
 Atmel MCU Wireless

 AT14615: ZigBee Broadcast Message Handling
and Implementation in BitCloud SDK

 APPLICATION NOTE

Introduction

The ZigBee® standard specifies how a broadcast transmission must be
accomplished within a ZigBee network. Any device within a network may
initiate a broadcast transmission intended for a number of other devices that
are part of the same network. The ZigBee routers and the coordinator
maintain a record of all broadcast messages in a table called Broadcast
Transaction Table.

This application note describes the process of handling these broadcast
messages in each layer, broadcast table entry creation, deletion, and buffer
handling in Atmel® BitCloud® SDK.

Features

• Details about ZigBee Broadcast message transmission and reception
in Atmel BitCloud

• Broadcast Transaction Table Entry - creation and deletion
• Related Config Server parameters
• Handling Broadcast messages initiated from different stack layers

Atmel-42687A-ZigBee-Broadcast-Message-Handling-and-Implementation-in-BitCloud-SDK_AT14615_Application Note-08/2016

Table of Contents

Introduction..1

Features.. 1

1. Overview..3

2. Introduction..4
2.1. Broadcast Addresses... 4
2.2. Passive Acknowledgment...4
2.3. Broadcast Transaction Table (nwkBroadcastTransactionTable)................................. 4
2.4. Broadcast Retries (nwkMaxBroadcastRetries)...5
2.5. Passive Acknowledgement Timeout (nwkPassiveAckTimeout)... 5
2.6. Broadcast Jitter (nwkcMaxBroadcastJitter).. 5
2.7. Broadcast Message Timeout (nwkNetworkBroadcastDeliveryTime).......................... 5

3. BitCloud Stack Parameters Used for Sending Broadcast Messages........................ 7
3.1. Config Server (CS) Parameters Configurable from Application... 7
3.2. Parameters Fixed Inside the BitCloud SDK ...9

4. Transmission of Broadcast Messages...13
4.1. BroadcastTransmission from FFDs(Router/Co-ordinator)...13
4.2. Broadcast Transmission to End-devices.. 14
4.3. Broadcast Transmission from EndDevice.. 15
4.4. Broadcast Transaction Sequence ... 15

5. Broadcast Packets Initiated from Network Layer...17
5.1. Route Request Command Frame Transmission.. 17
5.2. Network Link Status Command Frame Transmission and Reception.. 20
5.3. Leave Command Frame Transmission and Reception.. 21

6. Broadcast Message Initiated from End Application... 23
6.1. APS Data Request Initiated by Application.. 23
6.2. ZCL Attribute/Command Initiated by Application..24
6.3. ZDP Request Initiated by Application...24

7. Revision History...26

Atmel AT14615: ZigBee Broadcast Message Handling and Implementation in BitCloud SDK
[APPLICATION NOTE]

Atmel-42687A-ZigBee-Broadcast-Message-Handling-and-Implementation-in-BitCloud-SDK_AT14615_Application Note-08/2016

2

1. Overview
Broadcasting refers to a method of transmitting a message to all recipients in a ZigBee network,
simultaneously. The message is intended to be received by all the devices that are listening to a specific
frequency channel irrespective of their address. Although the IEEE® 802.15.4 supports the use of a
broadcast PAN identifier to broadcast message across multiple networks, ZigBee standard does not allow
broadcasting across multiple networks and the PAN identifier is always set to PAN identifier of the
network. The ZigBee specification defines how a broadcast transmission must be accomplished within a
ZigBee network.

Figure 1-1. Broadcasting

Atmel AT14615: ZigBee Broadcast Message Handling and Implementation in BitCloud SDK
[APPLICATION NOTE]

Atmel-42687A-ZigBee-Broadcast-Message-Handling-and-Implementation-in-BitCloud-SDK_AT14615_Application Note-08/2016

3

2. Introduction

2.1. Broadcast Addresses
Broadcast transmissions within the ZigBee protocol are intended to be propagated throughout the entire
network such that all nodes receive the transmission. ZigBee defines unique address in order to
differentiate such broadcast messages. In ZigBee network, when an application initiates the broadcast, it
passes through application sub layer (APS layer) and then to network layer (NWK layer). The NWK layer
can also initiates broadcast messages of its own. In both ways the NWK destination address must be set
as any one of the broadcast addresses mentioned in Broadcast Addresses. The NWK layer of a ZigBee
router or ZigBee coordinator issues an MCPS-DATA.request primitive to the MAC sub-layer with the
DstAddrMode parameter set to 0x02 (16-bit network address) and the MAC DstAddr parameter set to
0xFFFF.

Table 2-1. Broadcast Addresses

Broadcast Address Destination Group

0xFFFF All devices in PAN

0xFFFE Reserved

0xFFFD All devices with receiver On permanently

0xFFFC All routers and coordinator

0xFFFB Low power routers only

0xFFF8-0xFFFA Reserved

2.2. Passive Acknowledgment
In a large network, it would be difficult and unnecessary to expect all the devices that receive a broadcast
message to return an acknowledgment to the message originator. Therefore, in ZigBee network, the
receiving device does not acknowledge when a message is received. Which means, MAC level
acknowledgement is disabled. Instead, they re-broadcast the message. After a device broadcasts a
message, it switches to receive mode and waits for the same message to be re-transmitted by one of the
neighboring devices. Receiving a rebroadcast is a confirmation that the neighboring device has received
and relayed the broadcast message successfully. This is known as passive acknowledgement
mechanism in ZigBee.

2.3. Broadcast Transaction Table (nwkBroadcastTransactionTable)
The ZigBee coordinator and routers store the record of all messages they broadcast in a table called the
Broadcast Transaction Table (BTT). The record itself is known as the Broadcast Transcation Record
(BTR) and contains the sequence number, source address of broadcast frame and table expiration time.
The Broadcast Transaction Table details are shown in the following table.

Atmel AT14615: ZigBee Broadcast Message Handling and Implementation in BitCloud SDK
[APPLICATION NOTE]

Atmel-42687A-ZigBee-Broadcast-Message-Handling-and-Implementation-in-BitCloud-SDK_AT14615_Application Note-08/2016

4

Table 2-2. Broadcast Transaction Record

Field Name Size Description

Source Address 2 Bytes The 16-bit network address of the broadcast message initiator

Sequence
Number

1 Byte The NWK layer sequence number of the Initiator’s broadcast

Expiration Time 1 Byte A countdown timer indicates the number of seconds until this entry expires;
the initial value is nwkNetworkBroadcastDeliveryTime.

