MPLAB Harmony v3 Application Development Guide for @
MPLAB Harmony v2 Users @ MICROCHIP

AN3388

Introduction

This document is intended to guide MPLAB’ Harmony v2 users on how to develop applications using MPLAB
Harmony v3.

MPLAB Harmony is a software framework consisting of compatible and interoperable modules, such as
peripheral libraries (PLIBs), drivers, system services, middleware, and third-party libraries. MPLAB Harmony
v3 has the same basic principles as MPLAB Harmony v2; however, new features and enhancements were
implemented for this release.

Table of Contents

INEFOAUCTION. ..ottt ettt st ettt b et b et e b et e R et e b e e er e e s e s bt nnenenenenen 1
T, TOOIS @NA INSTAIIATION. ...ttt ettt sttt s b et skt b et et et et et e b et e b et e b e e eb et ebenaenen 4
2. MPLAB Code CONFIGUIAtOr GUL....c.coueuirieieieieieiinieiireeitnieie ettt sttt sttt ss e s e b e er e s e nenes 5
2.1, DOVICE RESOUICES. ..ttt ettt ettt sttt s ettt e e et e e st e bt e bt e b e e b e s b e s b e s b e b e b e b e b et et et e st eseeseebesbesbesbene 5
2.2, PrOJECE RESOUICES. ..ottt ettt ste st ettt et s e s bt st e s bt e b e s bt e b e s ae e s bt e s e sae e b e e ase b esasesseensesneenbesnnesseensesnnensens 5
2.3, PrOJECE GrapPh.ii ettt ettt s st st e st ettt et et e e b e e b e s b e s b e s b e s b e st e s b et et et e st et et e Rt e s e ere e b e e besbeebenbenbs 6
2.4, CONFIGUIAtiIoON OPLIONS....cuiiieiiteieieietet ettt ettt ettt st sttt ettt et st s e bbb et b et et e e et et sb et sbe st ebeneebenens 12
B TR O LU | 4 o 11 | SO TS O S P P P S TP PP TP PP 12
2.0, HID et h s bbb b bbb et et et e e Rt e Rt e bt e be e b e s b e s hesbe b e benbe b e bententen 12
R C 1T o =T] €=U T PP PO POPPRRPRPORRON 12
2.8, MCC ULIIITIES OF PIUSINS....iiteuirieiirieiirieierietrtetetet sttt ettt st b et be st b sa bbb e b bt sbebesbesesbe st s benesbeneebe e ebeneebenean 12
3. Peripheral LIBrari@s (PLIBS).......ccocvtrirererierienienienieniesientetestestestesessessessessessessessessessensensensensensensensensssessessessessessensenes 18
3.1, How to Start Using HarmMONY V3 PLIBS.......ccetiieirininieneriesesteteeetetetete sttt st ene s 18
3.2. Understanding MPLAB Harmony v3 PLIB Generated COde.......cccveririrenienenienienienierienteneeeeeeesessessennes 20
3.3. MPLAB Harmony v2 and MPLAB Harmony v3 PLIBS Differences........cccoevevieveriereneneneneneneniesiesieseens 20
3.4. Application Example Using MPLAB Harmony V2 PLIBS......ccccccrereireinieinieienieeenieieseeseseeseseeve s saenesienens 21
3.5. Application Example Using MPLAB Harmony V3 PLIBS........ccccviririnnenieiinieenteienteiesteesteseseeve s seeneseenens 22
3.6. Comparison Between MPLAB Harmony v2 and MPLAB Harmony v3 PLIB Examples........c..cccoceeuvvenenne. 25
. DFIVEIS ettt ettt b bbbttt R R R Rt h e Rt e bbb e b b e b e b et et e s e e et e st e Rt e b e e bt e b e e b e e b e s benre e 26
4.1, USING MPLAB HarmMONY V3 DIIVEIS...coeiiiiieiierienieeieetertesee st et st e st st et seessessesseesesaeessesnsessesnsesseensessnenses 26
4.2. Understanding MPLAB Harmony V3 DriVer COUC......cciiiiriirieinieirieetrieesteesteeste et se e bee b e s enes 27
4.3. MPLAB Harmony v2 and MPLAB Harmony v3 Similarities in DIiVErS.......c.cccveirerenenenenenenineereeeeenene 28
4.4, MPLAB Harmony v2 and MPLAB Harmony v3 Differences in DriVers........cccoecveveneineeneneneesienesienennes 29
4.5. Application Example Using MPLAB Harmony V2 DIiVelcccvivererienienieieieenesesesesiesesiessessessessessessens 30
4.6. Application Example Using MPLAB Harmony V3 DFIVENc.cccvererieririerenreineesienesieneereseese e e sesesseessesennes 32
D SYSTRIM SEIVICES. ..ttt ettt s e b s h e s bt s b e s bt et e s he et e et e besatesb e eaneshe e st eanenbesanesreentesnnennes 36
5.1. How to Start Using MPLAB Harmony V3 SYStem SEIVICES......ccceceiririrenerenenesesiesresresrereee e 36
6. MiIdAIEWAIre LIDIAriEs.....ccueuivieirieiiriciretreere ettt ettt s a et et s r et s e e n e nesesneneen 38
7. Real Time Operating SyStem (RTOS) SUPPOI....coetriiririeririeririeieieieieteresteresteresteressesestesesteessesessesessesessesessenessenenns 39
7.1. How to Start Using RTOS in MPLAB HArmMONY V3...c..coiiiiienieieneenie ettt ste st e svessesveessesneesbesssesressenns 39
8. Porting MPLAB Harmony v2 Application to MPLAB HarmMoONy V3.......ccccecirieinieinieinieenietnieesseesieesiesessesesseneeses 40
Bl PLIB ittt b bbb e b h bt ke b R h bRt b e st b e Rt e he Rt b e Rt e b e Rt ket b et et e st ebe e beneebenee 40
8.2, SHALIC DIV ittt b e bt s bt s b s b b s b e b et et et et et e st e st st e bt be b e b e b e b e b e b enee 40
8.3, DYNAMUC DIIVE ittt sttt st et s se e b et e bt s b e s bt e b she e b e e anesbe et e snnensesaeenseenne 40
Bih. SYSTOIM SBIVICES .ttt ettt st e ettt e s bt et e s bt et saee s b e e s e s st e b e s st e b e sae e bt easesheenbesaeenbesasessesnsesseensesaean 40
8.5, IMIOAIBWAIE ...ttt b et bbbt b et b et b et e b et e bbbt bbb bbbt e b e bbb e bt b st sbenenbenea 40
9. MPLAB Harmony Development MOGEIS........coivirirerinieieieieteteeeteesesiesiesse st st sttt et e e sbesbesbesbesaesne 41
T0. CONCIUSION ettt ettt b et s e bbbt st e bt e bt e st e bt s b ea e s b et s b e st e b e st eb et et e st eb et ebentebe s eb et ebesaebesbenens 42
T REFEIEINCES. .ttt st bbbt s a et R et R e R e R bbb ne b e 43

@ MICROCHIP

T2, REVISION HISTOIY.cueiiiiiiiieiiiiee ettt ettt st sttt s bt et s bt e bt sae e s bt et e s bt e s b e sae e be e st esseensesbeeabesneenbesnnesneensenns 44

MICFOCHIP INFOIMNATION. ...ttt ettt ettt b etk sa ket b et e bt ebe b e b e st e bt st ekt sbebesbesesbenesbenenan 45
TFAORIMAIKS. ..ottt b e 45
LEEAI NOTICE. ettt ettt st b et b et b et b et b et e b et e b et e b e e e b e b e b e b e b et e b et ebe b e bt st ebenbe st s b e st b e ee 45
Microchip Devices Code ProteCtion FEATUIE.......ccoviieiriririeieeiniieetriee ettt sttt 45

@ MICROCHIP

1. Tools and Installation

MPLAB Harmony v2 is packaged in a zip file which contains all the software components or modules
required to develop the application, such as MPLAB Harmony Configurator (MHC) files, PLIBs,
drivers, multiple middleware libraries, and third party libraries.

