

8-bit
Microcontrollers

Application Note

AVR132: Using the Enhanced Watchdog Timer

Features
• Watchdog System Reset Source
• Parameter Backup Prior to Watchdog System Reset
• Wakeup Timer from all Sleep Modes

• Using the Watchdog for Both Wakeup and System Reset
• Handling the Watchdog Reset Flag
• Changing the Watchdog Configuration

 • Flowcharts for Watchdog Operation
• Example Source Code

Rev. 2551C-AVR-06/08

1 Introduction
“Well designed watchdog timers fire off every day, quietly saving systems and lives
without the esteem offered to human heroes.” - Jack Ganssle.

No piece of software, save the very smallest, is free from bugs. The application
could get stuck in endless loops. Unexpected error codes could cause serious
problems if not handled correctly. Electrical noise or an unusual sequence of
external events could put the system in a state not thought of by the designers. All
these cases could potentially hang the system forever or cause serious damage to
its surroundings. Automatic handling and recovery of such cases is the job of a
watchdog timer.

The Enhanced Watchdog Timer (WDT) runs independent of the rest of the system,
causing system resets whenever it times out. However, the application software
should ensure that the timeout never occurs by resetting the WDT periodically as
long as the software is in a known healthy state. If the system hangs or program
execution is corrupted, the WDT will not receive its periodic reset, and will
eventually time out and cause a system reset.

The WDT in all new AVR devices also has the ability to generate interrupts instead
of resetting the device. Since the WDT runs from its own independent clock, it can
be used to wake up the AVR from all sleep modes. This makes it an ideal wakeup
timer, easily combined with ordinary operation as a system reset source. The
interrupt can also be used to get an early warning of an upcoming Watchdog
System Reset, so that vital parameters can be backed up to non-volatile memory.

2 AVR132
2551C-AVR-06/08

2 Theory of operation
When the Enhanced Watchdog Timer (WDT) period has expired, a WDT timeout
occurs. The timeout period is adjusted using a configurable prescaler, which divides
the WDT oscillator clock by a constant factor. Executing the WDR (Watchdog Reset)
instruction resets the timer value. The application software using the WDT must be
designed so that it executes the WDR instruction periodically whenever it decides that
the system still operates correctly. The timer value is automatically reset on system
reset and when disabling the WDT.

The Enhanced Watchdog Timer has three modes of operation. When operating in
WDT System Reset Mode, a WDT timeout causes a system reset. If WDT Interrupt
Mode and global interrupts are enabled, a WDT timeout sets the WDT Interrupt Flag
and executes the WDT Interrupt handler, instead of resetting the system. If both WDT
System Reset Mode and WDT Interrupt Mode are enabled, the first WDT timeout is
handled as if only WDT Interrupt Mode was enabled. Then WDT Interrupt Mode is
disabled automatically and the WDT is back in only WDT System Reset mode.

Figure 2-1 shows what happens when a WDT timeout occurs. The dotted boxes
describe actions performed by the system. The solid lined boxes describe actions to
be performed by the application

When using the Enhanced Watchdog Timer it is important to know that if the
Watchdog Always On (WDTON) fuse is programmed, the only possible operation
mode is WDT System Reset Mode. This security feature prevents software from
enabling the WDT Interrupt Mode unintentionally, which could disable the WDT
System Reset functionality. When the WDTON fuse is unprogrammed, the WDT
Interrupt Mode can be used as described in this document.

As mentioned above, the WDT is independent from the rest of the system. It has its
own internal 128 kHz oscillator, which runs as long as one of the WDT operating
modes is enabled. This ensures safe operation even if the main CPU oscillator fails.

Note that, even if the software designers never intended to use the WDT, it could be
enabled unintentionally, e.g. by a runaway pointer or brown-out condition. If the WDT
is enabled unintentionally it will remain enabled until the firmware disables it since a
System Reset caused by the WDT will not disable the WDR. System Resets not
caused by the WDT will reinitialize the WDT to the default configuration according to
the fuse settings. The automatic “re-enabling” of the WDT in case of a WDT System
Reset is a safety feature to ensure reliable Watchdog functionality. Therefore the
startup code should always check the Reset Flags and take appropriate action if a
WDT System Reset has occurred, even if the application does not use the WDT.

