@ Microsemi Application Note AC417

SmartFusion2 - Distributing and Running Code
from Multiple Memory Regions

Table of Contents

PUrpose e e 1
Introduction L 1
Resources 2
The Cortex-M3 Processor Code Space 0 i i i i i e e e e e e e 2
Linker Script L e 3
Syntax of Commands Used in this ApplicationNote 3
MEMORY Command e 3
SECTIONS Command e e e e e 4

i The Location Counter 6
EXCLUDE_FILE Command e 6
Declaring Function Pointers to Avoid Veneer Generation 7
Design Description L L e 7
Hardware Implementation L e e e e e 7
Software Implementation 12
Running the Entire Code in Fabric LSRAM [Implementation1] 12
Subroutine in eSRAM and Main Code in Fabric LSRAM [Implementation2] 14

Stack in eSRAM and Splitting the Code Between eNVM and the Fabric LSRAM [Implementation3] . 17
Running the Implementations 20
Speeding Up Code Execution by Copying into Internal SRAM at Boot-time 22

Purpose

This application note describes how to distribute the application code into different memories such as
embedded static random access memory (eSRAM), embedded nonvolatile memory (eNVM), SRAM in
fabric etc., and execute the code.

Introduction

Linker scripts are files (file extension .Id) that contain commands to direct the linker tool, Id, to generate
executable files that have data and code sections in the desired memory addresses. Linker scripts can
also produce run-time addresses (called virtual memory addresses) that are different from load memory
addresses (that is, address where the program image is loaded). This makes it possible to store the
program image(s) in one or more non-volatile memories at boot time but run these same images from
faster, volatile memories at run-time. The application developer has to write code to relocate (copy) this
image to the correct run-time address. This application note covers a number of ways the code and data
can be partitioned across various memories and describes the linker script commands involved in the
process.

SmartFusion®2 System-on-Chip (SoC) field programmable gate array (FPGA) devices integrate an
ARM® Cortex™-M3 processor, up to 512 KB of eNVM, 64 KB of eSRAM, and memory interfaces for
DDR/SDR SDRAM for program code with a field programmable fabric for user register transfer level
(RTL) implementation.

April 2014 1
© 2014 Microsemi Corporation

& Microsemi

SmartFusion?2 - Distributing and Running Code from Multiple Memory Regions

Resources
This application note is accompanied by three implementation examples targeted to the SmartFusion2.
Resources required to run these examples are detailed in Table 1.

The software example implementations accompanying this application note can be used with any

Microsemi® SoC product that uses ARM embedded processor and the Softconsole tool chain (that is,
GNU tools) with minor modifications.

Table 1« Resource Details

Resource Details Description

Hardware Resources

* SmartFusion2 development kit. Refer the Rev D or later
SmartFusion2 Development Kit User Guide for
more information

Host PC or Laptop * Windows XP SP2 Operating System - 32-bit/64-bit
* Windows 7 Operating System - 32-bit/64-bit

Software Resources

Libero® System-on-Chip (SoC) for viewing the design | 11.3

files
FlashPro Programming Software 11.3
SoftConsole 3.4

The Cortex-M3 Processor Code Space

The address range from the 0x00000000 to Ox1FFFFFFF (0.5 GB space) is the code space for the
Cortex-M3 processor. Following are the SmartFusion2 SoC FPGA memory sections for the code/data
space:

* On-chip eNVM (from 0x60000000 to 0x6007FFFF) of 256 KB for code and constant data regions
* On-chip eSRAM (from 0x20000000 to 0x2000FFFF) of 64 KB with SECDED

* On-chip FPGA fabric RAM (FPGA fabric interface controllers (FIC) region 0). This can be mapped
via FIC 0 or FIC 1. This region can be accessed by a system bus for instructions and data

» External RAM interfaced through DDR or SDR interfaces (from 0xA0000000 to OXDFFFFFFF) of
1 GB for both code and data regions

This application note focuses on the following regions:

+ eNVM from 0x60000000 to 0x6007FFFF

* Internal eSRAM at 0x2000000 (used for stack and heap)

» Internal AHB connected LSRAM using the free address space at 0x30000000
The aim is to partition the executable code into eNVM, eSRAM, and internal LSRAM

The current application note limits itself to demonstrate how this can be done during debug and
development. General guidelines are provided at the end for how to deploy such a solution (that is, a
release mode build).

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130919

& Microsemi

SmartFusion?2 - Distributing and Running Code from Multiple Memory Regions

Linker Script

Linker scripts are text files. A linker script is written as a series of commands. Each command is either a
keyword, possibly followed by arguments or an assignment to a symbol.

The main purpose of the linker script is to describe how the sections in the input files should be mapped
into the output file, and to control the memory layout of the output file (image file).

An executable and linkable format (ELF) file is an example of an object file. Object files participate in
program linking (building a program) and program execution (running a program). Object files are
created by the assembler and link editor. The object files are binary representations of programs that are
intended to be executed directly on a processor.

The GNU linker tool, 1d, combines a number of object and archive files, relocates their data, and ties up
symbol references. Usually the last step in compiling a program is to run 1d. The purpose of this section
is to familiarize the user with the keywords necessary for implementation. For a comprehensive list, refer
to the 1d manual: https://sourceware.org/binutils/docs/ld/

The most fundamental command for 14 is the SECTIONS command which specifies the output sections.
Every meaningful linker script must have a SECTIONS command. It specifies a picture of the output file’s
layout, in varying degrees of detail.

The MEMORY command complements SECTIONS command by describing the available memory in the
target architecture. This command is optional.

Comments may be included in linker scripts just as in C: delimited by ‘/* and /. As in C, comments are
syntactically equivalent to whitespace.

Syntax of Commands Used in this Application Note

This section covers the following commands required to understand the examples provided along with
this application note.

MEMORY Command

SECTIONS Command

' : The Location Counter

EXCLUDE_FILE Command

MEMORY Command

The MEMORY command describes the location and size of blocks of memory in the target system. This
command specifies details of the memory regions that may be used by the linker, and the ones it must
avoid. Though the linker does not shuffle sections to fit into the available regions, it does move the
requested sections into the correct regions and issues errors when the regions become too full.

The following section from GNU linker document explains the command syntax.

MEMORY

{
name (attr) : ORIGIN = origin, LENGTH = len

}
where,

name is the name used internally by the linker to refer to the region. Any symbol name may be used.
The region names are stored in a separate name space, and do not conflict with symbols, file names, or
section names. Distinct names should be used to specify multiple regions.