In contrast, MPLAB Harmony v3 has a modular download feature. The MPLAB Harmony v3
resources are grouped in different packages and users can download only the package required for
the project. These resources are easily configurable through the MPLAB Code Configurator (MCC)
graphical user interface (GUI). MPLAB Harmony v3 packages can be downloaded from GitHub. For
additional information on the MPLAB Harmony v3 environment setup, refer to the document How
to Setup MPLAB Harmony v3 Software Development Framework.

Note: Throughout this document, the words ‘modules’ and ‘device resources’ are used
interchangeably.

@ MICROCHIP

https://ww1.microchip.com/downloads/en/DeviceDoc/How_to_Setup_MPLAB_%20Harmony_v3_Software_Development_Framework_DS90003232C.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/How_to_Setup_MPLAB_%20Harmony_v3_Software_Development_Framework_DS90003232C.pdf

2. MPLAB Code Configurator GUI

The MPLAB Code Configurator (MCC) is a GUI-based tool that provides an easy way to enable,
configure and generate codes for various MPLAB Harmony modules. In MPLAB X IDE, the MCC
plugin is installed by default.

To update the MCC plugin to the new version for MPLAB Harmony v3, follow these steps:
1. Open MPLAB X IDE.

2. Select Tools > Plugins, and then click on the Installed tab. The MCC can be found in the list of
installed plugins.

3. Inthe Installed tab, if an update is available, an Update button will appear. Click on the Update
button to install the latest version of the MCC plugin.

4. Select Restart Now to apply the updates.

In MPLAB Harmony v2, all modules are arranged in a tree structure, and can be configured by
expanding the '+' sign. However, in MPLAB Harmony v3, multiple windows are available to make the
configuration easier and intuitive. The following figure shows the MPLAB Code Configurator window.

Figure 2-1. MPLAB Code Configurator Window

3 MPLAB X IDE v6.20 - Project : default - o X
indow_Help Q- Search (Cvion)
)R QB OB W DB feod mer

StartPage x| ProjectGragh x| < |Z)(@)] configuration Options x a
X CTEREORE $|E |puns V| Profies: [Man 5 Vew: | Root ™| EE]

File Edit View Navigate Source Refactor Production Debug Team Tool
£ W [} I [defouit

& Projects | Resource Management [MCC]
MCCv5.5.1

Generate

& System

@ Device & Project Configuration
EVSYS Devi mily Pack (DFP) System
) ly Pack (OFP) | % Cortex-M4 Configuration
paripheral Ubrary

@ Ports

& CMSIS Pack @ Clock

B Device Famiy Pack 0F7) @ Interrupts (WIC)

@ DMA (DMAC)
& woT

> v Project e

> NMETRY Resoueces Project Graph

ster Configuration
s Options

v Peripherals

Project-Dashboard @) Navigator B | (S Fies
.

Device Resources [€% content Manager

~ Libraries
v Hamony
> Board Support Packages (BSPs)
> Bootioader
> Core

> Libraries
> System Services Resources
> 10

> Third Party Libraries

Output x| News | Notifications [MCC)

> Tools
» Touch
> uss

2.1 Device Resources

All the modules, for which corresponding package has been downloaded, are listed in this window.
Board Support Package (BSP) and Peripherals list the modules which are applicable for the device
for which project is created. The rest of the components are listed for all the devices. The MPLAB
Harmony drivers and system services can be found under the Harmony component.

2.2 Project Resources

This window lists all the modules used in the project. To use a module, users need to select the
module and click on the button (green cross) from the Device Resources list. By default, some of
the modules are added in the Project Resources list, such as Device Family Pack (DFP), System. To
remove a module from use or from the Project Resources list, select the module and then click on
the button (red cross) appearing in the left top-side of the Project Resources window.

@ MICROCHIP

Notes: The following MPLAB Harmony v3 modules must be available in the Project Resources list:
+ System

- DFP

« CMSIS (appears for Arm Cortex devices only)

2.3 Project Graph

The Project Graph shows all the modules being used in the project with more details. In the MPLAB
Harmony software framework, few modules are closely associated with Microcontroller hardware,
such as Peripheral libraries, and few modules are not directly associated with the hardware, but

are dependent on the hardware associated modules. For example, MPLAB Harmony drivers are
dependent on peripheral libraries. There are also software modules which are dependent on MPLAB
Harmony drivers, such as File system service, middleware libraries.

Since MPLAB Harmony has such varied software modules with dependency structure, a monolithic
configuration tree, which was present in MPLAB Harmony v2, sometimes becomes difficult to
manage and configure. This problem is addressed in MPLAB Harmony v3 by the Project Graph
window. In the Project Graph window, each module is shown in the form of a rectangular box.
Towards the left-side edge of these rectangular boxes, there are small boxes (Dependency box)
shown, which indicate the dependency of the module. Having a dependency means, the module
is dependent on some other module for its correct functionality. For example, the USART Driver
module has dependency on the UART (or USART) PLIB. Similarly, towards the right-edge of the
rectangular boxes, there will be small boxes (Capability box) shown, indicating capability of the
module. Having capability means the module is exposing its features to other modules. For
example, the UART PLIB module has the capability of the UART, the SERCOM PLIB module has
the capabilities of the UART, I12C and SPI. The following figures show examples of modules, their
dependency, and capability:

Note: Few modules will not have any dependency or capability, for example, PLIB modules do not
have any dependency and the System module has neither dependency nor capability.