2.4. Broadcast Retries (nwkMaxBroadcastRetries)
The ZigBee uses the Passive Acknowledgement to ensure the reliability of broadcasting. After
broadcasting, the ZigBee device records the sent broadcast packet in its broadcast transaction table
(BTT). This allows devices to track whether their broadcast packets have been properly rebroadcast or
not. If a device finds that a neighbor does not rebroadcast, it rebroadcasts again to guarantee reliability. It
shall retransmit a previously broadcasted frame for a maximum of nwkMaxBroadcastRetries times.
This parameter is configurable up to 0x05 retires as per ZigBee specification, but it is fixed in BitCloud
SDK. If the device does not support passive acknowledgement, then it shall retransmit the frame exactly
nwkMaxBroadcastRetries times. If the passive acknowledgement is supported, then the re-
transmission stops when the rebroadcast is received within the nwkPassiveAckTimeout seconds. If
any of its neighboring devices have not relayed the broadcast frame within nwkPassiveAckTimeout
seconds, it shall continue to retransmit the frame up to a maximum of nwkMaxBroadcastRetries
times.

This passive acknowledgement mechanism is supported in BitCloud SDK.

2.5. Passive Acknowledgement Timeout (nwkPassiveAckTimeout)
The maximum allowed time duration in milliseconds for the parent and all child devices to retransmit a
broadcast message is called passive acknowledgment timeout. When a device originates or retransmits a
broadcast packet, it listens for all of its known neighbors to retransmit the packet. If atleast any one of the
neighbors have not replicated the message within nwkPassiveAckTimeout seconds, it retransmits the
packet. As per ZigBee specification, this parameter can be configured by the stack developer up to
0x2710 milliseconds and this parameter is fixed in BitCloud SDK.

2.6. Broadcast Jitter (nwkcMaxBroadcastJitter)
While broadcasting, the message is relayed by multiple devices and there is a chance of collision due to
the hidden node problem. To reduce this chance, the network layer requires each retransmission the
device to wait for a random period of time. This random period is called broadcast jitter. The length of the
broadcast jitter must be less than the value of the nwkcMaxBroadcastJitter attribute. The maximum
allowed broadcast jitter is 0x40 milliseconds as per ZigBee specification and the BitCloud SDK uses the
same value as per specififcation.

2.7. Broadcast Message Timeout (nwkNetworkBroadcastDeliveryTime)
The nwkNetworkBroadcastDeliveryTime is the total delivery time for a broadcast transmission. This
time required for a broadcast to be delivered to every device in the network depends on nwkMaxDepth,

Atmel AT14615: ZigBee Broadcast Message Handling and Implementation in BitCloud SDK
[APPLICATION NOTE]

Atmel-42687A-ZigBee-Broadcast-Message-Handling-and-Implementation-in-BitCloud-SDK_AT14615_Application Note-08/2016

5

nwkcMaxBroadcastJitter, nwkBroadcastRetries, and nwkPassiveAckTimeout. A device
should change the status of a BTT entry only after nwkNetworkBroadcastDeliveryTime seconds
have elapsed since its creation. The entry status should change to expired and thus when a new
broadcast is received or initiated, the entry can be overwritten if required. BitCloud core stack calculates
this timeout using these parameters and cannot be configured by user application. The BTT table can
only be updated by the BitCloud SDK. The user application cannot update the BTT table.

Atmel AT14615: ZigBee Broadcast Message Handling and Implementation in BitCloud SDK
[APPLICATION NOTE]

Atmel-42687A-ZigBee-Broadcast-Message-Handling-and-Implementation-in-BitCloud-SDK_AT14615_Application Note-08/2016

6

3. BitCloud Stack Parameters Used for Sending Broadcast Messages

3.1. Config Server (CS) Parameters Configurable from Application
The Atmel BitCloud SDK provides an extensive set of configuration parameters that determine different
aspects of network and node behavior. The application can access the parameters through the
configuration server interface (ConfigServer, or CS for short) and commonly start with CS_ prefix. The
definitions of all CS parameters and their default values are contained in the csDefaults.h (\BitCloud
\Components\ConfigServer\include)header file inside the SDK.

Configuration server parameters used in Atmel BitCloud SDK influences the broadcast message
transmission and reception. The following table shows the variable or structure name used in BitCloud
SDK. These structures are defined in BitCloud core stack header files and can be searched to get the
actual descriptor to get the actual size for an entry. The entry size can be used to configure the table size
based on RAM availability.
Table 3-1. List of CS Parameters Related to Broadcast

CS Parameter(Direct
Impact)

Equivalent ZigBee Term
(NIB Attributes)

Description Variable Used in
BitCloud SDK

CS_NWK_BTT_SIZE nwkBroadcastTransacti
onTable

Size of BTT
used for
tracking
incoming
broadcast
messages.

NwkBTT_t

CS_NWK_PASSIVE_ACK_AM
OUNT

Size of the
passive
acknowledgeme
nt table

NwkPassiveAckEntr
y_t

CS_MAX_NETWORK_DEPTH nwkMaxDepth Maximum depth
of a network.
The distance
from the root of
the tree to the
farthest end
device.

CS Parameter(Indirect
Impact)

Equivalent ZigBee term
(NIB Attributes)

Description Variable Used in
BitCloud SDK

Atmel AT14615: ZigBee Broadcast Message Handling and Implementation in BitCloud SDK
[APPLICATION NOTE]

Atmel-42687A-ZigBee-Broadcast-Message-Handling-and-Implementation-in-BitCloud-SDK_AT14615_Application Note-08/2016

7

CS Parameter(Direct
Impact)

Equivalent ZigBee Term
(NIB Attributes)

Description Variable Used in
BitCloud SDK

CS_NWK_BUFFERS_AMOUNT Amount of
buffers on NWK
layer used to
keep incoming
and outgoing
frames. The
size of the table
should be
chosen
considering the
network size,
topology and
the frequency of
data transfer.

