MICROCHIP

Dual Partition Flash Program Memory

HIGHLIGHTS

This section of the manual contains the following major topics:

1.0 INEOAUCHION ...ttt e e e e e 2
2.0 Program Memory ArChIitECIUIEoviiiiiiiiiie e e e 3
3.0 Program Memory Partition Flash Operationcccocviiiiiiiiiiiiiiceee e 8
4.0 Flash Memory Programming..........cecoiiioiiieieiiee ettt 14
5.0 Program Space Visibility and Extended Data Space (PSV and EDS)............ccccceevnnneen. 28
B.0 REGISIEr MaAP ...ttt e e e e e e e e e e e e e a e e an e 29
7.0 Related AppliCatioN NOES.......uuiiiieiiieieiee e e e e e e e e e e e e e s e s e e nannneenees 30
8.0 ReVISION HIiSIOIY ...t enananannes 31

© 2014-2021 Microchip Technology Inc. and its subsidiaries DS70005156C-page 1

dsPIC33/PIC24 Family Reference Manual

Note: This family reference manual section is meant to serve as a complement to device
data sheets. This document applies to all dsPIC33/PIC24 devices.

Please consult the note at the beginning of the “Dual Partition Flash Program
Memory” chapter in the current device data sheet to check whether this document
supports the device you are using.

Device data sheets and family reference manual sections are available for
download from the Microchip Worldwide Website at: http://www.microchip.com.

1.0 INTRODUCTION

All PIC24 and dsPIC33 devices have an internal programmable Flash array for the execution of
user code. The high-endurance Flash array provides great flexibility in code development and
storage, combining a long retention life with a high number of read/write cycles.

This version of Flash program memory adds these new features:

* Dual Partition Flash operation, allowing the support of robust bootloader systems and
fail-safe storage of application code, with options designed to enhance code security

+ LiveUpdate operation, allowing the inactive Code Segment (CS) to be modified or
completely erased while the main application continues to execute

+ Direct Run-Time Programming of the Flash array from the data RAM space, with optional
compression of the data RAM image

DS70005156C-page 2

© 2014-2021 Microchip Technology Inc. and its subsidiaries

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com

Dual Partition Flash Program Memory

2.0 PROGRAM MEMORY ARCHITECTURE

P1C24 and dsPIC33 devices address a 4M x 24-bit program memory address space, as shown
in Figure 2-1. The program memory map is equally divided into the user program space
(000000h to 7FFFFFh) and the configuration (or test) memory space (800000h to FFFFFFh).

The user program space contains the Reset vector, Interrupt Vector Tables (IVTs) and program
memory. There are three methods for accessing program space.

1. The 23-bit Program Counter (PC).
2. Table Read (TBLRD) and Table Write (TBLWT) instructions.
3. By mapping any 32-Kbyte segment of program memory into the data memory address space.

Implemented program memory can be further divided into the vector area, which includes the
Reset and interrupt vectors, and the code area, which also includes the Flash configuration data.
Accessing unimplemented areas of the user program space (i.e., above the upper implemented
boundary of program memory) will cause an address error trap.

2.1 Vector Area

The vector area starts at the beginning of program memory space, at 000000h. It contains the
Master Reset vector, the hardware trap vectors and the Interrupt Vector Table (IVT) for all
implemented hardware interrupts.

Because of architectural differences and the size of the IVT, the vector area occupies a different
amount of memory in different device families. For PIC24 devices, the vector area extends to
0000FEh. For dsPIC33 devices, the vector area extends to 0001FEh. Figure 2-2 shows the
difference between the IVTs for different devices. Regardless of device family, hardware interrupt
vectors always start at 000014h with Interrupt Vector 0.

The vector area roughly corresponds to the Vector Segment (VS) in CodeGuard™ security
implementations. Depending on the security configuration, the vector area may be treated as part
of the Boot Segment (BS) or the General Segment (GS).

2.11 ALTERNATE VECTOR INTERRUPT TABLE

All dsPIC33 and PIC24 devices provide for the implementation of an Alternate IVT (AIVT), which
can be used in high-security code applications and for alternate exception handling. Unlike
earlier devices in these families, the AIVT is not permanently allocated in program memory at a
fixed address range. Instead, AIVT is only present when:

» CodeGuard security is configured for a Boot Segment with a size of at least two pages (set
by the FBSLIM Configuration register), and

» AIVT is enabled by programming the AIVTDIS Configuration bit to ‘0’.

When the AIVT is enabled, it is located at an address range starting at the beginning of the last

page of the BS; each vector is located at a fixed offset from the page boundary. The total size
and content (i.e., vector order) of the AIVT mirrors those of the IVT.

© 2014-2021 Microchip Technology Inc. and its subsidiaries DS70005156C-page 3

dsPIC33/PIC24 Family Reference Manual

Figure 2-1: Default Program Space Memory Map for dsPIC33 and PIC24 Devices

Addresses
PIC24 dsPIC33
A 000000h 000000h
Vector Area
0000FEh 0001FEh
000100h 000200h
User Flash Program Memory
3 | 7 "Flash Configuration Words ~ | yyxxxFER™ xxxxFER()
S "7 xxxx00h(M xxxx00h(")
0
ay
o
IS
(0]
=
i - - 400000h 400000h
=
Unimplemented
Read ‘0’
Y 7FFFFEh 7FFFFEh
A Reserved 800000h 800000h
801xxxh 801xxxh
FBOOT 801xxxh 801xxxh
(0]
[&]
®
o
7]
fy
s} Reserved
1S
[}
=
c
kel
S
35
2
€
[e]
(@]
FEFFFEh FEFFFEh
FF0000h FF0O000h
DEVID (2) FF0002h FF0002h
v Reserved FF0004h FF0004h
x FFFFFFh FFFFFFh

Legend: Memory areas are not shown to scale.
Note 1: Exact boundary addresses are determined by the size of the implemented program memory.

DS70005156C-page 4 © 2014-2021 Microchip Technology Inc. and its subsidiaries

Dual Partition Flash Program Memory

Figure 2-2: Vector Area Detail
PIC24 Devices dsPIC33 Devices
Reset — GOTO Instruction 000000 Reset — GOTO Instruction 000000
Reset — GOTO Address 000002 Reset — GoTO Address 000002
Oscillator Fail Trap Vector 000004 Oscillator Fail Trap Vector 000004
Address Error Trap Vector Address Error Trap Vector
Stack Error Trap Vector Hard Trap Vector
Math Error Trap Vector Stack Error Trap Vector
. Math Error Trap Vector
Interrupt Interrupt Vector O 000014 .
\'/I'ea(l:f)tloer h Interrupt Vector 1 000016 Interrupt Vector O 000014
- Interrupt Vector 1 000016
Interrupt Vector 52 00007C R
Interrupt Vector 53 00007E Interrupt Vector 116 0000FC
Interrupt Vector 54 000080 Interrupt Vector 117 0000FE
. Interrupt Vector 118 000100
Interrupt Vector 116 0000FC .
Interrupt Vector 117 0000FE Interrupt Vector 244 0001FC
Interrupt Vector 245 0001FE
Reserved BOA + 00 Reserved BOA + 00
Reserved BOA + 02 Reserved BOA + 02
Reserved BOA + 04 Oscillator Fail Trap Vector BOA + 04
Oscillator Fail Trap Vector Address Error Trap Vector
Address Error Trap Vector Hard Trap Vector
Stack Error Trap Vector Stack Error Trap Vector
Math Error Trap Vector Math Error Trap Vector
Alternate . .
Ir{;g‘r;:g?t < Interrupt Vector 0 BOA + 14 Interrupt Vector 0 BOA + 14
Table Interrupt Vector 1 BOA + 16 Interrupt Vector 1 BOA + 16
(optional) T T
Interrupt Vector 52 BOA+ 7C Interrupt Vector 116 BOA + OFC
Interrupt Vector 53 BOA + 7E Interrupt Vector 117 BOA + OFE
Interrupt Vector 54 BOA + 80 Interrupt Vector 118 BOA + 100
Interrupt Vector 116 BOA+FC Interrupt Vector 244 BOA + 1FC
Interrupt Vector 117 BOA+ FE Interrupt Vector 245 BOA +1FE

Legend: BOA = Base Offset Address, the starting address of the last page of the Boot Segment. Addresses are shown
in hexadecimal.

Note: Vector area organization shown is the default organization for the given architectures. Specific devices may
differ. Refer to the device data sheet for device-specific details.

© 2014-2021 Microchip Technology Inc. and its subsidiaries

DS70005156C-page 5

dsPIC33/PIC24 Family Reference Manual

2.2 Code Area

The code area is the area of user program memory that contains the user’s application code. It
extends from the end of the vector area to the beginning of the Flash Configuration Words. If a
Boot Segment is implemented, it starts at the end of the vector area and extends for a
predetermined range. The part of the code area that is not in the Boot Segment corresponds to
the General Segment (GS) in CodeGuard security systems.

