
 SMART ARM-based Microcontrollers

 AT03247: SAM D/R/L/C Non-Volatile Memory
(NVM) Driver

 APPLICATION NOTE

Introduction

This driver for Atmel® | SMART ARM®-based microcontrollers provides an
interface for the configuration and management of non-volatile memories
within the device, for partitioning, erasing, reading, and writing of data.

The following peripheral is used by this module:
• NVM (Non-Volatile Memory)

The following devices can use this module:
• Atmel | SMART SAM D20/D21
• Atmel | SMART SAM R21
• Atmel | SMART SAM D09/D10/D11
• Atmel | SMART SAM L21/L22
• Atmel | SMART SAM DA1
• Atmel | SMART SAM C20/C21

The outline of this documentation is as follows:
• Prerequisites
• Module Overview
• Special Considerations
• Extra Information
• Examples
• API Overview

Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

Table of Contents

Introduction..1

1. Software License... 4

2. Prerequisites..5

3. Module Overview...6
3.1. Driver Feature Macro Definition..6
3.2. Memory Regions.. 6
3.3. Region Lock Bits...7
3.4. Read/Write..8

4. Special Considerations..9
4.1. Page Erasure..9
4.2. Clocks...9
4.3. Security Bit... 9

5. Extra Information... 10

6. Examples... 11

7. API Overview...12
7.1. Structure Definitions... 12

7.1.1. Struct nvm_config.. 12
7.1.2. Struct nvm_fusebits... 12
7.1.3. Struct nvm_parameters... 13

7.2. Macro Definitions..14
7.2.1. Driver Feature Definition..14

7.3. Function Definitions..14
7.3.1. Configuration and Initialization...14
7.3.2. NVM Access Management.. 16

7.4. Enumeration Definitions... 22
7.4.1. Enum nvm_bod12_action.. 22
7.4.2. Enum nvm_bod33_action.. 22
7.4.3. Enum nvm_bootloader_size.. 22
7.4.4. Enum nvm_cache_readmode..22
7.4.5. Enum nvm_command..23
7.4.6. Enum nvm_eeprom_emulator_size... 24
7.4.7. Enum nvm_error.. 24
7.4.8. Enum nvm_sleep_power_mode.. 24
7.4.9. Enum nvm_wdt_early_warning_offset...25
7.4.10. Enum nvm_wdt_window_timeout.. 25

8. Extra Information for NVM Driver...27
8.1. Acronyms..27
8.2. Dependencies...27

Atmel AT03247: SAM D/R/L/C Non-Volatile Memory (NVM) Driver [APPLICATION NOTE]
Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

2

8.3. Errata..27
8.4. Module History..27

9. Examples for NVM Driver.. 28
9.1. Quick Start Guide for NVM - Basic...28

9.1.1. Setup... 28
9.1.2. Use Case... 29

10. Document Revision History... 31

Atmel AT03247: SAM D/R/L/C Non-Volatile Memory (NVM) Driver [APPLICATION NOTE]
Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

3

1. Software License
Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. The name of Atmel may not be used to endorse or promote products derived from this software without
specific prior written permission.

4. This software may only be redistributed and used in connection with an Atmel microcontroller product.

THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE EXPRESSLY AND SPECIFICALLY
DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Atmel AT03247: SAM D/R/L/C Non-Volatile Memory (NVM) Driver [APPLICATION NOTE]
Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

4

2. Prerequisites
There are no prerequisites for this module.

Atmel AT03247: SAM D/R/L/C Non-Volatile Memory (NVM) Driver [APPLICATION NOTE]
Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

5

3. Module Overview
The Non-Volatile Memory (NVM) module provides an interface to the device's Non-Volatile Memory
controller, so that memory pages can be written, read, erased, and reconfigured in a standardized
manner.

3.1. Driver Feature Macro Definition

Driver feature macro Supported devices

FEATURE_NVM_RWWEE SAM L21/L22, SAM D21-64K, SAM DA1, SAM C20/C21

FEATURE_BOD12 SAM L21

Note:  The specific features are only available in the driver when the selected device supports those
features.

3.2. Memory Regions
The NVM memory space of the SAM devices is divided into two sections: a Main Array section, and an
Auxiliary space section. The Main Array space can be configured to have an (emulated) EEPROM and/or
boot loader section. The memory layout with the EEPROM and bootloader partitions is shown in Figure
3-1 Memory Regions on page 7.

Atmel AT03247: SAM D/R/L/C Non-Volatile Memory (NVM) Driver [APPLICATION NOTE]
Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

6

Figure 3-1 Memory Regions

End of NVM Memory
Reserved EEPROM Section

Start of EEPROM Memory
End of Application Memory

Application Section

Start of Application Memory
End of Bootloader Memory

BOOT Section
Start of NVM Memory

The Main Array is divided into rows and pages, where each row contains four pages. The size of each
page may vary from 8-1024 bytes dependent of the device. Device specific parameters such as the page
size and total number of pages in the NVM memory space are available via the nvm_get_parameters()
function.

An NVM page number and address can be computed via the following equations:������� = ������ × 4 + �������������������� = ������� × ��������
Figure 3-2 Memory Regions on page 7 shows an example of the memory page and address values
associated with logical row 7 of the NVM memory space.

