AVR32120: AVR32 ABDAC audio bitstream DAC A mEl

) — /&
driver example

32-bit AVR

Features Microcontrollers

e 16-bit stereo digital-to-analog converter.

e 20 Hzto 20 kHz frequency range +- 2.5 dB.
« High impedance output.

Application Note

1 Introduction

This application note describes how to use the ABDAC peripheral on AVR®32
devices. This DAC is suitable for generating audio playback. By using the generic
clock interface, the ABDAC is capable of supporting a wide range of playback
frequencies.

Also included with this application note is an example ABDAC driver for a
standalone development. The example driver outputs a sinus waveform from the
ABDAC.

Rev. 32079C-AVR32-03/08

AIMEL

@

ATmEL

2 Functional description

2.1 Generic clock

2.2 Channels

2 AVR32120

For detailed description of the ABDAC peripheral see the datasheet of the device.

The ABDAC is a very simple peripheral and its use is straight forward. It needs a
clock signal provided from the generic clock system and data input to the channels.
See the block diagram in Figure 2-1 to get an overview of the module.

Figure 2-1. Clock and data path block diagram.

[

Channel 0

DATA p» ABDAC

Channel 1

GCLK 256 * sample rateJA T

The ABDAC uses a generic clock to provide the sample frequency. This generic clock
is hard wired inside the device and must be 256 times the sample frequency.

The generic clock should be configured and enabled before the ABDAC is enabled.
For a description of which generic clock is used see the clock section in the datasheet
of the device. Further configurations of the generic clock are also described in this
section.

The generic clock output range may be limited by its source clock frequency, it is
therefore vital to design in an oscillator which is able to provide a base frequency that
is dividable by the generic clock divider in order to reach the required output sample
rate. See Table 2-1 for examples.

Table 2-1. Base frequencies needed for an output sample rate.

Output sample rates OSC or PLL frequency GCLK divider
48000 Hz, 240000 Hz, 12000 Hz 24.576 MHz 2,4,8
44100 Hz, 22050 Hz, 11025 Hz 22.5792 MHz 2,4,8
32000 Hz, 16000 Hz, 8000 Hz 16.384 MHz 2,4,8

When the ABDAC is enabled it expects the Sample Data Register (SDR) to be
updated at the same interval as the output sample rate. Both channels can be
updated with one write instruction, since they are in the same 1/O register (SDR).

If the sample data register is not updated within 256 clock cycles from the generic
clock input to ABDAC, the UNDERRUN bit will be set in the Interrupt Status Register
(ISR). Underruns are a sign of too much CPU load and therefore the application
should be implemented by using interrupts, or even better, direct memory access
(DMA) if available in the device.

32079C-AVR32-03/08

2.3 Interrupts

2.4 DMA

AVR32120

There are two interrupts available to offload the CPU.

The TX_READY interrupt can be used as a trigger to signal that the next sample for
each channel can be written.

The application should also enable the UNDERRUN interrupt to handle underruns
when filling the Sample Data Register (SDR). Underruns will cause glitches and noise
on the output signals.

If the underrun interrupt trigger, it is a sign of CPU overloading because the
application was not able to provide the data in time.

The ABDAC may be connected to a DMA controller on the device. This will offload
the CPU when transferring data from a buffer in RAM to the ABDAC. The application
will only need to fill a buffer and pass the buffer address to the DMA controller.

Triggers for when a buffer is complete will let the application know when to pass a
new buffer to the DMA controller.

The underrun interrupt is vital for DMA transfers as it will indicate that the data busses
in the device are overloaded or the DMA transfer to the ABDAC does not have
enough priority.

3 Electrical connection

32079C-AVR32-03/08

The output from the device is not intended for driving headphones or speakers. The
pads are limiting the maximum amount of current. In the majority of all practical
cases, this will not be enough to drive a low impedance source.

Because of this limitation, an external amplifier should be connected to the output
lines to amplify these signals. This amplifier device could also be used to control the
volume.

For testing purposes a line in or microphone input on a sound system can be used to
evaluate the output signal.

AIMEL 3

L JO

ATmEL

3.1 Passive filter

For connecting the ABDAC to high impedance devices, like line in on an amplifier, a
passive filter should be added. See Figure 3-1 for an example schematic.