The various settings and functions can be combined to use the WDT for different
purposes. The most important setups are described in the following sections.

 AVR132

Figure 2-1. Event sequence when a WDT time out.
WDT timeout

WDT Interrupt Flag set

WDT Interrupt
Mode enabled ?

Global Interrupts
enabled ?

WDT Interrupt Flag
cleared

WDT System Reset

WDT Reset Flag set

Continue

Yes No

Yes

No

Execute WDT
Interrupt Handler

WDT System Reset
Mode enabled

WDT System Reset
Mode enabled ?

WDT Interrupt Mode
disabled

Yes

No

Flag is not cleared if
global interrupts are
disabled

Configuring the WDT to work as a system reset source only, is straightforward.
Enable the WDT System Reset Mode, set a reasonable timeout delay and off you go.
If your initialization routines take longer than the WDT timeout period, they should
execute the WDR instruction at appropriate checkpoints during execution. If not, the
code will never reach its main loop before the WDT resets the system.

The timeout period must be chosen so that it is longer than the longest possible
execution path through the main loop of your application. This includes expected
interrupt handlers as well. If your main loop is very large, several checkpoints could
be inserted inside the loop to allow a shorter timeout period.

Choosing the correct timeout period requires detailed knowledge of the timing
characteristics of your main loop. In many applications, the most robust approach

 3

2551C-AVR-06/08

4 AVR132

could be to choose a timeout period of several seconds. This will at least reset the
system if it is stuck in an infinite loop.

Most embedded systems consist of some initialization code and a main loop. This
construction is also the most effective setup for use with a watchdog. An example for
using the WDT with such systems is shown in Figure 2-2.

Figure 2-2. Main loop when using the WDT System Reset mode.

Everything ok ? No

Yes

WDR

Initialization

Routine 1

Routine 2

Routine 3
Interrupt Handlers

STARTUP

WDR

Wait for
WDT System Reset

Note that if the timeout period is chosen very tight, an unusual number of interrupts
could cause a WDT System Reset. This must be taken into consideration when
choosing the timeout period.

The ‘Everything ok ?’ check at the end of the loop is the part of the loop deciding
whether the application is operating correctly or not. One solution is to use flags that
are set in different parts of the main loop to indicate ‘good health’, or that vital parts of
the code have been visited. The final check tests all flags and resets the WDT and
the flags if everything is ok. If not, a timeout will eventually occur.

The initialization code should check the WDT Reset Flag and take appropriate
actions. This is covered in more detail in section 2.4.

2551C-AVR-06/08

 AVR132

2.1 Parameter Backup Prior to WDT System Reset
The method described in the previous section does not give any warning of a coming
WDT System Reset. The application has no means of handling a timeout in software
before the system reset occurs. However, by using the WDT Interrupt Mode, the
application can use the WDT Interrupt handler for backing up vital parameters before
the actual reset.

By enabling both WDT System Reset Mode and WDT Interrupt Mode, the first timeout
will disable the WDT Interrupt Mode and run the interrupt handler. The second
timeout then causes a system reset. The interrupt handler then has one timeout
period for backing up parameters, for example, to EEPROM. The sequence of events
is shown in Figure 2-3. The dotted boxes describe actions performed by the system.
The solid lined boxes describe actions to be performed by the application.

Figure 2-3. Parameter Backup Prior to WDT System Reset.

Backup vital
parameters

1st WDT timeout

WDT Interrupt Mode
disabled

2nd WDT timeout

WDT System Reset

STARTUP

Set Write Complete Flag

Infinite loop

WDT Reset Flag set

WDT System Reset
Mode enabled

The Write Complete Flag could be a byte in EEPROM indicating whether the backup
operation was finished before the system reset. This flag is checked in the startup
code if the WDT Reset Flag is set, and the backed up parameters can be used for
restoring system state or debugging purposes. The flag should be cleared during
initialization to invalidate the parameters if other types of resets occur.