Figure 3-2 Memory Regions

Row 0x07 Page 0x1F Page 0x1E Page 0x1D Page 0x1C
Address 0x7C0 0x780 0x740 0x700

3.3. Region Lock Bits
As mentioned in Memory Regions, the main block of the NVM memory is divided into a number of
individually addressable pages. These pages are grouped into 16 equal sized regions, where each region

Atmel AT03247: SAM D/R/L/C Non-Volatile Memory (NVM) Driver [APPLICATION NOTE]
Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

7

can be locked separately issuing an NVM_COMMAND_LOCK_REGION command or by writing the
LOCK bits in the User Row. Rows reserved for the EEPROM section are not affected by the lock bits or
commands.

Note:  By using the NVM_COMMAND_LOCK_REGION or NVM_COMMAND_UNLOCK_REGION
commands the settings will remain in effect until the next device reset. By changing the default lock
setting for the regions, the auxiliary space must to be written, however the adjusted configuration will not
take effect until the next device reset.

Note:  If the Security Bit is set, the auxiliary space cannot be written to. Clearing of the security bit can
only be performed by a full chip erase.

3.4. Read/Write
Reading from the NVM memory can be performed using direct addressing into the NVM memory space,
or by calling the nvm_read_buffer() function.

Writing to the NVM memory must be performed by the nvm_write_buffer() function - additionally, a
manual page program command must be issued if the NVM controller is configured in manual page
writing mode.

Before a page can be updated, the associated NVM memory row must be erased first via the
nvm_erase_row() function. Writing to a non-erased page will result in corrupt data being stored in the
NVM memory space.

Atmel AT03247: SAM D/R/L/C Non-Volatile Memory (NVM) Driver [APPLICATION NOTE]
Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

8

4. Special Considerations

4.1. Page Erasure
The granularity of an erase is per row, while the granularity of a write is per page. Thus, if the user
application is modifying only one page of a row, the remaining pages in the row must be buffered and the
row erased, as an erase is mandatory before writing to a page.

4.2. Clocks
The user must ensure that the driver is configured with a proper number of wait states when the CPU is
running at high frequencies.

4.3. Security Bit
The User Row in the Auxiliary Space cannot be read or written when the Security Bit is set. The Security
Bit can be set by using passing NVM_COMMAND_SET_SECURITY_BIT to the
nvm_execute_command() function, or it will be set if one tries to access a locked region. See Region
Lock Bits.

The Security Bit can only be cleared by performing a chip erase.

Atmel AT03247: SAM D/R/L/C Non-Volatile Memory (NVM) Driver [APPLICATION NOTE]
Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

9

5. Extra Information
For extra information, see Extra Information for NVM Driver. This includes:

• Acronyms
• Dependencies
• Errata
• Module History

Atmel AT03247: SAM D/R/L/C Non-Volatile Memory (NVM) Driver [APPLICATION NOTE]
Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

10

6. Examples
For a list of examples related to this driver, see Examples for NVM Driver.

Atmel AT03247: SAM D/R/L/C Non-Volatile Memory (NVM) Driver [APPLICATION NOTE]
Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

11

7. API Overview

7.1. Structure Definitions

7.1.1. Struct nvm_config

Configuration structure for the NVM controller within the device.

Table 7-1 Members

Type Name Description

enum
nvm_cache_readmode

cache_readmode Select the mode for how the cache will pre-fetch
data from the flash

bool disable_cache Setting this to true will disable the pre-fetch cache in
front of the NVM controller

bool manual_page_write Manual write mode; if enabled, pages loaded into
the NVM buffer will not be written until a separate
write command is issued. If disabled, writing to the
last byte in the NVM page buffer will trigger an
automatic write.

Note:  If a partial page is to be written, a manual
write command must be executed in either mode.

enum
nvm_sleep_power_mode

sleep_power_mode Power reduction mode during device sleep

uint8_t wait_states Number of wait states to insert when reading from
flash, to prevent invalid data from being read at high
clock frequencies

7.1.2. Struct nvm_fusebits

This structure contain the layout of the first 64 bits of the user row which contain the fuse settings.

Table 7-2 Members

Type Name Description

enum nvm_bod12_action bod12_action BOD12 Action at power
on

bool bod12_enable BOD12 Enable at power
on

bool bod12_hysteresis

uint8_t bod12_level BOD12 Threshold level
at power on

Atmel AT03247: SAM D/R/L/C Non-Volatile Memory (NVM) Driver [APPLICATION NOTE]
Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

12

Type Name Description

enum nvm_bod33_action bod33_action BOD33 Action at power
on

bool bod33_enable BOD33 Enable at power
on

bool bod33_hysteresis

uint8_t bod33_level BOD33 Threshold level
at power on

enum nvm_bootloader_size bootloader_size Bootloader size

enum nvm_eeprom_emulator_size eeprom_size EEPROM emulation area
size

uint16_t lockbits NVM Lock bits

bool wdt_always_on WDT Always-on at
power on

enum
nvm_wdt_early_warning_offset

wdt_early_warning_offset WDT Early warning
interrupt time offset at
power on

bool wdt_enable WDT Enable at power on

uint8_t wdt_timeout_period WDT Period at power on

bool wdt_window_mode_enable_at_poweron WDT Window mode
enabled at power on

enum nvm_wdt_window_timeout wdt_window_timeout WDT Window mode
time-out at power on

7.1.3. Struct nvm_parameters

Structure containing the memory layout parameters of the NVM module.

