
 AN2714
MPLAB® Code Configurator CAN 2.0B Module for

PIC18 Microcontrollers

Introduction

Authors: Mary Tamar Tan, William Stuart, Microchip Technology Inc.

Microchip's MPLAB® Code Configurator (MCC) Enhanced CAN (ECAN™) module provides an easy-to-
use GUI for users who want to speed up the development of their PIC18 Controller Area Network (CAN)
projects. The main advantage of using the ECAN MCC module is that it eliminates the trouble of manually
calculating the individual acceptance masks, filter and Configuration register values. The user can add
and remove CAN Rx IDs easily without worrying about how to configure the ID-Filter-Mask-Buffer
combinations in the PIC18F registers. The ECAN MCC module can help designers save significant time
from the low-level CAN protocol implementation and focus on the development of higher level
applications.

The ECAN MCC module supports PIC18F 8-bit devices that contain the on-chip ECAN peripheral. One
such family of devices is the PIC18FXXK8X. The module supports the three ECAN functional modes:
Legacy (mode 0), Enhanced Legacy (mode 1) and Enhanced FIFO (mode 2). The MCC-generated APIs
depend on the mode specified by the user in the GUI. The PIC18F functional modules configure the
ECAN module's hardware to different settings, allowing flexibility in the module to meet the needs of
various users.

This document focuses on the features and implementation of the ECAN MCC module. It is assumed that
the reader has basic knowledge about the CAN protocol as well as the Enhanced Controller Area
Network (ECAN) peripheral on 8-bit PIC® MCUs. For consistency, this application note refers to the ECAN
MCC software library as 'ECAN MCC module' and the hardware ECAN module as 'ECAN peripheral'.

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 1

Table of Contents

Introduction..1

1. Features.. 3

2. ECAN Module GUI.. 4
2.1. Easy Setup...5
2.2. Registers.. 6

3. Supported Modes.. 7
3.1. Mode 0 – Legacy Mode..7
3.2. Mode 1 – Enhanced Legacy Mode...7
3.3. Mode 2 – Enhanced FIFO Mode..8

4. APIs... 9
4.1. Sample Implementation of CAN Transmit and Receive Functions...10

5. CAN Node Using PIC18 ECAN... 13

6. Demo... 14
6.1. Two-Node Network Demo.. 14
6.2. Three-Node Network Demo... 30
6.3. Three-Node Network Output.. 38

7. Conclusion...39

8. APPENDIX A: Calculations... 40
8.1. APPENDIX A-1: Baud Rate Prescaler... 40
8.2. APPENDIX A-2: Sample Point... 41

The Microchip Web Site.. 42

Customer Change Notification Service..42

Customer Support... 42

Microchip Devices Code Protection Feature... 42

Legal Notice...43

Trademarks... 43

Quality Management System Certified by DNV...44

Worldwide Sales and Service..45

 AN2714

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 2

1. Features
The ECAN MCC module complements the hardware ECAN peripheral by providing the following features:

• Selectable functional modes of operation between mode 0, mode 1 and mode 2
• Automatic calculation of Baud Rate Control Register values based on the user-provided CAN bus

speed and device clock
• Automatic bit segment calculation based on selected TQ multiplier and sample point
• Automatic calculation of filter and mask values
• A tabulated summary of entered CAN ID, ID Type, Mask, Filter and Buffer combinations
• Verbose comments in the generated code that details the ECAN module's configuration

 AN2714
Features

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 3

2. ECAN Module GUI
The default ECAN module GUI is shown in the figure below.

Figure 2-1. ECAN™ GUI Default View

 AN2714
ECAN Module GUI

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 4

2.1 Easy Setup
The Easy Setup tab allows the setting of different CAN bus parameters, enabling and disabling of CAN
wake-up features, and functional mode selection.

2.1.1 CAN BUS Settings
• CAN BUS Speed – Provides the user the ability to select CAN Nominal Bit Rates (NBR) from 20

kbps to 1 Mbps.

Note:  To enable multiple nodes to communicate on the same CAN BUS, the bit rate for all nodes on the
CAN BUS should be identical.

• Time Quanta (TQ) – Provides selection of valid TQ multipliers. When a value is selected, the GUI
automatically updates with valid sample point options.

• Sync Segment – This field cannot be modified by the user. It is shown for completeness in
detailing the bit rate TQ breakdown. The Sync Segment is always equal to 1xTQ. The Sync
Segment’s purpose is to synchronize the various nodes on the bus.

• Propagation Segment – The Propagation Segment exists to compensate for physical delays
between nodes. This field can take a value between 1xTQ to 8xTQ.

• Phase Segment 1 (PS1) and Phase Segment 2 (PS2) – The two phase segments are used to
compensate for edge phase errors in the bus. PS1 can be lengthened or PS2 can be shortened by
resynchronization. The allowable value for PS1 and PS2 is from 1xTQ to 8xTQ.

• Sync Jump Width – Provides options for the Synchronization Jump Width (SJW) from 1xTQ to
4xTQ. SJW is an integral multiple of TQ that defines the maximum value of lengthening and
shortening of a bit’s length during resynchronization. The SJW adjusts the bit clock as necessary to
maintain synchronization with the transmitted message. To learn more on SJW refer to the data
sheet or application note AN00754, "Understanding Microchip’s CAN Module Bit Timing".

• Sample Point – Provides the actual sample point position for one bit period. The Sample Point is
the point of time at which the bus level is read and interpreted as the value of that respective bit. Bit
sampling takes place between PS1 and PS2.

2.1.2 General Settings
• CAN Activity wake-up – This check box enables/disables the CAN bus activity wake-up feature.

Enabling this option allows the peripheral to generate an interrupt when activity is detected on the
CAN bus while in internal Sleep mode.

• CAN Line Filter wake-up – This check box enables/disables the use of a low-pass filter function to
the RXCAN input line while in internal Sleep mode. This prevents the device from waking up due to
noise or short glitches in the bus.

2.1.3 CANTX Pin Drive Settings
By default, the ECAN MCC module sets the CANTX pin to drive VDD when recessive. This configuration
is required to allow the CANTX pin to drive to VDD properly.

Note:  This section is only available for devices with Enable High Drive (ENDRHI) bit in the CAN I/O
Control (CIOCON) register such as the PIC18FXXK80.

2.1.4 Transmit-Receive Settings

2.1.4.1 Transmit Settings
• Transmit Buffer – Shows all generic ECAN message buffers that are programmable to be used as

transmit or receive buffers. When the user selects a generic message buffer within MCC then it is

 AN2714
ECAN Module GUI

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 5

http://ww1.microchip.com/downloads/en/AppNotes/00754.pdf

automatically set as a Tx buffer and the Selected Transmit Buffers text field is updated. This field
is disabled in mode 0, because functional mode 0 does not support the generic buffers which could
be configured into transmit buffers.

• Selected Transmit Buffers – Shows all the buffers that will be used for transmit operation. By
default, only the dedicated transmit buffers are displayed.

2.1.4.2 Receive Mode
Mode selection allows the user to select between Legacy mode (mode 0, default), Enhanced Legacy
mode (mode 1) and Enhanced FIFO mode (mode 2). See section 3. Supported Modes for more
information.

The user should manually enter a valid CAN ID and select the associated Acceptance Filter, Acceptance
Mask and Receive Buffer for that ID. The ECAN MCC module has an ID validator feature designed in that
will only accept valid CAN receive IDs in hexadecimal format. This feature flags IDs that have invalid
characters (i.e., $, %, z), IDs that are out of range, and IDs already present in the Message Acceptance
Filter and Buffer Table. After valid ID entry, the user should click the Add button which will append a row
with the ID, ID Type, Mask-Filter-Buffer linkage to the Message Acceptance Filter and Buffer Table.
Note:  A valid Standard ID is any hexadecimal value in the range of '0x00-0x7FF'. A valid Extended ID is
any hexadecimal value in the range of '0x-1FFFFFFFx', where the appended 'x' correspond to 'extended'
CAN identifiers.