Figure 2-2. Capability of a PLIB Module

Module
UARTE

Peripheral Library
UART

Capability

No

Dependencies

+ UARTG6 Peripheral Library (PLIB) is the module
+ No dependency for UART6 PLIB
+ UART6 PLIB has one capability: UART

@ MICROCHIP

Figure 2-3. Dependency and Capability of a Driver Module

Diriver

< Core Service

Instances - ——+
Instance 0

Dependencies UART Capability
DRV_USART

* USART Driver is the module
+ Two dependencies on the USART driver: Core Service and UART
* USART Driver has one capability: DRV_USART

On the project graph, a dependent module can be connected to a corresponding capable module
to use dependent module correctly. This step of connecting two modules to use the dependent
module is called as satisfying the dependency. The dependency can be satisfied in the following
three different ways:

1. Click and then hold and drag the mouse pointer between the dependency box and capability
box as shown in the following figure:

Figure 2-4. Satisfying Dependency 1

USART
Driver

Core Service

Instances -—=—+

Instance O
UART

UARTGE
k DRV_USART

Peripheral Library
UART <4

2. Right-click on the dependency box, and then select the appropriate satisfier as shown in the
following figure:

@ MICROCHIP

Figure 2-5. Satisfying Dependency 2

USART
Driver

& Core Service

Instances = —+

Instance 0

drv_usart_UART_dependency (UART)
Unsatisfied Direct Dependency
Satisfiers UARTT (uart1)

UART2 (uart2)
UARTS3 (uart3)
UARTA (uartd)
UARTS (uart5)
UARTS (uart6)

3. Right-clcik on the capability box, and then select the appropriate consumer as shown in the
figure below:

Figure 2-6. Satisfying Dependency 3

| UARTe |
Peripheral Library
UART %
: UARTE_UART (UART)

Available Direct Capability

Consumers USART (drv_usart)
USART (drv_usart_0)
STDIO (stdio)
COMSOLE (sys_console)

Ensure that all the dependencies of the modules are satisfied before configuring the modules and
generating the code. The following figure shows how the modules look after satisfying dependency:

Figure 2-7. Connected Modules

USART
Diriver

& Core Service

UARTE Instances -——+
Peripheral Library Instance 0

UART UART

DRV_USART

Additionally, users can move module boxes within the Project Graph Window (click and then hold
and drag) to arrange them appropriately to ensure the project graph appears organized.

2.3.1 Dependency

If a module has any dependency, it is shown in the form of a small box (circular, rhombus, or
square) in the left side of the module block in the Project Graph:

@ MICROCHIP

+ The green color of the box indicates a dependency is already satisfied.
+ The pink color of the box indicates it needs to be satisfied.
+ The yellow color of the box indicates it is optional to satisfy this dependency.

The following are three dependencies:

+ Direct Dependency: Needs manual connection to satisfy them. They are indicated by a small
rhombus symbol.

Figure 2-8. Direct Dependency

USART
Cirivar

& Core Service

Unsatisfied
Direct
Dependency

Instances -——+
Instance O

+ Generic Dependency: Do not need any connections to satisfy them. They turn to green (get
satisfied) automatically when any other module present in the project graph providing the
capability. They are indicated by a small circular symbol.

Figure 2-9. Generic Dependency

USART

Diriver

2 Core Service

Satisfied
Generic
Dependency

Instances -——+
Instance 0

+ Multi Dependency: Enables many connections to be made to satisfy them. They are indicated by
a small square symbol.

@ MICROCHIP

Figure 2-10. Multi Dependency

FILE S¥YSTEM

Systam Service

Satisfied Multi W & core Service
Dependency %" DRV _MEDIA

S5YS_FS

2.3.2 Capability

If a module has any capability, it is shown in the form of a small box (circular, rhombus, or square) in
the right-side of the module block in the Project Graph.

+ The green color of the box indicates capability is already satisfied.

+ The pink color of the box indicates it needs to be satisfied.

+ The yellow color of the box indicates it is optional to satisfy this dependency.

The following are three capabilities:

+ Direct Capability: Need a manual connection to be made to use them. They are indicated by a
small rhombus symbol.

Figure 2-11. Direct Capability

UARTG " Available
Paripharal Library Direct

Capability

* Generic Capability: Do not need any connections to be made to use them. They turn to green
(get used) when there is another module present in the project graph depending on them. They
are indicated by a small circular symbol.

Figure 2-12. Generic Capability

Core
Unused

Harmony Core Service

o RTOS Generic
Core Service O Capability

« Multi Capability: Must be used to satisfy the multiple dependencies of modules. They are
indicated by a small square symbol.

@ MICROCHIP

Figure 2-13. Used Multi Capability

SD Card (SPI)

Driver
O Core Service

O SYS TIME

Instances -—=—+
Instance 0
DRV_SPI

SPI
DRV_MEDIA

The figure below shows the MCC Project Graph module dependencies and capability status:

Figure 2-14. MCC Project Graph

StartPage x | #f MPLABXStore x| KitWindow x| ProjectGraph x| PinDiagram x| PnTable x| Pn.. [¥](*](5)
X ECmERE 4+ | &

Plugins: v | View: :Root v

Device Family Pack (DFP)

Core
FreeRTOS Harmony Core Service
Third Party Library SD Card (SPI) © RTOS

Driver

RTOS ©
& Core Service Core Service ©

< SYS_TIME

Instances - = —+
SPI2 Instance 0
Peripheral Library DRV_SPI FILE SYSTEM
SPI SPI System Service

DRV_MEDIA © Core Service
- SYS FS ©

MEMORY DRV_MEDIA

AT25 Driver
Driver O Core Service

O Core Service
Instances =+

= Instance 0
MEMORY MEMORY

DRV_MEDIA

+ Device Family Pack and System modules do not have any capability or dependency.

+ The core module has optional generic dependency on RTOS. Since there is no module on the
project graph with capability of RTOS, this dependency remains unsatisfied. However, since it was

an optional dependency, it is all right.

@ MICROCHIP

2.4

2.5

2.6

2.7

2.8

+ The core module provides a generic capability of the Core Service. Since it is a generic capability,
the SD Card Driver, AT25 Driver, MEMORY Driver, and the FILE SYSTEM modules have used it
without a connection.

« SD Card Driver has generic dependency on the SYS_TIME, because there is no module in the
project graph providing the SYS_TIME capability, the SD Card Driver is showing that dependency
in small pink color circle. The user must add the Time System Service module to satisfy this
dependency to generate the code successfully.

+ SPI2 Peripheral Library has Direct capability, which is used to satisfy the dependency of the SD
Card Driver Instance 0.

+ AT25 Driver has a direct dependency on the SPI. A module which had SPI capability, is used by
the SD Card Driver. Therefore, this dependency of the AT25 Driver remains unsatisfied, which is
denoted by a small pink color rhombus on the left-side of AT25 Driver box. To proceed further,
the user must add another SPI Peripheral Library component in the project graph and satisfy this
dependency.

+ File System has multiple dependencies, which is satisfied by the multi-capability of the SD Card
Driver and MEMORY Driver.

Configuration Options

Unlike MPLAB Harmony v2, MPLAB Harmony v3 has a separate configuration tree for every module.
Once the user selects a module either in the project graph or from the Device Resources list, all the
configuration options of the corresponding modules are shown in this window.

Output

This window is similar to the MHC Output window of MPLAB Harmony v2. It is used to display MCC
related messages. For example, if some direct dependency is not satisfied and an attempt is made
to generate the code, then the output window prompts an error message.

Help

MPLAB Harmony v2 has a “Help” window in the right side of the MHC to help the user in configurate
the modules. MPLAB Harmony v3 does not have this window implemented; instead, it has an
advanced tree view. Several configuration items in the tree view have a tool tip which can be seen by
hovering the mouse over the item.

Generate

The code generation step in MPLAB Harmony v3 is same as in MPLAB Harmony v2. After all the
required modules are added and configured, users can click the Generate button to generate and
add the MPLAB Harmony v3 code in the project.