Table 7-3 Members

Type Name Description

uint32_t bootloader_number_of_pages Size of the Bootloader memory section configured in the
NVM auxiliary memory space

uint32_t eeprom_number_of_pages Size of the emulated EEPROM memory section configured
in the NVM auxiliary memory space

uint16_t nvm_number_of_pages Number of pages in the main array

Atmel AT03247: SAM D/R/L/C Non-Volatile Memory (NVM) Driver [APPLICATION NOTE]
Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

13

Type Name Description

uint8_t page_size Number of bytes per page

uint16_t rww_eeprom_number_of_pages Number of pages in read while write EEPROM (RWWEE)
emulation area

7.2. Macro Definitions

7.2.1. Driver Feature Definition

Define NVM features set according to the different device families.

7.2.1.1. Macro FEATURE_NVM_RWWEE

#define FEATURE_NVM_RWWEE

Read while write EEPROM emulation feature.

7.2.1.2. Macro FEATURE_BOD12

#define FEATURE_BOD12

Brown-out detector internal to the voltage regulator for VDDCORE.

7.3. Function Definitions

7.3.1. Configuration and Initialization

7.3.1.1. Function nvm_get_config_defaults()

Initializes an NVM controller configuration structure to defaults.

void nvm_get_config_defaults(
 struct nvm_config *const config)

Initializes a given NVM controller configuration structure to a set of known default values. This function
should be called on all new instances of these configuration structures before being modified by the user
application.

The default configuration is as follows:
• Power reduction mode enabled after sleep mode until first NVM access
• Automatic page write mode disabled
• Number of FLASH wait states left unchanged

Table 7-4 Parameters

Data direction Parameter name Description

[out] config Configuration structure to initialize to default values

Atmel AT03247: SAM D/R/L/C Non-Volatile Memory (NVM) Driver [APPLICATION NOTE]
Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

14

7.3.1.2. Function nvm_set_config()

Sets the up the NVM hardware module based on the configuration.

enum status_code nvm_set_config(
 const struct nvm_config *const config)

Writes a given configuration of an NVM controller configuration to the hardware module, and initializes the
internal device struct.

Table 7-5 Parameters

Data direction Parameter name Description

[in] config Configuration settings for the NVM controller

Note:  The security bit must be cleared in order successfully use this function. This can only be done by
a chip erase.

Returns
Status of the configuration procedure.

Table 7-6 Return Values

Return value Description

STATUS_OK If the initialization was a success

STATUS_BUSY If the module was busy when the operation was attempted

STATUS_ERR_IO If the security bit has been set, preventing the EEPROM and/or auxiliary space
configuration from being altered

7.3.1.3. Function nvm_is_ready()

Checks if the NVM controller is ready to accept a new command.

bool nvm_is_ready(void)

Checks the NVM controller to determine if it is currently busy execution an operation, or ready for a new
command.

Returns
Busy state of the NVM controller.

Table 7-7 Return Values

Return value Description

true If the hardware module is ready for a new command

false If the hardware module is busy executing a command

Atmel AT03247: SAM D/R/L/C Non-Volatile Memory (NVM) Driver [APPLICATION NOTE]
Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

15

7.3.2. NVM Access Management

7.3.2.1. Function nvm_get_parameters()

Reads the parameters of the NVM controller.

void nvm_get_parameters(
 struct nvm_parameters *const parameters)

Retrieves the page size, number of pages, and other configuration settings of the NVM region.

Table 7-8 Parameters

Data direction Parameter name Description

[out] parameters Parameter structure, which holds page size and number of pages in
the NVM memory

7.3.2.2. Function nvm_write_buffer()

Writes a number of bytes to a page in the NVM memory region.

enum status_code nvm_write_buffer(
 const uint32_t destination_address,
 const uint8_t * buffer,
 uint16_t length)

Writes from a buffer to a given page address in the NVM memory.

Table 7-9 Parameters

Data direction Parameter name Description

[in] destination_address Destination page address to write to

[in] buffer Pointer to buffer where the data to write is stored

[in] length Number of bytes in the page to write

Note:  If writing to a page that has previously been written to, the page's row should be erased (via
nvm_erase_row()) before attempting to write new data to the page.

Note:  For SAM D21 RWW devices, see SAMD21_64K, command NVM_COMMAND_RWWEE_WRITE_PAGE
must be executed before any other commands after writing a page, refer to errata 13588.

Note:  If manual write mode is enabled, the write command must be executed after this function,
otherwise the data will not write to NVM from page buffer.

Returns
Status of the attempt to write a page.