NwkPacket_t

CS_NEIB_TABLE_SIZE nwkNeighborTable Size of the
neighbor table
which is used to
store Beacon
responses and
neighbor entries
from nearby
devices

NwkNeighbor_t

CS_ADDRESS_MAP_TABLE_
SIZE

nwkAddressMap Maximum
number of
records in the
address map
table used to
store pairs of
corresponding
short and
extended
addresses

NwkAddressMapEntr
y_t

CS_ROUTE_TABLE_SIZE nwkRouteRecordTable Size of routing
table used to
store
information
about
established
routes

NwkRoutingTableEn
try_t

Atmel AT14615: ZigBee Broadcast Message Handling and Implementation in BitCloud SDK
[APPLICATION NOTE]

Atmel-42687A-ZigBee-Broadcast-Message-Handling-and-Implementation-in-BitCloud-SDK_AT14615_Application Note-08/2016

8

CS Parameter(Direct
Impact)

Equivalent ZigBee Term
(NIB Attributes)

Description Variable Used in
BitCloud SDK

CS_ROUTE_DISCOVERY_TA
BLE_SIZE

Size of the route
discovery table
used to store
next-hop
addresses of
the nodes for
routes that are
not yet
established

NwkRouteDiscovery
Entry_t

CS_MAC_TRANSACTION_TI
ME

nwkTransactionPersist
enceTime

Max interval (in
ms) a frame
addressed to a
sleeping End
device can be
stored on the
parent node

CS_END_DEVICE_SLEEP_P
ERIOD

End device
sleep period in
milliseconds

CS_INDIRECT_POLL_RATE A period in ms
of polling a
parent for data
by an end
device

CS_ZDP_RESPONSE_TIMEO
UT

Time for which
the reply in
response to a
ZDP request is
awaited

3.2. Parameters Fixed Inside the BitCloud SDK
The list of parameters shown in the following table are used to calculate the broadcast message delivery
time and other related parameters whose values are constant or fixed in the BitCloud SDK. These
parameters are not available to the user application to modify. The information presented in this table are
provided in this document for the understanding the values associated with these parameters inside
BitCloud SDK. These information shall be used for reference purposes only.

Atmel AT14615: ZigBee Broadcast Message Handling and Implementation in BitCloud SDK
[APPLICATION NOTE]

Atmel-42687A-ZigBee-Broadcast-Message-Handling-and-Implementation-in-BitCloud-SDK_AT14615_Application Note-08/2016

9

Table 3-2. List of Stack Parameters

Stack Parameter Equivalent ZigBee term
(NIB Attributes)

Default
Value in
BitCloud

Description

NWK_MAX_BROADCAST_RETRIES nwkMaxBroadcastRetries 2 Maximum
number of retries
allowed after a
broadcast
transmission
failure

NWK_PASSIVE_ACK_TIMEOUT nwkPassiveAckTimeout 0x1F4 Maximum time
allowed for the
parent and all
child devices to
retransmit a
broadcast
message
measured in ms

NWKC_MAX_BROADCAST_JITTER nwkcMaxBroadcastJitter 0x40 Maximum
broadcast jitter
time measured in
ms

MAC_PIB_MAX_FRAME_RETRIES_DEFAULT 3 Maximum
number of MAC
level retries
allowed after a
transmission
failure

NWKC_MIN_RREQ_JITTER nwkcMinRREQJitter 1 The minimum
jitter, in 2
milliseconds
slots, for
broadcast
retransmission of
a route request
command frame
in ms

NWKC_MAX_RREQ_JITTER nwkcMaxRREQJitter 0x40 The maximum
jitter, in 2
milliseconds
slots, for
broadcast
retransmission of
a route request
command frame
in ms

Atmel AT14615: ZigBee Broadcast Message Handling and Implementation in BitCloud SDK
[APPLICATION NOTE]

Atmel-42687A-ZigBee-Broadcast-Message-Handling-and-Implementation-in-BitCloud-SDK_AT14615_Application Note-08/2016

10

Stack Parameter Equivalent ZigBee term
(NIB Attributes)

Default
Value in
BitCloud

Description

NWKC_ROUTE_DISCOVERY_TIME nwkcRouteDiscoveryTime 0x2710 Time duration in
milliseconds until
a route discovery
expires

NWKC_INITIAL_RREQ_RETRIES nwkcInitialRREQRetries 3 The number of
times the first
broadcast
transmission of a
route request
command frame
is retried

NWKC_RREQ_RETRY_INTERVAL nwkcRREQRetryInterval 0xFE The number of
milliseconds
between retries
of a broadcast
route request
command frame

NWK_LINK_STATUS_JITTER_MASK 0x7F Random jitter in
ms to avoid
synchronization
with other nodes

Atmel AT14615: ZigBee Broadcast Message Handling and Implementation in BitCloud SDK
[APPLICATION NOTE]

Atmel-42687A-ZigBee-Broadcast-Message-Handling-and-Implementation-in-BitCloud-SDK_AT14615_Application Note-08/2016

11

Stack Parameter Equivalent ZigBee term
(NIB Attributes)

Default
Value in
BitCloud

Description

NWKC_INITIAL_LINK_STATUS_PERIOD nwkLinkStatusPeriod 0x0F The time in
seconds between
link status
command frames

CS_MAX_FRAME_TRANSMISSION_TIME 5 Used in stack
internal
calculations to
take the internal
stack processing
time in
transmitting a
frame to the air.
Eventhough this
parameter is
provided as CS
parameter in
csDefaults.h
(BitCloud
\Components
\ConfigServer
\include), the
default value
should not be
changed by the
user.

Atmel AT14615: ZigBee Broadcast Message Handling and Implementation in BitCloud SDK
[APPLICATION NOTE]

Atmel-42687A-ZigBee-Broadcast-Message-Handling-and-Implementation-in-BitCloud-SDK_AT14615_Application Note-08/2016

12

4. Transmission of Broadcast Messages
The transmission of broadcast message in ZigBee Routers or Co-ordinator is different from that of End
Devices. This section provides a brief about handling such broadcast messages, addressing, and
maintaining BTT table in both the devices.