Note: Unlike MPLAB Harmony v2, the MPLAB Harmony v3 project does not reference the MPLAB
Harmony v3 framework files (source files for peripheral libraries, drivers, and system services)
present in the MPLAB Harmony v3 repositories. Instead, all the needed source code is copied from
the MPLAB Harmony v3 repositories to the local project directory. This means MPLAB Harmony v3
projects can be easily ported from one computer to another.

MCC Utilities or Plugins

MPLAB Harmony v3 is similar to MPLAB Harmony v2 as both have utilities which can be used

to configure some of the modules that are difficult to configure in tree view, such as Clock
Configuration, Pin configuration, ADC Configuration. Unlike MPLAB Harmony v2, in MPLAB Harmony
v3 none of these utilities are launched by default. They need to be manually launched through

the MCC icon menu option of the MPLAB X IDE (or from the Tools menu of the MPLAB Code
Configurator window in Standalone mode). MPLAB Harmony v3 has a few additional utilities, such as
DMA Configuration, Interrupt (EVIC) Configuration.

@ MICROCHIP

2.8.1 Clock Configuration
The clock configuration utility in MPLAB Harmony v3 is same as in MPLAB Harmony v2, but contains
few improvements and bug corrections.
2.8.2 Pin Configuration
This utility in MPLAB Harmony v3 is same as in MPLAB Harmony v2 with a few improvements
and bug corrections. In MPLAB Harmony v2, the Pin Table window of the Pin Configuration utility
comes towards the bottom alongside the MPLAB Harmony Configurator Output window. However,
in MPLAB Harmony v3, all three Pin configuration windows (Pin Diagram, Pin Table and Pin Settings)
are placed together as shown in the following figure:
Figure 2-15. MCC Pin Configuration
| StartPage x_é,l!(MPLABXStore x | KitWindow x| Project Graph xI Pin Diagram xI Pin Table xl Pin Settings x‘|
Package: A TQFP v
L Pl ~N | O
gl2lElSslElE|2]als]ls|] S]S]8]6]8]8]8
[*4 o o o o 2 =4 [=4 [=4 [=4 [=4 o o o o =4 > >
Module Function 1|2|3|4|s|6|7|8|9|w|nn|12|[13|14|15|16|17]18
TRDO
Trace TRD1
TRD2
TRD3
UIRX
UART 1 LT
(USART_ID_1) e
UIRTS
UZRX
UART 2 S
(USART_ID_2) e
URTS
2.8.3 ADC Configuration
This utility in MPLAB Harmony v3 is listed under the Project Graph > Plugins > ADC Configuration
menu option of MPLAB X IDE (or the Tools menu of the MPLAB Code Configurator window in
Standalone mode), only after adding the ADC PLIB on the project graph. The ADC Configuration
utility is same in MPLAB Harmony v3 and MPLAB Harmony v2.
2.8.4 DMA Configuration

The DMA Configuration utility of MPLAB Harmony v3 can be used to allocate DMA channels for

different transactions as shown in the following figure.

@ MICROCHIP

13

Figure 2-16. DMA Configuration

DMA Channels List

Channel Number Enable Trigger Priority Interrupt Enable
DMAC Channel 0 UART4_RX v CHPRIO Vv
DMAC Channel 1 Software Trigger v CHPRIT Vv

DMAC Channel 2
DMAC Channel 3
DMAC Channel 4
DMAC Channel 5
DMAC Channel 6

DMAC Channel 7

When the DMA is intended to be used with a PLIB module, such as the UART4 PLIB, then the DMA
channels must be configured for the UART4 TX and RX in the DMA Configurator utility and the code
can be generated. In the application, the DMA (PLIB or System Service) transfer APIs can be called to
do the transfers.

When the DMA is intended to be used with the driver module, DMA mode must be selected in the
corresponding driver configuration, then the driver itself configures the required DMA channels. The
user does not need to configure the DMA channels, or call any DMA APIs.

2.8.5 Enhanced Vectored Interrupt Controller (EVIC) Configuration
The MPLAB Harmony v3 utility provides the following configuration options:

+ Priorities and Sub-Priorities: When multiple PLIB modules are used with an interrupt, it is
important to configure the priorities and sub-priorities of these interrupts. It must be done using
this window and the corresponding code is generated in the EVIC Initialize function of the
plib evic.c.

+ ISR Generation: The ‘Use’ column of the EVIC Configuration utility is used to generate the ISR
for corresponding interrupts. By default, the Use option for all the interrupts are deselected.
When a PLIB module is used in interrupt mode, the MCC automatically selects the corresponding
Use option in the EVIC Configurator and the ISR is generated in the interrupts.c file.If the
user wants to generate the ISR of a peripheral even without using its PLIB module, then the
Use option can be manually selected, and the code can be generated. The ISR name can be
configured using the ‘Handler Name’ column. The following figure shows an interrupt configured
for the UART2_RX and UART_TX:

@ MICROCHIP

Figure 2-17. Interrupt Configuration

7 Interrupt Configuration = X
INTERRUPT CONFIGURATION HELP @ O
Vector Number Name Use Priority (1 = Lowest) SubPriority HandlerName
144 SPI2_TX (SPI2 Transmit Done) 1 v 0 v
145 UART2_FAULT (UART2 Fault) 1 v 0 v
146 UART2_RX (UART2 Receive Done) 1 v 0 v
147 UART2_TX (UART2 Transmit Done) 1 v 0 v
148 12C2_BUS (12C2 Bus Collision Event) 1 v 0 v 12C2_BUS_Handler
149 12C2_SLAVE (12C2 Slave Event) 1 v 0 v 12C2_SLAVE_Handler
150 12C2_MASTER (12C2 Master Event) 1 N 0 v 12C2_MASTER_Handler
151 CAN1 (Control Area Network 1) 1 v 0 i CAN1_Handler
152 CAN2 (Control Area Network 2) 1 v 0 v CAN2_Handler
153 ETHERNET (Ethernet) 1 v 0 N2 ETHERNET_Handler
154 SPI3_FAULT (SPI3 Fault) 1 v 0 v SPI3_FAULT_Handler
155 SPI3_RX (SPI3 Receive Done) 1 v 0 v SPI3_RX_Handler
156 SPI3_TX (SPI3 Transmit Done) 1 v 0 v SPI3_TX_Handler
157 UART3_FAULT (UART3 Fault) 1 v 0 v
158 UART3_RX (UART3 Receive Done) 1 v 0 v
159 UART3_TX (UART3 Transmit Done) 1 v 0 v
160 12C3_BUS (12C3 Bus Collision Event) 1 v 0 b 12C3_BUS_Handler
161 12C3_SLAVE (12C3 Slave Event) 1 v 0 v 12C3_SLAVE_Handler

Note: If MCC is selected the ‘Use’ column of an interrupt, and the user tries to override that setting
in the utility, the MCC allows that, but it may cause unpredictable or undesirable behavior.

2.8.6 Event Configurator
The Event Configurator of MPLAB Harmony v3 involves selecting and setting up peripherals to act as
event generators and users, then assigning them to specific event channels.
+ Event Generator: Choose peripherals that will act as event generators. For example, the Real-
Time Clock (RTC) can be configured to trigger events.

+ Event User: Choose peripherals that will act as event users. The Analog Comparator Start of
Conversion (AC_SOC) can be set to respond to events generated by the RTC.