Table 7-10 Return Values

Return value Description

STATUS_OK Requested NVM memory page was successfully read

STATUS_BUSY NVM controller was busy when the operation was attempted

Atmel AT03247: SAM D/R/L/C Non-Volatile Memory (NVM) Driver [APPLICATION NOTE]
Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

16

Return value Description

STATUS_ERR_BAD_ADDRESS The requested address was outside the acceptable range of the NVM
memory region or not aligned to the start of a page

STATUS_ERR_INVALID_ARG The supplied write length was invalid

7.3.2.3. Function nvm_read_buffer()

Reads a number of bytes from a page in the NVM memory region.

enum status_code nvm_read_buffer(
 const uint32_t source_address,
 uint8_t *const buffer,
 uint16_t length)

Reads a given number of bytes from a given page address in the NVM memory space into a buffer.

Table 7-11 Parameters

Data direction Parameter name Description

[in] source_address Source page address to read from

[out] buffer Pointer to a buffer where the content of the read page will be stored

[in] length Number of bytes in the page to read

Returns
Status of the page read attempt.

Table 7-12 Return Values

Return value Description

STATUS_OK Requested NVM memory page was successfully read

STATUS_BUSY NVM controller was busy when the operation was attempted

STATUS_ERR_BAD_ADDRESS The requested address was outside the acceptable range of the NVM
memory region or not aligned to the start of a page

STATUS_ERR_INVALID_ARG The supplied read length was invalid

7.3.2.4. Function nvm_update_buffer()

Updates an arbitrary section of a page with new data.

enum status_code nvm_update_buffer(
 const uint32_t destination_address,
 uint8_t *const buffer,
 uint16_t offset,
 uint16_t length)

Writes from a buffer to a given page in the NVM memory, retaining any unmodified data already stored in
the page.

Atmel AT03247: SAM D/R/L/C Non-Volatile Memory (NVM) Driver [APPLICATION NOTE]
Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

17

Note:  If manual write mode is enable, the write command must be executed after this function,
otherwise the data will not write to NVM from page buffer.

Warning This routine is unsafe if data integrity is critical; a system reset during the update process will
result in up to one row of data being lost. If corruption must be avoided in all circumstances
(including power loss or system reset) this function should not be used.

Table 7-13 Parameters

Data direction Parameter name Description

[in] destination_address Destination page address to write to

[in] buffer Pointer to buffer where the data to write is stored

[in] offset Number of bytes to offset the data write in the page

[in] length Number of bytes in the page to update

Returns
Status of the attempt to update a page.

Table 7-14 Return Values

Return value Description

STATUS_OK Requested NVM memory page was successfully read

STATUS_BUSY NVM controller was busy when the operation was attempted

STATUS_ERR_BAD_ADDRESS The requested address was outside the acceptable range of the NVM
memory region

STATUS_ERR_INVALID_ARG The supplied length and offset was invalid

7.3.2.5. Function nvm_erase_row()

Erases a row in the NVM memory space.

enum status_code nvm_erase_row(
 const uint32_t row_address)

Erases a given row in the NVM memory region.

Table 7-15 Parameters

Data direction Parameter name Description

[in] row_address Address of the row to erase

Returns
Status of the NVM row erase attempt.

Atmel AT03247: SAM D/R/L/C Non-Volatile Memory (NVM) Driver [APPLICATION NOTE]
Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

18

Table 7-16 Return Values

Return value Description

STATUS_OK Requested NVM memory row was successfully erased

STATUS_BUSY NVM controller was busy when the operation was attempted

STATUS_ERR_BAD_ADDRESS The requested row address was outside the acceptable range of the
NVM memory region or not aligned to the start of a row

7.3.2.6. Function nvm_execute_command()

Executes a command on the NVM controller.

enum status_code nvm_execute_command(
 const enum nvm_command command,
 const uint32_t address,
 const uint32_t parameter)

Executes an asynchronous command on the NVM controller, to perform a requested action such as an
NVM page read or write operation.

Note:  The function will return before the execution of the given command is completed.

Table 7-17 Parameters

Data direction Parameter name Description

[in] command Command to issue to the NVM controller

[in] address Address to pass to the NVM controller in NVM memory space

[in] parameter Parameter to pass to the NVM controller, not used for this driver

Returns
Status of the attempt to execute a command.

Table 7-18 Return Values

Return value Description

STATUS_OK If the command was accepted and execution is now in progress

STATUS_BUSY If the NVM controller was already busy executing a command when
the new command was issued

STATUS_ERR_IO If the command was invalid due to memory or security locking

STATUS_ERR_INVALID_ARG If the given command was invalid or unsupported

STATUS_ERR_BAD_ADDRESS If the given address was invalid

Atmel AT03247: SAM D/R/L/C Non-Volatile Memory (NVM) Driver [APPLICATION NOTE]
Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

19

7.3.2.7. Function nvm_get_fuses()

Get fuses from user row.

enum status_code nvm_get_fuses(
 struct nvm_fusebits * fusebits)

Read out the fuse settings from the user row.

Table 7-19 Parameters

Data direction Parameter name Description

[in] fusebits Pointer to a 64-bit wide memory buffer of type struct nvm_fusebits

Returns
Status of read fuses attempt.

Table 7-20 Return Values

Return value Description

STATUS_OK This function will always return STATUS_OK

7.3.2.8. Function nvm_set_fuses()

Set fuses from user row.

enum status_code nvm_set_fuses(
 struct nvm_fusebits * fb)

Set fuse settings from the user row.