Note that there is no guarantee that the interrupt handler is executed prior to a WDT
System Reset. If interrupts are disabled too long, the interrupt handler will never
execute before the second timeout. Runaway pointers or electrical noise could also
unintentionally disable the WDT Interrupt Mode. Therefore the Write Complete Flag is
our means of knowing if the stored parameters are valid or not.

The infinite loop at the end of the interrupt handler prevents the main code from
potentially causing more damage.

 5

2551C-AVR-06/08

6 AVR132

2.2 Using the WDT Interrupt Mode
As described above, the WDT has its own internal oscillator running independently
from the main CPU clock. This makes it possible to use the WDT Interrupt as a
wakeup source from all sleep modes. By enabling only the WDT Interrupt Mode, a
timeout will generate an interrupt request, but not cause any system resets on further
timeouts.

Having a wakeup source without running the main CPU clock is an excellent way of
saving power. Using power-down sleep mode with the WDT as a wakeup source
draws approx 3µA when running at 3V supply voltage. An example on how to use the
WDT as a wakeup source is shown in Figure 2-4.

Figure 2-4. Using the WDT as a wakeup timer.
Ready to sleep

Enable sleep mode if
not already enabled

Enable interrupts if not
already enabled

Enable WDT Interrupt
Mode

SLEEP

WDT timeout wakeup

Disable WDT Interrupt
Mode

Continue

Set WDT timeout period

If periodic wakeups are preferred, the disabling of the WDT Interrupt Mode can be left
out. The WDT will then generate an interrupt on every timeout, waking up the CPU if
it is in sleep mode.

Note that the WDT System Reset Mode must not be enabled when using the WDT
solely as a wakeup timer. If it is enabled, a system reset will occur on the next
timeout. Using the WDT both as a wakeup timer and system reset source is
described in the following section.

2.3 Using the WDT in Combined Operation
It is also possible to set up the WDT to work as a wakeup timer when entering sleep
mode, and switch to WDT System Reset operation when back in active mode. With
this setup there is no need for disabling the WDT Interrupt Mode, as it is automatically
disabled by the hardware. To use the WDT as a periodic wakeup source, the
application therefore has to enable the WDT Interrupt Mode prior to entering sleep
mode every time.

2551C-AVR-06/08

 AVR132

Re-enabling the WDT Interrupt Mode inside the interrupt handler is not
recommended, as it could cause the WDT to get stuck in WDT Interrupt Mode, if
some parts of the code fail.

When the CPU is back in active mode, the WDR instruction is used for resetting the
WDT inside the main loop as described earlier. With WDT Interrupt Mode disabled,
the WDT functions just as it did without the wakeup functionality.

If timeout warning prior to system reset is needed for parameter backup etc., the
WDT Interrupt handler needs some slight changes. The interrupt handler must use a
flag to decide whether it should serve a wakeup interrupt or a timeout warning
interrupt. An example interrupt handler is shown in Figure 2-5.

Figure 2-5. Dual purpose WDT interrupt handler.

Backup vital
parameters

WDT Interrupt Handler

WDT Interrupt Mode
disabled

Set Write Complete Flag

Infinite loop

Wakeup Flag
set ?

Clear Wakeup Flag

Return

NoYes

Re-enable WDT
Interrupt Mode

SLEEP

Set Wakeup Flag

Continue

Section from main code
where entering sleep

Note that the wakeup flag must be set manually prior to entering sleep mode to
ensure that the correct part of the handler is executed on wakeup. The WDT Interrupt
Mode must be re-enabled outside the interrupt handler after serving the wakeup
interrupt.

The right branch of the flowchart is described in section 2.1.

2.4 Startup Considerations
When designing for devices having the Enhanced Watchdog Timer, it is important to
evaluate the WDT Reset Flag in the startup code. This applies even if the application
never intends to use the WDT. If the WDT System Reset Mode should unintentionally
be enabled and cause a system reset, the WDT Reset Flag will be set and the WDT
System Reset Mode is kept enabled after the system reset. Therefore the startup
code should check the WDT Reset Flag and disable the WDT System Reset Mode if
it is enabled but never used. These considerations apply when the WDTON fuse is
unprogrammed only. If the WDTON fuse is programmed, the WDT System Reset
Mode is always enabled. How to change the fuse settings is described in the device
datasheets.