With the exception of the Flash Configuration Words at the end of implemented memory, as
described below, the entire area is available for application code.

2.21 FLASH CONFIGURATION DATA

The area at the end of implemented Flash program memory (typically the last row) is reserved
for Flash configuration data. On device Reset, this configuration information is copied into the
appropriate device Configuration registers, which are not accessible to the user. Device
configuration data can only be programmed by programming the desired values in the Flash
Configuration Words.

The number, order and organization of the Configuration bits vary between device architectures,
and among device families within the same architecture. Some devices organize Configuration
bits as 16-bit Configuration Words, which are generally grouped in functional terms. Other
devices organize Configuration bits in terms of individually addressable Configuration bytes.
Figure 2-3 shows the area as organized for Configuration Words. Refer to the device data sheet
for family-specific information.

For devices with Dual Partition capability, the FBTSEQ Configuration Word is usually the
next-to-last Configuration Word, located at the end of implemented program memory.

Figure 2-3: Flash Configuration Words

h
Vector Area 000000
000200h
User Flash
Program Memory
.(2) XXXXX4
(Configuration Word) XXXXXB
[Flash Configuration Words | xxxxFEh() . (Configuration Word) XXXXX8
xox00h(™ (Configuration Word) XXXXXA
FBTSEQ XXxxxC
(Unimplemented) XXXXXE
Unimplemented
Read ‘0’
7FFFFFh
Legend: Memory areas are not shown to scale.
Note 1: Exact boundary addresses are determined by the size of the implemented program memory.
2: Typical case is shown. The exact number of implemented Flash Configuration Words/bytes depends on the
specific device and architecture. Some locations may not contain configuration data. Exact addresses of
implemented Configuration Words or bytes are determined by the size of the implemented program memory.

DS70005156C-page 6

© 2014-2021 Microchip Technology Inc. and its subsidiaries

Dual Partition Flash Program Memory

23 Memory Organization

The program memory space is organized as word-addressable blocks. Although it is treated as
24 bits wide, it is more appropriate to think of each address of the program memory as a lower
and upper word, with the upper byte of the upper word being unimplemented. The lower word
always has an even address, while the upper word has an odd address (Figure 2-4).

Program memory addresses and the PC are always word-aligned on the lower word (i.e., the
Least Significant bit (LSb) is always ‘0’). Addresses are incremented or decremented by two
during code execution.

Figure 2-4: Program Memory Organization
msw most significant word least significant word PC Address
Address ~ N ~ N N (Isw Address)
23 16 8 0
000001h 00000000 000000h
000003h 00000000 000002h
000005h 00000000 000004h
000007h 00000000 000006h
Program Memory Instruction Width
‘Phantom Byte’
(read as ‘0’)

2.31 ADDRESSING PROGRAM MEMORY

For normal code execution, the Effective Address (EA) for execution is provided by the Program
Counter (PC). The PC is 23 bits wide, allowing direct access to any location in the user program
space. PC[0] is fixed as ‘0’ in order to maintain program instruction alignment. The PC is
incremented to the next sequential address by incrementing PC[1], thus increasing the value of
the PC by two.

For Table Read and Table Write operations, the EA is created by concatenating the 16-bit
address from one of the W registers with the 8-bit address from the TBLPAG register. This
permits table operations access to both the user and configuration spaces. Address generation
for table operations is discussed in more detail in Section 4.2.1 “Address Generation for Table
Operations”.

For Extended Data Space (EDS) and Program Space Visibility (PSV) operations, the EA is
created by concatenating the lower 15 bits of a W register with the 8-bit address from either the
DSRPAG/DSWPAG (dsPIC33) or PSVPAG (PIC24F) registers. Extended Data Space and
Program Space Visibility operations are discussed in the “dsPIC33/PIC24 Family Reference
Manual”, “Data Memory” (dsPIC33, DS70595) and/or “Data Memory” (PIC24, DS30009717).

© 2014-2021 Microchip Technology Inc. and its subsidiaries DS70005156C-page 7

dsPIC33/PIC24 Family Reference Manual

3.0 PROGRAM MEMORY PARTITION FLASH OPERATION

For devices with Dual Partition Flash capability, the Dual Partition Program Memory mode is
selected by programming the BTMODE[1:0] bits in the FBOOT Configuration Word. Unlike other
Configuration Words, FBOOT is located in configuration memory space, apart from all other
Flash Configuration registers. The exact address is architecture-specific (i.e., PIC24 or dsPIC33)
and may vary between device families. Table 3-1 lists the possible Flash Partition options, which
are discussed in the following sections.

When a device is first programmed via In-Circuit Serial Programming™ (ICSP™), the
programmer should program FBOOT to correctly set the device Flash Partition mode. Note that
it is not possible to reprogram FBOOT at run time using Run-Time Self-Programming (RTSP).
The FBOOT bits must be configured in ICSP mode by a programmer. This is because the
location of the Flash Configuration Words changes from Standard Partition mode to Dual
Partition mode, which could cause unexpected device operation.

Table 3-1: Flash Partition Options
BTMODE[1:0] Partition Option
11 Standard Mode (Single Partition, default)
10 Dual Partition Mode
01 Protected Dual Partition Mode
00 Privileged Dual Partition Mode(")

Note 1: Notimplemented on all Dual Partition devices.

3.1 Standard (Single Partition) Mode

Standard mode, also referred to as Single Partition or Standard Partition mode, is the default
operating mode for program memory. It is selected when the BTMODEXx Configuration bits are
‘11’ (their unprogrammed configuration). This is also the single program memory operating mode
available to all previous dsPIC33 and PIC24 devices.

In Standard mode, the entire user program memory is mapped as a flat, continuous memory
space, ranging from 000000h to the upper boundary of implemented Flash memory. For
example, a device with 256 Kbytes of Flash memory has a program memory address range of
000000h to 02AFFFh, with addresses above this range being unimplemented. The entire
implemented memory range (excluding reserved spaces for Reset vectors, IVTs and Flash
Configuration Words) is available for the user’s application. In devices with segmented code
security, a Boot Segment may also be implemented.

3.2 Dual Partition Modes

When the BTMODEXx Configuration bits are programmed to a value other than ‘11’, the device
operates in one of three Dual Partition modes. In all of these modes, the implemented Flash
memory is symmetrically split into two regions: an Active Partition, beginning at 000000h, and an
Inactive Partition, beginning at 400000h. For the device in the previous example, the 256-Kbyte
Flash memory would be implemented as two areas of 128 Kbytes each, ranging from addresses
000000h to 0157FFh and 400000h to 4157FFh. Addresses between the two areas are
unimplemented (see Figure 3-1).

In the Dual Partition modes, two independent applications may be programmed into the device,
one to each of two Flash memory partitions, known as Partition 1 and Partition 2. When the
device is initialized, one of these is dynamically mapped to the Active Partition and executed. The
other is mapped to the Inactive Partition, where it remains available to program memory
operations. The assignment of a partition to the Active or Inactive Partition is determined
automatically by a code signature, known as the Boot Sequence Number. The code partitions
may also be swapped between Active and Inactive Partitions, during run time, under software
control.

DS70005156C-page 8

© 2014-2021 Microchip Technology Inc. and its subsidiaries

Dual Partition Flash Program Memory

Dual Partition modes allow for the Active Partition’s application to access (but not execute)
program data in the Inactive Partition or to reprogram the Inactive Partition. Writing to Flash
memory in the Inactive Partition does not require the CPU to stall while Flash writes occur. This
allows for LiveUpdate functionality, where execution of critical control functions or
timing-sensitive communications can happen simultaneously with application updates. Certain
Dual Partition modes place additional limitations on the process to help ensure code security and
robustness of operation. Code cannot be executed when it is mapped to the Inactive Partition.
The partitions may be swapped, but only code in the Active Partition can be executed.

3.2.1 DUAL PARTITION MODE

The simplest Dual Partition mode places no restrictions on operations from the Active Partition
to the code in either Partitions 1 or 2. Any limitations on the interactions between Code Segments
in different partitions are determined by the configuration of enhanced security features.

3.2.2 PROTECTED DUAL PARTITION MODE

Protected Dual Partition mode protects the default Code Segment (Partition 1) from any Flash
write or erase operations. This allows for the implementation of a “Factory Default” mode by
allowing a fail-safe backup image to be stored in Partition 1.

When Protected Dual Partition mode is used, Partition 1 cannot be written or erased by Flash
memory operations while it is in the Inactive Partition. If Partition 1 is also write-protected via
Configuration bit settings, it cannot be erased or written at any time. In contrast, Partition 2 can
be erased or written by operations from either partition.