Note:  When writing to the user row, the values do not get loaded by the other modules on the device
until a device reset occurs.

Table 7-21 Parameters

Data direction Parameter name Description

[in] fusebits Pointer to a 64-bit wide memory buffer of type struct nvm_fusebits

Returns
Status of read fuses attempt.

Table 7-22 Return Values

Return value Description

STATUS_OK This function will always return STATUS_OK

STATUS_BUSY If the NVM controller was already busy executing a command when
the new command was issued

STATUS_ERR_IO If the command was invalid due to memory or security locking

Atmel AT03247: SAM D/R/L/C Non-Volatile Memory (NVM) Driver [APPLICATION NOTE]
Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

20

Return value Description

STATUS_ERR_INVALID_ARG If the given command was invalid or unsupported

STATUS_ERR_BAD_ADDRESS If the given address was invalid

7.3.2.9. Function nvm_is_page_locked()

Checks whether the page region is locked.

bool nvm_is_page_locked(
 uint16_t page_number)

Extracts the region to which the given page belongs and checks whether that region is locked.

Table 7-23 Parameters

Data direction Parameter name Description

[in] page_number Page number to be checked

Returns
Page lock status.

Table 7-24 Return Values

Return value Description

true Page is locked

false Page is not locked

7.3.2.10. Function nvm_get_error()

Retrieves the error code of the last issued NVM operation.

enum nvm_error nvm_get_error(void)

Retrieves the error code from the last executed NVM operation. Once retrieved, any error state flags in
the controller are cleared.

Note:  The nvm_is_ready() function is an exception. Thus, errors retrieved after running this function
should be valid for the function executed before nvm_is_ready().

Returns
Error caused by the last NVM operation.

Table 7-25 Return Values

Return value Description

NVM_ERROR_NONE No error occurred in the last NVM operation

NVM_ERROR_LOCK The last NVM operation attempted to access a locked region

NVM_ERROR_PROG An invalid NVM command was issued

Atmel AT03247: SAM D/R/L/C Non-Volatile Memory (NVM) Driver [APPLICATION NOTE]
Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

21

7.4. Enumeration Definitions

7.4.1. Enum nvm_bod12_action

What action should be triggered when BOD12 is detected.

Table 7-26 Members

Enum value Description

NVM_BOD12_ACTION_NONE No action

NVM_BOD12_ACTION_RESET The BOD12 generates a reset

NVM_BOD12_ACTION_INTERRUPT The BOD12 generates an interrupt

7.4.2. Enum nvm_bod33_action

What action should be triggered when BOD33 is detected.

Table 7-27 Members

Enum value Description

NVM_BOD33_ACTION_NONE No action

NVM_BOD33_ACTION_RESET The BOD33 generates a reset

NVM_BOD33_ACTION_INTERRUPT The BOD33 generates an interrupt

7.4.3. Enum nvm_bootloader_size

Available bootloader protection sizes in kilobytes.

Table 7-28 Members

Enum value Description

NVM_BOOTLOADER_SIZE_128 Boot Loader Size is 32768 bytes

NVM_BOOTLOADER_SIZE_64 Boot Loader Size is 16384 bytes

NVM_BOOTLOADER_SIZE_32 Boot Loader Size is 8192 bytes

NVM_BOOTLOADER_SIZE_16 Boot Loader Size is 4096 bytes

NVM_BOOTLOADER_SIZE_8 Boot Loader Size is 2048 bytes

NVM_BOOTLOADER_SIZE_4 Boot Loader Size is 1024 bytes

NVM_BOOTLOADER_SIZE_2 Boot Loader Size is 512 bytes

NVM_BOOTLOADER_SIZE_0 Boot Loader Size is 0 bytes

7.4.4. Enum nvm_cache_readmode

Control how the NVM cache prefetch data from flash.

Atmel AT03247: SAM D/R/L/C Non-Volatile Memory (NVM) Driver [APPLICATION NOTE]
Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

22

Table 7-29 Members

Enum value Description

NVM_CACHE_READMODE_NO_MISS_PENALTY The NVM Controller (cache system) does not insert
wait states on a cache miss. Gives the best system
performance.

NVM_CACHE_READMODE_LOW_POWER Reduces power consumption of the cache system,
but inserts a wait state each time there is a cache
miss

NVM_CACHE_READMODE_DETERMINISTIC The cache system ensures that a cache hit or miss
takes the same amount of time, determined by the
number of programmed flash wait states

7.4.5. Enum nvm_command

Table 7-30 Members

Enum value Description

NVM_COMMAND_ERASE_ROW Erases the addressed memory row

NVM_COMMAND_WRITE_PAGE Write the contents of the page buffer to the
addressed memory page

NVM_COMMAND_ERASE_AUX_ROW Erases the addressed auxiliary memory row.

Note:  This command can only be given when the
security bit is not set.

NVM_COMMAND_WRITE_AUX_ROW Write the contents of the page buffer to the
addressed auxiliary memory row.

Note:  This command can only be given when the
security bit is not set.