The ECAN MCC module also does not allow changes to individual table cells. To modify, the user needs
to remove the entire row and add another row with the correct values. The ECAN module, however,
allows remapping of all entries for Acceptance Filter to a new Receive buffer.

In mode 2, the user can select the Rx FIFO size. All programmable buffers that are not part of the FIFO
are automatically configured as transmit buffers.

2.2 Registers
The Registers tab shows the different ECAN registers with their corresponding values based on the
parameters set by the user in the Easy Setup tab. The module also assigns default values based on the
specific device data sheet to registers that are not affected by the Easy Setup configuration. The register
values as well as the setting for each of the register bits are displayed in the GUI. Some of the register
bits settings can be modified by the user through the corresponding bit’s choice box. The user is advised
to consult the specific device data sheet when modifying register values.

It is also under the Registers tab that the user can enable and disable interrupt features.

Note:  The MCC has a Notifications tab that lists all the configuration warnings. Usually, this shows
notifications from all peripheral modules and libraries selected by the user, including the ECAN module.
The user must act on these warnings to avoid generation of incorrect code.

 AN2714
ECAN Module GUI

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 6

3. Supported Modes
The ECAN MCC module supports all three hardware ECAN functional modes.

3.1 Mode 0 – Legacy Mode
In mode 0, only the CAN ID and filter can be set by the user. There are three transmit buffers, two receive
buffers, two acceptance masks, and six acceptance filters. Filters 0 and 1, and Acceptance Mask 0, are
associated with RXB0. Filters 2, 3, 4 and 5, and Acceptance Mask 1 are associated with RXB1. Refer to
the figure below.
Figure 3-1. Mode 0 Buffer-Filter-Mask Association

RXB0
RXF0

RXF1

RXF2

RXF3

RXF4

RXF5

RXB1(1)

RXM0

RXM1

Tx Buffer 0

Tx Buffer 1

Tx Buffer 2

C
AN

 Transceiver

NOTE 1: RXB0 can overflow into RXB1

3.2 Mode 1 – Enhanced Legacy Mode
Compared to mode 0, mode 1 has ten additional acceptance filters, creating a total of 16 available filters,
as shown in Figure 3-2. Filter 15 can either be used as an acceptance filter or acceptance mask. There
are also six additional buffers (B0-B5) that can be programmed as either Tx or Rx. By default, these
buffers are configured as receive buffers. Each of these acceptance filters can be dynamically associated
with any of the receive buffers. Each filter can also be dynamically associated with available Acceptance
Masks.

 AN2714
Supported Modes

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 7

Figure 3-2. Mode 1-Buffer-Filter-Mask Association

RXB0 RXF0

RXF1

RXF2

RXF3

RXF4

RXF5

RXB1 RXM0

RXM1

Tx Buffer 0

Tx Buffer 1

Tx Buffer 2

C
A
N
T
ransceiver

...

B0(1)

B1(1)

B2(1)

B3(1)

B4(1)

B5(1)

...

RXF15(2)

RXF15(2)

NOTE 1: This can be configured as a Tx or a Rx buffer.
2: RXF15 can be used as a mask or a filter.

3.3 Mode 2 – Enhanced FIFO Mode
In mode 2, there is no one-to-one relationship between the receive buffer and acceptance filter registers.
Any selected filter that is linked to the FIFO receive buffer can generate acceptance and cause FIFO to
be updated. Two of the dedicated receive buffers in combination with one or more programmable
transmit/receive buffers are used to create a maximum of eight buffers deep FIFO.
Figure 3-3. Mode 2 Buffer-Filter-Mask Association

RXF0

RXF1

RXF2

RXF3

RXF4

RXF5

RXM0

RXM1

Tx Buffer 0

Tx Buffer 1

Tx Buffer 2

C
A
N
T
ransceive

r

... RXF15(1)

RXF15(1)

NOTE 1: RXF15 can be used as a mask or a filter

Buffer 0

Buffer 1

Buffer 2

Buffer 7

Buffer 3

...

F
IF
O

 AN2714
Supported Modes

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 8

4. APIs
The generated APIs will vary based on the user selected ECAN functional mode. The APIs are composed
of global and local functions. Table 4-1 provides the global functions available in all modes. Local
functions are mode-specific and are not advised to be modified by the user.

Table 4-1. MCC-Generated Global Functions For ECAN™

Function Name Parameters Returns Description

ECAN_Initialize() — — This routine sets all the
ECAN™ module register
(filter, mask, and timing)
values based on the set
parameters in the GUI.
Puts the ECAN™ in
Configuration mode then
switch to Normal mode
after initializing the
ECAN™ registers.

CAN_sleep() — — This routine enables the
wake-up from bus
activity feature before
putting the ECAN™ to
Sleep mode.

CAN_transmit() *tempCanMsg True if message was
loaded to transmit buffer.
Otherwise, returns
False.

Looks for an empty
transmit buffer based on
prioritization. Sets the
Transmit Request Status
(TXREQ) bit after writing
the converted raw ID,
DLC, and eight data
bytes values to the
corresponding registers.

CAN_receive() *tempCanMsg True if a new message
is received. Otherwise,
returns False.

Checks the CAN buffers
for received message. If
a valid message is
received, the ECAN™

register values are
copied to temporary
software registers. The
ID register values are
automatically converted
to raw ID.

CAN_messagesInBuffer() — Total number of
messages in the buffers.

Checks for the number
of messages in the
buffer.

 AN2714
APIs

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 9

Function Name Parameters Returns Description

CAN_isBusOff() — True if module is in
Bus-off. Otherwise
returns False.

Checks if module is in
Bus-off mode.

CAN_isRXErrorPassive() — True if module is in Rx
Error Passive.
Otherwise returns
False.

Checks if module is Rx
Error Passive.

Note:  MCC generates the APIs but the user is required to add the application code.

4.1 Sample Implementation of CAN Transmit and Receive Functions
The ECAN ID, ID Type and data bytes are arranged within a union of 'uCAN_MSG' type. Every union
declared as 'uCAN_MSG' is an instance of this type. Each member of an instance is accessed using the
<instance_name>.<struct_name>.<member_name> format. To better understand the implementation,
two examples are provided below for transmitting and receiving a CAN message.

4.1.1 Transmitting a Message
The following figure shows how to transmit a single message with standard ID '0x123', and two bytes of
data: the high byte and low byte result of an ADC.

Figure 4-1. CAN Message Transmission

This is the general
process for transmitting

a message.

This is a sample implementation of the APIs
(right column) that correspond to the specific

transmit flow step (left column).

These are the MCC‐generated APIs that
should be used when transmitting a

message.

Create an instance of
uCAN_MSG

Assign values to uCAN_MSG
instance frame struct

members

Queue message for
transmission

uCAN_MSG txAdcResult;

txAdcResult.frame.idType = dSTANDARD_CAN_MSG_ID_2_0B;
txAdcResult.frame.id = 0x123;
txAdcResult.frame.dlc = 2;
txAdcResult.frame.data0 = ADCResult_HighByte;
txAdcResult.frame.data1 = ADCResult_LowByte;

if (CAN_transmit(&txAdcResult)) {
 // If statement is entered, then message was loaded
 // into a TX buffer pending transmission
}

Transmit Flow

typedef union {
 struct {
 uint8_t idType;
 uint32_t id;
 uint8_t dlc;
 uint8_t data0;
 uint8_t data1;
 uint8_t data2;
 uint8_t data3;
 uint8_t data4;
 uint8_t data5;
 uint8_t data6;
 uint8_t data7;
 } frame;
 uint8_t array[14];
} uCAN_MSG;

uint8_t CAN_transmit(uCAN_MSG *tempCanMsg);

ecan.h

ecan.c

Transmit Flow Example MCC‐Generated Transmit APIs

The 'CAN_transmit()' function accesses the value of its argument via a 'uCAN_MSG' type pointer. It
uses a dereference 'uCAN_MSG' type pointer (denoted by the dereference operator: '*') as parameter,
hence it takes a referenced 'uCAN_MSG' type union as an argument (denoted by the address of operator:
'&').