This allows for a fail-safe bootloader to be placed in Partition 1, along with a fail-safe backup code
image. This code image can then be executed by default and used to rewrite Partition 2 in the
event that a Flash update should fail.

3.2.3 PRIVILEGED DUAL PARTITION MODE

Privileged Dual Partition mode implements additional security protections in those cases where
an application may have Code Segments written by different authors and a higher level of
security is required to protect intellectual property for one of those segments. An example would
be a system where the bulk of the code is written by the hardware’s application developer, but
includes a proprietary, third-party library. This mode is designed to work with the enhanced
security features in select devices, which can selectively protect different Code Segments in the
program memory space.

Privileged Dual Partition mode differs from Standard Dual Partition mode by adding special
protection to the BSLIMx Configuration bits of both partitions. This protection effectively locks the
bits, and prevents changes to the size of the Boot Segment and the General Segment. With the
proper security settings, this ensures that neither segment will be altered or unexpectedly read at
run time.

Privileged Dual Partition mode is not implemented on all devices with Dual Partition capability.
Refer to the specific device data sheet for details.

© 2014-2021 Microchip Technology Inc. and its subsidiaries DS70005156C-page 9

dsPIC33/PIC24 Family Reference Manual

Figure 3-1: Standard and Dual Partition User Memory Space Map

Standard (Single Partition) Mode Dual Partition Modes
VectorArea | Vi A 000000h _A_
ector Area ‘ector Area 000xFER(™
““““““ 000x00h("
Active
Flash Program
Memory
Active
Flash Program - . 2
M Flash Configuration Words 0xxxFCh(?
emory | r----= FBTSEQ ~] 0xxxFEh(2)
0xxx00h(2)
Active
Partition
Flash Configuration Words 0xFCh®
| Reserved | _____. 0xxxFER®)
0xxx00h(3)
Unimplemented
Read ‘0’
————————————— 400000h —}{—
Vector Area
400xFER
400x00h("
Inactive
Flash Program
Memory
Unimplemented)
Read ‘0 Flash Configuration Words 4XXXFCh(2)
——————————————— 4xxxFEh®)
FBTSEQ 4XXX00h(2)
Inactive
Partition
Unimplemented
Read ‘0’
7FFFFER Y.

Legend: Memory areas are not shown to scale.

Note 1: Default vector area boundaries are 000100h for PIC24 devices and 000200h for dsPIC33 devices.
2: Memory boundary values in Dual Partition modes are one-half of the values of Standard Partition mode.
3: Exact program memory boundaries are determined by the size of the implemented program memory.

DS70005156C-page 10 © 2014-2021 Microchip Technology Inc. and its subsidiaries

Dual Partition Flash Program Memory

3.24 SELECTING A CODE PARTITION

In Dual Partition modes, there are two methods of determining which partition will be mapped to
the Active Partition and executed: the Boot Sequence Number and the BOOTSWP instruction. The
P2ACTIV bit (NVMCON[10]) can be used to determine which physical partition is the Active
Partition. If P2ACTIV = 1, Partition 2 is active; if P2ZACTIV = 0, Partition 1 is active.

The Boot Sequence Number is a 12-bit value that is used for automatically determining the Active
Partition upon device Reset. Each partition should have a unique Boot Sequence Number, which
is stored in the FBTSEQ Flash Configuration Word.

The BOOTSWP instruction is used to swap Active and Inactive Partitions without a device Reset.

3.24.1 Boot Sequence Number

The 12-bit Boot Sequence Number is stored in the FBTSEQ Flash Configuration Word, which is
always located at the last location of user program memory, above the other Flash Configuration
Words (see Figure 3-2). Unlike other Configuration registers, which only use the lower 16 bits of
the program memory word, FBTSEQ is a full 24 bits wide. Each partition should, under normal
operating conditions, have a different value for FBTSEQ. When Dual Partition modes are not
used, the value of FBTSEQ is ignored.

The Boot Sequence Number is stored in two parts: the actual value in the bit field, BSEQx
(FBTSEQ[11:0]), and the one's complement of the value in the IBSEQx bits field
(FBTSEQ[23:12]). When the Boot Sequence Number is read upon a device Reset, the values of
BSEQx and IBSEQx are automatically compared. If these two values are not mutual
complements, the Boot Sequence Number is considered invalid. The complement value is not
automatically created by hardware, nor is it verified by hardware upon programming. The
application must calculate and program the appropriate value.

On device Reset, the Boot Sequence Numbers in both partitions are compared. The partition with
the lower BSEQx value is the one that is mapped to the Active Partition and its code is executed.
If one of the Boot Sequence Numbers is invalid, the device will select the partition with the valid
Boot Sequence Number as the Active Partition, regardless of which Boot Sequence Number is
lower. If both Boot Sequence Numbers are invalid, Partition 1 will be selected by default as the
Active Partition.

The partitions can be prepared to be swapped during run time by reprogramming the Boot
Sequence Number of the Inactive Partition to have a lower value. When a Reset is executed, the
partition that has the lower value now becomes active. This method is used when the Inactive
Partition has been updated and is then mapped to the Active Partition after a Reset.

The location of FBTSEQ allows it to be easily excluded from a checksum or other verification of
the Flash program memory. Because the FBTSEQ value is likely to be determined at run time
(based on the BSEQx of the other partition), it often cannot be included in a checksum, such as
a CRC.

The sequence at the top of Figure 3-3 shows the relationship between the code partitions when
the Boot Sequence Number is altered and a device Reset is executed.

Figure 3-2: FBTSEQ in Relationship to Other Configuration Words (Dual Partition Modes Only)

123 16,15 1211 0

|

|

: I Configuration Word
| FBTSEQ BSEQX

IBSEQx

Legend: Shaded area is unimplemented and always read as ‘0’. Addresses reflect relative positions at the upper
boundary of implemented program memory.

Note: FBTSEQ and the other Configuration Words are not necessarily proximate; the relationship shown here is for
sake of comparison.

© 2014-2021 Microchip Technology Inc. and its subsidiaries DS70005156C-page 11

dsPIC33/PIC24 Family Reference Manual

3.24.2 BOOTSWP Instruction

The BOOTSWP instruction is an extension to the PIC24 and dsPIC33 instruction set. It supports
the code, LiveUpdate, by allowing Code Segments to be swapped between the Active and
Inactive Partitions without the need for a device Reset. A partition swap using the BOOTSWP
instruction is referred to as a “soft swap”. To execute a BOOTSWP instruction, the Configuration
bit, BTSWP (FIDCI[25]), must be cleared. If a BOOTSWP instruction is attempted with BTSWP set,
a NOP instruction will result.

The BOOTSWP instruction must always be followed by a single-word instruction that writes the PC
(e.g., GOTO W, CALL W or BRA W); the target of the instruction must be at an address within
32 Kbytes of the current address. Upon execution, the Active and Inactive Partitions trade
places, and the PC vectors to the location specified by the GOTO instruction in the newly Active
Partition.

Note: Ifthe BOOTSWP instruction is executed from within a function that has created a new
stack frame using the LNK instruction, a CALL must be used following BOOTSWP

rather than a GOTO; otherwise, the device will generate a stack error trap.

After the execution of the BOOTSWP instruction, the SFTSWP bit (NVMCON][11]) is set. This bit
indicates to the firmware that the BOOTSWP instruction occurred correctly and that the currently
Active Partition was entered via BOOTSWP rather than via a device Reset. Status bit, P2ACTIV
(NVMCON[10]), can also be read to verify which partition is active.

It is important to note that, after the partition swap, all peripherals and interrupts which were
previously enabled remain enabled. Additionally, the RAM and stack maintain their states after
the swap. It is highly recommended that applications using soft swaps jump to a routine that
re-initializes the device in order to ensure the application continues to run as expected.

For robustness of operation, it is necessary to execute the standard NVM unlocking sequence
prior to executing the BOOTSWP instruction (writing 55h and AAh to the NVMKEY register in two
sequential steps; see Section 4.1 “Registers” for more information). It is important to also
disable interrupts before executing the unlock sequence. If the unlocking sequence is not
performed, BOOTSWP will be executed as a forced NOP. The GOTO instruction following BOOTSWP
is still executed, causing the PC to jump to that location in the current operating partition.
Similarly, BOOTSWP has no effect in Standard Partition mode.

The sequence at the bottom of Figure 3-3 shows the relationship between the partitions when a
BOOTSWP instruction is executed. Note that a BOOTSWP partition change is temporary; after a
subsequent device Reset, the partition with the lower Boot Sequence Number is reassigned to
the Active Partition.