+ Event Channel: Map the RTC (event generator) to the AC_SOC (event user) on a specific event
channel, which allows the AC_SOC to start a conversion when the RTC triggers an event.

@ MICROCHIP

Figure 2-18. Event Configurator

Event Configurator - [m] X

EVENT CONFIGURATOR

Channel Configuration Channel Settings

Select the channel from Channel Configuration Table to view ch. |

Event User Remove

Channel Number Event Generator Status | Ready = Channel

Channel 0 ‘RTC_CMP_O v ‘ [] o o)

Add Channel

User Configuration

User Channel Number Remove
User
ACSOCO “ | |CHANNELO Vv o}

Add User

2.8.7 Arm TrustZone for Armv8-M

Arm TrustZone for Cortex-M enables system software to be partitioned into Secure and Non-Secure
domains. Secure software can access both Secure and Non-Secure memories and resources, while
Non-Secure software can only access Non-Secure memories and resources.

In MPLAB X IDE, the Arm TrustZone for Armv8-M Configuration Window offers two configurations:

1. Memory Configuration: This utility allows for the configuration of memory settings.

2. Peripheral Configuration: This allows for the designation of peripherals as Secure or Non-
Secure.

Figure 2-19. Arm TrustZone for Armv8-M

Arm TrustZone for Armve-M - X
Arm® TrustZone® for Armv8-M HEP @ (@)
(YRS | peripheral Configuration

Color Note:
FLASH (524288 Bytes) DATA FLASH(16384 Bytes) SRAM(65536 Bytes) B secore

I Non-Secure Callable
[l Non-secure

0x0 0x0

AS

INSC

0x8000

APPLICATION

ANS
RNS

0x4000 0x10000

@ MICROCHIP

16

2.8.8 TCP IP Configuration

The TCP/IP Configuration enables a user to graphically add or remove TCP/IP functionality to the
MPLAB Harmony v3 project and configure each component per the application demand. The TCP/IP
Configurator window initializes with a graphical overview of the different TCP/IP layers. Selecting
each layer displays the Device Resources.

Figure 2-20. TCP IP Configuration

2 TCP/IP Configuration = :

@ Overview
o Application Layer ANNOUNCE | DHCPCLENT | DNSCUENT J| FTPCLENT | FTPSERVER | HTTP SERVER

TCP/IP Layers

28 Application
Presentation Layer
(4] Presentation

1l Transport

Transport Layer TCcP uDP

? Network e . .

& DataLink

@ Esc Conﬁg NetwerkLayer m
pata tnktayer

Basic Configuration TCPIP CMD TCPIP CORE

B Config Summary

@ MICROCHIP

17

3. Peripheral Libraries (PLIBs)

In MPLAB Harmony v2 and MPLAB Harmony v3, the PLIBs interact with Microchip's microcontroller

hardware. However, in MPLAB Harmony v3, there are many changes made to the peripheral
libraries to make them more user friendly.

3.1 How to Start Using Harmony v3 PLIBs

The MPLAB Harmony v3 PLIBs are part of a Chip Support Package (CSP). They can be used by
downloading (or cloning) the csp repository from the MPLAB Harmony GitHub page as described in

the Tools and Installation section. The user needs to follow the steps below to configure the MPLAB
Harmony v3 PLIBs:

+ As described in the MCC section above, all the MPLAB Harmony v3 resources, including PLIBs,
are listed in the Device Resources window as shown in the following figure. The PLIB resources
may have multiple instances, which denote corresponding multiple hardware instances of that
peripheral. For example, a device for which a MPLAB Harmony v3 project is being created, may
have six UART peripherals, and these UART peripheral instances are listed inside the UART as
shown in the following figure. Double-click on the peripheral instance for which PLIB to be used.
This will place the corresponding PLIB component on the project graph.

@ MICROCHIP

Figure 3-1. Device Resources - Peripherals

Device Resources

(2 Content Manager

I ¥ Peripherals I

ADCHS
CAN
CMP
CVR
EBI

12C
ICAP
NVM
OCMP
PMP
POWER
RAM
RCON
RNG
RTCC
SPI

sQ
T™R
TMR1

A

4] ¥ ¥ v wv ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ v ¥

UART

70

(1 +1 -
O

» UART2
' UART3
() UART4
> UARTS L

UART1

UARTE

» System Services

+ After the PLIB component is added on the project graph, select it by clicking on it. This will make
its configuration options appear on the configuration options towards the right as shown in the
following figure. Configure the PLIB as required by the application.

Figure 3-2. Peripheral Configuration

inTabe x| Pns.. (1)@ c ion Options x |

v | View: Root

UART6

Peripheral Library
UART

v

B®

= UARTE
-~ Operating Mode
- Stop Selection bit
Parity and Data Selection bits

1Stopbit
8-bit data, no parity v
~~High Baud Rate Enable bit High-Speed mode 4x baud dock enabled v

Non-blocking mode

UARTx Enable bits UXTX and UxRX pins are enabled and used; UxCTS and UxRTS/UxBCLK pins are controlled by corresponding bits in the PORTx register
100,000,000 5

~Clock Frequency
+~Baud Rate
Lo¥*% Baud Error = 0.0061 % ***

115,200 -5+

« Once PLIB configuration is complete, generate the code and start using the PLIB APIs
to develop the application. Code for the finished PLIB configuration is generated inside

@ MICROCHIP

19

the <plib name> Initilize function and this function is automatically called from the
SYS Initialize () function ofthe initilization.c file.

3.2 Understanding MPLAB Harmony v3 PLIB Generated Code

The following files and folders are generated in the MPLAB Harmony v3 project:

+ peripheral: Source and header files of all the peripherals used in the project are listed inside the
peripheralfolder. Usually there will be one .c and one .h PLIB file per peripheral instance. Some
of the peripherals and their files are always added by default in the project, such as gpio, clock,
evic.

+ definitions.h: This file is similar to the system definitions.h file of MPLAB Harmony v2. It
Includes all the header files required for the application.

+ toolchain_specifics.h: This file has a few macros defined, which are specific to toolchain.

+ device.h: This file includes the headers, which have definitions specific to the selected device,
such as xc.h.

+ exceptions.c: This file is same as the system exceptions.c file of MPLAB Harmony v2. It
defines the exception handler for the application.

+ initialization.c: This file is same as the system init.c file of MPLAB Harmony v2. It initializes
all the MPLAB Harmony modules used in the application.

+ interrupts.c: This file is same as the system interrupt.c file of MPLAB Harmony v2. It
contains definitions of all the interrupt service routines used in the application.

+ stdio/xc32_monitor.c: A new feature is added in MPLAB Harmony v3 to support the printf and
scanf functions of the standard C library. When the STDIO module (listed in Tools in the Device
Resources window) is used, the function definitions inside this file get updated by the MCC to
make the printf and scanf functions work.

* main.c: This file is same as in MPLAB Harmony v2. However, in MPLAB Harmony v2 it is
recommended to develop the application in app.c. In a MPLAB Harmony v3 PLIB only project,
it is recommended to do itin main.c. MPLAB Harmony v3 driver-based applications are still
recommended to be developed in app.c.