 7

2551C-AVR-06/08

8 AVR132
2551C-AVR-06/08

If the WDT is intentionally used in the application and a system reset occurs, the
startup code should have a scheme for handling the WDT Reset Flag. The easiest
solution is to just ignore the flag and continue as usual. This approach saves the
system from bugs appearing occasionally, but has no way of handling repeated or
persistent errors.

A possible extension is to keep a WDT system reset counter in non-volatile memory.
The startup code should then shut down the system safely and notify the operator if
this counter exceeds a predefined limit. Using some sort of system clock tick (backed
up in non-volatile memory), the startup code can also try to detect repeated resets
over a fixed period of time.

If parameter backup is used, the startup code should check the Write Complete flag
described in the Parameter Backup section and try to restore the system to a safe
state, or at least be able to supply some debugging information to the operator.

2.5 Changing the WDT Configuration
To prevent accidental changes to the WDT configuration, special timed sequences
are needed to disable WDT System Reset Mode or change the timeout period.

To disable the WDT System Reset Mode, the Watchdog Change Enable bit must be
set within four CPU clock cycles prior to the disabling. If not, the WDT System Reset
Mode will stay enabled. If the WDTON fuse is programmed the WDT System Reset
Mode is always enabled.

To change the timeout period, the Watchdog Change Enable bit must be set within
four CPU clock cycles prior to changing the timeout value. It is however not
recommended to change the timeout period during normal operation. This should be
done once in the initialization code.

If the WDTON fuse is unprogrammed on ATtiny13 and ATtiny2313, it is possible to
change the WDT timeout period without following the timed sequence.

Changing the WDT Interrupt Mode setting or enabling the WDT System Reset Mode
needs no special considerations.

Interrupts should be disabled when changing the configuration. This ensures that no
interrupts occur, causing the 4-cycle limit to expire.

Flowcharts for changing the WDT configuration are shown in Figure 2-6.

 AVR132

Figure 2-6. Timed sequences for changing the WDT configuration.
Disable WDT System Reset

Mode

Disable interrupts

Set Watchdog
Change Enable bit

Clear WDT System
Reset Enable bit within

4 cycles

Enable interrupts

Continue

Change WDT timeout period

Disable interrupts

Set Watchdog
Change Enable bit

Change WDT Prescaler
settings within 4 cycles

Enable interrupts

Continue

3 Implementation
This application note provides three code examples written in C. They are all
designed for the ATtiny13 device placed on the STK®500 development board or
similar. The ports PB0 and PB1 are connected to a ready-LED and a failure-LED
respectively, and PB2, PB3 and PB4 are connected to three of the STK500 switches.
Note that driving an output low turns on a LED, and pressing a button drives the
corresponding input low. The setup is shown in Figure 3-1.

Figure 3-1. Circuit diagram for application example.

ATtiny13

VCC

GND

PB0

PB1

PB2

PB3

PB4

~RESET

Ready

Failure

Command1

Command2

Command3

Reset

 9

2551C-AVR-06/08

10 AVR132
2551C-AVR-06/08

The examples demonstrate the following concepts:

• Using the WDT as a system reset source (section 3.1).
• Using the WDT as a Wakeup Timer (section 3.2).
• Using the WDT as a combined Wakeup Timer and system reset source with

parameter backup (section 3.3).

Note: The WDTON fuse must be unprogrammed when running the examples using the
WDT Interrupt Mode.

3.1 Using the WDT as a System Reset Source
This example implements the structure described in Figure 2-2, with an initialization
routine and a main loop with three routines and a health check at the end. Each
routine has its own health flag to indicate that everything is ok. The three routines get
a command, parse and execute it, respectively.

3.1.1 Initialization

The initialization routine has two main purposes: initializing peripherals and handling
reset flags. Its flowchart is shown in Figure 3-2. The parts inside the dashed frames
are only used in the Combined Operation code example and are described later.