DS70005156C-page 12

© 2014-2021 Microchip Technology Inc. and its subsidiaries

Dual Partition Flash Program Memory

Figure 3-3:

Comparing Partition Swap Methods

000000h

400000h

000000h

400000h

BOOTSWP Instruction

Reprogramming FBTSEQ

000000h
Partition 1 Partition 1
FBTSEQ = 10 FBTSEQ = 10
Reprogram FBTSEQ—|
400000h
Partition 2 Partition 2
FBTSEQ = 15 FBTSEQ =5
000000h
Partition 1 Partition 2
FBTSEQ = 10 FBTSEQ = 15
BOOTSWP Instruction—>
400000h
Partition 2 Partition 1
FBTSEQ = 15 FBTSEQ = 10

000000h
Partition 2
FBTSEQ =5
Reset——»
400000h
Partition 1
FBTSEQ = 10
000000h
Partition 1
FBTSEQ =10
Reset——»
400000h
Partition 2
FBTSEQ =15

© 2014-2021 Microchip Technology Inc. and its subsidiaries

DS70005156C-page 13

dsPIC33/PIC24 Family Reference Manual

4.0 FLASH MEMORY PROGRAMMING

P1C24 and dsPIC33 devices can be programmed by any one of three methods:

* Run-Time Self-Programming (RTSP)

* In-Circuit Serial Programming™ (ICSP™)

» Enhanced In-Circuit Serial Programming (EICSP)

RTSP is performed by the application software during execution, while ICSP and EICSP are

performed from an external programmer using a serial data connection to the device. ICSP and
EICSP allow much faster programming time than RTSP.

RTSP techniques are described in this section. The ICSP and EICSP protocols are defined in the
programming specification documents for the respective devices, which can to be downloaded
from the Microchip website (www.microchip.com).

4.1 Registers

Programming operations are controlled through six registers. The NVMCON and NVMKEY
registers are used to enable and select all operations. The remaining four registers define Data
and Address Pointers.

Note: Not all devices implement data RAM buffer programming. Refer to the specific
device data sheet for more information.

4.1.1 CONTROL REGISTERS

The NVMCON register (Register 4-1) controls all Flash programming operations. The
NVMOPI3:0] bits (NVMCOM][3:0]) select the particular write or erase operation to be performed.
The WR bit (NVMCOM([15]) triggers the appropriate operation; it remains set until the operation
has been completed and is then cleared by hardware. The WREN bit (NVMCOM][14]) enables or
disables write and erase operations. The WR bit cannot be set to trigger operations when WREN
is clear.

The NVMKEY register (Register 4-2) is a write-only register used to prevent accidental writes of
NVMCON that can corrupt Flash memory. Once unlocked, writes to NVMCON are allowed for
one instruction cycle, in which the WR bit can be set to invoke an erase or program routine. Given
the timing requirements, disabling interrupts is required.

To start an erase or programming sequence, the following steps are used:
Disable interrupts.

Write 0x55 to NVMKEY.

Write OXAA to NVMKEY.

Start the programming write cycle by setting the WR bit (NVMCON[15]).
Execute two NOP instructions.

Restore interrupts.

o ok wh =

Example 4-1 shows how the unlock sequence is performed.

DS70005156C-page 14

© 2014-2021 Microchip Technology Inc. and its subsidiaries

Dual Partition Flash Program Memory

Example 4-1: Disabling Interrupts with GIE Bit

; Disable interrupts
PUSH INTCON2
BCLR INTCON2, #GIE
NOP

; Load key values into NVMKEY
MOV #0x55, WO
MOV W0, NVMKEY
MOV #0xAA, WO
MOV W0, NVMKEY

; Set WR bit
BSET NVMCON, #WR
NOP
NOP

; Restore interrupts
POP INTCON2

4111 Disabling Interrupts

Disabling interrupts is required for all Flash operations to ensure a successful result. If an
interrupt occurs during the NVMKEY unlock sequence, it can block the write to the WR bit. The
NVMKEY unlock sequence must be executed without interruption, as discussed in Section 3.2
“Dual Partition Modes”.

Interrupts can be disabled in one of two methods, by disabling the Global Interrupt Enable (GIE
bit), or by using the DIST instruction. The DIST instruction only disables interrupts of Priority 6
or below, therefore it is not recommended, and the Global Interrupt Enable method should be
used.

CPU writes to GIE take two instruction cycles before affecting the code flow. Two NOP instructions
are needed afterwards, or can be replaced with any other useful work instructions, such as
loading NMVKEY; this is applicable to both set and clear operations.

Care should be taken when re-enabling interrupts so that the NVM targeted routine does not
allow interrupts when a previous called function has disabled them for other reasons. To address
this in Assembly, a stack push and pop can be used to retain the state of the GIE bit. In C, a
variable in RAM can be used to store INTCONZ2 prior to clearing GIE.

The following sequence should be used to disable interrupts:

1. Push INTCON2 onto the stack.

2. Clear the GIE bit.

3. Two NOPs or writes to NVMKEY.

4. Start the programming cycle by setting the WR bit (NVMCONJ[15]).
5. Restore GIE state by POP of INTCON2.

Example 4-1 provides the syntax in Assembly.

41.2 ADDRESS REGISTERS

The NVMADRL and NVMADRH registers define the Start Address Pointer for write operations.
Both types of program memory writes (latch-based and RAM buffered) use these registers to set
the destination address.

The NVMSRCADRL and NVMSRCADRH registers define the starting address in data RAM of
the source data when using RAM buffered programming. The NVMSRCADRH register is used
on devices with Extended Data Space (EDS) to point to addresses in the Extended Data Space
memory.

© 2014-2021 Microchip Technology Inc. and its subsidiaries DS70005156C-page 15

dsPIC33/PIC24 Family Reference Manual

Register 4-1: NVMCON: Flash Programming Control Register

R/s-0(M R/C-0 R/C-0 R/W-0 R/C-0 R-0 R/W-0 R/C-0
WR WREN WRERR | NVMPIDL®) | SFTSWP P2ACTIV RPDF(2) URERR(®
bit 15 bit 8
u-0 u-0 u-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — — NVMOP[3:0]
bit 7 bit 0
Legend: S = Settable Only bit C = Clearable Only bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15 WR: Write Control bit("

1 = Initiates a Flash program/erase operation
0 = Program/erase operation is complete and inactive
bit 14 WREN: Program/Erase Enable bit
1 = Allows program/erase cycles
0 = Inhibits programming/erasing of memory or fuse elements
bit 13 WRERR: Sequence Error Flag bit
1 = An improper program/erase termination has occurred or an unimplemented programming
operation has been selected
0 = A program or erase operation is under way, has completed normally or has yet to start
bit 12 NVMPIDL: NVM Power-Down in Idle Enable bit(®)
1 = Removes power from Flash arrays when device enters Idle mode
0 = Keeps Flash arrays powered in Standby mode when device enters Idle mode
bit 11 SFTSWP: Soft Swap Status bit

When BTMODE[1:0] = 10 or 0x:
1 = Partitions have been successfully swapped using the BOOTSWP instruction
0 = Awaiting successful partition swap using the BOOTSWP instruction

When BTMODE[1:0] = 11:
Unimplemented, read as ‘0.

bit 10 P2ACTIV: Dual Partition Active Status bit
When BTMODE[1:0] = 10 or 0x:
1 = Partition 2 Flash is the Active Partition
0 = Partition 1 Flash is the Active Partition

When BTMODE[1:0] = 11:
Unimplemented, read as ‘0.
bit 9 RPDF: RAM Buffer Row Programming Data Format Control bit(2)

1 = Row data are stored in RAM in compressed format
0 = Row data are stored in RAM in uncompressed format

Note 1: This bit is also reset on a Brown-out Reset (BOR).

2: RAM buffer row operations are not available on all devices; in those cases, these bits are unimplemented
and read as ‘0.

3: Selecting these options will set the WRERR bit and clear the WR bit.

4: Double-word program operations require two adjacent instruction words (24 bits each), aligned on a
four-instruction word boundary.

5: Implemented in select devices only; refer to the specific device data sheet for details.

DS70005156C-page 16 © 2014-2021 Microchip Technology Inc. and its subsidiaries

Dual Partition Flash Program Memory

Register 4-1: NVMCON: Flash Programming Control Register (Continued)

bit 8 URERR: RAM Buffer Row Programming Data Underrun Error Flag bit(2)
1 = Programming operation has terminated due to a data underrun error
0 = No data underrun error is detected.

bit 7-4 Unimplemented: Read as ‘0’

bit 3-0 NVMOP[3:0]: NVM Operation Select bits (initiated by the next setting of WR)
1xxx = Reserved®)
011x = Reserved®
0101 = Reserved(®
0100 = Inactive Partition erase operation (reserved option in Standard Partition mode)
0011 = Page erase operation
0010 = Row program operation
0001 = Double-word program operation(4)
0000 = Reserved®

Note 1: This bit is also reset on a Brown-out Reset (BOR).

2: RAM buffer row operations are not available on all devices; in those cases, these bits are unimplemented
and read as ‘0’.