3.3 MPLAB Harmony v2 and MPLAB Harmony v3 PLIBs Differences
The major differences between MPLAB Harmony v2 and MPLAB Harmony v3 PLIBs are as follows:

+ MPLAB Harmony v2 PLIBs do not have any MHC configuration options. The PLIB initialization
code must be manually written. However, MPLAB Harmony v3 provides the MCC configuration
options for the PLIBs, and based on the configuration it generates the PLIB initialization code.

+ MPLAB Harmony v2 PLIBs have APIs to read and write almost every register field of a peripheral
module, which requires many APIs per module. Though that gives flexibility, it expects the user
to call multiple APIs, sometimes even in a sequence, to perform a task. On the contrary, MPLAB
Harmony v3 abstracts the peripheral features and has direct APIs to perform meaningful tasks.
It takes care of manipulating multiple register fields and sequencing in the implementation,
thereby making the usage simple and quick.

« MPLAB Harmony v2 PLIBs have the same API for a different instance of a peripheral. It provides
an argument to distinguish between instances, thereby keeping the API signature the same.
However, MPLAB Harmony v3 provides dedicated APIs for different instances.

* MPLAB Harmony v2 provides device-specific pre-compiled library files (in form of . a) and header
files to use its PLIBs. Based on optimization level, either library file implementation or header
files inline implementation gets used. However, MPLAB Harmony v3 generates and adds a . c file
for every PLIB instance, which has the definitions of the provided interface.

@ MICROCHIP

20

3.4 Application Example Using MPLAB Harmony v2 PLIBs

There are significant differences between MPLAB Harmony v2 and MPLAB Harmony v3 PLIBs,
therefore porting from an MPLAB Harmony v2 PLIB-based application to an MPLAB Harmony v3
PLIB-based application is not straight forward. The porting steps will vary based on the MPLAB
Harmony modules used by the application.

A simple example is printing a Hello World message on the computer console. This is shown to
compare the application development steps using the MPLAB Harmony v2 PLIB APIs against the
MPLAB Harmony v3 PLIB APIs.

To create an application using the MPLAB Harmony v2 PLIBs, follow these steps:

1. Create the MPLAB Harmony v2 project.
2. Configure using the MHC.

a. Configure the UART pin: Go to the Pin Setting window of the MHC and configure the UART
Transmit pin.

3. Generate the code using the MHC,
Update app.c.

a. The following code shows the initialization code required to develop the application. It
initializes the UART peripheral.

UART Initialize ()
{

uint32 t clockSource;

/* Disable the USART module to configure it*/
PLIB_USART Disable (USART ID 6);

/* Set the line control mode */
PLIB USART LineControlModeSelect (USART ID 6, USART 8N1);

/* We set the receive interrupt mode to receive an interrupt whenever FIFO
is not empty */

PLIB USART InitializeOperation (USART ID 6,USART RECEIVE FIFO ONE CHAR, USART TRANSMIT FI
FO IDLE,USART ENABLE TX RX USED);

/* Get the USART clock source value*/
clockSource = SYS CLK PeripheralFrequencyGet (CLK BUS PERIPHERAL 1);

/* Set the baud rate and enable the USART */
PLIB USART BaudSetAndEnable (USART ID 6, clockSource, 9600); /*Desired Baud rate
value*/

}

// AR RS RS S E S S E S S E SRS SRS SRS SRR SRS SRR RS E R R SRR R R R R R R R R R R R R R R R R RS
// R R R b R R b R R R R R R R I

// Section: Application Initialization and State Machine Functions
// AR RS RS S SRS S S SRS S S S SRS S SRR SRS E RS EEEEEREEEEEEE RS E R R R R R R R R R R R R R R R R R R R

// R R ik b R R b R R R R R R R

/***
Function:
void APP Initialize (void)

Remarks:
See prototype in app.h.
=y

void APP Initialize (void)
{
UART Initialize ();

}

Note: In MPLAB Harmony v2, the PLIB for the UART peripheral is named as USART, not
UART. All APIs have a prefix of PLIB_USART and not PLIB_UART.

@ MICROCHIP

21

b. The following code has the application logic to show the message on the console.

uint8 t count = 0;
uint8 t consoleMsg[] = "Hello World\n\r";

void APP_Tasks (void)
{
if (count < sizeof (consoleMsg))
{
/* Wait till TX buffer is available */
while (PLIB USART TransmitterBufferIsFull (USART ID 6));
/* Send one byte */
PLIB USART TransmitterByteSend (USART ID 6, consoleMsg[count]);
count++;

}

3.5 Application Example Using MPLAB Harmony v3 PLIBs

The same application used to show a message on the console can be created using MPLAB
Harmony v3 PLIBs in the following two possible ways.

3.5.1 Application Example Using MPLAB Harmony v3 PLIB in Blocking Mode

In blocking mode, the interrupt for the PLIB is disabled. The APIs for the transfer request operate
in blocking mode. Because the APIs block until completion, there is no need of any mechanism to
check the transfer status.

In this mode, the application can be created using the following steps:
1. Create the MPLAB Harmony v3 project.

2. Follow these steps to configure using the MCC:

a. Configure the UART pin: Launch the pin manager, go to the Pin Setting window of the MCC
and configure the UART Transmit pin.

b. Follow these steps to configure the UART PLIB:
i. Addthe UART6 Peripheral Library from the Device Resources list.

ii. Click onthe added UART6 PLIB box on the project graph, the configuration options will
appear on the right.

iii. Clear Interrupt mode and change the baud rate to 115,200 as shown in the following
figure.

Figure 3-3. Configuring UART PLIB 1

| Project Graph... EB @ Configuration Options x =2
JRERE & puwnEDH
= UARTH
Operating Mode Blockingmode v
UART6 Stop Selection bit 1Stopbit v
Peripheral Library Parity and Data Selection bits |8-bitdata, noparity v
UART High Baud Rate Enable bit High-Speed mode 4x baud dock enabled v
UARTx Enable bits UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/UxBCLK pins are controlled by corresponding bits in the PORTx register v
Clock Frequency 100,000,000 =
| -Baud Rate 115,200 =

*** Baud Error = 0.0061 % ***

3. Generate the code using the MCC.
4. Update the main.c file.

a. The UART initialization code is already generated by the MCC based on the configuration
done in step 2.2 above, hence code is not written to initialize the UART peripheral.

@ MICROCHIP

22

b. The following code shows the two lines of code (shown in bold) used to implement an
application to display a message on the console.

uint8_t consoleMsg[] = "Hello World\n\r";

int main (void)

{
/* Initialize all modules */
SYS Initialize (NULL);

UART6_Write(&consoleMsg[0], sizeof(consoleMsg));

while (true)

{
/* Maintain state machines of all polled MPLAB Harmony modules. */
SYS Tasks ();

}

/* Execution should not come here during normal operation */

return (EXIT FAILURE);

3.5.2 Application Example Using MPLAB Harmony v3 PLIB in Non-Blocking (interrupt) Mode

In Non-Blocking mode, the interrupt for the PLIB is enabled and the API that submits the transfer
request does not block until the transfer completes. Instead, the transfer request APl is called, the
API triggers the transfer process, and it immediately returns. The CPU continues to run the following
instructions while the transfer happens in the background. However, because the interrupts are
enabled in this mode, CPU execution is interrupted (to execute Interrupt service routines) after
every transfer completion until the whole transfer request is completed. In the Interrupt mode of
implementation, the transfer status can be checked in the following two ways. The user can choose
one of the methods to check the transfer status as required.