(attr) is an optional list of attributes. Valid attribute lists must be made up of the characters "LIRWX".
If the attribute list is omitted, the parentheses around it must be omitted as well.

origin is the start address of the region in physical memory. It is an expression that must evaluate to
a constant before memory allocation is performed. The keyword ORIGIN may be abbreviated to org or
o (but not, for example, 'ORG’).

len is the size in bytes of the region (an expression). The keyword LENGTH may be abbreviated to
‘len’ or ‘I

https://sourceware.org/binutils/docs/ld/

& Microsemi

SmartFusion?2 - Distributing and Running Code from Multiple Memory Regions

For example, consider the following line taken from the linker script contained in the design files used to
run the entire code from Fabric SRAM [Implementation1].

Example 1

MEMORY

{

ram (rwx) : ORIGIN = 0x30000000, LENGTH = 16k /* fabric SRAM address and length*/
esram (rwx) : ORIGIN = 0x20000000, LENGTH = 64k

}

In example 1, two memory regions are defined: one for storing code (ram), and another for stack
(esram) .Once a memory region is defined, '>region’ directs the linker to place specific output sections
into that memory region.

For example, if there is a memory region named ram, use ' >ram’ in the output section definition.

If no address is specified for the output section, the linker sets the address to the next available address
within the memory region. If the combined output sections directed to a memory region are too large for
the region, the linker issues an error message.

See the example below:

.data :

{

__data load = LOADADDR (.data);
_sidata = LOADADDR (.data);
~_data start = .;

_sdata = .;

KEEP (* (.jcr)

*(.got.plt) *(.got)

*(.shdata)

(.data .data. .gnu.linkonce.d.*)
. = ALIGN (4);

_edata = .;

} >ram

In the above example, the .data section is loaded into a memory region called ram. This region would
be defined earlier in the linker script using the MEMORY command.

SECTIONS Command

The SECTIONS command controls how the input sections are combined into output sections, as well as
their order in the output file. A maximum of one SECTIONS command may be used in a script file, but it
can have as many statements within it. Statements within the SECTIONS command can do one of three
things:

+ Define the entry point

* Assign a value to a symbol

» Describe the placement of a named output section, and which input sections go into it

The SECTIONS command is written as the keyword SECTIONS, followed by a series of symbol
assignments and output section descriptions enclosed in curly braces.

The most frequently used statement in the SECTIONS command is the section definition, which specifies
the properties of an output section: its location, alignment, contents, fill pattern, and target memory
region. Most of these specifications are optional; the simplest form of a section definition is:

SECTIONS {

secname : {

contents

}

e}
where,
secname is the name of the output section
contents specifies what goes in the output section, for example, a list of input files or sections of input
files.

& Microsemi

SmartFusion?2 - Distributing and Running Code from Multiple Memory Regions

For example, let’s suppose, code (that is, the text section) needs to be loaded at 0x20000000, and the
data section needs to be loaded at the 0x30000000 location, which are the RAM and eSRAM memory
regions as declared in the memory command in memory section. Below is a linker script that performs
the task:

Example 2

SECTIONS

{

.text

{

CREATE OBJECT_ SYMBOLS

__text load = LOADADDR(.text);
__text start = .;
___vector table vma base address = .;
*(.isr_vector)

*(.text)

} >esram

.data :

{

__data load = LOADADDR (.data);
_sidata = LOADADDR (.data);
__data_start = .;

_sdata = .;

KEEP (* (.jcr))

*(.got.plt) *(.got)

*(.shdata)

(.data .data. .gnu.linkonce.d.*)
. = ALIGN (4);

_edata = .;

} >ram }

Here, by using the ">’ token at the end of .data, the linker is directed to place the .data in the specified
memory region ram. Similarly, “. text” is placed in eSRAM.

The first line defines an output section, ‘. text’. The colon following the . text is required syntax that may
be ignored for now. Within the curly braces after the output section name, list the names of the input
sections that must be placed into this output section. The ' is a wildcard that matches any file name. The
expression (. text) means all ’.text’ input sections in all input object (that is, .0) files. This text section is
loaded into the eSRAM location (>eSRAM) that starts at 0x20000000. The data section is loaded at the
ram location (>ram) that starts at 0x30000000.

& Microsemi

SmartFusion?2 - Distributing and Running Code from Multiple Memory Regions

’a’ : The Location Counter

The special linker variable dot '." always contains the current output location counter. Since the
always refers to a location in an output section, it must always appear in an expression within a
SECTIONS command. The ’.” symbol may appear anywhere that an ordinary symbol is allowed in an
expression, but its assignments have a side effect. Assigning a value to the ’.” symbol causes the
location counter to be moved. This may be used to create holes in the output section and place the

data/code at a specific location. The location counter may never be moved backwards.

Example 3

SECTIONS

{

.text :

{

filel (.text)

.= . + 1000;

file2 (.text)

. += 1000;

file3 (.text)

} = 0x1234;
}

In the example 3, file1 is located at the beginning of the .text section, followed by a 1000 byte gap.
Then file2 appears, also with a 1000 byte gap following before file3 is loaded. The notation '= 0x1234’
specifies the data that is to be written (filled) in the gaps.

EXCLUDE_FILE Command

Let's consider the .text : { *(.text) } componentfrom the previous example (example 2).
Here, * is a wildcard that matches any filename, hence, in the above example, it includes all input
‘.text’ sections from all input object files.

In this application note, for implementation2 and implementation3, we need subroutine to be excluded
from the list, so that it can be loaded into a different memory location. So, the EXCLUDE_FILE is used to
exclude the particular subroutine.o file from loading into the text section.

* (EXCLUDE_FILE (*subroutine.o) .text.*)
In the above command all files are loaded except files that match *subroutine.o.

To load subroutine.o file into the LSRAM in the fabric, use:

.mytext
{
subroutine.o (.text.)
} >lsram
Here, LSRAM is a section in memory that needs to be defined using the MEMORY command, covered
earlier in the document.

& Microsemi

SmartFusion?2 - Distributing and Running Code from Multiple Memory Regions

Declaring Function Pointers to Avoid Veneer Generation

Veneers are small sections of code generated by the linker and inserted into your program. ’armlink’
generates veneers when a branch involves a destination beyond the branching range of the current
range.

In implementation2 and implementation3), this is certain when the code is partitioned across regions
starting at 0x20000000 and 0x30000000.

The range of a branch long (BL) instruction is 32 MB for ARM and 4 MB for Thumb. A veneer can,
therefore, extend the range of the branch by becoming the intermediate target of the instruction and then
setting the PC to the destination address.

The disadvantage with veneers is that single stepping through a function located beyond the range of the
BL instruction becomes impossible. This happens because the entire function is executed in the veneer
function called. To enable debugging code partitioned across many regions spaced far apart, function
pointers have to be used to call the function. Using this approach, the function then can be single
stepped while debugging.