3: Selecting these options will set the WRERR bit and clear the WR bit.

4: Double-word program operations require two adjacent instruction words (24 bits each), aligned on a
four-instruction word boundary.

5: Implemented in select devices only; refer to the specific device data sheet for details.

© 2014-2021 Microchip Technology Inc. and its subsidiaries DS70005156C-page 17

dsPIC33/PIC24 Family Reference Manual

Register 4-2: NVMKEY: Nonvolatile Memory Key Register
uU-0 uU-0 uU-0 uU-0 uU-0 U-0 uU-0 uU-0

bit 15 bit 8
W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0

NVMKEY][7:0]

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-8
bit 7-0

Unimplemented: Read as ‘0’
NVMKEY[7:0]: NVM Key Register (write-only) bits

DS70005156C-page 18

© 2014-2021 Microchip Technology Inc. and its subsidiaries

Dual Partition Flash Program Memory

4.2 Table Operation Instructions

The table instructions provide one method of transferring data between the program memory
space, and the data memory space of the PIC24 and dsPIC33 devices. A summary of the table
instructions used during programming of the Flash program memory is provided in this section.
There are four basic table instructions:

* TBLRDL: Table Read Low
* TBLRDH: Table Read High
* TBLWTL: Table Write Low
* TBLWTH: Table Write High

The TBLRDL and the TBLWTL instructions are used to read and write to bits[15:0] of program
memory space. TBLRDL and TBLWTL can access program memory in Word or Byte mode.

The TBLRDH and TBLWTH instructions are used to read or write to bits[23:16] of program memory
space. TBLRDH and TBLWTH can access program memory in Word or Byte mode. Since the
program memory is only 24 bits wide, the TBLRDH and TBLWTH instructions have the ability to
address an upper byte of program memory that does not exist. This byte is called the ‘phantom
byte’. Any read of the phantom byte returns 00h; a write to the phantom byte has no effect.

4.2.1 ADDRESS GENERATION FOR TABLE OPERATIONS

The 24-bit program memory can be regarded as two, side-by-side 16-bit spaces, with each space
sharing the same address range. Therefore, the TBLRDL and TBLWTL instructions access the
‘low’ program memory space (PM[15:0]). The TBLRDH and TBLWTH instructions access the ‘high’
program memory space (PM[31:16]). Any reads or writes to PM[31:24] will access the phantom
(unimplemented) byte. When any of the table instructions are used in Byte mode, the LSb of the
table address will be used as the byte select bit. The LSb determines which byte in the high or
low program memory space is accessed.

Figure 4-1 illustrates how the program memory is addressed using the table instructions. A 24-bit
program memory address is formed using the TBLPAG[7:0] bits and the Effective Address (EA)
from a W register, specified in the table instruction (the 24-bit Program Counter is shown for
reference). The upper 23 bits of the EA are used to select the program memory location. For the
Byte mode table instructions, the LSb of the W register EA is used to pick which byte of the 16-bit
program memory word is addressed. A ‘1’ selects bits[15:8], a ‘0’ selects bits[7:0]. The LSb of
the W register EA is ignored for a table instruction in Word mode.

In addition to the program memory address, the table instructions also specify a W register (or a
W Pointer to a memory location) that is the source of the program memory data to be written or
the destination for a program memory read. For a Table Write operation in Byte mode, bits[15:8]
of the source Working register are ignored.

Figure 4-1: Addressing for Table Registers

24 Bits
Voo
Using P
Program [g Program Counter [o]
Counter | | N
[| |
[Working Register EA | |
Using |
Table 1/0 TBLPAG Reg
Instruction '€&——>» -
| | 8Bits | 16 Bits |
[| D
A | A
User/Configuration ¢ Byte
Space Select 24-Bit EA Select

© 2014-2021 Microchip Technology Inc. and its subsidiaries DS70005156C-page 19

dsPIC33/PIC24 Family Reference Manual

422 LOW WORD ACCESS

The TBLRDL and TBLWTL instructions are used to access the lower 16 bits of program memory
data. The LSb of the W register address is ignored for word-wide table accesses. For byte-wide
accesses, the LSb of the W register address determines which byte is read. Figure 4-2 illustrates
the program memory data regions accessed by the TBLRDL and TBLWTL instructions.

Figure 4-2: Program Data Table Access (Low Word)
PC Address 23
000100h 00000000 TBLRDL.W
000102h 00000000
000104h 00000000 - TBLRDL.B (Wn[0] = 1)
000106h 00000000 <——— TBLRDL.B (Wn[0] = 0)
‘Phantom Byte’
(Read as ‘0’)
423 HIGH WORD ACCESS
The TBLRDH and TBLWTH instructions are used to access the upper eight bits of the program
memory data. These instructions also support Word or Byte Access modes for orthogonality, but
the high byte of the program memory data will always return ‘0’, as shown in Figure 4-3.
Figure 4-3: Program Data Table Access (High Word)
‘Phantom Byte’
(Read as ‘0') 93 16 8 o PCAddress
TBLRDH.W » 00000000 000100h
00000000 000102h
TBLRDH.B (Wn[0]=1) —s= 00000000 000104h
00000000 A 000106h
TBLRDH.B (Wn[0] = 0) T

424 DATA STORAGE IN PROGRAM MEMORY

It is assumed that for most applications, the high byte (PM[23:16]) will not be used for data,
making the program memory appear 16 bits wide for data storage. It is recommended that the
upper byte of program data be programmed either as a NOP (00h or FFh), or as an illegal opcode
(3Fh) value, to protect the device from accidental execution of stored data. The TBLRDH and
TBLWTH instructions are primarily provided for array program/verification purposes, and for those
applications that require compressed data storage.

4.25 PROGRAM MEMORY BIT BEHAVIOR

Bits in Flash program memory can only be programmed from ‘1’ to ‘0’ and can be subsequently
erased to ‘1’. Attempting to set a bit with a programming sequence will have no effect.

DS70005156C-page 20 © 2014-2021 Microchip Technology Inc. and its subsidiaries

Dual Partition Flash Program Memory

4.2.6 USING TABLE READ INSTRUCTIONS

Table Reads require two steps. First, an Address Pointer is set up using the TBLPAG register
and one of the W registers. Then, the program memory contents at the address location may be
read.

The code examples in Example 4-2 and Example 4-3 demonstrate how to read a word of
program memory using the table instructions in Word mode.

Example 4-2: Read Word Mode (in Assembly)

; Set up the address pointer to program space

MOV #tblpage (PROG_ADDR), WO ; get table page value
MOV W0, TBLPAG ; load TBLPAG register
MOV #tbloffset (PROG_ADDR), WO ; load address LS word

; Perform the table writes to load the latch
TBLRDL [WO0], W2
TBLRDH [WO0], W3

Example 4-3: Read Word Mode (in C)

int addrOffset;
int varWordl;
int varWord2;

TBLPAG = ((PROG_ADDR & 0x7F0000)>>16);
addrOffset = (PROG_ADDR & OxOO0FFFE);
varWordl = _ builtin_ tblrdl (addrOffset);
varWord2 = _ builtin tblrdh(addrOffset);

Note: The tblpage() and tbloffset () directives are provided by the Microchip
assembler for dsPIC33 and PIC24 devices. These directives select the appropriate
TBLPAG and W register values for the table instruction from a program memory
address value. Refer to the “MPLAB® Assembler, Linker and Utilities for PIC24
MCUs and dsPIC® DSCs User’s Guide” (DS51317) for more information.

© 2014-2021 Microchip Technology Inc. and its subsidiaries DS70005156C-page 21

dsPIC33/PIC24 Family Reference Manual

427 TABLE WRITE HOLDING LATCHES

Table Write instructions do not write directly to the Flash program array. Instead, the instructions
cause the data to be programmed to be loaded first into holding latches. These latches are
memory-mapped in configuration memory space, typically starting at FAOOOOh, and can only be
accessed using the Table Write instructions. When all of the holding latches have been loaded,
the actual memory programming operation is started by executing a special sequence of
instructions.

Different devices implement different numbers of holding latches, based on a specific program
array design (i.e., the row programming size and row programming algorithm). Please refer to
the specific device data sheet and/or programming specification for further details.

4.2.71 Performing a Two-Word Write

Word writes are performed for two words at a time using a pair of TBLWTH and TBLWTL
instructions. The code sequences in either Example 4-4 or Example 4-5 (C equivalent) can be
used to write two program memory latch locations to be programmed to Flash using Word Write
mode.