+ Status Polling: The MPLAB Harmony v3 PLIBs provide an IsBusy API to poll the status of the
transfer.

+ Callback: The MPLAB Harmony v3 PLIBs provide a callback register API to register the callback. If
the callback is registered, the registered callback function is called by the PLIB upon the transfer
completion.

3.5.2.1 Application Example Using Status Polling

Follow these steps to create the example application to display a message on the console using the

MPLAB Harmony v3 PLIBs in Non-Blocking (interrupt) mode using status polling:

1. Create the MPLAB Harmony v3 project.

2. Configure using the MCC:

a. Configure the UART Pin: Launch the pin manager, go to the Pin Setting window of the MCC
and configure the UART Transmit pin.

b. Configure the UART PLIB:
i. Addthe UART6 Peripheral Library from the Device Resources list.

ii. Click onthe added UART6 PLIB box on the project graph to see its configuration options
in the window to the right.

iii. Keep the interrupt mode enabled and change the baud rate to 115,200 as shown in the
following figure:

@ MICROCHIP

23

3.

Figure 3-4. Configuring UART PLIB 2

projectGraph... (41 2) () (&) | Configuration Options x o
IME W E | pun|DE
= UARTE
Operating Mode Non-blocking mode
UART6 Stop Selection bit 1Stopbit v
Peripheral Library Parity and Data Selection bits 8-bitdata, noparity v
UART High Baud Rate Enable bit High-Speed mode 4x baud dock enabled v
UARTx Enable bits UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/UxBCLK pins are controlled by corresponding bits in the PORTx register
Clock Frequency 100,000,000 =
I Baud Rate 115,2001% I

*** Baud Error = 0.0061 % ***

Generate the code using the MCC.

4. Update the main.c file.

a. The UART initialization code is already generated by the MCC based on the configuration
done in step 2.2 above, hence code is not required to initialize the UART peripheral.

b. Update the main. c file with the following code to complete the application implementation:
uint8 t consoleMsg[] = "Hello World\n\r";

int main (void)

{
/* Initialize all modules */
SYS Initialize (NULL);

UART6 Write (&consoleMsg[0], sizeof (consoleMsq));
while (UART6_WritelsBusy());

while (true)

{
/* Maintain state machines of all polled MPLAB Harmony modules. */
SYS Tasks ();

}

/* Execution should not come here during normal operation */

return (EXIT FAILURE);
}

Note: The application code in non-blocking (interrupt) mode is similar to that of blocking mode.
non-blocking mode has one extra instruction (as shown in bold above) to poll the status of the
transfer.

3.5.2.2 Application Using Callback
In the non-blocking method, instead of status polling, the callback mechanism can also be used to
check the transfer status. Follow these steps to use the callback mechanism:

1.

2.
3.
4

Register a callback function to the PLIB using a dedicated API given by the PLIB.
Define the function which is registered.
Make the transfer request.

Do other application tasks. Whenever a transfer completes, the registered callback function
which is defined, will be called by the PLIB.

Because callbacks are called from the interrupt context, the following guidelines must be followed
while defining the callback functions in the application:

Must be treated like an ISR.
Must be short.
Must not call application functions that are not interrupt safe.

Use volatile keywords for the variables which are accessed both inside of callback function and
outside of callback function.

@ MICROCHIP

24

3.6

The code example using a callback mechanism is not shown as MPLAB Harmony v2 PLIBs did not
have this feature, hence nothing to compare. The user can refer to the PLIB demonstrations in the
csp/apps folder in the csp repository for many PLIB callback examples.

Comparison Between MPLAB Harmony v2 and MPLAB Harmony v3 PLIB

Examples

If application development steps in MPLAB Harmony v2 and MPLAB Harmony v3 are compared for
the given example, the following differences can be noticed:

* MPLAB Harmony v3 has one MCC configuration step 2.2 extra
* MPLAB Harmony v3 has one coding step 4.1 less
* MPLAB Harmony v3 has application logic step 4.2 simplified

The previous example is of a very simple application. As the application complexity increases, the
differences will become more evident and it becomes much simpler and user friendly to develop
applications using MPLAB Harmony v3 PLIBs as compared to MPLAB Harmony v2.

@ MICROCHIP

25

4. Drivers

As in MPLAB Harmony v2, MPLAB Harmony v3 drivers also provide a highly abstracted C language
interface to peripherals and other resources. A driver's interface allows applications and other client
modules (that is, Middleware libraries) to interact with the peripheral it controls.

4.1 Using MPLAB Harmony v3 Drivers

MPLAB Harmony v3 drivers are part of the MPLAB Harmony Core Service and can be used by
downloading (cloning) the core repository from the MPLAB Harmony GitHub page as described in
the Tools and Installation section. Users need to follow these steps to configure and use the MPLAB
Harmony v3 drivers:

+ As described in the MCC section previously, all MPLAB Harmony v3 resources, including drivers,
are listed in the Device Resources section as shown in the following figure. To add a driver
component, click on the add component icon.

Figure 4-1. Device Resources

Device Resources (Z Content Manager

¥ Libraries
v Harmony
» Board Support Packages (BSPs)

» Bootloader

¥ Drivers
> External Ethernet Controller
» 12C EEPROM
» MAC Driver
MEMORY
MIIM Driver
» Parallel PROM
» PHY Driver
» SDCARD
spl
» SPI EEPROM
» SPI FLASH
» SQl Flash

» Graphics

* MPLAB Harmony v3 drivers have dependencies that must be satisfied as described in the
MCC section above. These dependencies are usually satisfied by the PLIB or System Service
components. All the dependencies must be satisfied.

+ Configure (in the Configuration Options) all the components which are used to satisfy the
dependency. For example, the USART driver will have a dependency on the UART PLIB, hence
the UART PLIB must be configured.

Note: In MPLAB Harmony (both MPLAB Harmony v2 and MPLAB Harmony v3), the driver
corresponding to the UART and USART is named as USART driver.

+ Drivers can have multiple instances. There are few configuration options which are common for
all the instances, where few are instance specific. The driver configuration steps are as follows:

26

@ MICROCHIP

https://github.com/Microchip-MPLAB-Harmony

a. Configure common options in the Configuration Options by clicking on the upper portion of
the USART Driver box on the Project Graph as shown in the following figure:

Figure 4-2. Driver Common Configuration

' EHUSART
s { Driver Mode g

Ciriver

T Core Service

Instances - = —+

Instance O
UART

b. By default, drivers have one instance (instance number 0). The number of instances can be
increased by clicking on the '+' sign and can be reduced by clicking on the '-' sign.

c. Configure instance-specific options by clicking on the respective Instance box on the Project
Graph, as shown below:

Figure 4-3. Instance-Specific Configuration

x | PinSettings x| E 4 E]”ConﬁgurationOpﬁons x|

View: |Root ol = #
= USART
USART PLIB Used UART2
Driver Number of Clients 3
& Core Service Use DMA for Transmit ? []

e Use DMA for Receive ? [

Instance 0
UART

DRV_USART

Tnstance 1
UART

DRV_USART

d. Once the configuration is complete, generate the code and start using the driver APIs to
develop the application.