Design Description

The design example in this application note uses MSS, FIC, AHBLSRAM, eSRAM, and eNVM memory.
The design consists of MSS with FIC_0 enabled for AHB master interface. AHBLSRAM has been
instantiated with the size of 16 K locations of 32 bits each. Fabric oscillator is used as a clock source,
which is then given to the FCCC. The output of FCCC is the clock for the MSS. CoreAHBLite is
instantiated to connect the FIC_O and AHBLSRAM.

Hardware Implementation

The hardware implementation involves configuring MSS, Fabric, CCC, oscillator, sysreset, and
AHBLSRAM. Figure 1 shows the top level SmartDesign of the application.

Linker_Design_MSS_0

MCCC_CLK_BASE MMUART_0_PADSE@--===-=-= -@ENNUART 0 DS
MCCC_CLK_BASE ALL_LOCK
MSS_RESET_N_F2M

0sC_0 FCCcC_ 0 E

<

RCOSC_25_50MHZ_CCC_OUT RCOSG_25_50MHZ_CCC_N GLO ES
F P LOCK 2

g <

o

9

i

#nl

SYSRESET_0 l
DEVRST N POWER ON_RESET | ({

i

HRESETN

REMAP_MO

CoreAHBLite_0
»

AHBSlavelnterface

COREAHBLSRAM_0

HCLK
HRESETN

Figure 1 » Top-Level SmartDesign

& Microsemi

SmartFusion?2 - Distributing and Running Code from Multiple Memory Regions

On-chip oscillator of 25/50 MHz has been configured as the source for Fabric CCC. Figure 2 shows the
Oscillator Configuration window.

& Chip Oscillators Configurator

Configuration e e
[] External Main Crystal Oscillator

MSS_CCC

Source Crystal (32kHz-20MHz) -

Freguency 20.00 MHz
Drives Fabric CCC(s) RCOSC_S0MHZ

Drives Fabric Logic

Drives Fabric CCC(s)
Drives Fabric Logic =

RCOSC_1MHZ
[~] on-chip 1 MHz RC Osdillator

Drives Fabric CCC(s)

Drives Fabric Logic

1
1
1
1
1
1
1
1
1
1
1
1
On-chip 25,50 MHz RC Oscillator :
1
1
1
1
1
1
1
1
1
1
1
1
1

|X|»moec

User Logic

FPGA Fabric

Figure 2 « Oscillator Configuration

Fabric CCC has been configured to take 50 MHz on-chip oscillator and give an output of 50 MHz at GLO.
This GLO output is used by the MSS_CCC and provides a clock of 50 MHz as shown in Figure 3 and
Figure 4 on page 9.

T ——
5] FAB CCC Configurator | B |3
Basic | Advanced PLL Options
Basic-Options
Reference Clock r N
| 50.000 MHz too Frequency Actual
| s0 [z 0000 furz
[et
[00 [z | [z
oLz
| 100 ez | |z
=
| 200 [z | |
LOCK
. J

Figure 3 « Fabric PLL Configuration

8

& Microsemi

SmartFusion?2 - Distributing and Running Code from Multiple Memory Regions

] MSS Clack Conditioning Circuitry Configurator

System Clocks \ Advanced Gptions \

Clock Source

Monitor FPGA Fabric PLL Lock (CLK_BASE_PLL_LOCK)
Cortex-M3 and MSS Main Clock

M3 CLK 50 MHz 50.000 MHz

MDDR Clocks Mss_cce
MDDR CLK =M3_CLK= |2 =}
DDR SMC FIC CLK =MDDR_CLK/ [1 -]

MSS APB_0/1 Sub-busses Clocks

¥ AEO0CK =MICK/ 50,000 MHz
¥ e ldk -MIOK/ 50,000 MHz
FPGA Fabric Interface Clocks

¥ FCOoCK =M3OK/ 50.000 MHz

FIC 1 CIK =M3_CLK/ [1 B

Lowest frequency

ccePLL

FIC_1
FPGA fabric.
sub-system

Hep v

Figure 4 « MSS CCC Configuration

MSS reset is configured to ‘Enable FPGA Fabric to MSS Reset (MSS_RESET_N_F2M)’ as shown in

Figure 5.

[Configuring RESET (MSS_RESET - 1.0.100) & =] = |

Configuration

Enable FPGA Fabric to MSS Reset (MS5_RESET_M_F2M)
Enable FPGA Fabric to M3 Reset (M3_RESET_M) |

Enable MSS to FPGA Fabric Reset (MS5_RESET_N_M2F) [

Help = [ok || concel

Figure 5 « MSS RESET Configuration

& Microsemi

SmartFusion?2 - Distributing and Running Code from Multiple Memory Regions

FIC_0 is configured to use the ABHLite master interface as shown in Figure 6.

|] MSS Fabric Interface Controller (FIC_0) Configurator

||
MSS To FPGA Fabric Interface

Advanced AHBLite Options

Expose Master Identity Port

Fabric Region 0 (0x30000000 -
Fabric Region 1 (0x50000000 -
Fabric Region 2 (0% 70000000 -
Fabric Region 3 (0x80000000 -
Fabric Region 4 (0x30000000 -
Fabric Region 5 (0xFO000000 -

Interface Type
Use Master Interface
Use Slave Interface

Use Bypass Mode (AHBLite only)

FPGA Fabric Address Regions (M55 Master View)

FIC32_0 FIC32_1
Ox3FFFFFFF) @

OxSFFFFFFF)
OxTFFFFFFF) @
OxBFFFFFFF)
OxSFFFFFFF) ()

OxFFFFFFFF))

Figure 6 * FIC Configuration

Core AHBLSRAM is configured for the space of 16 K locations of 32 bits each. The number of locations
specified should be a multiple of 2048.

Note: The LSRAM depth refers to number of locations, that is, 16 K locations of 32 bits each.

Configuring COREAHBLSRAM_O (COREAHBLSRAM - 2.0.11! =@ = |

Configuration
AHB Data Width: 32 -|
AHB Address Width: 32 |
Select SRAM Type
@ LSRAM ©) usRAM
LSRAM Depth
Mumber of bytes of memory: 15354
USRAM Depth
Mumber of bytes of memory:
Testbench: [User =] |
License:
@ RTL ©) Obfuscated
Lok [cance

Figure 7 * Fabric LSRAM Configuration

10

& Microsemi

SmartFusion?2 - Distributing and Running Code from Multiple Memory Regions

Core AHBLite is configured with a Memory space of 4 GB addressable space with 16 slots of 256 MB
each. The Selecting MO can access slot 3 under Enable Master access gives the address of slave as
0x30000000.