4.1. BroadcastTransmission from FFDs(Router/Co-ordinator)
This section explains the transmission of broadcast message in ZigBee Routers or Co-ordinator in detail.

4.1.1. Addressing
When a Router or Co-ordinator in a ZigBee network initiates a broadcast message, the destination
address is set as described in Broadcast Addresses. The NWK source address is the NWK address of
the device which initiates the broadcast message. The MAC source address is the short address of the
device which transmits the message. The MAC source address matches with NWK source address in the
broadcast message transmitted from the initiator device. In case of re-broadcast from the neighboring
device, only the MAC source address is replaced with the short address of re-transmitting device.

4.1.2. BTT Entry Creation
When the Router initiates the new broadcast message or receives the broadcast message from a
neighboring device, it adds a Broadcast Transaction Record (BTR) entry in Broadcast Transaction Table.
Before a new entry is added in BTT, device checks for availability of space in the BTT. The size of
maximum entries allowed by a device is mentioned in CS_NWK_BTT_SIZE. If no free space is available in
BTT, the broadcast message is sent from NWK layer. If the device is the broadcast message initiator, the
NWK layer provides the status NWK_BT_TABLE_FULL_STATUS (0xD2) to next higher layer (APS layer). If
no space is availabe in the BTT for the received broadcast message, the message is dropped in NWK
layer itself. If free space is available in BTT, an entry for this broadcast message is created in BTT.

4.1.3. Start of Broadcast Delivery Timer
The BTR contains the NWK source address of the originating device, the network sequence number and
the broadcast maximum delivery time. The nwkNetworkBroadcastDeliveryTime calculated using
the parameters NWK_MAX_BROADCAST_RETRIES, NWK_PASSIVE_ACK_TIMEOUT,
NWKC_MAX_BROADCAST_JITTER, CS_MAX_FRAME_TRANSMISSION_TIME, and
CS_MAX_NETWORK_DEPTH. The following formula is used to calculate
nwkNetworkBroadcastDeliveryTime where CS_MAX_NETWORK_DEPTH is the only user changeable
parameter and an approximate constant value is mentioned considering the remaining parameters.

nwkNetworkBroadcastDeliveryTime = CS_MAX_NETWORK_DEPTH * 542

When an entry corresponding to the new broadcast message is added in BTT, the BTT expiry timer is
started with the calculated broadcast maximum delivery time. Whenever a broadcast message is received
or initiated, the broadcast delivery timer is started. In BitCloud SDK, a single one shot timer is used for all
the broadcast messages. When there are no broadcast message in the BTT, the one shot timer is started
with the nwkNetworkBroadcastDeliveryTime as per the formula. If another broadcast message is
initiated or received before the expiry of previously started timer, the time elapsed for the previous
broadcast messages are calculated. The BTT expiry timer starts again with the minimum of calculated
elapsed timeout. This is how a single timer manages all the entires in the table.

4.1.4. Passive Acknowledgement
After the successful transmission of the message over the air, an entry is added in passive ACK table
along with the NWK source address, network sequence number, and the NWK_PASSIVE_ACK_TIMEOUT

Atmel AT14615: ZigBee Broadcast Message Handling and Implementation in BitCloud SDK
[APPLICATION NOTE]

Atmel-42687A-ZigBee-Broadcast-Message-Handling-and-Implementation-in-BitCloud-SDK_AT14615_Application Note-08/2016

13

timer is started. The device expects re-broadcasted message from any of its neighboring devices within
this timeout. The passive ACK table is used to maintain the timeout for the re-transmission of broadcast
message. If the device receives the same broadcast message, then it checks the received NWK source
address and the network sequence number from the available BTT entries. If this is a re-broadcasted
message, the passive ACK table is being checked. As each broadcast message has an entry in both
broadcast table and passive ACK table, it is recommended to keep the size of both the tables
(CS_NWK_PASSIVE_ACK_AMOUNT and CS_NWK_BTT_SIZE) same.

4.1.5. Broadcast Retry
If the relayed broadcast message is received within the passive ACK timeout, there will be no
retransmission. The entry is removed from passive ACK table. If the device does not receive the re-
broadcasted packet within the passive ACK timeout, then the device continues to retransmit the frame up
to a maximum of NWK_MAX_BROADCAST_RETRIES times. To reduce the chance of collision due to
broadcasting by multiple devices, the NWK layer waits for a random period specified by
NWKC_MAX_BROADCAST_JITTER before each retransmission.

4.1.6. BTT Entry Removal
The BTT table holds the information about the broadcasted messages. When a re-broadcasted message
is received, the own broadcast message is discarded by the NWK layer. After the
nwkNetworkBroadcastDeliveryTime timer is expired, information about this broadcast message is
deleted from the BTT table. The entry in BTT helps in discarding its own broadcast and the entry in
passive ACK table helps it to avoid retransmitting the same broadcast packet.

4.1.7. Important Points
• Sending broadcast data frames too often might overload a working channel. This could prevent the

delivery of important unicast messages. Successful delivery to all nodes in the network cannot be
verified. Hence, it is not recommended to broadcast critical messages.

• In BitCloud SDK, the BTT table is stored in RAM and is not stored in the non-volatile memory. It is
also not a best practice to store it as the table is likely to change often. The contents of the table
are lost, if the device loses its power. Assume a case where a device adds the entry in the BTT
table for a broadcast message. If this device is suddenly powered-off and powered-on immediately
within the broadcast delivery time, there may be chance of address conflict detected in the device.
As the BTT table is not stored in the non-volatile memory, the entry of previously broadcasted
message before power-off will not be there in the BTT table. So, device receiving its own broadcast
considers as another device with the same address has sent a broadcast message. This condition
is referred as an address conflict.

• An entry in the BTT table is active till the broadcast delivery time and a new entry cannot overwrite
the existing entry till it gets expired. The CS_NWK_BTT_SIZE size should be wisely chosen
considering the frequency of broadcast message, network size, and network topology. Otherwise,
there is a chance of broadcast message not being transmitted or re-transmitted due to no space in
BTT table.