Example 4-4: Two-Word Write Example (in Assembly)

; Set up the address pointer to 1lst write latch

MOV OxFA, WO ; get table page value
MOV WO, TBLPAG ; load TBLPAG register
MOV 0x0, WO ; load address LS word
; Load write data into W registers

MOV #PROG_LOW_WORD_1, W2

MOV #PROG_HI BYTE 1, W3

MOV #PROG_LOW WORD 2, W4

MOV #PROG_HI BYTE 2, W5

; Perform the table writes to load the latch
TBLWTL W2, [WO]

TBLWTH W3, [WO++]
TBLWTL W4, [WO]
TBLWTH W5, [WO++]

Example 4-5: Two-Word Write Example (in C)

int varWordlL = O0xXXXX;

int varWordlH = 0x00XX;

int varWord2L = 0xXXXX;

int varWord2H = 0x00XX;

int addrOffset;

int TargetWriteAddressL; // bits[15:0]
int TargetWriteAddressH; // bits[22:16]
int INTCON2Save;

NVMCON = 0x4001; // Set WREN and word program mode
TBLPAG = OxFA; // write latch upper address
addrOffset = (PROG ADDR & OxOOFFFE); // ensure address is properly aligned
NVMADRL = TargetWriteAddressL; // set target write address

NVMADRH = TargetWriteAddressH;

_ _builtin tblwtl(0,varWordlL); // load write latches

~_builtin tblwth(0,varWordlH) ;

~_builtin tblwtl(0x2,varWord2L) ;

__builtin tblwth(0x2,varWord2H) ;

INTCON2Save = INTCON2;

builtin disable interrupts; // Disable interrupts for NVM unlock sequence
__builtin write NVM(); // initiate write

INTCON2 = INTCON2Save;

DS70005156C-page 22

© 2014-2021 Microchip Technology Inc. and its subsidiaries

Dual Partition Flash Program Memory

4.3 Run-Time Self-Programming (RTSP)

RTSP allows the user code to modify Flash program memory contents. RTSP is accomplished
using TBLRD (Table Read) and TBLWT (Table Write) instructions, and the NVM Control registers.
PI1C24 and dsPIC33 devices support the following Flash programming operations:

» Flash page erases
* Row programming (either latch-based or RAM-based)
» Word programming

Flash programming via RTSP is performed, either with blocks of memory called rows, or with two
words of Flash memory. Prior to programming, a memory location must be erased. Erase
operations are performed on blocks of memory, called pages, which consist of multiple rows. The
size of a row will vary by device; refer to the device data sheet for details. Typically, for dsPIC33
and PIC24 devices, a page is defined as eight (8) rows. This document uses examples with
64 instructions per row (512 instructions per page).

431 ROW PROGRAMMING USING WRITE HOLDING LATCHES

As discussed in Section 4.2.7 “Table Write Holding Latches”, devices which implement
latch-based row programming have holding latches which contain the programming data. Prior
to the actual programming operation, the write data must be loaded into the latches via TBLWT
instructions in sequential order. When performing a row write, the instruction words must be
loaded into the latches as a full row.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of
TBLWT instructions to load the buffers. Programming is performed by setting the control bits in
the NVMCON register. For example, on a device with 64 instruction rows, a programming cycle
would consist of 64 TBLWTL and 64 TBLWTH instructions to load the write latches, followed by a
programming sequence unlocking NVMCON and setting the WR bit. Example 4-6 shows an
example of the process.

Example 4-6: Row Programming with Write Latches (in C)

int varWordL[64];
int varWordH[64];

int targetWriteAddressL; // bits[15:0]
int targetWriteAddressH; // bits[22:16]
int i;

int INTCON2Save;

NVMCON = 0x4002; // Set WREN and row program mode
TBLPAG = OxFA;
NVMADRL = targetWriteAddressH; // set target write address

NVMADRH = targetWriteAddressL;

for (i=0; i<=63; i++) // load write latches with data

{ // to be written

__builtin tblwtl (i, varWordL[i]);

~_builtin tblwth((i * 2), varWordH[i]);

}

INTCON2Save = INTCON2;

__builtin disable interrupts; // Disable interrupts for NVM unlock sequence
_ builtin write NVM(); // initiate write

INTCON2 = INTCONZ2Save;

© 2014-2021 Microchip Technology Inc. and its subsidiaries DS70005156C-page 23

dsPIC33/PIC24 Family Reference Manual

432 ROW PROGRAMMING USING THE RAM BUFFER

Select dsPIC33 and PIC24 devices permit row programming to be performed directly from a
buffer space in data RAM, rather than going through the holding latches to transfer data with
TBLWT instructions. The location of the RAM buffer is determined by the NVMSRCADR
register(s), which are loaded with the data RAM address containing the first word of program data
to be written.

Prior to performing the program operation, the buffer space in RAM must be loaded with the row
of data to be programmed. The RAM can be loaded in either a compressed (packed) or
uncompressed format. Compressed storage uses one data word to store the Most Significant
Bytes (MSBs) of two adjacent program data words. The uncompressed format uses two data
words for each program data word, with the upper byte of every other word being 00h.
Compressed format uses about 3/4 of the space in data RAM as compared to uncompressed
format. Uncompressed format, on the other hand, mimics the structure of the 24-bit program data
word, complete with the upper phantom byte. The data format is selected by the RPDF bit
(NVMCONI[9]). These two formats are shown in Figure 4-4.

Once the RAM buffer is loaded, the Flash Address Pointers, NVMADRL and NVMADRH, are
loaded with the 24-bit start address of the Flash row to be written. As with programming the write
latches, the process is initiated by writing the NVM unlock sequence, followed by setting the WR
bit. Once initiated, the device automatically loads the right latches and increments the NVM
Address registers until all bytes have been programmed. Example 4-7 shows an example of the
process. If NVMSRCADR is set to a value such that a data underrun error condition occurs, the
URERR bit (NVMCON][8]) will be set to indicate the condition.

Devices which implement RAM buffer row programming also implement one or two write latches.
These are loaded using the TBLWT instructions and are used to perform word programming
operations.

Figure 4-4: Uncompressed and Compressed Storage Formats for Program Data
Uncompressed Format (RPDF = 0) Compressed Format (RPDF = 1)
15 7 0 15 7 0

LSWA1 LSW1 -

00h ‘ MSB1 MSB2 MSB1

Address

LSwW2 LSwW2

00h ‘ MSB2

Even Byte Addresses

Example 4-7: Writing Program Memory from a Data RAM Buffer (in C)

int datal[64]; // Data to be programmed in RAM
int targetWriteAddressL; // bits[15:0]
int targetWriteAddressH; // bits[22:16]

int INTCON2Save;

NVMCON = 0x4002; // Row programming
NVMCONbits.RPDF = 0; // Select compressed format
NVMSRCADRL = (int)&datal[0]; // Start address of data in RAM

NVMADRL = targetWriteAddressL;
NVMADRH = targetWriteAddressH;
INTCON2Save = INTCONZ2;

__builtin disable interrupts; // Disable interrupts for NVM unlock sequence
__builtin write NVM();
INTCON2 = INTCON2Save;

DS70005156C-page 24

© 2014-2021 Microchip Technology Inc. and its subsidiaries

Dual Partition Flash Program Memory

44 General Flash Programming Algorithms

Flash programming operations are controlled using the following Nonvolatile Memory (NVM)
control registers:

* NVMCON

+ NVMKEY

* NVMADRL/H

* NVMSRCADRL/H (some devices)

A complete programming sequence is necessary for programming or erasing the internal Flash

in RTSP mode. Setting the WR bit (NVMCON[15]) starts the operation and the WR bit is
automatically cleared when the operation is finished.

When performing Flash programming operations on the Active Partition (particularly in Standard
Partition mode), the CPU will stall until the operation is complete. When programming the
Inactive Partition, the CPU can continue to operate without stalling. The following sections outline
programming algorithms that exhibit CPU stall and no stall.

441 ERASING PROGRAM MEMORY (ACTIVE PARTITION)

1. Set the NVMOPXx bits (NVMCOM[3:0]) to ‘0011’ to configure for page erase and set the
WREN bit (NVMCOM[14]).

Write the starting address of the block to be erased into the NVMADRL/H registers.
Disable interrupts.

Write 55h to NVMKEY.

Write AAh to NVMKEY.

Set the WR bit (NVMCOM][15]) to start the erase cycle.

Execute two NOP instructions.

Restore interrupts (optional).

® N Ok WD

When the erase is done, the WR bit is cleared automatically.

442 ROW PROGRAMMING (ACTIVE PARTITION, STANDARD PARTITION
MODE)

The user can program one row of program Flash memory at a time. To do this, it is necessary to
erase the page containing the desired row.

The general process for row programming to the Active Partition is:

1. Read eight rows of program memory (512 instructions) and store in data RAM.
2. Update the program data in RAM with the desired new data.