 AN2714
APIs

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 10

In this example, the address of txAdcResult ('&txAdcResult') is used as argument to allow the CAN
transmit function to access each member of 'txAdcResult' utilizing the
txAdcResult.frame.<member_name> format. The function copies the value of each member to its
corresponding ECAN peripheral register.

The user can verify if a message was successfully queued for transmission by checking if the function
returns a value of '1', otherwise, the message is lost and might need retransmission.

Calling the 'CAN_transmit()' function does not necessarily mean that the message is sent immediately
to the bus. The message is simply queued for transmission through the next available transmit buffer
based on priority. The ECAN module will only send out the message when the higher priority transmit
buffers are empty.

4.1.2 Receiving a Message
The following example shows how to receive the message transmitted in the previous example. Here,
standard ID '0x123' is defined beforehand using a macro.

Figure 4-2. CAN Message Reception

This is the general
process for
receiving a
message.

This is a sample implementation of the APIs (right
column) that correspond to the specific receive flow

step (left column).

These are the MCC‐generated APIs that
should be used when receiving a

message.

Create an instance of
uCAN_MSG

Check if a message is
received and stored in

the uCAN_MSG
instance.

Process received
message

Define Custom ID

uCAN_MSG rxMessage;

if (CAN_receive(&rxMessage)){
 // This line is executed if there is message on
 // any of the buffers
}

uint8_t rotateSpeed_HighByte, rotateSpeed_LowByte;

if (CAN_receive(&rxMessage)) {
 if (rxMessage.frame.idType == dSTANDARD_CAN_MSG_ID_2_0B){
 // Execute next line if standard message is received
 if(rxMessage.frame.id == ROTATE_SPEED_ID) {
 // Copy received data
 rotateSpeed_HighByte = rxMessage.frame.data0;
 rotateSpeed_LowByte = rxMessage.frame.data1;
 // Use copied data here or process it later
 }
 }
}

#define ROTATE_SPEED_ID 0x123

typedef union {
 struct {
 uint8_t idType;
 uint32_t id;
 uint8_t dlc;
 uint8_t data0;
 uint8_t data1;
 uint8_t data2;
 uint8_t data3;
 uint8_t data4;
 uint8_t data5;
 uint8_t data6;
 uint8_t data7;
 } frame;
 uint8_t array[14];
} uCAN_MSG;

uint8_t CAN_transmit(uCAN_MSG *tempCanMsg);

ecan.h

ecan.c

Receive Flow Receive Flow Example MCC‐Generated Receive APIs

Similar with the transmit function, the 'CAN_receive()' function accesses the value of its argument via a
'uCAN_MSG' type pointer. In this example, the argument – which is the address of the 'rxMessage' – is
written in the format '&rxMessage'. The use of pointer allows the value of each member of 'rxMessage'
to be modified inside the function.

In the example above, 'rxMessage' is declared as a 'uCAN_MSG' type union. The actual received ID, ID
type, data length and data bytes of the message are transformed by the CAN receive function to the
appropriate data types and stored as members of 'rxMessage'.

 AN2714
APIs

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 11

The user can then process the data by accessing the data members of 'rxMessage' using the
rxMessage.frame.<member_name> format. In this example, the two 8-bit data members are copied to
two locally defined 8-bit variables: 'rotateSpeed_HighByte' and 'rotateSpeed_LowByte'.

The user can declare as many instances of 'uCAN_MSG' as the available data memory would allow.
Careful allocation might be necessary for large programs since each instance occupies 14 bytes of
memory.

 AN2714
APIs

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 12

5. CAN Node Using PIC18 ECAN
Figure 5-1 shows a typical node connection to the bus using a PIC18 MCU with embedded CAN
controller. MCC-generated APIs and their implementation in the user application code falls in the OSI
model’s application layer.

The embedded CAN protocol controller (ECAN module) consists of a protocol engine and message
buffering and control. The ECAN module uses dedicated CANTX and CANRX pins to interface with a
CAN transceiver. The CAN transceiver then translates the digital signals from the controller to differential
output signals suitable for transmission over the bus.
Figure 5-1. CAN NODE Using PIC18 with ECAN™ Module

Node

PIC18 MCU

ECAN™ Module

CAN Transceiver

CANTX CANRX

MCC-generated CAN
APIs and User
Application Code

Application
Layer

Data Link
Layer

Physical Layer

CAN BUS 120Ω120Ω

For a complete list of CAN transceivers from Microchip visit http://www.microchip.com/design-centers/
can. A detailed discussion about the CAN physical layer is also provided in AN228, "A CAN Physical
Layer Discussion" (DS00228).

 AN2714
CAN Node Using PIC18 ECAN

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 13

http://www.microchip.com/design-centers/can
http://www.microchip.com/design-centers/can
http://ww1.microchip.com/downloads/en/AppNotes/00228a.pdf
http://ww1.microchip.com/downloads/en/AppNotes/00228a.pdf

6. Demo
This demo is composed of two parts. The first example shows a network with two nodes. In the second
example, a third node will be added to the network.

6.1 Two-Node Network Demo
This section shows implementation of the ECAN MCC module to generate the driver for Node 1 of the
CAN network shown in the figure below.
Figure 6-1. Two-Node CAN Network

Automotive Networking
Board
+

PIC18F66K80 PIM
+

MCP2542 Click

OptoLyzer® MOCCA FD

120Ω 120Ω
CANH

CANL

NODE 1 NODE 2

Node 1
The first node is comprised of an Automotive Networking Board with a PIC18F66K80 100-pin PIM and an
MCP2542 CAN Transceiver Click Board™. The Automotive Networking Board has provision for up to four
click boards. For this example, MCP2542 click is plugged in mikroBUS™ socket 2 with jumpers positioned
as shown in the following figure.

 AN2714
Demo

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 14

Figure 6-2. Node 1 - PIC18F66K80 and MCP2542

Automotive Networking Board (ADM00716)

PIC18F66K80 100-pin

Plug-in Module

(MA180035)

MCP2542 Click
(MIKROE-2299)

Node 2
The MOCCA FD from K2L is used as the second CAN node (see figure below). The MOCCA FD is
interfaced to a PC. The OptoLyzer® Studio software application is used to display real-time messages
transferred between all nodes connected on the bus.

Figure 6-3. Node 2 - MOCCA FD Tool Box

OptoLyzer® Studio

12V DC

OptoLyzer® MOCCA FD (B10456)

 AN2714
Demo

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 15

6.1.1 Two-Node Network Details
The following figure shows the network details for the individual messages expected on the CAN bus for
the two-node network demo.

Figure 6-4. Two-Node CAN Network Details

The table shows the CAN message ID, direction (TX or RX), type (periodic or event-triggered), DLC, data
bytes, message trigger (if TX), and the more specific details for each message that should be taken care
of in the application software. This demo teaches how to configure the PIC18F66K80 ECAN module and
the MOCCA FD tool to communicate with each other using the messages provided in the table.

6.1.2 ECAN MCC System Requirements
• MPLAB X IDE v4.15 or newer
• MPLAB Code Configurator (MCC) Core v4.45 or newer
• MPLAB Code Configurator (MCC) PIC10/PIC12/PIC16/PIC18 Library v1.65.2 or newer
• Java JRE v1.8 or newer (follow MCC release note to setup MPLAB X for latest Java)

6.1.3 MCC Configuration Settings
The following steps will walk the user through the process of implementing the ECAN module from
configuration to code generation for Node 1.

Note:  GUI appearance for the different modules may vary per each MCC Core, Plugin or Library
release. The screen shots used in this document were taken using MCC v3.45 and ECAN MCC v2.0.