4.2. Broadcast Transmission to End-devices
When the broadcast message is initiated or received from a device, the transmission of these messages
to its children (EndDevices with macRxOnWhenIdle set to FALSE) happens in a different way. It uses
unicast to relay the message to its children individually. The NWK destination address is broadcast
address as per Broadcast Addresses and the MAC destination address is of the intended device address
and not the broadcast address. Indirect Transmission, as described in IEEE 802.15.4-2003, shall be
employed to ensure that these unicasts reach their Child devices.

Atmel AT14615: ZigBee Broadcast Message Handling and Implementation in BitCloud SDK
[APPLICATION NOTE]

Atmel-42687A-ZigBee-Broadcast-Message-Handling-and-Implementation-in-BitCloud-SDK_AT14615_Application Note-08/2016

14

The Broadcast message for individual end-devices is being placed in the Router’s NWK layers’s indirect
buffer. When the Child polls the parent for the data periodically, this message is sent out from the indirect
buffer. The CS_MAC_TRANSACTION_TIME parameter determines the time period for which the message
is stored in indirect buffer. If a poll request is not received within CS_MAC_TRANSACTION_TIME, then the
buffered message is dropped.

The CS_NWK_BUFFERS_AMOUNT parameter is the NWK layer buffer to store the incoming and outgoing
packets. Indirect buffers are used to store the message to child devices. To transmit a broadcast
message to all its Child devices, individual entry to be placed in NWK buffer. This buffer is blocked until
the poll request is received from an individual child or CS_MAC_TRANSACTION_TIME time. So, care must
be taken while sending the broadcast to the Child devices.

4.3. Broadcast Transmission from EndDevice
If a ZigBee End device does not keep its receiver in ON mode while the device is in idle, the device
neither participates in relaying the broadcast message nor maintains BTT. In ZigBee network, the
transmission of data from an EndDevice always happens through its parent. The broadcast message is
also be transmitted via its parent as unicast with the NWK destination address as broadcast address as
per Broadcast Addresses and the MAC destination address is of its parent’s short address. When the
parent receives the message, the re-transmission of the message happens as described in
BroadcastTransmission from FFDs.

As the transmission of broadcast message uses unicast mechanism, the passive ACK mechanism is not
applicable. So, the EndDevice expects MAC level acknowledgment from the parent for successful
delivery of the message. If MAC level acknowledgment is not received, the EndDevice retries for max of
MAC_PIB_MAX_FRAME_RETRIES_DEFAULT times.

4.4. Broadcast Transaction Sequence
The following figure provides the pictorial view of broadcast transcation sequence followed in ZigBee
Routers and Co-ordinator.

Atmel AT14615: ZigBee Broadcast Message Handling and Implementation in BitCloud SDK
[APPLICATION NOTE]

Atmel-42687A-ZigBee-Broadcast-Message-Handling-and-Implementation-in-BitCloud-SDK_AT14615_Application Note-08/2016

15

Figure 4-1. Broadcast Transaction Sequence

Atmel AT14615: ZigBee Broadcast Message Handling and Implementation in BitCloud SDK
[APPLICATION NOTE]

Atmel-42687A-ZigBee-Broadcast-Message-Handling-and-Implementation-in-BitCloud-SDK_AT14615_Application Note-08/2016

16

5. Broadcast Packets Initiated from Network Layer
The broadcast message transmission and reception explained in the Transmission of Broadcast
Messages is not followed for few NWK layer command frames. This following content explains handling
of such broadcast command frames.

The following table lists the command frames defined by the NWK layer which are transmitted as a
broadcast frame.

Table 5-1. NWK Command Frames

Command Frame
Identifier

NWK Command Name Refer

0x01 Route Request Route Request Command Frame Transmission

0x03 Network Status Transmission of Broadcast Messages

0x04 Leave Leave Command Frame Transmission and
Reception

0x08 Link Status Network Link Status Command Frame Transmission
and Reception

5.1. Route Request Command Frame Transmission
The Route Request command from NWK layer is a broadcast message used to discover the route. But
this broadcast message does not follow broadcast transmission described in Transmission of Broadcast
Messages. The following topics explain the procedure followed for Route Request command frame
transmission.

5.1.1. Route Discover Table Entry Creation
If there is no routing table entry corresponding to the routing address of the destination device, the route
discovery is intiated for the packet. An existing entry corresponding to this destination device address is
searched in the Routing Table (refer to ZigBee Specification). If there is no corresponding entry, then the
route discovery is initiated. The size of Routing Table is decided by the CS parameter
CS_ROUTE_TABLE_SIZE. As the first step to route discovery, Route Discovery Table entry is created with
Route Request ID, source address, sender address, cost etc. (refer to ZigBee Specification). The size
CS_ROUTE_DISCOVERY_TABLE_SIZE decides the availability of free space in the table. If no free space
is available, then NWK_NO_ROUTING_CAPACITY (0xCF) status is sent to the next higher layer and the
route discovery is terminated. In case of free space in Route Discovery Table an entry is added.

5.1.2. Start of Route Discovery Expiry Timer (nwkcRouteDiscoveryTime)
The broadcast Route Request packet is formed, when an entry is created in the Route Discovery Table.
The timer corresponding to Route Discovery Expiry Timeout is started with
NWKC_ROUTE_DISCOVERY_TIME for the removal of entry from the Route Discovery Table. This entry is
removed only on the expiry of the timer. The Route Request command frame is formed by filling the
Route Request ID field, intended destination address, and the path cost. The MAC and NWK addressing
are followed based on the Addressing. Since the Route Request packet is received only by the Routers
and Co-ordinator, the broadcast NWK destination address is considered as 0xFFFC . The command
frame is then transmitted over the air.