NVM_COMMAND_LOCK_REGION Locks the addressed memory region, preventing
further modifications until the region is unlocked or
the device is erased

NVM_COMMAND_UNLOCK_REGION Unlocks the addressed memory region, allowing
the region contents to be modified

NVM_COMMAND_PAGE_BUFFER_CLEAR Clears the page buffer of the NVM controller,
resetting the contents to all zero values

NVM_COMMAND_SET_SECURITY_BIT Sets the device security bit, disallowing the
changing of lock bits and auxiliary row data until a
chip erase has been performed

NVM_COMMAND_ENTER_LOW_POWER_MODE Enter power reduction mode in the NVM controller
to reduce the power consumption of the system

Atmel AT03247: SAM D/R/L/C Non-Volatile Memory (NVM) Driver [APPLICATION NOTE]
Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

23

Enum value Description

NVM_COMMAND_EXIT_LOW_POWER_MODE Exit power reduction mode in the NVM controller to
allow other NVM commands to be issued

NVM_COMMAND_RWWEE_ERASE_ROW Read while write (RWW) EEPROM area erase row

NVM_COMMAND_RWWEE_WRITE_PAGE RWW EEPROM write page

7.4.6. Enum nvm_eeprom_emulator_size

Available space in flash dedicated for EEPROM emulator in bytes.

Table 7-31 Members

Enum value Description

NVM_EEPROM_EMULATOR_SIZE_16384 EEPROM Size for EEPROM emulation is 16384 bytes

NVM_EEPROM_EMULATOR_SIZE_8192 EEPROM Size for EEPROM emulation is 8192 bytes

NVM_EEPROM_EMULATOR_SIZE_4096 EEPROM Size for EEPROM emulation is 4096 bytes

NVM_EEPROM_EMULATOR_SIZE_2048 EEPROM Size for EEPROM emulation is 2048 bytes

NVM_EEPROM_EMULATOR_SIZE_1024 EEPROM Size for EEPROM emulation is 1024 bytes

NVM_EEPROM_EMULATOR_SIZE_512 EEPROM Size for EEPROM emulation is 512 bytes

NVM_EEPROM_EMULATOR_SIZE_256 EEPROM Size for EEPROM emulation is 256 bytes

NVM_EEPROM_EMULATOR_SIZE_0 EEPROM Size for EEPROM emulation is 0 bytes

7.4.7. Enum nvm_error

Possible NVM controller error codes, which can be returned by the NVM controller after a command is
issued.

Table 7-32 Members

Enum value Description

NVM_ERROR_NONE No errors

NVM_ERROR_LOCK Lock error, a locked region was attempted accessed

NVM_ERROR_PROG Program error, invalid command was executed

7.4.8. Enum nvm_sleep_power_mode

Power reduction modes of the NVM controller, to conserve power while the device is in sleep.

Atmel AT03247: SAM D/R/L/C Non-Volatile Memory (NVM) Driver [APPLICATION NOTE]
Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

24

Table 7-33 Members

Enum value Description

NVM_SLEEP_POWER_MODE_WAKEONACCESS NVM controller exits low-power mode on first
access after sleep

NVM_SLEEP_POWER_MODE_WAKEUPINSTANT NVM controller exits low-power mode when the
device exits sleep mode

NVM_SLEEP_POWER_MODE_ALWAYS_AWAKE Power reduction mode in the NVM controller
disabled

7.4.9. Enum nvm_wdt_early_warning_offset

This setting determine how many GCLK_WDT cycles before a watchdog time-out period an early warning
interrupt should be triggered.

Table 7-34 Members

Enum value Description

NVM_WDT_EARLY_WARNING_OFFSET_8 8 clock cycles

NVM_WDT_EARLY_WARNING_OFFSET_16 16 clock cycles

NVM_WDT_EARLY_WARNING_OFFSET_32 32 clock cycles

NVM_WDT_EARLY_WARNING_OFFSET_64 64 clock cycles

NVM_WDT_EARLY_WARNING_OFFSET_128 128 clock cycles

NVM_WDT_EARLY_WARNING_OFFSET_256 256 clock cycles

NVM_WDT_EARLY_WARNING_OFFSET_512 512 clock cycles

NVM_WDT_EARLY_WARNING_OFFSET_1024 1024 clock cycles

NVM_WDT_EARLY_WARNING_OFFSET_2048 2048 clock cycles

NVM_WDT_EARLY_WARNING_OFFSET_4096 4096 clock cycles

NVM_WDT_EARLY_WARNING_OFFSET_8192 8192 clock cycles

NVM_WDT_EARLY_WARNING_OFFSET_16384 16384 clock cycles

7.4.10. Enum nvm_wdt_window_timeout

Window mode time-out period in clock cycles.