Figure 3-1. Line out with passive filter schematic

1uF Lowpass filter DATA[0]
€ i
9 L 220pF 20k ohm
L DATANIO]
| A
=
R
5 /| DATA[1]
[
I DATANI[1]

4 AVR32120

32079C-AVR32-03/08

3.2 External amplifier

AVR32120

An external amplifier is required if the ABDAC is driving low impedance headphones
or speakers directly. See Figure 3-2 for an example schematic using Texas
Instruments™ TPA152 stereo audio amplifier.

Figure 3-2. High power output with external amplifier schematic

1

=100 ohm = 20k ohm
\)| \
330uF 8 TPA152 1| 20k ohm 1ﬁ|: Lowpass filter
- Vol i
20k ohm L 220pF 20k ohm
7 2
1l 1 T GND MUTE
5l T 10uF T 100nF L 1F
Aoy 5Ve VDD BYPASS I I —
R
5 4
= | Vo2 IN2- f T
330uF 20k ohm 1F 220pF 20k ohm
=100 ohm = 20k ohm 20K ohm I

1

B Optional resistors

4 Driver implementation

4.1 Files

4.2 Example code

32079C-AVR32-03/08

DATA[O]

DATAN[O]

DATA[1]

DATAN[1]

The driver consists of two files “abdac.c” and “abdac.h”. Where “abdac.h” declares all
functions and “abdac.c” contains the source code. The only change needed in the
driver is to specify the target device.

The target device is specified at the top in “abdac.h”.

The example code for the driver outputs a sinus wave on both DAC channels. This
output is enabled by a user input on a GPIO line. The wiring information is included in
the Doxygen documentation, see page 6.

The example code is targeted for ATSTK®1000, but can, with some tweaking, work
with any AVR32 devices with an ABDAC.

Figure 4-1 shows the flow of the example application. The application is implemented
by polled function calls to make it less dependant on other modules.

ATMEL

—

ATMEL

Figure 4-1. ABDAC example application flowchart.

<pio_enable_module>
v

Cabdac_set_dac_hz)

e
b4
SWO0 s
pressed? y
playing? n
yes
v
playing =0 playing = 1
no Turn LEDO off Turn LEDO on
v v
< abdac_disable > < abdac_enable >
b4
playing? yes—i
< abdac_sink >
no
Yo |

<

4.3 Doxygen documentation

All source code is prepared for doxygen automatic documentation generation.
Premade doxygen documentation is also available within the source code included
with this application note. It is located in doxygen/index.html.

Doxygen is a tool for generating documentation from source code by analyzing the
source code and using known keywords. For more details see
http://www.stack.nl/~dimitri/doxygen/.

6 AVR32120

32079C-AVR32-03/08

5 Further reading

5.1 DMA Controller

5.2 Interrupt

32079C-AVR32-03/08

AVR32120

The DMA controller can offload the CPU while outputting data from the ABDAC. For
more information about the DMA controller see the appropriate chapter in the
datasheet for the AVR32 device.

The ABDAC interface has an interrupt line connected to the interrupt controller (IC).
Handling the ABDAC interrupt requires programming the IC before configuring the
ABDAC.

For more information and details about the interrupt controller see application note
AVR32101 — The AVR32 Interrupt Controller.

AIMEL 7

L JO

AIMEL

Y ()

Headquarters

International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA

Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Atmel Asia

Room 1219

Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon

Hong Kong

Tel: (852) 2721-9778

Fax: (852) 2722-1369

Product Contact

Atmel Europe

Le Krebs

8, Rue Jean-Pierre Timbaud
BP 309

78054 Saint-Quentin-en-
Yvelines Cedex

France

Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa

Chuo-ku, Tokyo 104-0033
Japan

Tel: (81) 3-3523-3551

Fax: (81) 3-3523-7581

Web Site
www.atmel.com

Technical Support
avr32 @atmel.com

Sales Contact
www.atmel.com/contacts

Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR®, STK® and others, are the registered
trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

32079C-AVR32-03/08

	1 Introduction
	2 Functional description
	2.1 Generic clock
	2.2 Channels
	2.3 Interrupts
	2.4 DMA

	3 Electrical connection
	3.1 Passive filter
	3.2 External amplifier

	4 Driver implementation
	4.1 Files
	4.2 Example code
	4.3 Doxygen documentation

	5 Further reading
	5.1 DMA Controller
	5.2 Interrupt