Atmel AT14615: ZigBee Broadcast Message Handling and Implementation in BitCloud SDK
[APPLICATION NOTE]

Atmel-42687A-ZigBee-Broadcast-Message-Handling-and-Implementation-in-BitCloud-SDK_AT14615_Application Note-08/2016

17

http://www.zigbee.org
http://www.zigbee.org

5.1.3. Route Request Command Retry
When broadcasting a route request command frame at the initiation of route discovery, the NWK layer
retries the broadcast nwkcInitialRREQRetries (NWKC_INITIAL_RREQ_RETRIES) times after the
initial broadcast, resulting in a maximum of nwkcInitialRREQRetries + 1 transmissions. The retries
are separated by a time interval of nwkcRREQRetryInterval (NWKC_RREQ_RETRY_INTERVAL)
milliseconds. Based on ZigBee specification, this retry is not stopped even if the device gets the Route
Reply from the intended destination device. When the nwkcRREQRetryInterval timer is triggered for
the retransmission of Route Request command, the NWK layer delays retransmission by a random jitter
amount calculated using the formula:

Random jitter = 2 x R[nwkcMinRREQJitter, nwkcMaxRREQJitter]

5.1.4. Important Points
• The CS_ROUTE_TABLE_SIZE sets the maximum number of records that can be kept in the NWK

route table. This table is used by NWK to store information about established routes. Each table
entry specifies the next-hop short address for a route from the current node to a specific destination
node. The table is filled automatically during route discovery. An entry is added when a route is
discovered.

• The CS_ROUTE_TABLE_SIZE decides the size of the Routing Table. The custom logic is
implemented where the oldest entry is replaced with the new one when there is no space in the
table. The table size should be wisely chosen considering the network topology, size of the network
and network traffic. If the size of the network is small, the oldest entry is replaced when there is no
space. This may cause frequent route discovery, if the size is small.

• Routing Table (CS_ROUTE_TABLE_SIZE) and Route Discovery Table
(CS_ROUTE_DISCOVERY_TABLE_SIZE) are different. The Routing Table entries are long-lived,
while Route Discovery Table entries last only as long as the duration of a single route discovery
operation and may be reused. It is not required to be both the table sizes should be same. As
Route Discovery Table is short lived, the size can also be smaller.

5.1.5. Re-Transmission of Route Request Command
When the neighboring Router receives the Route Request command, it processes the command and add
an entry in Route Discovery Table. nwkcRouteDiscoveryTime timer is started for the expiry of Route
Discovery entry. The device checks if the destination of the command frame is one of its end device
children by comparing the destination address field of the Route Request command frame payload with
the address of each of its end device children, if any. If neither the device nor one of its end device
children is the destination of the Route Request command frame, then the device frames the Route
Request command. The Route Request command is framed keeping the Route Request ID, intended
destination address same as the received Route Request Command. The MAC source address alone is
replaced with the current device address and the command frame is being transmitted over the air.

5.1.6. Route Reply Command Transmission
Route Reply command is being sent either the device or one of its end device children is the destination
of the Route Request command frame. The Route Reply is sent as unicast frame with the NWK and MAC
source address as device address, NWK destination address as Route Request Originator device
address. The MAC destination address as the sender address (the first hop in the path back to the
originator of the corresponding route request command frame) of the corresponding Route Discovery
Table entry.

5.1.7. Route Discovery Transaction Sequence
The following figure provides the pictorial view of transaction sequence followed during Route Discovery.

Atmel AT14615: ZigBee Broadcast Message Handling and Implementation in BitCloud SDK
[APPLICATION NOTE]

Atmel-42687A-ZigBee-Broadcast-Message-Handling-and-Implementation-in-BitCloud-SDK_AT14615_Application Note-08/2016

18

Figure 5-1. Route Discovery Transaction Sequence

5.1.8. Route Discovery Sniffer Log
The Route Discovery Sniffer Log with Route Reply shows the Route Request command frames and the
retries along with the Route Reply from the destination. The Route Discovery Sniffer Log without Route
Reply shows the Route Requst command retries when there are no Route Reply from the destination.

Figure 5-2. Route Discovery Sniffer Log with Route Reply

Atmel AT14615: ZigBee Broadcast Message Handling and Implementation in BitCloud SDK
[APPLICATION NOTE]

Atmel-42687A-ZigBee-Broadcast-Message-Handling-and-Implementation-in-BitCloud-SDK_AT14615_Application Note-08/2016

19

Figure 5-3. Route Discovery Sniffer Log without Route Reply

5.2. Network Link Status Command Frame Transmission and Reception
Wireless links may be asymmetric, that is, they may work well in one direction but not the other. This can
cause Route Replies to fail, since they travel backwards along the links discovered by the Route Request.
To discover routes that are reliable in both directions, routers exchange link cost measurements with their
neighbors by periodically transmitting link status frames as a one-hop broadcast. The reverse link cost
information is then used during route discovery to ensure that discovered routes use high-quality links in
both directions.

5.2.1. Transmission
Router or Co-ordinator initiates the Link Status message, the destination address is followed as described
in Addressing. The NWK destination address is taken as 0xFFFC since Link Status should be received
only by Routers and Co-ordinator. When joined to a network, a ZigBee Router or Co-ordinator shall
periodically send a Link Status command every nwkLinkStatusPeriod
(NWKC_INITIAL_LINK_STATUS_PERIOD) seconds, as a one-hop broadcast without retries. The retry
for this broadcast frame is not required as per ZigBee specification. So, the BTT entry creation, passive
acknowledgement mechanism is required.

There is no timeout involved with respect to Link Status broadcast frames. Only the
nwkLinkStatusPeriod decides the time between 2 Link Status frames. It may be sent more frequently
if desired. But, this parameter is fixed in BitCloud SDK and the user cannot change. Random jitter
(NWK_LINK_STATUS_JITTER_MASK) is added to avoid synchronization with other nodes before
transmitting the frame. End devices do not send Link Status command frames.

5.2.2. Reception
The radius field of the NWK header of Link Status frame is kept as one and hence when the neighboring
router receives the broadcasted link status frame it does not rebroadcast. So, the BTT entry creation and
handling is not required in the receiving device also. On reception of the Link Status command the
receiving device updates its Neighbor Table and the nexthop field of Routing Table. End devices do not
process the received Link Status command frames.

5.2.3. Link Status Frame Transaction Sequence
The following figure is the pictorial representation of Link Status transmission from the FFD.

Atmel AT14615: ZigBee Broadcast Message Handling and Implementation in BitCloud SDK
[APPLICATION NOTE]

Atmel-42687A-ZigBee-Broadcast-Message-Handling-and-Implementation-in-BitCloud-SDK_AT14615_Application Note-08/2016

20

Figure 5-4. Link Status Frame Transaction Sequence

5.2.4. Link Status Sniffer Log
The following sniffer log shows the Link Status initiated from 2 devices 0x0055 and 0x0000. The log
shows the periodic Link Status from both the devices with an interval of nwkLinkStatusPeriod. These
2 devices are neighbors and there are no rebroadcasting or retransmission of the packets from any of the
neighbors.