E Configuring CoreAHBLite_0 (CoreAHBLite - 5.0.100) = B P

Configuration -

Memory space

Memory space: | 4GB addressable space apportioned into 16 slave slots, each of size 256MB -

Address range seen by slave connected to huge (2GB) slot interface:

Allocate memary space to combined region slave

sloto: O] Slot 1@ [Slot 22 [Slot 3:

slot4: O] Slot 50 [Slote: [sot7: [

slotg:] Slotg: [Slot 10: [Slot 11: [] |
slot 12: [7] Slot 13: [Slot 14: [slot 15: []

Enable Master access

M0 can access slot 0 M1 can access slot 0: M2 can access slot 0: M3 can access slot 0:

M0 can access slot 1: M1 can access slot 1: M2 can access slot 1: M3 can access slot 1:

o @ O

M0 can access slot 2: M1 can access slot 2: M2 can access slot 2: M3 can access slot 2:

=l

M0 can access slot 3: M1 can access slot 3: M2 can access slot 3: M3 can access slot 3:

M0 can access slot 4: M1 can access slot 4: M2 can access slot 4: M3 can access slot 4:

M0 can access slot 5 M1 can access slot 5: M2 can access slot 5 M3 can access slot 5:

M0 can access slot 6: M1 can access slot 6: M2 can access slot 6: M3 can access slot 6:

M0 can access slot 7: M1 can access slot 7 M2 can access slot 7: M3 can access slot 7

M0 can access slot 8: M1 can access slot 8: M2 can access slot 8: M3 can access slot 8:

M0 can access slot 9: M1 can access slot 9: M2 can access slot 9: M3 can access slot 9:

M0 can access slot 10: M1 can access slot 10: M2 can access slot 10: M3 can access slot 10:

M0 can access slot 11: M1 can access slot 11: M2 can access slot 11: M3 can access slot 11:

OO o O 86080 0 86080 08008 3
OO o O 86080 0 86080 08008 3
OO o O 86080 0 86080 08008 3

OO OO 0 0 0 O

Figure 8 - AHBL.ite Configuration

1"

& Microsemi

SmartFusion?2 - Distributing and Running Code from Multiple Memory Regions

Software Implementation

This AN covers three ways to split the application code across the memory regions. They are:
* Running the Entire Code in Fabric LSRAM [Implementation1]
* Subroutine in eSRAM and Main Code in Fabric LSRAM [Implementation2]
« Stack in eSRAM and Splitting the Code Between eNVM and the Fabric LSRAM [Implementation3]

Running the Entire Code in Fabric LSRAM [Implementation1]

To run the entire code in Fabric LSRAM, the memory section of the linker script of eSRAM needs to be
modified. Modify the RAM origin address to 0x30000000, which is the address of the LSRAM in FABRIC,
and set the length as 16 K as LSRAM is configured for 16 K locations of 32 bits each. The following
details show how to do this.

MEMORY

{
/* SmartFusion2 internal LSRAM */
ram (rwx) : ORIGIN = 0x30000000, LENGTH = 16k
}
The following sections also need to be modified to set the stack size and address in the memory space
available.
RAM START ADDRESS = 0x30000000; /* Must be the same value MEMORY region ram ORIGIN
as above. */
RAM SIZE = 16k; /* Must be the same value MEMORY region ram LENGTH as above. */
MAIN STACK SIZE = 8k; /* Cortex main stack size. */
PROCESS STACK SIZE= 4k; /* Cortex process stack size (only available with 0S
extensions) .*/
To verify this, use the following simple application code that writes into the memory at 0x20000000
(eSRAM memory region), reads back the data from there, adds a value to it, and writes it into another
variable. Running this code displays the values getting updated.

p = 0x20000000;

*p=100;

*p+=20;

a=*p;
The disassembly window displays the address of the instructions that start from 0x30000000, which is
the address of the LSRAM.

12

& Microsemi

SmartFusion?2 - Distributing and Running Code from Multiple Memory Regions

Upon completion of this step-by-step execution, the value of variables getting updated can be seen.
Finally, the value of q will be updated to 120.

SC Debug - Linker_De:

1_MSS_CM3_app/main.c - Microsemi SoftCensole

File Edit Source Refactor Navigate Search Project Run Window Help

[mild ‘52 ﬁva%v - P~ - r¥2 v -
%% Debug 23 S EE | 32| @ ¥ = O)(®- Variables 33 %% Breakpoints| i Registers| B\ Modules| B & Y=g
4 SC Linker Design_MSS_CM3_app Debug [Microsemi Cortex-M3 Target] Narme Value

4 5 Embedded GDB (1/15/14 10:21 AM) (Suspended)

»p 0x20000000
4 o Thread [1] (Suspended) e
= 1 main(e\ranjith\linker_design\softconsole\linker_design_mss_cm3\linker_design
4 c ibero_v11.2\SoftC: y-Gee\b bi-gelb.exe (3/15)
< i v
<[0 3 (K »
1€ maine 2 _[E] debug-in-microsemi-smartfusion2-esr [l debug-in-microsemi-smartfusion2-en [€]-1 <symbol is not available> = O [B= Outline | [& Disassembly 2 el
| 1 7 1 A
\|E 2int main() 0%30000320 <main>: pusn (x7
3¢ 0x30000322 <main sub s, #12
4 0x30000324 <main+4>: edd 7, sp, #0
s int oo P = 0x20000000;
[0x30000326 <main+6>: mov.w r3, #536870912 ; 0x20000000
7 p = 0x20000000; 0%3000032a <main+10>: scr r3, [x7, #0]
s sp=100: *p=10 |
s "p+=20; 0x3000032c <main+12>: ldr r3, [r7, #0] IF
a=*p; 0x3000052e <main+l4>: mov.w r2, $100 ; O0x64
0x30000332 <main+18>: str r2, [r3, #0]
while(1) *p+=20;
| 0x30000334 <main+20>: ldr 3, [z7, #0]
¥ 0x%30000336 <mai: > lar r3, [r3, #0]

0%30000338 <mai: agd.w r2, r3, #20
0x3000033c <main+28>: ldr r3, [r7, 0] 14
0x3000033e <main+30>: str r2, [r3, #0]
0x30000340 <main+32>: ldr 3, [z7, #0]

i 0%30000342 <main+34>: ldr r3, [r3, $0] -

F ' « '

& Console 32 & Tasks| [Problems|) Executables| [J Memory. IEEIEE
Linker Design MS3_CM3_app Debug [Microsemi Cortex-MS3 Target] C:\MicrosemilLibero_vi1.2\SoftC y-G+\bi bi-gab.exe (4/15/14 10:21 AM)
te: Got packes: 'pif’ -

n* Writable Smartinsert | 14:1

Figure 9 * Softconsole Debug Showing Memory Address for Implementation1

0x30000000

Space for code, data
8K

0x300
02000

Space for stack
8 K

0x30003FFF

LSRAM

Figure 10 « Memory Map for Implementation1

13

& Microsemi

SmartFusion?2 - Distributing and Running Code from Multiple Memory Regions

Subroutine in eSRAM and Main Code in Fabric LSRAM [Implementation2]
In this implementation, the main code is loaded into the Fabric LSRAM, and the subroutine file is loaded
into the eSRAM.