3. Erase the block:

a) Set the NVMOPx bits (NVMCOM[3:0]) to ‘0011’ to configure for page erase and set
the WREN bit (NVMCOM[14]).

b) Write the starting address of the block to be erased into the NVMADRL/H registers.
c) Disable interrupts.

d) Write 55h to NVMKEY.

e) Write AAh to NVMKEY.

f) Set the WR bit (NVMCOMI[15]). The erase cycle begins and the CPU stalls for the

duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.
g) Restore interrupts (optional).

4. Write the first 64 instructions from data RAM into the program memory buffers (see
Section 4.2.7 “Table Write Holding Latches”) or write the NVMSRCADR register with
the starting address of the data stored in RAM.

© 2014-2021 Microchip Technology Inc. and its subsidiaries DS70005156C-page 25

dsPIC33/PIC24 Family Reference Manual

5. Write the program block to Flash memory:
a) Setthe NVMOPX bits to ‘0010’ to configure for row programming and set the WREN bit.
b) Disable interrupts.
c) Write 55h to NVMKEY.
d) Write AAh to NVMKEY.
e) Setthe WR bit. The programming cycle begins and the CPU stalls for the duration of the

write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.

f) Restore interrupts (optional).

6. Repeat Steps 4 and 5 using the next available 64 instructions from the block in data RAM,
by incrementing the addresses in NVMADRL/H, until all 512 instructions are written back
to Flash memory.

Note: Not all devices will exhibit CPU stall during a write or erase cycle. To avoid stalls, it
is recommended to avoid reads or writes by the application to the row being erased
or written.

For protection against accidental operations, the write initiate sequence for NVMKEY is required
prior to any erase or program operation. After the programming command has been executed,
the user must wait for the programming time until programming is complete. The two instructions
following the start of the programming sequence should be NOPs.

Note 1: The number of rows, blocks and holding latches may vary from device to device;
please refer to the specific device data sheet for actual numbers, as well as the
complete reference code of Flash memory programming.

2: For devices with a single holding latch, the Flash program memory must be written
to by word programming.

443 PROGRAMMING A PAGE IN THE INACTIVE PARTITION

(DUAL PARTITION MODES)
Programming in Dual Partition modes requires special considerations. Because the CPU is able
to continue executing instructions while the Inactive Partition is being programmed, CPU stalls
will not occur.

The algorithm for erasing and reprogramming a page of data in one of the Dual Partition modes
is as follows:
1. Erase the block:
a) Set the NVMOPXx bits (NVMCOM[3:0]) to ‘0011’ to configure for page erase.
b) Setthe WREN bit (NVMCOM[14]).
c) Write the starting address of the block to be erased into the NVMADR registers with
the page address.
d) Disable interrupts.
e) Write 55h to NVMKEY.
f) Write AAh to NVMKEY.
g) Setthe WR bit (NVMCOM][15]). The erase cycle begins and the CPU will remain running.
h) When the erase is done, the WR bit is cleared automatically and the NVM Write
Complete Interrupt Flag (NVMIF) will occur.
i) Restore interrupts (optional).

2. Prepare the data to be programmed by filling the RAM buffer; alternately, load the write
latches with TBLWT instructions with the data for the first row of memory (64 instructions).

DS70005156C-page 26

© 2014-2021 Microchip Technology Inc. and its subsidiaries

Dual Partition Flash Program Memory

3. Program the block:

f)

g)
h)

i)

Set the NVMOPXx bits (NVMCON[3:0]) to ‘0010’ to configure for row programming.
Set the WREN (NVMCON][14]) bit.

Write the starting address of the block to be written into the NVMADR registers with
the row starting address.

Disable interrupts.

Write 55h to NVMKEY.

Write AAh to NVMKEY.

Set the WR bit (NVMCOM][15]). The write cycle begins and the CPU will remain running.

When the erase is done, the WR bit is cleared automatically and the NVM Write
Complete Interrupt Flag (NVMIF) will occur.

Restore interrupts (optional).

4. Repeat Steps 2 and 3 to program each of the remaining rows of data in the erased page.

444

PROGRAMMING THE ENTIRE INACTIVE PARTITION
(DUAL PARTITION MODES)

To entirely update the code in the Inactive Partition:

1. Erase the Inactive Partition:

a)

.
ceseg

h)

Set the NVMOPXx bits (NVMCOM[3:0]) to ‘0100’ to configure for Inactive Partition
erase.

Set the WREN bit (NVMCOM[14]).
Disable interrupts.

Write 55h to NVMKEY.

Write AAh to NVMKEY.

Set the WR bit (NVMCOM][15]). The erase cycle begins and the CPU will remain
running during the cycle.

When the erase is done, the WR bit is cleared automatically, and the NVM Write
Complete Interrupt Flag (NVMIF) occurs.

Restore interrupts (optional).

2. Write each page of the Inactive Partition using page writes, as described in Section 4.4.3
“Programming a Page in the Inactive Partition (Dual Partition Modes)”.

3. Verify the written data. One suggested method is to perform a CRC on the data to be
written and verify the CRC value on the full partition to ensure the data were written correctly.

4.4.5

UPDATING THE ACTIVE PARTITION USING A BOOTLOADER

1. Erase and program the entire Inactive Partition as described in Section 4.4.4 “Programming
the Entire Inactive Partition (Dual Partition Modes)”.

2. Read the FBTSEQ Configuration register of the Active Partition.

w

Decrement the value by one and write to FBTSEQ of the Inactive Partition.

4. Force a partition swap:

a)

b)

If CPU stalls are not a concern, perform a device Reset. Since the Inactive Partition
has a lower Boot Sequence Number, it will become the Active Partition after the
Reset.

If a CPU stall is not acceptable, execute the BOOTSWP instruction.

© 2014-2021 Microchip Technology Inc. and its subsidiaries DS70005156C-page 27

dsPIC33/PIC24 Family Reference Manual

5.0 PROGRAM SPACE VISIBILITY AND EXTENDED DATA SPACE (PSV AND EDS)

For all dsPIC33 and PIC24 devices, table instructions (see Section 4.2 “Table Operation
Instructions”) can be used to access data within the program memory space. This is useful
when data only need to be read or written, one byte or word at a time. It is also possible to map
16K word pages of the program memory space into the upper 32 Kbytes of the data address
space. This allows an effective expansion of the data space beyond its normal 64-Kbyte
addressing limits, as well as transparent access without the use of table instructions.

All dsPIC33 and PIC24 devices are able to map any page in the implemented program memory
space into the data space. This feature is known as Program Space Visibility (PSV).

Some devices expand PSV by memory-mapping certain peripherals to a specific range of virtual
program memory pages. This feature is particularly useful for peripherals, such as the Advanced
Graphics Controller, which has high data throughput requirements. This expansion of PSV is
known as Extended Data Space (EDS).

PSV and EDS are implemented as features of the data memory. They are implemented
differently for dsPIC33 and PIC24 devices. For a detailed description, refer to the
“dsPIC33/PIC24 Family Reference Manual”, “Data Memory”. (dsPIC33, DS70595) and/or
“Data Memory” (PIC24, DS30009717).

5.1 PSV and Instruction Stalls

For more information about instruction stalls using PSV, refer to the “dsPIC33/PIC24 Family
Reference Manual”, “dsPIC33E Enhanced CPU” (DS70005158).

DS70005156C-page 28

© 2014-2021 Microchip Technology Inc. and its subsidiaries

sallelpISANs s)1 pue “au| ABojouyos] dIYOoIIN LZ0Z-110Z ®

62 96ed-095150002S0

6.0 REGISTER MAP

A summary of the SFRs associated with the Dual Partition Flash Program Memory is provided in Table 6-1.

Table 6-1: Special Function Registers Associated with Flash Program Memorym
File Name Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 ResI:Itls(z)

TBLPAG — — — — — — — — Table Page Address Pointer 0000
NVMCON WR WREN | WRERR |NVMPIDL | SFTSWP | P2ACTIV | RPDF URERR — | — | — | — | NVMOP[3:0] 0000
NVMKEY — — — — — — — — NVMKEY[7:0] 0000
NVMSRCADRL Data RAM Programming Buffer Start Address 0000
NVMSRCADRH Data RAM Programming Buffer Address (EDS Operations Only) 0000
NVMADRL Flash Program Memory Destination Address, Lower Byte (ADDR[15:0]) 0000
NVMADRH — — — — — — — — | Flash Program Memory Destination Address, Upper Byte (ADDR[23:16]) 0000
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

Note 1: Please refer to the device data sheet for specific memory map details.
2: Reset value shown is for POR only. Value on other Reset states is dependent on the state of the memory write or erase operations at the time of Reset.

Aoway weiabouad yse|4 uoniued jeng

dsPIC33/PIC24 Family Reference Manual

7.0 RELATED APPLICATION NOTES

This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the PIC24 or dsPIC33 product families, but
the concepts are pertinent and could be used with modification and possible limitations.

The current application notes related to the Dual Partition Flash Program Memory are:

Title

No related application notes at this time.