 AVR132

Figure 3-2. Initialization routine when using the WDT as a System Reset source.

Any reset
flags set ?

Initialization

Save MCU status register
and clear reset flags

Enable Watchdog
Interrupt Mode

Infinite loop waiting for
WDT System Reset

No

Yes

WDT Reset
Flag set ?

Yes

No Increment Watchdog
Reset counter

Write
Complete Flag

set ?

Yes

No
Restore parameter

and clear Write
Complete Flag

Reset
count limit

exceeded?

YesNo

Return with error code
Power-up

or Ext. Reset
Flag set ?

Clear Watchdog
Reset counter

Yes

No

Return

Enable WDT System Reset
Mode and set timeout period

Only when using
Parameter Backup

Only when using
Parameter Backup

 11

2551C-AVR-06/08

12 AVR132
2551C-AVR-06/08

The first conditional branch handles the case where no reset flags are set upon
startup. Since the reset flags are always cleared in the initialization routine, this only
happens when runaway code wraps back to address 0 and runs the startup code
once again without a reset. This clearly indicates a bug or fault in software and is
handled like a WDT System Reset. The initialization routine just enters an infinite loop
and waits for the WDT to reset the device properly.

The code then checks the WDT Reset Flag. If it is set, the routine increments the
WDT Reset counter and checks it against a predefined limit. If this limit is exceeded,
the application assumes that there is a permanent repeating error and indicates this
by turning on the failure indicator LED and halting execution. By entering an infinite
loop with a WDR instruction inside, execution is effectively halted until an external
reset occurs.

Power-up or external reset events are considered to be manual intervention and the
WDT Reset counter is cleared. This makes it possible for a human operator to
manually reset an application that has been halted by too many WDT System Resets.
The operator must of course try to find the source of the WDT System Resets before
resetting. Blindly resetting and hoping for things to fix themselves is not a
recommended solution. The rest of the flowchart should be self-explanatory.

3.1.2 Communicate Command

The routine that gets a command is an example of a poorly designed communication
routine. It flashes a LED 10 times and then waits for any button to be pressed. The
problem arises when the user waits too long. A robust design should implement some
sort of timeout check and return with an error code if the communication times out.
However, this routine does not, and the WDT will reset the device if no button is
pressed within the WDT timeout period. The flowchart for the communication routine
is shown in Figure 3-3.

 AVR132

Figure 3-3. Flash LED and wait for user to press a button.

Any buttons
pressed ?

Communicate()

Flash LED 10 times

No

Yes

Save button bits

Turn off LED and wait
a number of cycles

Set health flag for
this routine

Return button bits

Potential WDT timeout here if
user waits too long before
pressing a command button

If a command button is pressed in time, the routine sets its health flag and returns the
button press bit pattern.

3.1.3 Parse Command

The command parser uses the switch keyword in C to convert the button press bit
pattern to a command code. The pattern is compared against the bit masks for each
of the command buttons. When a match is found, the command code is set
accordingly and the health flag for this routine is set.

The flowchart for the parser is shown in Figure 3-4.

 13

2551C-AVR-06/08

14 AVR132

Figure 3-4. Converting a button press pattern to a command code.

Button
bits matches

Button1 ?

Parse()

No

Set command code to
1 and set health flag

for this routine

Yes

Button
bits matches

Button2 ?

Set command code to
2 and set health flag

for this routine

Button
bits matches

Button3 ?

Set command code to
3 and set health flag

for this routine

No

Yes

No

Yes

Return command code

Note that if two or more command buttons are pressed simultaneously, the parser will
never find a match and its health flag is never set. Because if this, the health check in
the main loop will not reset the WDT, and a system reset could occur if the main loop
is not executed successfully and quickly enough a second time. This is an example
showing that unexpected inputs may cause problems if not handled by a default case
in the switch block.

3.1.4 Execute Command

In this routine, the command code decides which action to perform.

Command 1 has no particular action, but it keeps the main loop running healthy by
being a valid command. The other commands demonstrate various bugs that could
occur in real life applications.