Two memory regions need to be declared: one for Fabric LSRAM, and one for eSRAM with the
appropriate address and lengths as shown below.

MEMORY

{
ram (rwx) : ORIGIN = 0x30000000, LENGTH = 16k
esram (rwx) : ORIGIN = 0x20000000, LENGTH = 64k

}
We need to make the following changes, so the stack is loaded into the eSRAM:

RAM START ADDRESS = 0x20000000; /* Must be the same value MEMORY region ram ORIGIN
as above. */

RAM SIZE = 64k; /* Must be the same value MEMORY region ram LENGTH as above. */
MAIN STACK SIZE = 8k; /* Cortex main stack size. */

PROCESS STACK SIZE= 4k; /* Cortex process stack size (only available with 0S
extensions) .*/

In the text section of the linker script, everything is loaded into the LSRAM except the subroutine.o file as
shown below:

* (.text)

* (EXCLUDE_FILE (*subroutine.o) .text.*)
Another section called .mytext is declared and the subroutine.o file is loaded into the eSRAM region as
shown below:

.mytext
{

subroutine.o(.text.)

} >esram
The declared functions add, sub, and mul perform the addition, subtraction, and multiplication
respectively of two numbers.
These functions are in the subroutine.c file. To avoid the generation of veneers, declare the function
pointers to these functions as shown below.

int (*add ptr) (int , int) ;//function pointer to add
int (*sub ptr) (int , int);//function pointer to sub
int (*mul ptr) (int , int); //function pointer to mul

14

& Microsemi

SmartFusion?2 - Distributing and Running Code from Multiple Memory Regions

Run the design to see the values returned by these function pointers in the eSRAM region as the

subroutine is loaded into the eSRAM, as shown

in Figure 11.

SC Debug - Linker_Design_MSS_CM3_appimainc - Microsemi SoftConsole IDE va.4 W—_— =B]
File Edit Source Refactor Navigate Search Project Run Window Help
(i | @ - 0-Qu-i®™ &~ B-f-ee-o- 5 (35 Debug | @ </C+
%5 Debug 21 % o 5 |2 @ & S [1» 3| @ 7 = 0|00 Variables £3 . 9% Breakpoints) Hi Registers| =\ Modules| FEIECE S
4 SC Linker_Design_MSS_CM3_app Debug [Microsemi Cortex-M3 Target] Y Value
4 & Embedded GDE (4/15/14 10:13 AM) (Suspended) 2 o
4 4P Thread [1] (Suspended) P 5
= 1main(e\ranjithilinker_design _design_mss_cn3\inker_design| ¢ ¢ S05307580
4 Ca\MicrosemilLibero_v11.2\S0ftC: y-G++\b bi-gdbexe W15 . o 7
©)=e 805307141
» add_ptr 0x20000001
» sub_ptr 0120000029 !
» mul_ptr 0x20000055
<[i '
gl m v« v
[@ mainc 2 debug | B debug e | [E] 41 <symbol isnotavailabl |~ 01| B2 Outine [Disassembly 2 e
I#include "subroucine.nn 0 P
2 0%30000370 <main>: pusn {r7, 1z}
Sint main() 0%30000372 <main+z>: sub sp, $32
4{ 0x30000374 <main+4>: add 7, sp, #0
5 a=100;
6 int a,b,c,d,8; 0%30000376 <main+6>: mov.w r3, $100 ; Ox64 L
7 0x3000037a <main+10>: str r3, [r7, #0] N
int (vadd per) (int , int) : =
int (*sub_ptr) (int , int); 3 0x3000037c <main+l2>: mov.w T3, $50 ; O0x32
int (*mul_ptr) (int , int); F 0x30000380 <main+16>: str r3, [r7, #4]
add ptr - tadd;
a=100; 0x30000382 <main+l8>: movw I3, #1
b=50; 0230000386 <mains22>: move r3, $8192 ; 0x2000
add_ptr = gadd; 0%3000038a <main+26>: str 3, [r7, #20]
sub_ptr = gsup; sub_prr = csub:
mul_ptr = emul; 0%3000038c <main+26>: movw T3, $41 : 0x23
Ll 0x30000390 <main+32>: movt r3, #8192 ; 0x2000
c=(*add_ptz) (a,b); 0x30000394 <main+36>: str 3, [z7, #24]
a=(*sub_pes) (2,5) mal per = cmuls
e=(*mal_pcx) (2,b) 0%30000396 <main+38>: movw 3, #85 : Ox55
0%3000039a <main+42>: move T3, $8192 ; 0x2000
while (1) i 0x3000039%¢ <maint46>: str z3, [z7, $28] =5
- i RSP .
& Console £ . ¥ Tasks| [Problems| © Exccutables| 0 Memery| % G 6B | W [#B-ri-=0
Linker_Design_MS5_CM3_app Debug [Microsemi Cortex-M3 Target] C:AMicrosemilLibero_v11.2\SoftC (/15714 10:13 AM) |
: FiL|
kg ‘ Writable | Smart Insert ‘ 18:1

Figure 11 « Debug Window Showing Address Pointers Getting Updated for Implementation2

On performing step-by-step execution, the disassemble window shows these functions located in the
eSRAM memory region and the appropriate values getting updated in the variable window as shown in

Figure 12.

SE Debug - Linker_Design_MSS_CM3_app/subroutine.c - Microsemi SoftConsole IDE v3.4 e

