides and hardware support documents, latest software releases and archived
software

* General Technical Support — Frequently Asked Questions (FAQ), technical support requests,
online discussion groups, Microchip consultant program member listing

* Business of Microchip — Product selector and ordering guides, latest Microchip press releases,
listing of seminars and events, listings of Microchip sales offices, distributors and factory
representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products.
Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata
related to a specified product family or development tool of interest.

To register, access the Microchip web site at http://www.microchip.com/. Under “Support”, click on
“Customer Change Notification” and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

» Distributor or Representative
* Local Sales Office
* Field Application Engineer (FAE)
» Technical Support
Customers should contact their distributor, representative or Field Application Engineer (FAE) for support.

Local sales offices are also available to help customers. A listing of sales offices and locations is included
in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

* Microchip products meet the specification contained in their particular Microchip Data Sheet.

* Microchip believes that its family of products is one of the most secure families of its kind on the
market today, when used in the intended manner and under normal conditions.

* There are dishonest and possibly illegal methods used to breach the code protection feature. All of
these methods, to our knowledge, require using the Microchip products in a manner outside the
operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is
engaged in theft of intellectual property.

* Microchip is willing to work with the customer who is concerned about the integrity of their code.

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 42

http://www.microchip.com/
http://www.microchip.com/
http://www.microchip.com/support

AN2714

* Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their
code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the
code protection features of our products. Attempts to break Microchip’s code protection feature may be a
violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software
or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for
your convenience and may be superseded by updates. It is your responsibility to ensure that your
application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS
CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life
support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting
from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud,
chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeelLoq,
Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST,
SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight
Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming,
ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi,
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient
Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,
Ripple Blocker, SAM-ICE, Serial Quad I/0, SMART-L.S., SQI, SuperSwitcher, SuperSwitcher I, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are
trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany Il GmbH & Co. KG, a subsidiary of
Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 43

AN2714

© 2018, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
ISBN: 978-1-5224-3331-6

Quality Management System Certified by DNV

ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer
fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC®
DSCs, KEELOQ® code hopping devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design and manufacture of development
systems is ISO 9001:2000 certified.

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 44

MICROCHIP

Worldwide Sales and Service

AMERICAS ASIA/PACIFIC ASIA/PACIFIC m

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support

Web Address:
www.microchip.com
Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX

Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075
Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924
Detroit

Novi, Ml

Tel: 248-848-4000
Houston, TX

Tel: 281-894-5983
Indianapolis
Noblesville, IN

Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC

Tel: 919-844-7510
New York, NY

Tel: 631-435-6000
San Jose, CA

Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing

Tel: 86-10-8569-7000
China - Chengdu

Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing

Tel: 86-25-8473-2460
China - Qingdao

Tel: 86-532-8502-7355
China - Shanghai

Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou

Tel: 86-186-6233-1526
China - Wuhan

Tel: 86-27-5980-5300
China - Xian

Tel: 86-29-8833-7252
China - Xiamen

Tel: 86-592-2388138
China - Zhuhai

Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune

Tel: 91-20-4121-0141
Japan - Osaka

Tel: 81-6-6152-7160
Japan - Tokyo

Tel: 81-3-6880- 3770
Korea - Daegu

Tel: 82-53-744-4301
Korea - Seoul

Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore

Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei

Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo

Tel: 358-9-4520-820
France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan

Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana

Tel: 972-9-744-7705
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova

Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7289-7561
Poland - Warsaw

Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham

Tel: 44-118-921-5800
Fax: 44-118-921-5820

© 2018 Microchip Technology Inc.

Application Note

DS00002714A-page 45

	Introduction
	Table of Contents
	1. Features
	2. ECAN Module GUI
	2.1. Easy Setup
	2.1.1. CAN BUS Settings
	2.1.2. General Settings
	2.1.3. CANTX Pin Drive Settings
	2.1.4. Transmit-Receive Settings
	2.1.4.1. Transmit Settings
	2.1.4.2. Receive Mode

	2.2. Registers

	3. Supported Modes
	3.1. Mode 0 – Legacy Mode
	3.2. Mode 1 – Enhanced Legacy Mode
	3.3. Mode 2 – Enhanced FIFO Mode

	4. APIs
	4.1. Sample Implementation of CAN Transmit and Receive Functions
	4.1.1. Transmitting a Message
	4.1.2. Receiving a Message

	5. CAN Node Using PIC18 ECAN
	6. Demo
	6.1. Two-Node Network Demo
	6.1.1. Two-Node Network Details
	6.1.2. ECAN MCC System Requirements
	6.1.3. MCC Configuration Settings
	6.1.4. Application Code
	6.1.5. OptoLyzer MOCCA FD Settings
	6.1.6. Automotive Networking Demo Board LEDs Display for Heartbeat and Received Messages
	6.1.7. Periodic Message Transmission
	6.1.8. Event-Triggered Message Transmission
	6.1.9. Transmit Messages from OptoLyzer Studio
	6.1.10. Two-Node Network Output

	6.2. Three-Node Network Demo
	6.2.1. Three-Node Network Details
	6.2.2. PIC18F26K83 MCC Configuration Settings
	6.2.3. Application Code
	6.2.4. Curiosity HPC Demo Board LEDs Display for Heartbeat and Received Messages
	6.2.5. Node 3 Message Transmission
	6.2.6. Node 1 Event-Triggered Message Transmission
	6.2.7. Node 2 Event-Triggered Message Transmission

	6.3. Three-Node Network Output

	7. Conclusion
	8. APPENDIX A: Calculations
	8.1. APPENDIX A-1: Baud Rate Prescaler
	8.2. APPENDIX A-2: Sample Point

	The Microchip Web Site
	Customer Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System Certified by DNV
	Worldwide Sales and Service