1. In MPLAB X IDE, click on the MCC icon or navigate toTools>Embedded>MPLAB Code
Configurator v3: Open/Close to launch MCC version 3.
Note:  Newer MCC versions (v3.55 and up) will ask the user to input the Configuration name
in .mc3 file format soon after launching MCC. If so, input “Node1” as the file name then click Save.

2. Under Project Resources, click System and select System Module (see Figure 6-5).
3. In the Easy Setup tab of the System Module, set Oscillator Select to 'EC oscillator (High power,

16 MHz–64 MHz)'. Set System Clock to 'FOSC' and External Clock to '8 MHz'. Enable PLL and
disable the Watchdog Timer.

 AN2714
Demo

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 16

Figure 6-5. PIC18F66K80 System Module

4. Under Device Resources, select Peripherals>CAN>ECAN. The ECAN module should automatically
move to the Project Resources window.

5. Go to the ECAN module GUI.
6. In the CAN BUS settings, set CAN BUS Speed to '100 kbps' and Time Quanta to '10'. Notice that

once the Time Quanta is set, the different segments are also populated with the recommended
values. See figure below.
Figure 6-6. CAN Bus Settings

7. Set the Mode to 'Enhanced Legacy mode (Mode 1)'.
8. Edit the CAN ID Masks and Filters as shown in Figure 6-7. To remove a row, click anywhere within

the row that needs to be to removed and click Remove button. To add another row, input the ID on

 AN2714
Demo

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 17

the ID text field, select the corresponding Acceptance Mask, Filter and Buffer, then click Add.
The Extended IDs should be appended with an 'x'. For example, Extended 0xD34FF should be
inputted as 0xD34FFx.
Figure 6-7. Receive Mode Selection and CAN Table

9. Go to Device Resources and select ADC. Edit the ADC GUI as shown in the following figure.
Figure 6-8. ADC Module

10. Under Device Resources, go to Libraries>Foundation Services>TIMEOUTDRIVER. The
TIMEOUTDRIVER and TMR0 will be automatically added to Project Resources. The
TIMEOUTDRIVER will be used to create the timer callbacks for periodic ECAN TX messages,
based on the TMR0 tick.

 AN2714
Demo

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 18

Figure 6-9. Time-Out Driver Module

11. Configure TMR0 as shown below.
Figure 6-10. TMR0 Module

12. In this example, Timer1 is used to debounce the switches by delayed sampling. Select TMR1 and
configure as shown below.

 AN2714
Demo

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 19

Figure 6-11. TMR1 Module

13. Go to Project Resources and select Pin Module. Make sure that the pins are configured similar to
Figure 6-12.

 AN2714
Demo

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 20

Figure 6-12. Pin Module

14. Check the Notifications[MCC] tab for any warnings. 'Severe' type notifications should always be
resolved by the user on their respective modules.

15. Next to Project Resources, click the Generate button.
Note:  If you haven’t set the MCC configuration file name after launching MCC, a pop-up window
will appear asking for the configuration settings to be saved in a .mc3 file format. Input “Node1” as
the file name, then click Save.

16. The MCC configuration is now complete. Figure 6-13 shows all the files that will be added to the
user's project upon code generation.

 AN2714
Demo

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 21

Figure 6-13. MCC Generated Files

6.1.4 Application Code
Edit the main file as shown in example below.

Example 6-1. PIC18F66K80 Main File

#include "mcc_generated_files/mcc.h"
#define MilliSeconds (uint32_t)31 // 32us=1 tick, this means 31 ticks=1ms
#define PRESSED 1
#define NOT_PRESSED 0
#define MASK_32BITS 0x000000FF
#define MASK_8BITS 0x01
#define MAJOR_VERSION 1
#define MINOR_VERSION 0
#define REQ_VERSION 1
#define CLEAR_COUNTERS 0

typedef struct switchStat{
 bool status;
 uint8_t port;

 AN2714
Demo

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 22

 uint8_t pressCount;
 uint8_t state;
 uint8_t sampleLevel;
}switchStat_t;

// Function prototypes for periodic messages and heartbeat
void add_PeriodicMessages(void);
uint32_t send_TxRxMsgCount(void *payload);
uint32_t send_PotStatus(void *payload);
uint32_t send_SwitchStatus(void *payload);
void send_TxMsgCount(void);
void send_RxMsgCount(void);
void heartbeat(void);

// Function prototypes for event-triggered messages
bool checkButton(switchStat_t *switchNumber, uint8_t port);
void send_SwitchPressCount (void);
void send_Switch4PressCount (void);
void send_softwareVersion (void);

// Function prototypes for receive message
void processRxMessage(void);
void LED_Display (uint8_t ledStat);
void clear_Counters (void);

// Local variables
switchStat_t s1, s2, s3, s4;
uint32_t rxMessageCount = 0;
uint32_t txMessageCount = 0;
uint32_t txPeriodicMessageCount = 0;
uint32_t s4MsgCount = 0;
uint8_t LEDs;

uCAN_MSG txMessage;
uCAN_MSG rxMessage;

timerStruct_t periodicTxMessages[3] = {
 {send_TxRxMsgCount},
 {send_PotStatus},
 {send_SwitchStatus}
};

/*
 Main application
 */
void main(void)
{
 SYSTEM_Initialize();

 INTERRUPT_GlobalInterruptEnable();
 INTERRUPT_PeripheralInterruptEnable();
 TMR1_SetInterruptHandler(send_SwitchPressCount);
 add_PeriodicMessages();

 while (1)
 {
 if (CAN_receive(&rxMessage)) {
 processRxMessage();
 rxMessageCount++;
 }
 timeout_callNextCallback();
 }
}

void add_PeriodicMessages (void){
 timeout_create(&periodicTxMessages[0], 500 * MilliSeconds);
 timeout_create(&periodicTxMessages[1], 300 * MilliSeconds);
 timeout_create(&periodicTxMessages[2], 100 * MilliSeconds);
}

uint32_t send_TxRxMsgCount(void* payload){
 send_TxMsgCount();
 send_RxMsgCount();
 heartbeat();
 return 500 * MilliSeconds;
}

 AN2714
Demo

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 23

// Periodic TX Messages
void send_TxMsgCount(void){
 txMessage.frame.idType = dSTANDARD_CAN_MSG_ID_2_0B;
 txMessage.frame.id = 0x100;
 txMessage.frame.dlc = 8;
 txMessage.frame.data0 = (txMessageCount >> 24) & MASK_32BITS;
 txMessage.frame.data1 = (txMessageCount >> 16) & MASK_32BITS;
 txMessage.frame.data2 = (txMessageCount >> 8) & MASK_32BITS;
 txMessage.frame.data3 = (txMessageCount) & MASK_32BITS;
 txMessage.frame.data4 = (txPeriodicMessageCount >> 24) & MASK_32BITS;
 txMessage.frame.data5 = (txPeriodicMessageCount >> 16) & MASK_32BITS;
 txMessage.frame.data6 = (txPeriodicMessageCount >> 8) & MASK_32BITS;
 txMessage.frame.data7 = (txPeriodicMessageCount) & MASK_32BITS;
 CAN_transmit(&txMessage);

 txMessageCount++;
 txPeriodicMessageCount++;
}

void send_RxMsgCount(void){
 txMessage.frame.idType = dSTANDARD_CAN_MSG_ID_2_0B;
 txMessage.frame.id = 0x110;
 txMessage.frame.dlc = 4;
 txMessage.frame.data0 = (rxMessageCount >> 24) & MASK_32BITS;
 txMessage.frame.data1 = (rxMessageCount >> 16) & MASK_32BITS;
 txMessage.frame.data2 = (rxMessageCount >> 8) & MASK_32BITS;
 txMessage.frame.data3 = (rxMessageCount) & MASK_32BITS;
 CAN_transmit(&txMessage);

 txMessageCount++;
 txPeriodicMessageCount++;
}

uint32_t send_PotStatus(void* payload){
 ADC_GetConversion(channel_AN0);