Figure 5-5. Link Status Sniffer Log

5.3. Leave Command Frame Transmission and Reception
If a Router/End Device wants to leave the network (Self-leave) then the request sub-field of the NWK
Leave command can be set to 0 and the leave command can be broadcasted. This is to indicate to the
neighboring devices or parent of the End device to update its Neighbor Table, Routing Table. The source,
destination addressing, and broadcasting scheme is followed as per Broadcast Transmission from FFDs.
While broadcasting this leave command, the radius field is set to 1 and hence the receiving device does
not re-broadcast.

5.3.1. Leave Command Sniffer Log
The following sniffer log shows the transmission of Leave Command from a Router and an End Device.
The Leave command is re-transmitted by Router after passive ACK timeout, but End Device does not re-
transmit.

Atmel AT14615: ZigBee Broadcast Message Handling and Implementation in BitCloud SDK
[APPLICATION NOTE]

Atmel-42687A-ZigBee-Broadcast-Message-Handling-and-Implementation-in-BitCloud-SDK_AT14615_Application Note-08/2016

21

Figure 5-6. Leave Command Sniffer Log

Atmel AT14615: ZigBee Broadcast Message Handling and Implementation in BitCloud SDK
[APPLICATION NOTE]

Atmel-42687A-ZigBee-Broadcast-Message-Handling-and-Implementation-in-BitCloud-SDK_AT14615_Application Note-08/2016

22

6. Broadcast Message Initiated from End Application
When an application initiates broadcasts it may go through ZDO/ZCL/APS before it reaches the NWK
layer. After it reaches the NWK layer, this layer is responsible for transmission, reception, handling of BTT
and timeouts as explained in Transmission of Broadcast Messages. After the message is being
transmitted over the air, the application has to get the confirmation on the transmission. Also few
broadcasts require responses from the receiving device. The application waiting time for the confirmation
is dependent on the response timeout involved in each layer. This section explains details on response
timeouts added by ZDO/APS/ZCL/NWK layers before giving the confirmation to the end application. This
section is helpful for the end application to decide on the timeout.

6.1. APS Data Request Initiated by Application
The endpoints correspond to application objects, which are logically embraced into an application
framework and serve as source and destination points for application data transfer in ZigBee networks.
Each endpoint is identified with an endpoint ID, whose values can range from 1 to 240. The Endpoint 0 is
reserved for ZigBee Device Object (ZDO). A node cannot participate in application data exchange until it
registers at least one more endpoint.

To deliver data to a remote node, in addition to the remote node’s network address, the source node must
also specify a destination endpoint.

6.1.1. Broadcast Endpoint
In BitCloud SDK, the endpoint registration can be performed using the APS_ReqisterEndpointReq()
API with the argument APS_RegisterEndpointReq_t type to enable communication on the
application level. The APS_DataInd field is a member of APS_RegisterEndpointReq_t. This is the
indication callback function to be called upon data reception destined for this endpoint. This application
level callback is called from the APS layer only if the destination endpoint in the received data matches
with registered endpoint.

When an application initiate’s broadcast message, intending to be received by any node in the network,
the NWK layer provides indication to APS layer on receiving this broadcast. As mentioned, the APS layer
checks for the destination endpoint, if it matches then only the application is indicated on the message. In
a network each node can have different endpoint ID’s registered, and with a particular destination
endpoint in the transmitted data, only devices with that endpoint gets application level indication even
though it is a broadcast message. ZigBee defines broadcast endpoint (0xFF) for all endpoints to receive
the data. This broadcast endpoint can be used for sending broadcast messages.

6.1.2. Example Code to Send APS Broadcast Packet
To perform data transmission, the application must first create a data transmission request of
APS_DataReq_t type.

This transmission request type
• specifies the APS service data unit (ASDU) payload (asdu and asduLength fields)
• sets various transmission parameters and
• defines the callback function (APS_DataConf field) to be executed to inform the application about

transmission result.

The following example code snippet initiates the broadcast message sent via APS layer.
dataReq.profileId = APP_PROFILE_ID;
dataReq.dstAddrMode = APS_SHORT_ADDRESS;
dataReq.dstAddress.shortAddress = CPU_TO_LE16(0);

Atmel AT14615: ZigBee Broadcast Message Handling and Implementation in BitCloud SDK
[APPLICATION NOTE]

Atmel-42687A-ZigBee-Broadcast-Message-Handling-and-Implementation-in-BitCloud-SDK_AT14615_Application Note-08/2016

23

dataReq.dstEndpoint = APS_BROADCAST_ENDPOINT;
dataReq.clusterId = CPU_TO_LE16(1);
dataReq.srcEndpoint = APP_ENDPOINT_ID;
dataReq.radius = 0x0;
dataReq.APS_DataConf = APS_DataConf;
APS_DataReq(&dataReq);

As soon as the data packet is transmitted over the air, the application level confirmation APS_DataConf
is called in the transmitting node. On receiving the packet, the registered indication callback
APS_DataInd() is called in the receiving device.

6.2. ZCL Attribute/Command Initiated by Application
The ZigBee Cluster Library (ZCL) defines a generic interface to the ZigBee stack and consists of
attributes and commands. The attributes contain data about the interface, and the commands initiate
actions. The ZigBee Cluster Library (ZCL) is a library of clusters and the corresponding commands are
used to manipulate them. More details on information such as ZCL attributes, commands with broadcast
address initiated from the application, and the response timeout involved are described in detail in the
upcoming topics.

6.2.1. Response Timeout by ZCL Layer
All clusters support general commands for discovering, reading, writing, and reporting attributes. When
the general or cluster-specific command is initiated from the application, it sends via ZCL layer to other
underlying layers. The ZCL layer expects response from the destination device as like ZDO layer waits for
the response for ZDP requests. There is no response timeout involved for ZCL commands with broadcast
addresses from ZCL layer. As soon as the message is sent, the confirmation callback is called from APS
layer. It is the responsibility of the application to start the response timeout timer. Only unicast ZCL
commands has an associated response timeout. This response timeout is different for general commands
and cluster-specific commands.