Command 2 enables the EEPROM Ready Interrupt. This interrupt is executed
continuously as long as the EEPROM module is ready, which means always in this
case, since the EEPROM is never used after the initialization routine. The EEPROM
Ready Interrupt executing over and over slows down the main loop considerably, and
a WDT System Reset will eventually occur. Command 2 is therefore an example
showing how too many or poorly configured interrupts may slow down the main loop
too much.

Command 3 gives an example of runaway code. This example just calls a function at
an unused address. The program counter runs to the end of program memory and
wraps back to address 0. No reset flags will be set and the fault is caught safely in the
initialization routine.

2551C-AVR-06/08

 AVR132

To simulate the bad function call, the following code fragment is used: “((void(*)())
0x1FF)();“ The integer 0x1FF is converted to a pointer-to-a-function, and the
function is called. Refer to the ANSI C standard for more details on function pointers
and type conversions.

3.2 Using the WDT as a Wakeup Timer
This example only uses the WDT Interrupt Mode, and the initialization routine is thus
quite reduced. As described earlier it is important to disable the WDT System Reset
Mode upon startup even if the WDT System Reset Mode is never used. The
initialization routine is shown in Figure 3-5.

Figure 3-5. Initialization routine when using the WDT as Wakeup Timer.
Initialization

Disable WDT
System Reset Mode

Set WDT timeout period

Set Sleep Mode

Return

Enable WDT
Interrupt Mode

The main loop of this example flashes the LED connected to PB0 10 times to show
that it is awake. It then resets the WDT, enables the WDT Interrupt Mode and enters
sleep mode. When the WDT times out, it wakes up the CPU again. The interrupt
handler disables WDT Interrupt Mode, so that no unnecessary interrupts are
generated if the main loop runs long before entering sleep mode once again.

3.3 Combined Operation
The third example shows how to use the WDT both as a Wakeup Timer and system
reset source with parameter backup. It is an extended version of the first code
example, now using Command 1 to enter sleep mode.

In this example, the initialization routine includes the parts shown in dashed frames in
the flowchart. This means that the WDT Interrupt Mode is enabled and backed up
parameters are restored if the Write Complete flag is set upon startup.

The parameter to be backed up is the value of the Timer/Counter1. It has no
particular function in this application, but serves as an example of a parameter that is
cleared on reset and needs to be restored.

 15

2551C-AVR-06/08

16 AVR132
2551C-AVR-06/08

The WDT Interrupt handler is implemented as described in Dual purpose WDT
Interrupt Handler. The Sleep Enable bit is used as a Wakeup flag. When Command 1
is executed, the application resets the WDT, sets the Sleep Enable bit and then
enters sleep mode. The interrupt handler is executed when the WDT timeout wakes
up the CPU, and the Wakeup flag decides what action to take. If it is already cleared,
an error has occurred and the failure LED is lit. The rest of the interrupt handler
implementation complies with the flowchart.

The rest of the code is the same as described in the first example.

4 Literature References
• Michael Barr – Introduction to Watchdog Timers

http://www.embedded.com/story/OEG20010920S0064
• Niall Murphy – Watchdog Timers

http://www.embedded.com/2000/0011/0011feat4.htm
• Jack Ganssle – Born to Fail

http://www.embedded.com/design_library/OEG20021211S0032
• Kernighan & Ritchie – “The C Programming Language”, 2nd edition.

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR®, STK® and others, are the registered
trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

2551C-AVR-06/08

	1 0BIntroduction
	2 1BTheory of operation
	2.1 4BParameter Backup Prior to WDT System Reset
	2.2 5BUsing the WDT Interrupt Mode
	2.3 6BUsing the WDT in Combined Operation
	2.4 7BStartup Considerations
	2.5 8BChanging the WDT Configuration

	3 2BImplementation
	3.1 9BUsing the WDT as a System Reset Source
	3.1.1 12BInitialization
	3.1.2 13BCommunicate Command
	3.1.3 14BParse Command
	3.1.4 15BExecute Command

	3.2 10BUsing the WDT as a Wakeup Timer
	3.3 11BCombined Operation

	4 3BLiterature References