Table 7-35 Members

Enum value Description

NVM_WDT_WINDOW_TIMEOUT_PERIOD_8 8 clock cycles

NVM_WDT_WINDOW_TIMEOUT_PERIOD_16 16 clock cycles

Atmel AT03247: SAM D/R/L/C Non-Volatile Memory (NVM) Driver [APPLICATION NOTE]
Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

25

Enum value Description

NVM_WDT_WINDOW_TIMEOUT_PERIOD_32 32 clock cycles

NVM_WDT_WINDOW_TIMEOUT_PERIOD_64 64 clock cycles

NVM_WDT_WINDOW_TIMEOUT_PERIOD_128 128 clock cycles

NVM_WDT_WINDOW_TIMEOUT_PERIOD_256 256 clock cycles

NVM_WDT_WINDOW_TIMEOUT_PERIOD_512 512 clock cycles

NVM_WDT_WINDOW_TIMEOUT_PERIOD_1024 1024 clock cycles

NVM_WDT_WINDOW_TIMEOUT_PERIOD_2048 2048 clock cycles

NVM_WDT_WINDOW_TIMEOUT_PERIOD_4096 4096 clock cycles

NVM_WDT_WINDOW_TIMEOUT_PERIOD_8192 8192 clock cycles

NVM_WDT_WINDOW_TIMEOUT_PERIOD_16384 16384 clock cycles

Atmel AT03247: SAM D/R/L/C Non-Volatile Memory (NVM) Driver [APPLICATION NOTE]
Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

26

8. Extra Information for NVM Driver

8.1. Acronyms
The table below presents the acronyms used in this module:

Acronym Description

NVM Non-Volatile Memory

EEPROM Electrically Erasable Programmable Read-Only Memory

8.2. Dependencies
This driver has the following dependencies:

• None

8.3. Errata
There are no errata related to this driver.

8.4. Module History
An overview of the module history is presented in the table below, with details on the enhancements and
fixes made to the module since its first release. The current version of this corresponds to the newest
version in the table.

Changelog

Removed BOD12 reference, removed nvm_set_fuses() API

Added functions to read/write fuse settings

Added support for NVM cache configuration

Updated initialization function to also enable the digital interface clock to the module if it is disabled

Initial Release

Atmel AT03247: SAM D/R/L/C Non-Volatile Memory (NVM) Driver [APPLICATION NOTE]
Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

27

9. Examples for NVM Driver
This is a list of the available Quick Start guides (QSGs) and example applications for SAM Non-Volatile
Memory (NVM) Driver. QSGs are simple examples with step-by-step instructions to configure and use
this driver in a selection of use cases. Note that a QSG can be compiled as a standalone application or
be added to the user application.

• Quick Start Guide for NVM - Basic

9.1. Quick Start Guide for NVM - Basic

In this use case, the NVM module is configured for:
• Power reduction mode enabled after sleep mode until first NVM access
• Automatic page write commands issued to commit data as pages are written to the internal buffer
• Zero wait states when reading FLASH memory
• No memory space for the EEPROM
• No protected bootloader section

This use case sets up the NVM controller to write a page of data to flash, and then read it back into the
same buffer.

9.1.1. Setup

9.1.1.1. Prerequisites

There are no special setup requirements for this use-case.

9.1.1.2. Code

Copy-paste the following setup code to your user application:
void configure_nvm(void)
{
 struct nvm_config config_nvm;

 nvm_get_config_defaults(&config_nvm);

 config_nvm.manual_page_write = false;

 nvm_set_config(&config_nvm);
}

Add to user application initialization (typically the start of main()):

configure_nvm();

9.1.1.3. Workflow

1. Create an NVM module configuration struct, which can be filled out to adjust the configuration of
the NVM controller.
struct nvm_config config_nvm;

2. Initialize the NVM configuration struct with the module's default values.
nvm_get_config_defaults(&config_nvm);

Atmel AT03247: SAM D/R/L/C Non-Volatile Memory (NVM) Driver [APPLICATION NOTE]
Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

28

Note:  This should always be performed before using the configuration struct to ensure that all
values are initialized to known default settings.

3. Enable automatic page write mode. The new data will be written to NVM automaticly.
config_nvm.manual_page_write = false;

Note:  If automatic page write mode is disabled, the data will not write to NVM until the NVM write
command has been invoked. For safe use of the NVM module, disable automatic page write mode
and use write command to commit data is recommended.

4. Configure NVM controller with the created configuration struct settings.
nvm_set_config(&config_nvm);

9.1.2. Use Case

9.1.2.1. Code

Copy-paste the following code to your user application:
uint8_t page_buffer[NVMCTRL_PAGE_SIZE];

for (uint32_t i = 0; i < NVMCTRL_PAGE_SIZE; i++) {
 page_buffer[i] = i;
}

enum status_code error_code;

do
{
 error_code = nvm_erase_row(
 100 * NVMCTRL_ROW_PAGES * NVMCTRL_PAGE_SIZE);
} while (error_code == STATUS_BUSY);

do
{
 error_code = nvm_write_buffer(
 100 * NVMCTRL_ROW_PAGES * NVMCTRL_PAGE_SIZE,
 page_buffer, NVMCTRL_PAGE_SIZE);
} while (error_code == STATUS_BUSY);

do
{
 error_code = nvm_read_buffer(
 100 * NVMCTRL_ROW_PAGES * NVMCTRL_PAGE_SIZE,
 page_buffer, NVMCTRL_PAGE_SIZE);
} while (error_code == STATUS_BUSY);