 txMessage.frame.idType = dSTANDARD_CAN_MSG_ID_2_0B;
 txMessage.frame.id = 0x120;
 txMessage.frame.dlc = 2;
 txMessage.frame.data0 = ADRESH;
 txMessage.frame.data1 = ADRESL;
 CAN_transmit(&txMessage);

 txMessageCount++;
 txPeriodicMessageCount++;
 return 300 * MilliSeconds;
}

void heartbeat(void){
 LED_D8_Toggle();
}

// Event triggered messages
uint32_t send_SwitchStatus(void* payload){
 txMessage.frame.idType = dEXTENDED_CAN_MSG_ID_2_0B;
 txMessage.frame.id = 0x12345;
 txMessage.frame.dlc = 4;
 txMessage.frame.data0 = (bit) ~S1_PORT;
 txMessage.frame.data1 = (bit) ~S2_PORT;
 txMessage.frame.data2 = (bit) ~S3_PORT;
 txMessage.frame.data3 = (bit) ~S4_PORT;
 CAN_transmit(&txMessage);

 txMessageCount++;
 txPeriodicMessageCount++;
 return 100 * MilliSeconds;
}

void send_SwitchPressCount (void){

 s1.status = checkButton(&s1, S1_PORT);
 s2.status = checkButton(&s2, S2_PORT);
 s3.status = checkButton(&s3, S3_PORT);
 s4.status = checkButton(&s4, S4_PORT);

 AN2714
Demo

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 24

 if(s4.status || s3.status || s2.status || s1.status){
 txMessage.frame.idType = dSTANDARD_CAN_MSG_ID_2_0B;
 txMessage.frame.id = 0x150;
 txMessage.frame.dlc = 4;
 txMessage.frame.data0 = s1.pressCount;
 txMessage.frame.data1 = s2.pressCount;
 txMessage.frame.data2 = s3.pressCount;
 txMessage.frame.data3 = s4.pressCount;
 CAN_transmit(&txMessage);
 txMessageCount++;
 }
 if(s4.status){
 s4MsgCount++;
 send_Switch4PressCount();
 }
}

void send_Switch4PressCount (void){
 txMessage.frame.idType = dSTANDARD_CAN_MSG_ID_2_0B;
 txMessage.frame.id = 0x160;
 txMessage.frame.dlc = 4;
 txMessage.frame.data0 = (s4MsgCount >> 24) & MASK_32BITS;
 txMessage.frame.data1 = (s4MsgCount >> 16) & MASK_32BITS;
 txMessage.frame.data2 = (s4MsgCount >> 8) & MASK_32BITS;
 txMessage.frame.data3 = (s4MsgCount) & MASK_32BITS;
 CAN_transmit(&txMessage);
 txMessageCount++;
}

void send_softwareVersion (void){
 txMessage.frame.idType = dSTANDARD_CAN_MSG_ID_2_0B;
 txMessage.frame.id = 0x200;
 txMessage.frame.dlc = 2;
 txMessage.frame.data0 = MAJOR_VERSION;
 txMessage.frame.data1 = MINOR_VERSION;
 CAN_transmit(&txMessage);
 txMessageCount++;
}

bool checkButton(switchStat_t *switchNumber, uint8_t port){
 uint8_t previousSample;

 previousSample = switchNumber->sampleLevel;
 switchNumber->sampleLevel = port;

 if ((switchNumber->sampleLevel == previousSample) &&
 (switchNumber->sampleLevel != switchNumber->state)) {
 if (switchNumber->sampleLevel == LOW) {
 (switchNumber->pressCount)++;
 switchNumber->state = switchNumber->sampleLevel;
 return true;
 }
 switchNumber->state = switchNumber->sampleLevel;
 return false;
 }else{
 return false;
 }
}

// Receive Functions

void processRxMessage(void) {
 if (rxMessage.frame.idType == dSTANDARD_CAN_MSG_ID_2_0B) {
 switch (rxMessage.frame.id) {
 case 0x700:
 if(rxMessage.frame.data0 == REQ_VERSION){
 send_softwareVersion();
 }
 break;
 }
 LED_D6_Toggle();
 } else if (rxMessage.frame.idType == dEXTENDED_CAN_MSG_ID_2_0B) {
 switch (rxMessage.frame.id) {
 case 0xD34FF:
 LEDs = rxMessage.frame.data0;
 LED_Display(LEDs);

 AN2714
Demo

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 25

 break;
 case 0x201FF:
 if(rxMessage.frame.data0 == CLEAR_COUNTERS){
 clear_Counters();
 }
 break;
 }
 LED_D7_Toggle();
 }
}

void LED_Display (uint8_t ledStat){
 LED_D5_LAT = (ledStat >> 4) & MASK_8BITS;
 LED_D4_LAT = (ledStat >> 3) & MASK_8BITS;
 LED_D3_LAT = (ledStat >> 2) & MASK_8BITS;
 LED_D2_LAT = (ledStat >> 1) & MASK_8BITS;
 LED_D1_LAT = ledStat & MASK_8BITS;
}

void clear_Counters (void){
 rxMessageCount = 0;
 txMessageCount = 0;
 txPeriodicMessageCount = 0;
 s1.pressCount = 0;
 s2.pressCount = 0;
 s3.pressCount = 0;
 s4.pressCount = 0;
 s4MsgCount = 0;
}

6.1.5 OptoLyzer MOCCA FD Settings
To proceed with the next discussion, the user should be familiar with the OptoLyzer Studio and OptoLyzer
MOCCA FD tool. To review the different features of the tool: in OptoLyzer Studio, go to File>Help>Help.

1. In OptoLyzer Studio, go to View>Device Manager. Set up the OptoLyzer MOCCA FD as shown in
the following figure.
Figure 6-14. OptoLyzer® MOCCA FD Settings

2. Create a new 'CAN Data Frame' activity as shown below. The IDs shown are hexadecimal values.

 AN2714
Demo

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 26

Figure 6-15. CAN Demo Activity Window

3. In Optolyzer® Studio press the Start button.

6.1.6 Automotive Networking Demo Board LEDs Display for Heartbeat and Received Messages
The figure below shows the function of each of the eight LEDs in Node 1.

 AN2714
Demo

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 27

Figure 6-16. Automotive Networking Board LEDs Display

On-board LED D8 is toggled every 500 ms and acts as a heartbeat to indicate that the PIC18F66K80
ECAN is actively transmitting and monitoring messages on the bus. LEDs D7 and D6 act as Extended
and Standard message RX indicator, respectively. LEDs D5 to D1 display the five LSBs of the RX
message with Extended ID 0xD34FF. By default, LEDs D7 to D1 are turned off.

6.1.7 Periodic Message Transmission
1. Refer to the OptoLyzer Log window. Upon pressing the START button, only the periodic data

frames should be displayed on the log window.
Figure 6-17. Periodic TX Messages

Note:  All values in this example are expressed in hexadecimal, unless otherwise stated.

ID 0x100 shows the count of transmitted messages from Node 1. The number of TX messages are
mapped on DB0-DB3 while the number of periodic TX messages are mapped on DB4-DB7. The TX
message count and periodic TX message should remain equal until a non-periodic (event-
triggered) message is transmitted.

2. Rotate the potentiometer and observe ID 0x120 data. The data should show the result of the right-
justified 12-bit ADC in which the high byte and low byte results are mapped to DB0 and DB1,
respectively. Rotating the potentiometer clockwise increases the display value. Data should range
between 00 00 and 0F FF.

6.1.8 Event-Triggered Message Transmission
1. Press switch S1. A new row should appear with CAN message ID 0x150. This frame maps the

press/release count of the four on-board switches, S1 to S4 of the Automotive Networking Board, to

 AN2714
Demo

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 28

DB0 to DB3, respectively. Each switch count ranges from 00 to FF. The count restarts to 00 when
FF is exceeded.
Upon pressing S1, DB0 should display 01. Notice also that ID 0x100 DB3 is now greater than DB7
because a non-periodic message has already been transmitted.