File Edit Source Refactor Navigate Search Project Run Window Help
2 |& %-0-a- &+ - RS TR TRCR R
35 Debug & % &t S 3% . = | 1 3] @ T 7 O Varisbles £ . % Breakpoints | ! Registers| 2 Modules| I L N
4 SC Linker_Design_MSS_CM3_app Debug [Microsemi Cortex-M3 Target] M ok
2 &2 Embedded GDB (4/15/14 10:07 AM) (Suspended) ofla 300
4 P Thread [1] (Suspended) &b =3
2add() r_design\softe design_mss_cm3\linker_design.i | . 00
1 main(eranjith\linker_design\softconsole\linker_design_mss_cm3\linker_design oy %
o CAMicrosemilLibero_vi1.2\SoftC ¥ bi bi-gdb.exe (4715 | (. Ee
|
« i D
gl i] V|| v
(6l mainc [(5] debug 2 [[E) debug 5] [1@) subroutine.c &% .~ O1|(5E Outline (i) Disassembly &2 =]
L#include "subroutine.n® < A
2 0x20000000 <add>: pash (7}
3int add(int a,int b) 0x20000002 <add+2>: sub sp, #28
4 0x20000004 <add+4>: add 7, sp, #0
) int x,v,2; 0x20000006 <add+6>: str =0, [x7, #4]
6 x=a: 0%20000008 <add+8>: str rl, [r7, $0]
w=ar
0x2000000a <add+10>: ldr r3, [r7, #4]
= 0x2000000c <add+12>: sStr r3, [x7, #12]
~b; E
0x2000000e <add+14>: ldr 3, [x7, #0]
0x20000010 <add+16>: str 3, [x7, #16]
2=asp;
0x20000012 <add+18>: ldr r2, [r7, #4]
0x20000014 <add+20>: ldr r3, [x7, #0]
0x20000016 <add+22>: add r3, r2
0x20000018 <add+24>: str 3, [x7, #20]
retarn(z); recurn(z) ;
% 0%2000001a <add+26>: ldr r3, [z7, $20] L4
OE
mul (int a,int b) 0x2000001c <add+28>: mov ro, r3
i 0x2000001e <add+30>: add.w r7, r7, #28 i
S . P A .
EJ Console 5 .] Tasks| [£1 Problems|) Executables| § Memory| x
Linker_Design_MSS_CVB_app Debug [Microsemi Cortex-h3 Target] C: ibero_vI12\SoftC b bi-gdb.exe (4/15/14 1007 AM)
™

Figure 12 » Debug Window Showing Memory Execution Address for Implementation2

15

& Microsemi

SmartFusion?2 - Distributing and Running Code from Multiple Memory Regions

0x20000000

56 K

0x2000E000

8K

0x2000FFFF

Space where Subroutine is loaded

Stack Space

eSRAM

0x30000000

16 K

0x30003FFF

Space for code, data

LSRAM

Figure 13 » Memory Map for Implementation2

16

& Microsemi

SmartFusion?2 - Distributing and Running Code from Multiple Memory Regions

Stack in eSRAM and Splitting the Code Between eNVM and the Fabric
LSRAM [Implementation3]

In this implementation, the entire code is loaded into the eNVM excluding subroutine (that is loaded into
LSRAM) and the stack is in the eSRAM. To do this, the eNVM linker script needs to be modified as
follows:

1. Add the LSRAM memory region in the memory command.

MEMORY
{
/*
* WARNING: The words "SOFTCONSOLE", "FLASH", and "USE", the colon ":",
* and the name of the type of flash memory are all in a specific order.
* Please do not modify that comment line, in order to ensure
* debugging of your application will use the flash memory correctly.

*/

/* SOFTCONSOLE FLASH USE: microsemi-smartfusion2-envm */
rom (rx) : ORIGIN = 0x60000000, LENGTH = 256k

/* SmartFusion2 internal eNVM mirrored to 0x00000000 */
romMirror (rx) : ORIGIN = 0x00000000, LENGTH = 256k

/* SmartFusion2 internal eSRAM */
ram (rwx) : ORIGIN = 0x20000000, LENGTH = 64k

/* SmartFusion 2 LSRAM Block, This will store subroutines*/
lsram (rwx) : ORIGIN = 0x30000000, LENGTH = 16k

}
Exclude the subroutine.o from loading into the eNVM
* (EXCLUDE_FILE (*subroutine.o) .text.*)
Load the subroutine.o into the LSRAM.
.mytext
{
subroutine.o(.text.)
} >lsram
The declared functions add, sub, and mul perform addition, subtraction, and multiplication respectively
of two numbers.

17

& Microsemi

SmartFusion?2 - Distributing and Running Code from Multiple Memory Regions

Run the design to see the values returned by these function pointers as expected (pointers point to the
LSRAM region) shown in Figure 14.

5 Debug - inker Design M55, GV app/mane - Microsemi SoftConsole I0€ 2.4 W NN TREEE TS el]

File Edit Source Refactor Navigate Search Project Run Window Help
w2 & i%-0-Q~ ®g~ Br-fr-eoero- 24 (55 Debug | Ty /s
35 Debug 71 % 61 5 1w [2. @ ¢ %[i% 3| & © = O Variables 5 - O Breskpoints| il Registers| =\ Modules| PRI M
4 5C Linker_Design_MSS_CMB._app Debug [Microsemi Cortex-M3 Target] Name Value
4 &8 Embedded GDB (4/15/14 10:14 AM) (Suspendec) s 10
4 4 Thread [1] (Suspended) ®b =)
1 main) ei\ranjithlinker_design!soft design_mss_cmd\linker_design|| ¢y ¢ s
ibero11.2\Soft b bi-gdb.exe (/15|) g :
e m
* add_ptr 030000001
* subptr 030000029
& mulptr 030000055
O i 1 3 0
mainc 1[5 1 brouts | [E]-L <symbol is notavailabl | = 53 (B2 Outine [Disassembly £ =]
l1#include "subroutine.h" = 1 &
0x00000370 <main>: push {r7, 1lr}
int main() 0%00000372 <main+2>: ==k sp, $32
a 0%00000374 <main+d>: add r7, sp, #0 A
a=100. T
int a,b,c,d,e: - || 0x00000376 <mainte>: mov.w r3, $#100 ; oxes
0x0000037a <main+10>: str r3, [r7, #0] (4
int (*add ptr) (int , int) ; b=50;
int (*sub_ptr) (int , int); 0x00000372 <main+i2>: mov.w r3, $50 ; Ox32
int (*mul_ptr) (int , int): 0%00000380 <main+lé>: str r3, [z7, $4]
L add_per = cadd:
0X00000382 <main+18>: movw T3, $1
0X00000386 <main+22>: move T3, $12285 03000
&add; 0x0000038a <main+26>: str r3, [r7, #20]
&oub; sub_ptr = ⊂
mul_per = emul; 020000038c <mains2e>: movw 3, $41 ; 0228
0%00000390 <main+32>: move r3, $12288 : 0x3000
c=(*add otr) (a.b): i 0x0000039¢ <main+36>: str r3. Ir7. #241 i
g v < D
B Console 2 ¥ Tasks| (1 Problems| 3 Brecutables| 0 Memory|
Linker_Design_MSS_CM3_app Debug [Microsemi Cortex-M3 Target] C:\Microsemi\Libero_v11.2\SoftC v bi bi-gdb.exe (4/15/14 10:14 AM)
one-eabi-sprite: Sent response: '00000000' B
: Got packet: 'p20'
: Sent response: '00000000" L
|
7 v
T

| Wiitable

‘ Smmart Insert

18:1

Figure 14 » Debug Window Showing Function Pointers for Implementation3

18

& Microsemi

SmartFusion?2 - Distributing and Running Code from Multiple Memory Regions

While performing a step-by-step execution, the disassembly window displays the functions located in the
LSRAM memory region as shown in Figure 15.