Application Note #

Note: Please visit the Microchip website (www.microchip.com) for additional Application
Notes and code examples for the PIC24 and dsPIC33 families of devices.

DS70005156C-page 30

© 2014-2021 Microchip Technology Inc. and its subsidiaries

http://www.microchip.com
http://www.microchip.com

Dual Partition Flash Program Memory

8.0 REVISION HISTORY
Revision A (March 2014)

Original version of this document.

Revision B (February 2015)

Changed the title and all instances of the phrase, “Dual Boot Flash Program Memory” to “Dual
Partition Flash Program Memory” or “Dual Partition Flash”.

Revision C (November 2021)

Added 4.1.1.1 “Disabling Interrupts”.

Updated 4.1.1 “Control Registers”, 4.4.2 “Row Programming (Active Partition, Standard
Partition Mode)”, 4.4.3 “Programming a Page in the Inactive Partition (Dual Partition
Modes)” and 4.4.4 “Programming the Entire Inactive Partition (Dual Partition Modes)”.

Updated Example 4-5, Example 4-6 and Example 4-7.

© 2014-2021 Microchip Technology Inc. and its subsidiaries DS70005156C-page 31

dsPIC33/PIC24 Family Reference Manual

NOTES:

DS70005156C-page 32 © 2014-2021 Microchip Technology Inc. and its subsidiaries

Note the following details of the code protection feature on Microchip products:

. Microchip products meet the specifications contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and

under normal conditions.

. Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of
Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
mean that we are guaranteeing the product is “unbreakable”. Code protection is constantly evolving. Microchip is committed to
continuously improving the code protection features of our products.

This publication and the information herein may be used only
with Microchip products, including to design, test, and integrate
Microchip products with your application. Use of this informa-
tion in any other manner violates these terms. Information
regarding device applications is provided only for your conve-
nience and may be superseded by updates. It is your responsi-
bility to ensure that your application meets with your
specifications. Contact your local Microchip sales office for
additional support or, obtain additional support at https:/
www.microchip.com/en-us/support/design-help/client-support-
services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS".
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,
RELATED TO THE INFORMATION INCLUDING BUT NOT
LIMITED TO ANY IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE, OR WARRANTIES RELATED TO
ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-
RECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSE-
QUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY
KIND WHATSOEVER RELATED TO THE INFORMATION OR
ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS
BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES
ARE FORESEEABLE. TO THE FULLEST EXTENT
ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON
ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION
ORITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF
ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP
FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applica-
tions is entirely at the buyer's risk, and the buyer agrees to
defend, indemnify and hold harmless Microchip from any and
all damages, claims, suits, or expenses resulting from such
use. No licenses are conveyed, implicitly or otherwise, under
any Microchip intellectual property rights unless otherwise
stated.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan,
big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart,
DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON,
POP, RealView, SecurCore, Socrates, Thumb, TrustZone,
ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, uVision,
Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere.

For information regarding Microchip’s Quality Management Systems,
please visit www.microchip.com/quality.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec,
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud,
CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO,
JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus,
maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo,
MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower,
PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch,
SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash,
Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O,
Vectron, and XMEGA are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions
Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight
Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3,
Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-
Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,
TimePictra, TimeProvider, TrueTime, WinPath, and ZL are
registered trademarks of Microchip Technology Incorporated in the
U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, Anyln, AnyOut, Augmented Switching, BlueSky,
BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive,
CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net,
Dynamic Average Matching, DAM, ECAN, Espresso T1S,
EtherGREEN, GridTime, IdealBridge, In-Circuit Serial
Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip
Connectivity, JitterBlocker, Knob-on-Display, maxCrypto, maxView,
memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo,
MPLIB, MPLINK, MultiTRAK, NetDetach, NVM Express, NVMe,
Omniscient Code Generation, PICDEM, PICDEM.net, PICKkit,
PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple
Blocker, RTAX, RTG4, SAM-ICE, Serial Quad 1/O, simpleMAP,
SimpliPHY, SmartBuffer, SmartHLS, SMART-1.S., storClad, SQl,
SuperSwitcher, SuperSwitcher I, Switchtec, SynchroPHY, Total
Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY,
ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks
of Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage
Technology, Symmcom, and Trusted Time are registered
trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany
11 GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in
other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2014-2021, Microchip Technology Incorporated and its subsidiar-
ies.

All Rights Reserved.

ISBN: 978-1-5224-9313-6

© 2014-2021 Microchip Technology Inc. and its subsidiaries

DS70005156C-page 33

www.microchip.com/quality
www.microchip.com/quality
https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services

MICROCHIP

Worldwide Sales and Service

AMERICAS

Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support

Web Address:
www.microchip.com

Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, Ml
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN

Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC

Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing

Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing

Tel: 86-25-8473-2460
China - Qingdao

Tel: 86-532-8502-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenyang
Tel: 86-24-2334-2829

China - Shenzhen
Tel: 86-755-8864-2200

China - Suzhou
Tel: 86-186-6233-1526

China - Wuhan

Tel: 86-27-5980-5300
China - Xian

Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore

Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei

Tel: 886-2-2508-8600

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-72400

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7288-4388

Poland - Warsaw

Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham

Tel: 44-118-921-5800
Fax: 44-118-921-5820

DS70005156C-page 34 © 2014-2021 Microchip Technology Inc. and its subsidiaries

09/14/21

http://support.microchip.com
http://www.microchip.com

	Dual Partition Flash Program Memory
	Highlights
	1.0 Introduction
	2.0 Program Memory Architecture
	2.1 Vector Area
	2.1.1 Alternate Vector Interrupt Table
	Figure 2-1: Default Program Space Memory Map for dsPIC33 and PIC24 Devices
	Figure 2-2: Vector Area Detail

	2.2 Code Area
	2.2.1 Flash Configuration Data
	Figure 2-3: Flash Configuration Words

	2.3 Memory Organization
	Figure 2-4: Program Memory Organization
	2.3.1 Addressing Program Memory

	3.0 Program Memory Partition Flash Operation
	Table 3-1: Flash Partition Options
	3.1 Standard (Single Partition) Mode
	3.2 Dual Partition Modes
	3.2.1 Dual Partition Mode
	3.2.2 Protected Dual Partition Mode
	3.2.3 Privileged Dual Partition Mode
	Figure 3-1: Standard and Dual Partition User Memory Space Map

	3.2.4 Selecting a Code Partition
	Figure 3-2: FBTSEQ in Relationship to Other Configuration Words (Dual Partition Modes Only)
	Figure 3-3: Comparing Partition Swap Methods

	4.0 Flash Memory Programming
	4.1 Registers
	4.1.1 Control Registers
	Example 4-1: Disabling Interrupts with GIE Bit

	4.1.2 Address Registers
	Register 4-1: NVMCON: Flash Programming Control Register
	Register 4-2: NVMKEY: Nonvolatile Memory Key Register

	4.2 Table Operation Instructions
	4.2.1 Address Generation for Table Operations
	Figure 4-1: Addressing for Table Registers

	4.2.2 Low Word Access
	Figure 4-2: Program Data Table Access (Low Word)

	4.2.3 High Word Access
	Figure 4-3: Program Data Table Access (High Word)

	4.2.4 Data Storage in Program Memory
	4.2.5 Program Memory Bit Behavior
	4.2.6 Using Table Read Instructions
	Example 4-2: Read Word Mode (in Assembly)
	Example 4-3: Read Word Mode (in C)

	4.2.7 Table Write Holding Latches
	Example 4-4: Two-Word Write Example (in Assembly)
	Example 4-5: Two-Word Write Example (in C)

	4.3 Run-Time Self-Programming (RTSP)
	4.3.1 Row Programming Using Write Holding Latches
	Example 4-6: Row Programming with Write Latches (in C)

	4.3.2 Row Programming Using the RAM Buffer
	Figure 4-4: Uncompressed and Compressed Storage Formats for Program Data
	Example 4-7: Writing Program Memory from a Data RAM Buffer (in C)

	4.4 General Flash Programming Algorithms
	4.4.1 Erasing Program Memory (Active Partition)
	4.4.2 Row Programming (Active Partition, Standard Partition Mode)
	4.4.3 Programming a Page in the Inactive Partition (Dual Partition Modes)
	4.4.4 Programming the Entire Inactive Partition (Dual Partition Modes)
	4.4.5 Updating the Active Partition Using a Bootloader

	5.0 Program Space Visibility and Extended Data Space (PSV and EDS)
	5.1 PSV and Instruction Stalls

	6.0 Register Map
	Table 6-1: Special Function Registers Associated with Flash Program Memory(1)

	7.0 Related Application Notes
	8.0 Revision History
	Revision A (March 2014)
	Revision B (February 2015)
	Revision C (November 2021)

	Worldwide Sales and Service