Figure 6-18. S1-Triggered TX Message

2. Press S2, DB1 should set to 01. Press S3, DB2 should set to 01. Press S4, DB3 should set to 01
and a new row with CAN ID 0x160 should appear.
Figure 6-19. Switch-Triggered TX Message

Notice that CAN ID 0x160 DB3 is equal to CAN ID 0x150 DB3. This is because the CAN ID 0x160
frame simply counts the number of S4 press/release. The only difference is that four bytes are
allocated for S4 press/release count, which means that the count will range from 00 00 00 00 to
FF FF FF FF.

3. Press any of the switches and observe that the count for each corresponding ID 0x150 data byte
increments by one on every press/release, while IDx160 data only increments on every S4 press/
release.

4. Notice that when you press any of the switches, the corresponding CAN ID 0x12345x data bytes
display the status of the pressed switch. The example below indicates that S3 is currently pressed.
Figure 6-20. Switch-State TX Message

6.1.9 Transmit Messages from OptoLyzer Studio
1. Open the CAN Demo Activity (Figure 6-15). Send the Request Version message with CAN ID 700

and DB0 = 01. CAN ID 0x110 DB3 that maps the RX message count’s LSB should display 01
which means that Node 1 received the first message from another node. A couple of rows should
be added to the log window. One corresponds to the ID 0x700 and the other is the response
transmitted by Node 1 with ID 0x200. The example below shows that Node 1 application software is
major version 01 and minor version 00. Notice also that LED D6 is now turned on (toggled from
OFF state) because a Standard message is received.
Figure 6-21. Request Version Message and Response

2. Send the “Clear Counters” message with CAN ID 201FF and DB0 = 00. This will clear all the
message counters in Node 1. LED D7 should be toggled from OFF state because an Extended
message is received. Press S4 and notice that the counters have reset to 00.
Figure 6-22. First Message After Node 1 Clears Its Message Counters

3. Send the “Set LED” message with CAN ID D34FF and DB0 = 01. Notice that LED D7 switches off
and D1 turns on. Replace DB0 value with FF. Send the new message. LED D7 and LEDs D5 to D1
should turn on. Try changing DB0 with other values and notice that the 5 LSBs are displayed on
LEDs D5 to D1, while D7 toggles on every message transmission.

 AN2714
Demo

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 29

6.1.10 Two-Node Network Output
The figure below shows a log window summary for the two-node demo. The output should display all the
messages defined in the table in Figure 6-4.

Figure 6-23. Two-Node Network CAN Messages

6.2 Three-Node Network Demo
A three-node CAN network is created by adding a third node to the existing network, as shown in the
figure below. The previous configuration of Nodes 1 and 2 are retained in this example. There is no need
to change Node 1 software when adding Node 3 to allow both nodes to interact with each other.
Figure 6-24. Three-Node Network

Note: 
1. These 120Ω termination resistors are already included in the CAN transceiver clicks used.

Node 3
Node 3 consists of a Curiosity HPC Development Board and an ATA6563 CAN Transceiver Click Board
as shown in the following figure.

 AN2714
Demo

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 30

Figure 6-25. Node 3 – PIC18F26K83 and ATA6563

ATA6563 Click

(MIKROE-2334)

Curiosity HPC Development Board (DM164137)

6.2.1 Three-Node Network Details
The following figure shows the network details for the individual messages expected on the CAN bus for
the three-node network demo.
Figure 6-26. Three-Node Network Details

The table shows the same messages for Node 1 and Node 2 from Figure 6-4 in the two-node demo. The
only difference is that new rows are added for Node 3 messages. This demo shows how the three nodes
will communicate with each other when a third node is added to the CAN bus without any changes on the
application software and configuration of the nodes from the previous demo.

 AN2714
Demo

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 31

6.2.2 PIC18F26K83 MCC Configuration Settings
A summary of the MCC peripheral configuration for the PIC16F26K83 is shown in the following figure.
Figure 6-27. PIC18F26K83 MCC Peripheral Settings

6.2.3 Application Code
Edit the main file as shown in the example below.

 AN2714
Demo

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 32

Example 6-2. PIC18F26K83 Main File

#include "mcc_generated_files/mcc.h"

#define MilliSeconds (uint32_t)31 // 32us=1 tick, this means 31 ticks=1ms
#define PRESSED 1
#define NOT_PRESSED 0
#define MASK_32BITS 0x000000FF
#define MASK_8BITS 0x01
#define MAJOR_VERSION 1
#define MINOR_VERSION 0
#define REQ_VERSION 1
#define CLEAR_COUNTERS 0

typedef struct switchStat{
 bool status;
 uint8_t pressCount;
 uint8_t state;
 uint8_t sampleLevel;
}switchStat_t;

// Function prototypes for periodic messages and heartbeat
void add_PeriodicMessages(void);
uint32_t send_TxRxMsgCount(void *payload);
uint32_t send_PotStatus(void *payload);
void send_TxMsgCount(void);
void send_RxMsgCount(void);
void heartbeat(void);

// Function prototypes for event-triggered messages
bool checkButton(switchStat_t *switchNumber, uint8_t port);
void send_SwitchPressCount (void);
void send_softwareVersion (void);
void send_setNode1Leds (void);
void send_clearNode1Leds (void);

// Function prototypes for receive message
void processRxMessage(void);
void clear_Counters (void);

// Local variables
switchStat_t s1, s2;
uint32_t rxMessageCount = 0;
uint32_t txMessageCount = 0;
uint32_t txPeriodicMessageCount = 0;

uCAN_MSG txMessage;
uCAN_MSG rxMessage;

timerStruct_t periodicTxMessages[] = {
 {send_TxRxMsgCount},
 {send_PotStatus},
};

/*
 Main application
 */
void main(void)
{
 SYSTEM_Initialize();

 INTERRUPT_GlobalInterruptEnable();
 TMR1_SetInterruptHandler(send_SwitchPressCount);
 add_PeriodicMessages();

 while (1)
 {
 if (CAN_receive(&rxMessage)) {
 processRxMessage();
 rxMessageCount++;
 }
 timeout_callNextCallback();
 }
}

 AN2714
Demo

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 33

void add_PeriodicMessages (void){
 timeout_create(&periodicTxMessages[0], 500 * MilliSeconds);
 timeout_create(&periodicTxMessages[1], 300 * MilliSeconds);
}

// Periodic TX Messages

uint32_t send_TxRxMsgCount(void* payload){
 send_TxMsgCount();
 send_RxMsgCount();
 heartbeat();
 return 500 * MilliSeconds;
}

void send_TxMsgCount(void){
 txMessage.frame.idType = dSTANDARD_CAN_MSG_ID_2_0B;
 txMessage.frame.id = 0x105;
 txMessage.frame.dlc = 8;
 txMessage.frame.data0 = (txMessageCount >> 24) & MASK_32BITS;
 txMessage.frame.data1 = (txMessageCount >> 16) & MASK_32BITS;
 txMessage.frame.data2 = (txMessageCount >> 8) & MASK_32BITS;
 txMessage.frame.data3 = (txMessageCount) & MASK_32BITS;
 txMessage.frame.data4 = (txPeriodicMessageCount >> 24) & MASK_32BITS;
 txMessage.frame.data5 = (txPeriodicMessageCount >> 16) & MASK_32BITS;
 txMessage.frame.data6 = (txPeriodicMessageCount >> 8) & MASK_32BITS;
 txMessage.frame.data7 = (txPeriodicMessageCount) & MASK_32BITS;
 CAN_transmit(&txMessage);

 txMessageCount++;
 txPeriodicMessageCount++;
}

void send_RxMsgCount(void){
 txMessage.frame.idType = dSTANDARD_CAN_MSG_ID_2_0B;
 txMessage.frame.id = 0x115;
 txMessage.frame.dlc = 4;
 txMessage.frame.data0 = (rxMessageCount >> 24) & MASK_32BITS;
 txMessage.frame.data1 = (rxMessageCount >> 16) & MASK_32BITS;
 txMessage.frame.data2 = (rxMessageCount >> 8) & MASK_32BITS;
 txMessage.frame.data3 = (rxMessageCount) & MASK_32BITS;