7 L
SE Debug - Linker_Design MSS_CM3_app/subroutine.c - Microsemi SoftConsole IDE v3.4

— C=mfay X

File Edit Source Refactor MNavigate Search Project Run Window Help

i & -0~ Q- i ~Eeta v 1 (B Debug) B C/C+ >
#5 Debug &3 5 b | = @ & = | i 3| & 7 = 0|6 variables 53 . %o Breakpoints| if Registers| = Modules B e g S0
4 SC Linker_Design_MSS_CM3_app Debug [Microsemi Cortex-M3 Target] Name Value

4 &2 Embedded GDE (4/15/14 10:14 AM) (Suspended) ol a e
4 4@ Thread [1] (Suspended) = 5
= 2 add eranjith\linker._design\softconsole\linker_design_mss_ cm3\linker design | ¢, 7
= 1 main{ e\ranjth\linker_design’softconsol linker_design_mss_cd\linker_design|| g =
W C\MicrosemilLibero_vI1.2\Softf ry-Ge+\bi bi-gdb.exe (315 gy B
“ i vl »
mainc [B brouti subroutinec 23~ 5B Outline | [ih Disassembly 2 Sl
1#include "subroutine.h” - v=b; -
2 I 0x3000000e <add+14>: ldz 3, [z7, #0]
Sint add(int a,int b} 0x30000010 <add+16>: stz r3, [T, #16]
at 2=a4b:
int x,v,z: 0x30000012 <add+18>: ldr 12, [c7, #4]
6 xma: |g| || ox3000001% <adasz0>: 3, [r7, #01
v=bi | 0x30000016 <add+22>: add 3, 2
z-ath; 0x30000018 <add+24>: stz 3, (7, #20]
5 o retum(z): zeturn(z);
03 » 0x3000001a cadds26>: ldr r3, [z7, #20]

12int sub(int a,int b) 0x3000001c <add+28>: mov 10, I3 5|

1 0x3000001e <add+30>: add.w r7, =7, $28

1 int x,v,27 0x30000022 <add+34>: mov =, =7

15 x=a: 0x30000024 <add+36>: pop {z7}

15 y=b: 0x30000026 cadd+38>: bx 1r

17 z=a-b;

1 retarn(z) : 2 i
& Console 13 ¢ Tasks| (£l Problems| @ Executables| @ Memory, [GE 2 EE =a-i--0
Linker_Design_MSS_CM3_app Debug [Microsemi Cortex-M3 Target] C:\Microsemil Libero_v11.2\SoftC exe (4/15/14 10:14 AM)
am \: o -
arm

08006000
O Wiitable Smart Insert 18:1

Figure 15 » Debug Window Showing Execution Address for Implementation3

0x20000000

0x2000E000

Stack

0x2000FFFF

eSRAM

0x60000000

0x6000FFFF

Space where maincode
is loaded

eNVM

0x30000000

0x30003FFF

Space for code, data

LSRAM

Figure 16 * Memory Map for Implementation3

19

& Microsemi

SmartFusion?2 - Distributing and Running Code from Multiple Memory Regions

Running the Implementations

This application note provides the Design Files for all three implementations. There is one set of design

files for the implementation1, and another set for the implementation2 and implementation3.
To get the design files for LSRAM (implementation1), refer to
http.://soc.microsemi.com/download/rsc/?f=M2S_AC417_Implementation1_DF

To get the design files for eSRAM-LSRAM and eNVM-LSRAM(implementation2 and 3), refer to
http://soc.microsemi.com/download/rsc/?f=M2S_AC417_Implementation2_3_DF

Select the appropriate linker script in the Softconsole for running the above described scenarios.
1. To run implementation 1 that includes running only in LSRAM, select the linker script as shown in

Figure 17
SC Properties for Linker_Design_MSS_CM3_app o 0 |
type filter text Settings M T
Resource
Builders
C/C++ Build & Tool Settings ‘.ﬁ' Build Step;l Build Artifactl Binary Par;ersl @ Error Parsers

Build Variables

Discovery Options

Environment

Settings

Tool Chain Editor
C/C++ General
Project References
Refactoring History
Run/Debug Settings

i3 GNU € Compiler
(# Preprocessor
(3 Symbols
(2 Directories
(# Optimization
(% Debugging
(% Wamings
(2 Miscellaneous

Generate linker memory map

Other aptians (-Xlinker [option])

Linkerflags -T.././Linker_Design_M55_CM3_hw_platform/CMSIS/startup_gcc/debug-in-microsemi-smartfusion2-lsram.ld

a8 @ a8

-gc-sections

5 GNU C Linker
(% General
(% Libraries
(2 Miscellaneous
i3 GNU Assembler
(% General
) Memory map generator
%3 GNU Intel Hex File Generator
(# General
%3 GNU S-Record Generator
(% General
i GNU Listing Generator
(# General

Other objects

aa i@

"S{workspace loci/Linker_Design_M5S_CM3_hw_platform/Debug/CMSIS/startup_gcc/startup_m2sio.o}"

"§{workspace_loc:/Linker_Design_MS5_CM3_hw_platform/Debug/CMSIS/sta rtupgc c/newlib_stubs.o]”

[Restore Defauis| [apply |~

@ [

ok |[cance |

Figure 17 « Selecting Linker Script for Implementation1

20

https://www.microchip.com/en-us/application-notes/ac417
https://www.microchip.com/en-us/application-notes/ac417
https://www.microchip.com/en-us/application-notes/ac417

& Microsemi

SmartFusion?2 - Distributing and Running Code from Multiple Memory Regions

2. To run implementation 2, which includes loading the subroutine into eSRAM and all other codes
into the LSRAM, the eSRAM-LSRAM linker script needs to be selected as shown in Figure 18.

SC Properties for Linker_Design_MS5_CM3_app l = |5 g
type filter text Settings i T
Resource
-
Builders
C/C++ Build & Tool Settings | 4 Build Steps I Build Artifact | Binary Parsers | @3 Error Parsers
Build Yariables -
Discovery Options 2] G“NU C Compiler Linker flags -T.././Linker_Design_MS55_CM3_hw_platform/CMSIS/startup_gee/debug-in-microsemi-smartfusion?-esram-Isram.ld a8
Environment (£3 Preprocessor Generate linker memery map
Setti (2 Symbols
ings oy . " ——— -
Toal Chain Editor % Directories Other options (-Xlinker [option]) 28832
C/Ce+ General Dpumiation
5
Project References % Debugging
3
Refactoring History % W.ammgs
Run/Debug Settings (£ Miscellaneous
) GNU C Linker
(2 General

(2 Libraries
(£ Miscellaneous
i) GNU Assembler
(2 General
&3 Memory map generator Other objects 2885 H
) GMNU Intel Hex File Generator
& General "Siworkspace_loc/Linker_Design_MS55_CM3_hw_platform/Debug/ CMISIS/startup_gcc/startup_m2sicco}”
) GNU S-Record Generator Stworkspace_loci/Linker_Design_MS5_CM3_hw_platform/Debug/CMSIS/startup_gcc/newlib_stubs.o}
(5 General
) GMNU Listing Generator
(£ General

m

[Ra:tore Dafaulrsl [Apply]_

@ l

ok [conear |

Figure 18 » Selecting Linker Script eSRAM-LSRAM for Implementation 2

3. To run implementation 3, where the code is loaded into eNVM and the subroutine is loaded into
LSRAM in fabric, the eNVM-LSRAM linker script needs to be selected as shown in Figure 19.