9.1.2.2. Workflow

1. Set up a buffer, one NVM page in size, to hold data to read or write into NVM memory.
uint8_t page_buffer[NVMCTRL_PAGE_SIZE];

2. Fill the buffer with a pattern of data.
for (uint32_t i = 0; i < NVMCTRL_PAGE_SIZE; i++) {
 page_buffer[i] = i;
}

Atmel AT03247: SAM D/R/L/C Non-Volatile Memory (NVM) Driver [APPLICATION NOTE]
Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

29

3. Create a variable to hold the error status from the called NVM functions.
enum status_code error_code;

4. Erase a page of NVM data. As the NVM could be busy initializing or completing a previous
operation, a loop is used to retry the command while the NVM controller is busy.
do
{
 error_code = nvm_erase_row(
 100 * NVMCTRL_ROW_PAGES * NVMCTRL_PAGE_SIZE);
} while (error_code == STATUS_BUSY);

Note:  This must be performed before writing new data into an NVM page.
5. Write the data buffer to the previously erased page of the NVM.

do
{
 error_code = nvm_write_buffer(
 100 * NVMCTRL_ROW_PAGES * NVMCTRL_PAGE_SIZE,
 page_buffer, NVMCTRL_PAGE_SIZE);
} while (error_code == STATUS_BUSY);

Note:  The new data will be written to NVM memory automatically, as the NVM controller is
configured in automatic page write mode.

6. Read back the written page of page from the NVM into the buffer.
do
{
 error_code = nvm_read_buffer(
 100 * NVMCTRL_ROW_PAGES * NVMCTRL_PAGE_SIZE,
 page_buffer, NVMCTRL_PAGE_SIZE);
} while (error_code == STATUS_BUSY);

Atmel AT03247: SAM D/R/L/C Non-Volatile Memory (NVM) Driver [APPLICATION NOTE]
Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

30

10. Document Revision History
Doc. Rev. Date Comments

42114E 12/2015 Added support for SAM L21/L22, SAM C21, SAM D09, and SAM DA1

42114D 12/2014 Added support for SAM R21 and SAM D10/D11

42114C 01/2014 Added support for SAM D21

42114B 06/2013 Corrected documentation typos

42114A 06/2013 Initial document release

Atmel AT03247: SAM D/R/L/C Non-Volatile Memory (NVM) Driver [APPLICATION NOTE]
Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

31

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2015 Atmel Corporation. / Rev.: Atmel-42114E-SAM-Non-Volatile-Memory-Driver-NVM_AT03247_Application Note-12/2015

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected®, and others are registered trademarks of ARM Ltd. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Table of Contents
	1. Software License
	2. Prerequisites
	3. Module Overview
	3.1. Driver Feature Macro Definition
	3.2. Memory Regions
	3.3. Region Lock Bits
	3.4. Read/Write

	4. Special Considerations
	4.1. Page Erasure
	4.2. Clocks
	4.3. Security Bit

	5. Extra Information
	6. Examples
	7. API Overview
	7.1. Structure Definitions
	7.1.1. Struct nvm_config
	7.1.2. Struct nvm_fusebits
	7.1.3. Struct nvm_parameters

	7.2. Macro Definitions
	7.2.1. Driver Feature Definition
	7.2.1.1. Macro FEATURE_NVM_RWWEE
	7.2.1.2. Macro FEATURE_BOD12

	7.3. Function Definitions
	7.3.1. Configuration and Initialization
	7.3.1.1. Function nvm_get_config_defaults()
	7.3.1.2. Function nvm_set_config()
	7.3.1.3. Function nvm_is_ready()

	7.3.2. NVM Access Management
	7.3.2.1. Function nvm_get_parameters()
	7.3.2.2. Function nvm_write_buffer()
	7.3.2.3. Function nvm_read_buffer()
	7.3.2.4. Function nvm_update_buffer()
	7.3.2.5. Function nvm_erase_row()
	7.3.2.6. Function nvm_execute_command()
	7.3.2.7. Function nvm_get_fuses()
	7.3.2.8. Function nvm_set_fuses()
	7.3.2.9. Function nvm_is_page_locked()
	7.3.2.10. Function nvm_get_error()

	7.4. Enumeration Definitions
	7.4.1. Enum nvm_bod12_action
	7.4.2. Enum nvm_bod33_action
	7.4.3. Enum nvm_bootloader_size
	7.4.4. Enum nvm_cache_readmode
	7.4.5. Enum nvm_command
	7.4.6. Enum nvm_eeprom_emulator_size
	7.4.7. Enum nvm_error
	7.4.8. Enum nvm_sleep_power_mode
	7.4.9. Enum nvm_wdt_early_warning_offset
	7.4.10. Enum nvm_wdt_window_timeout

	8. Extra Information for NVM Driver
	8.1. Acronyms
	8.2. Dependencies
	8.3. Errata
	8.4. Module History

	9. Examples for NVM Driver
	9.1. Quick Start Guide for NVM - Basic
	9.1.1. Setup
	9.1.1.1. Prerequisites
	9.1.1.2. Code
	9.1.1.3. Workflow

	9.1.2. Use Case
	9.1.2.1. Code
	9.1.2.2. Workflow

	10. Document Revision History