 CAN_transmit(&txMessage);
 txMessageCount++;
 txPeriodicMessageCount++;
}

uint32_t send_PotStatus(void* payload){
 ADCC_GetSingleConversion(POT);

 txMessage.frame.idType = dSTANDARD_CAN_MSG_ID_2_0B;
 txMessage.frame.id = 0x125;
 txMessage.frame.dlc = 2;
 txMessage.frame.data0 = ADRESH;
 txMessage.frame.data1 = ADRESL;
 CAN_transmit(&txMessage);

 txMessageCount++;
 txPeriodicMessageCount++;
 return 300 * MilliSeconds;
}

void heartbeat(void){
 LED_D5_Toggle();
}

// Event triggered messages
void send_SwitchPressCount (void){

 s1.status = checkButton(&s1, S1_PORT);
 s2.status = checkButton(&s2, S2_PORT);

 if(s2.status || s1.status){
 txMessage.frame.idType = dSTANDARD_CAN_MSG_ID_2_0B;
 txMessage.frame.id = 0x155;
 txMessage.frame.dlc = 2;
 txMessage.frame.data0 = s1.pressCount;

 AN2714
Demo

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 34

 txMessage.frame.data1 = s2.pressCount;
 CAN_transmit(&txMessage);
 txMessageCount++;
 }

 if(s1.status){
 send_clearNode1Leds();
 }else if(s2.status){
 send_setNode1Leds();
 }
}

void send_setNode1Leds (void){
 txMessage.frame.idType = dEXTENDED_CAN_MSG_ID_2_0B;
 txMessage.frame.id = 0xD34FF;
 txMessage.frame.dlc = 1;
 txMessage.frame.data0 = 0xFF;
 CAN_transmit(&txMessage);
 txMessageCount++;
}

void send_clearNode1Leds (void){
 txMessage.frame.idType = dEXTENDED_CAN_MSG_ID_2_0B;
 txMessage.frame.id = 0xD34FF;
 txMessage.frame.dlc = 1;
 txMessage.frame.data0 = 0x00;
 CAN_transmit(&txMessage);
 txMessageCount++;
}

void send_softwareVersion (void){
 txMessage.frame.idType = dSTANDARD_CAN_MSG_ID_2_0B;
 txMessage.frame.id = 0x205;
 txMessage.frame.dlc = 2;
 txMessage.frame.data0 = MAJOR_VERSION;
 txMessage.frame.data1 = MINOR_VERSION;
 CAN_transmit(&txMessage);
 txMessageCount++;
}

bool checkButton(switchStat_t *switchNumber, uint8_t port){
 uint8_t previousSample;

 previousSample = switchNumber->sampleLevel;
 switchNumber->sampleLevel = port;

 if ((switchNumber->sampleLevel == previousSample) &&
 (switchNumber->sampleLevel != switchNumber->state)) {
 if (switchNumber->sampleLevel == LOW) {
 (switchNumber->pressCount)++;
 switchNumber->state = switchNumber->sampleLevel;
 return true;
 }
 switchNumber->state = switchNumber->sampleLevel;
 return false;
 }else{
 return false;
 }
}

// Receive Functions
void processRxMessage(void) {
 if (rxMessage.frame.idType == dSTANDARD_CAN_MSG_ID_2_0B) {
 switch (rxMessage.frame.id) {
 case 0x700:
 if(rxMessage.frame.data0 == REQ_VERSION){
 send_softwareVersion();
 }
 break;
 }
 } else if (rxMessage.frame.idType == dEXTENDED_CAN_MSG_ID_2_0B) {
 switch (rxMessage.frame.id) {
 case 0x12345:
 LED_D2_LAT = rxMessage.frame.data2;
 LED_D3_LAT = rxMessage.frame.data3;
 break;

 AN2714
Demo

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 35

 case 0x201FF:
 if(rxMessage.frame.data0 == CLEAR_COUNTERS){
 clear_Counters();
 }
 break;
 }
 }
 LED_D4_Toggle();
}

void clear_Counters (void){
 rxMessageCount = 0;
 txMessageCount = 0;
 txPeriodicMessageCount = 0;
 s1.pressCount = 0;
 s2.pressCount = 0;
}

6.2.4 Curiosity HPC Demo Board LEDs Display for Heartbeat and Received Messages
The figure below shows the function of each of the four LEDs in Node 3.
Figure 6-28. Curiosity HPC Demo Board LEDs Display

6.2.3 Automotive Networking Board LEDs Display for Heartbeat and Received Messages

The figure below shows the function of each of the four LEDs in Node 3.

Figure: Curiosity HPC Demo Board LEDs Display

D4 D3 D2D5

NODE_1 S4 Press Indicator

Lights up when Node 1 Switch S4 is pressed

CAN Message RX Indicator

Toggles on CAN Frame Reception

Heartbeat Indicator

Toggles at 2Hz

NODE_1 S3 Press Indicator

Lights up when Node 1 Switch S3 is pressed

On-board LED D5 is toggled every 500 ms and acts as a heartbeat to indicate that the PIC18F26K83 ECAN

is actively transmitting and monitoring messages on the bus. LED D4 acts as a CAN RX indicator and

toggles on every message reception (both Extended and Standard). LEDs D2 to D3 indicate the status of

Node 1 switches S3 and S4.

6.2.4 Node 3 Message Transmission

1. Refer to the OptoLyzer Log window. Upon connecting Node 3, three rows will be added to the

log window. One each for Node 3 periodic messages with IDs 0x125, 0x105 and 0x115. Notice

that IDs 0x105 and 0x115, constantly increment. These IDs simply mirror the behavior of IDs

0x100 (TX message count) and 0x110 (RX message count) of Node 1.

Figure: CAN Messages After Adding Node 3

LED D4 should blink at a rate of approximately 100ms – the same rate that Node 1 transmits the

periodic message for the switch state with ID 0x12345x.

On-board LED D5 is toggled every 500 ms and acts as a heartbeat to indicate that the PIC18F26K83
ECAN is actively transmitting and monitoring messages on the bus. LED D4 acts as a CAN RX indicator
and toggles on every message reception (both Extended and Standard). LEDs D2 to D3 indicate the
status of Node 1 switches S3 and S4.

6.2.5 Node 3 Message Transmission
1. Refer to the OptoLyzer Log window. Upon connecting Node 3, three rows will be added to the log

window. One each for Node 3 periodic messages with IDs 0x125, 0x105 and 0x115. Notice that IDs
0x105 and 0x115 constantly increment. These IDs simply mirror the behavior of IDs 0x100 (TX
message count) and 0x110 (RX message count) of Node 1.

 AN2714
Demo

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 36

Figure 6-29. CAN Messages After Adding Node 3

LED D4 should blink at a rate of approximately 100 ms - the same rate that Node1 transmits the
periodic message for the switch state with ID 0x12345x.

2. Rotate Node 3 potentiometer and observe ID 0x125 data. Rotating the potentiometer
counterclockwise will increase the output value display. Data should range between 00 00 and 0F
FF.

3. Press switch S1. A new row should appear for ID 0x155. DB0 corresponds to the S1 press/release
count and should display 01.
Figure 6-30. Node 3 S1-Triggered TX Message

Also observe that pressing S1 sets the CAN ID 0xD34FF DB0 to 00. This clears LEDs D5 to D1 of
Node 1.

Figure 6-31. Node 1 Set LEDs RX Message

4. Press S2 and notice that CAN ID 0xD34FF DB0 is now set to FF. Node 1 LEDs D5 to D1 should
turn on.
Figure 6-32. Node 3 S2-Triggered TX Message

Since both S1 and S2 were already pressed once, ID 0x155 data should also update accordingly.