6.3. ZDP Request Initiated by Application
The ZigBee Device Profile (ZDP) is a set of commands defined in the ZigBee specification to enable a
range of ZigBee network related functionality. Requests from ZDP are managed through the ZigBee
Device Object (ZDO), which is implemented by the stack and resides at application endpoint 0. These
ZDP requests can be sent using either broadcast or unicast addressing – depending on the request type.
However, some requests such as the match descriptor request, can be sent using both types of
addressing. When the end application initiates a ZDP request, it is sent to APS, NWK, and MAC layers
through the ZDO component .

6.3.1. Response Timeout by ZDO Layer
When a device initiates ZDP request with broadcast address and expects response for example match
descriptor request, the request is traversed through ZDO->APS->NWK->MAC->PHY. Even though the
match descriptor request is a part of the broadcast message, the request is intending to get the response.
So, in ZDO layer response timeout is started to wait for the response. Then the packet is sent to NWK
layer where the broadcast messaging scheme of BTT update, timeout etc is followed. This BTT timeout is
only for removing the entry from the BTT and not the application confirmation timeout.

After the packet is sent out, the ZDO layer will expect the timeout response from the destination. The CS
parameter CS_ZDP_RESPONSE_TIMEOUT determines the length of time for which the response to a ZDP
request is awaited. The ZDO that receives this response calls the application response callback function
with the status field set to the status code received in the response command. Then ZDO removes the
request from the internal queues and ignores all other response commands to this request. However, if

Atmel AT14615: ZigBee Broadcast Message Handling and Implementation in BitCloud SDK
[APPLICATION NOTE]

Atmel-42687A-ZigBee-Broadcast-Message-Handling-and-Implementation-in-BitCloud-SDK_AT14615_Application Note-08/2016

24

the timeout occurs before the response is received then the response callback is called with the status
field set to ZDO_RESPONSE_WAIT_TIMEOUT_STATUS. If this CS_ZDP_RESPONSE_TIMEOUT set to zero,
the BitCloud stack automatically calculates this timeout as addition of Broadcast Delivery Timeout and
Unicast Delivery Timeout.������������������ = ���������������������� + ������������������������
The application waits for the response for the duration ZdpResponseTimeout . The Broadcast Delivery
Time is calculated as based on the nwkNetworkBroadcastDeliveryTime and the Unicast Delivery Timeout
is calculated based on the unicast base delay (~40ms), CS_MAX_NETWORK_DEPTH, and
CS_INDIRECT_POLL_RATE using the following formula:���������������������� = ��_���_�������_����� * 40 + ��_��������_����_���� * 2

Atmel AT14615: ZigBee Broadcast Message Handling and Implementation in BitCloud SDK
[APPLICATION NOTE]

Atmel-42687A-ZigBee-Broadcast-Message-Handling-and-Implementation-in-BitCloud-SDK_AT14615_Application Note-08/2016

25

7. Revision History
Doc Rev. Date Comments

42687A 08/2016 Initial document release.

Atmel AT14615: ZigBee Broadcast Message Handling and Implementation in BitCloud SDK
[APPLICATION NOTE]

Atmel-42687A-ZigBee-Broadcast-Message-Handling-and-Implementation-in-BitCloud-SDK_AT14615_Application Note-08/2016

26

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-42687A-ZigBee-Broadcast-Message-Handling-and-Implementation-in-BitCloud-SDK_AT14615_Application Note-08/2016

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR®, BitCloud® and others are registered trademarks or trademarks of Atmel
Corporation in U.S. and other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Features
	Table of Contents
	1. Overview
	2. Introduction
	2.1. Broadcast Addresses
	2.2. Passive Acknowledgment
	2.3. Broadcast Transaction Table (nwkBroadcastTransactionTable)
	2.4. Broadcast Retries (nwkMaxBroadcastRetries)
	2.5. Passive Acknowledgement Timeout (nwkPassiveAckTimeout)
	2.6. Broadcast Jitter (nwkcMaxBroadcastJitter)
	2.7. Broadcast Message Timeout (nwkNetworkBroadcastDeliveryTime)

	3. BitCloud Stack Parameters Used for Sending Broadcast Messages
	3.1. Config Server (CS) Parameters Configurable from Application
	3.2. Parameters Fixed Inside the BitCloud SDK

	4. Transmission of Broadcast Messages
	4.1. BroadcastTransmission from FFDs(Router/Co-ordinator)
	4.1.1. Addressing
	4.1.2. BTT Entry Creation
	4.1.3. Start of Broadcast Delivery Timer
	4.1.4. Passive Acknowledgement
	4.1.5. Broadcast Retry
	4.1.6. BTT Entry Removal
	4.1.7. Important Points

	4.2. Broadcast Transmission to End-devices
	4.3. Broadcast Transmission from EndDevice
	4.4. Broadcast Transaction Sequence

	5. Broadcast Packets Initiated from Network Layer
	5.1. Route Request Command Frame Transmission
	5.1.1. Route Discover Table Entry Creation
	5.1.2. Start of Route Discovery Expiry Timer (nwkcRouteDiscoveryTime)
	5.1.3. Route Request Command Retry
	5.1.4. Important Points
	5.1.5. Re-Transmission of Route Request Command
	5.1.6. Route Reply Command Transmission
	5.1.7. Route Discovery Transaction Sequence
	5.1.8. Route Discovery Sniffer Log

	5.2. Network Link Status Command Frame Transmission and Reception
	5.2.1. Transmission
	5.2.2. Reception
	5.2.3. Link Status Frame Transaction Sequence
	5.2.4. Link Status Sniffer Log

	5.3. Leave Command Frame Transmission and Reception
	5.3.1. Leave Command Sniffer Log

	6. Broadcast Message Initiated from End Application
	6.1. APS Data Request Initiated by Application
	6.1.1. Broadcast Endpoint
	6.1.2. Example Code to Send APS Broadcast Packet

	6.2. ZCL Attribute/Command Initiated by Application
	6.2.1. Response Timeout by ZCL Layer

	6.3. ZDP Request Initiated by Application
	6.3.1. Response Timeout by ZDO Layer

	7. Revision History