SC Properties for Linker_Design_MSS_CM3_app [ESREE >

type filter text Settings
Resource
Builders Configuration: |Debug [Active]
C/C++ Build
Build Variables
Discovery Options & Tool Settings | 4 Build Steps | Build Artifact | Binary Parsers | @ Error Parsers
Environment

Settings 4 @ GNU C Compiler Linker flags
Tool Chain Editor (£ Preprocessor

- v ow

'] [Managa Configurat\ons‘..]

-T../../Linker_Design_MS5_CM3_hw_platform/CMSIS/startup_gcc/debug-in-microsemi-smartfusion2-envm-lsram.ld

Generate linker memory map
C/C++ General (& Symbols

Project References (2 Directories
retatomng ey Optmin
Run/Debug Settings (£ Debugging
(2 Warnings
(# Miscellanecus
4 8 GNU C Linker
(£ General
(2 Libraries
|(E Miscellaneous |
4 % GNU Assembler
(£ General
i) Memory map generator Other objects aa 85
4 83 GNU Intel Hex File Generator
@ General "S{wolksace_luc:/Lnkel_Desin_MSS_CM_’»_hw_Iatlmm/Dehu C.MSISJ;tanu_cdslart m2sce.o}’
4 B GNU S-Record Generator "$workspace_loc:/Linker_Design_MS5_CM3_hw_platform/Debug/CMSIS/startup_gec/newlib_stubs.o}"
(& General
4 83 GNU Listing Generator
(% General

Other options (-Xlinker [option]) € = &5 ‘Gl .G|

[

@

ok || concel

Figure 19 » Selecting Linker Script eNVM-LSRAM for Implementation 3

21

& Microsemi

SmartFusion?2 - Distributing and Running Code from Multiple Memory Regions

Speeding Up Code Execution by Copying into Internal SRAM
at Boot-time

This section describes the method to load the code into internal SRAM before the execution of the code
begins. This is done by using the Linker script production-relocate-executable.1d, which is
available under the startup_gcc folder as shown in Figure 20.

(5 Project Explorer 23 = S
4 |5 Linker_Design_MSS_CM3_app
1;,." Binaries
it Includes
[= Debug
= Release
LE| main.e
a =5 Linker_Design_MSS_CM3_va_platform
HH, Archives
pil Includes
4 [= CMSIS
4 = startup_gcc
Le| newhb_stubs.c
| o 18 startup_misoocs

debug-in-external-ram.ld

debug-in-microsemi-smartfusiond-enam-lsram.ld

debug-in-microsemi-smartfusion - esram-lsram.ld
! production-execute-in-place.ld

l 2| production-relocate-executable.ld]

[b req_ioh

[n m2zocuh

(1 rmss_agserth

[m sys_init_cfg types.h

L systern_m2soo.c

[B system_m2swcch

Debug

: drrvers

- drivers_config

- hal

| Linker_Design_bw_platforrm.h

= n: G |1

Figure 20 * Location of production-relocate-executable.ld

In the linker script under the memory command, there is an external_ram section that is required to
modify this section address according to the address of the SRAM implemented. For example, if the
address is 0x30000000 and the size is 16 KB (as it is in this design example) modify the memory section
as follows:

internal ram (rwx) : ORIGIN = 0x30000000, LENGTH = 16K

22

& Microsemi

SmartFusion?2 - Distributing and Running Code from Multiple Memory Regions

After this modification has been made in the memory command, AT command should be used for the
Linker to identify which part of the code is to be loaded into the internal SRAM. For example, to load the
data section into the internal SRAM, specify the memory region as follows:

.data :
{
__data_load = LOADADDR (.data);
_sidata = LOADADDR (.data);
__data_start = .;
_sdata = .;
KEEP (* (.Jjcr)
*(.got.plt) *(.got)

* (.shdata)
(.data .data. .gnu.linkonce.d.*)
. = ALIGN (4);

_edata = .;

} >internal ram AT>rom
Here, internal ram AT>rom means that the data is first loaded into the rom and that before the
execution begins, when the Reset_handler is run, this data will be copied into the internal ram.

Relocation of the data section at runtime is done by the startup_m2sxxx.s which has the copy data
section code (shown below):

/* __
* Copy data section.
*/
copy data:
ldr r0, = data load
ldr rl, = data_start
ldr r2, =_edata

cmp r0, rl
beqg clear bss
copy data_loop:
cmp rl, r2
itt ne

ldrne r3, [r0], #4
strne r3, [rl], #4
bne copy data loop

23

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense and security, aerospace, and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world's standard for time; voice

Microsemi processing devices; RF solutions; discrete components; security technologies and scalable
® anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design
Microsemi Corporate Headquarters ; f P

One Enterprise, Aliso Viejo CA 92656 USA capablllltles and services. Microsemi is headquartered in /.NISO VI.eJO, Calif. and has
Within the USA: +1 (949) 380-6100 approximately 3,400 employees globally. Learn more at www.microsemi.com.

Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
E-mail: sales.support@microsemi.com

© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

51900285-1/04.14

www.microsemi.com
mailto:%20sales.support@microsemi.com

	SmartFusion2 - Distributing and Running Code from Multiple Memory Regions
	Purpose
	Introduction
	Resources
	The Cortex-M3 Processor Code Space
	Linker Script
	Syntax of Commands Used in this Application Note
	MEMORY Command
	SECTIONS Command
	’.’ : The Location Counter
	EXCLUDE_FILE Command

	Declaring Function Pointers to Avoid Veneer Generation
	Design Description
	Hardware Implementation
	Software Implementation
	Running the Entire Code in Fabric LSRAM [Implementation1]
	Subroutine in eSRAM and Main Code in Fabric LSRAM [Implementation2]
	Stack in eSRAM and Splitting the Code Between eNVM and the Fabric LSRAM [Implementation3]

	Running the Implementations
	Speeding Up Code Execution by Copying into Internal SRAM at Boot-time