Figure 6-33. Node 3 Switch Press Count TX Message

6.2.6 Node 1 Event-Triggered Message Transmission
1. Press and hold Node 1 switch S3. Message ID 0x12345x DB2 is set to 01 and Node 3 LED D2

lights up.
Figure 6-34. Node 1 Switch State TX Message

2. Do the same for Node 1 switch S4 and notice that Node 3 LED D3 lights up while the switch is held.

6.2.7 Node 2 Event-Triggered Message Transmission
1. Open the same CAN Demo Activity (Figure 6-15) used in the two-node demo. Send the “Request

Version” message with CAN ID 700 and DB0 = 01. A new row should be added to the log window
with ID 0x205. The example below shows that Node 2 application software is major version 01 and
minor version 00.

 AN2714
Demo

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 37

Figure 6-35. Request Version Response

2. Send the “Clear Counters” message with CAN ID 201FF and DB0 = 00. This will clear all the
message counters in Node 1 and Node 2. Press S2 and notice that the counters have reset to 00.
Figure 6-36. First Message After Node 3 Clears Its Message Counters

6.3 Three-Node Network Output
The following figure shows a sample log after adding Node 3 and executing the steps described above.
The output should display all the messages defined in the table in Figure 6-26.

Figure 6-37. Three-Node Network CAN Messages

 AN2714
Demo

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 38

7. Conclusion
This application note covers all the basic details about the ECAN MCC module. Two sample
implementations were included to demonstrate the use of the ECAN MCC module on two different 8-bit
microcontrollers from Microchip Technology Inc. These implementations were demonstrated with the CAN
tool hardware and GUI from K2L GmbH & Co. KG. Proper ECAN MCC module use can help save
significant application development time, especially for users who do not want to dig into all the intricacies
of setting up the ECAN peripheral.

 AN2714
Conclusion

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 39

8. APPENDIX A: Calculations
The ECAN MCC module frees the user from tedious calculation of the different ECAN register values.
The following sections provide supplementary information on how the ECAN module works in the
background to define the values of the different registers and bits based on the user’s settings in the GUI.

8.1 APPENDIX A-1: Baud Rate Prescaler
The following calculations show how the module derives the Baud Rate Prescaler (BRP) based on the
available parameters in the GUI.

First, Nominal Bit Rate (NBR) needs to be defined. NBR is the number of bits per second transmitted in
the absence of resynchronization as expressed in the following equation.
Equation 8-1. Nominal Bit Rate��� = ���� = 1����
where tbit is the Nominal Bit Time (NBT), which is the summation of nonoverlapping segments as shown
in Equation 8-2.

Equation 8-2. Nominal Bit Time��� = ���� = ��������+ �Pr�����+ ���1+ ���2
Each time segment is an exact integer multiple of one Time Quantum (TQ). As shown in Equation 8-3,
TQ is a function of BRP and the system frequency, FOSC.

Equation 8-3. Time Quanta�� = 2 × ��� + 1����
Since NBT is composed of time segments which are multiples of TQ, therefore NBT is also an integer
multiple of TQ. Using a TQ multiplier n, NBR can also be expressed as shown in Equation 8-4.

Equation 8-4. Nominal Bit Rate as a Function of TQ��� = 1��� = 1� × ��
Manipulating Equation 8-4 will give another equation for TQ (see equation below).

Equation 8-5. Relationship Between TQ and NBR�� = 1� × ���
Equating Equation 8-3 and Equation 8-5 will lead to a single equation for the BRP as a function of the
given parameters in the GUI (see the following equation).

Equation 8-6. Nominal Bit Rate as a Function of TQ��� = ����2 × ��� × � − 1
The ECAN module will generate a warning notification if it cannot calculate a valid BRP based on the
entered parameters in the GUI.

 AN2714
APPENDIX A: Calculations

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 40

8.2 APPENDIX A-2: Sample Point
The Sample Point is always located at the end of PS1. The calculation of sample point as percentage of
one bit time is shown in the equation below.

Equation 8-7. Sample Point%��������int = ��������+ �Pr�����+ ���1��������+ �Pr�����+ ���1+ ���2 × 100%
%��������int = ��������+ �Pr�����+ ���1���� × 100%

 AN2714
APPENDIX A: Calculations

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 41

The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as
a means to make files and information easily available to customers. Accessible by using your favorite
Internet browser, the web site contains the following information:

• Product Support – Data sheets and errata, application notes and sample programs, design
resources, user’s guides and hardware support documents, latest software releases and archived
software

• General Technical Support – Frequently Asked Questions (FAQ), technical support requests,
online discussion groups, Microchip consultant program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases,
listing of seminars and events, listings of Microchip sales offices, distributors and factory
representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products.
Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata
related to a specified product family or development tool of interest.

To register, access the Microchip web site at http://www.microchip.com/. Under “Support”, click on
“Customer Change Notification” and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support.
Local sales offices are also available to help customers. A listing of sales offices and locations is included
in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is one of the most secure families of its kind on the

market today, when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of

these methods, to our knowledge, require using the Microchip products in a manner outside the
operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is
engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

 AN2714

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 42

http://www.microchip.com/
http://www.microchip.com/
http://www.microchip.com/support

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their
code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the
code protection features of our products. Attempts to break Microchip’s code protection feature may be a
violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software
or other copyrighted work, you may have a right to sue for relief under that Act.

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for
your convenience and may be superseded by updates. It is your responsibility to ensure that your
application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS
CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life
support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting
from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud,
chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq,
Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST,
SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight
Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming,
ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi,
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient
Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,
Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are
trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of
Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

 AN2714

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 43

© 2018, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-3331-6

Quality Management System Certified by DNV

ISO/TS 16949
Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer
fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC®

DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design and manufacture of development
systems is ISO 9001:2000 certified.

 AN2714

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 44

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7289-7561
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2018 Microchip Technology Inc. Application Note DS00002714A-page 45

	Introduction
	Table of Contents
	1. Features
	2. ECAN Module GUI
	2.1. Easy Setup
	2.1.1. CAN BUS Settings
	2.1.2. General Settings
	2.1.3. CANTX Pin Drive Settings
	2.1.4. Transmit-Receive Settings
	2.1.4.1. Transmit Settings
	2.1.4.2. Receive Mode

	2.2. Registers

	3. Supported Modes
	3.1. Mode 0 – Legacy Mode
	3.2. Mode 1 – Enhanced Legacy Mode
	3.3. Mode 2 – Enhanced FIFO Mode

	4. APIs
	4.1. Sample Implementation of CAN Transmit and Receive Functions
	4.1.1. Transmitting a Message
	4.1.2. Receiving a Message

	5. CAN Node Using PIC18 ECAN
	6. Demo
	6.1. Two-Node Network Demo
	6.1.1. Two-Node Network Details
	6.1.2. ECAN MCC System Requirements
	6.1.3. MCC Configuration Settings
	6.1.4. Application Code
	6.1.5. OptoLyzer MOCCA FD Settings
	6.1.6. Automotive Networking Demo Board LEDs Display for Heartbeat and Received Messages
	6.1.7. Periodic Message Transmission
	6.1.8. Event-Triggered Message Transmission
	6.1.9. Transmit Messages from OptoLyzer Studio
	6.1.10. Two-Node Network Output

	6.2. Three-Node Network Demo
	6.2.1. Three-Node Network Details
	6.2.2. PIC18F26K83 MCC Configuration Settings
	6.2.3. Application Code
	6.2.4. Curiosity HPC Demo Board LEDs Display for Heartbeat and Received Messages
	6.2.5. Node 3 Message Transmission
	6.2.6. Node 1 Event-Triggered Message Transmission
	6.2.7. Node 2 Event-Triggered Message Transmission

	6.3. Three-Node Network Output

	7. Conclusion
	8. APPENDIX A: Calculations
	8.1. APPENDIX A-1: Baud Rate Prescaler
	8.2. APPENDIX A-2: Sample Point

	The Microchip Web Site
	Customer Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System Certified by DNV
	Worldwide Sales and Service