4.2 Understanding MPLAB Harmony v3 Driver Code

When MPLAB Harmony v3 Drivers or System Services are used, the following additional files and
folders are generated as compared to a PLIB only project:

+ driver: Source and header files of all the drivers used in the project are listed inside the driver
folder. Usually there will be one .c and two . files per driver used.

+ configuration.h: This file is similar to the system config.h file of MPLAB Harmony v2. It is
used to define the configuration macros for drivers, system services and middleware libraries.

@ MICROCHIP

27

4.3

43.1

4.3.2

433

+ user.h: This is a new file in MPLAB Harmony v3, which is by default empty. It should be used to
define application specific macros. In MPLAB Harmony v2, those application specific macros are
generally defined in the system config.h file.

« app.h: This file is same as that in MPLAB Harmony v2, and it is used to develop the application.
+ app.c: This file is same as that in MPLAB Harmony v2, and it is used to develop the application.

MPLAB Harmony v2 and MPLAB Harmony v3 Similarities in Drivers

Unique Interface

As in MPLAB Harmony v2, MPLAB Harmony v3 drivers also provide unique APIs for peripheral usage
across Microchip’s 32-bit devices. These unique API interfaces across 32-bit MCU families enable
applications developed using the MPLAB Harmony drivers to be ported easily from one device to
another. Details of these APIs can be found in the help documentation in the core repository.

Multiple Clients Support

As in MPLAB Harmony v2 drivers, MPLAB Harmony v3 drivers also support multiple clients. This
allows the application to use one instance of peripheral with different configurations in different
contexts without any data interference.

In MPLAB Harmony v3, the maximum number of clients to be used by an application can be
configured through the MCC. This can be done under the configuration options for the peripheral-
specific driver instance of the MPLAB Harmony driver as shown in the following figure:

Figure 4-4. Multiple Client Configuration

= LISART
USART :,....pLIB Used LJARTS
Driver Humber of Clients 22
< Core Service -
~-Use DMA for Transmit 7 [
Instances -——+ “else DMA for Receive 7 [

Instance 0
UART

DRV_USART

Buffer Queue Support

As in MPLAB Harmony v2 drivers, MPLAB Harmony v3 drivers also allow buffer queuing. The driver
can queue up a client's new request while it is already processing an earlier request. In MPLAB
Harmony v3, queuing support is available only for Asynchronous mode of the drivers. Synchronous
drivers are blocking in nature, therefore the queuing feature is not applicable (Synchronous and
Asynchronous drivers in MPLAB Harmony v3 is discussed in a following section).

In MPLAB Harmony v3, to configure the buffer queue size, first configure the driver in Asynchronous
mode through driver's common configurations as shown in Driver's Common Configuration

and then the Transfer Queue Size is configured through a peripheral-specific driver instance
configuration as shown in the following figure:

@ MICROCHIP

28

4.3.4

4.4

4.4.1

4.4.2

Figure 4-5. Configuring Queue Size

= USART
USART é,....pue. Used UARTSE
Driver - Number of Clients 15
2 Core Service . e
 Transfer Quele Size 6F<
Instances -— —+ %—---Use DM for Transmit ?]

ll Instance 0 "Use DMA for Receive 7 |
¥ A UART
DRV_USART T

Real Time Operating System (RTOS) Support
As with MPLAB Harmony v2 drivers, MPLAB Harmony v3 drivers support multiple RTOS.

MPLAB Harmony v2 and MPLAB Harmony v3 Differences in Drivers

The following are the main differences between MPLAB Harmony v2 and MPLAB Harmony v3
drivers:

APl Compatibility

There are few differences in MPLAB Harmony v2 and MPLAB Harmony v3 driver APIs. Because the
differences are minimal, an MPLAB Harmony v2 driver-based application can be ported to an MPLAB
Harmony v3 application with some changes.

Synchronous and Asynchronous Model

Synchronous drivers are blocking in nature as compared to asynchronous drivers which are non-
blocking in nature. Synchronous drivers are recommended to be used with RTOS, and asynchronous
drivers are used in a bare-metal (Non-RTOS) environment. Although, Asynchronous drivers are
recommended to be used in a Non-RTOS based application environment, they can be used in an
RTOS-based application environment where the application must ensure certain tasks yield control
to allow the appropriate running of relevant application tasks.

MPLAB Harmony v3 provides synchronous and asynchronous drivers, where MPLAB Harmony v2
provides only an asynchronous model of drivers. In MPLAB Harmony v3, this mode selection can be
done in the configuration options by clicking on the upper half of the driver box in the project graph
as shown in the following figure:

Figure 4-6. Configuring Driver Mode

- USART
USART {

Diriver

2 Core Service

Instances -——+

Instance 0
UART

@ MICROCHIP

29

4.4.3

4.4.4

4.5

Interrupt and Polling Mode

In the interrupt mode of a driver, the driver state machine (or task routine) runs from the interrupt
service routine. However, in polling mode, the driver state machine runs from a while (1) loop.
The interrupt mode of drivers provides the best responsiveness where the polling mode is good for
debugging purposes.

MPLAB Harmony v2 supports both interrupt and polling modes of drivers. However, MPLAB
Harmony v3 supports only interrupt mode (except for a few drivers which are not associated with
peripheral interrupts and runs their state machine from the while (1) loop, such as the memory
driver, and SDSPI driver). Any MPLAB Harmony v2 applications which use the polling mode of a
driver, must use the interrupt mode of the driver in MPLAB Harmony v3. However, changing from
polling mode to interrupt mode, does not demand any change in the application. Whatever changes
are needed in the system and interrupt files, are done by the MCC code generation.

Static and Dynamic Model

MPLAB Harmony v2 static drivers are implemented for a single peripheral instance to reduce the
memory footprint of the driver. Sometimes other features of a driver, such as multi-client, buffer
queuing, and RTOS support are also removed from static drivers to make them simple and concise.
Dynamic drivers are full fledged drivers which support multiple peripheral instances, multi-client,
and RTOS.

MPLAB Harmony v2 supports both, static and dynamic driver models, where MPLAB Harmony

v3 has only dynamic drivers. However, many of the characteristics of MPLAB Harmony v2 static
drivers are provided in MPLAB Harmony v3 PLIBs. Applications developed using MPLAB Harmony
v2 static drivers can switch to MPLAB Harmony v3 PLIBs or MPLAB Harmony v3 drivers (dynamic
drivers) based on their requirements. If an application needs features, such as multiple client,
buffer queuing and RTOS, then MPLAB Harmony v3 dynamic drivers can be used; otherwise MPLAB
Harmony v3 PLIBs can be considered.

Application Example Using MPLAB Harmony v2 Driver
To create an application to display a message on a computer console using MPLAB Harmony v2
drivers follow these steps:
1. Create the MPLAB Harmony v2 project.
2. Configure using the MHC.
a. Configure the UART pin: Go to the Pin Setting window of the MHC and configure the UART
Transmit pin.
b. Configure the USART driver as shown in the figure below (notice the highlighted options are
modified):
Note: In)MPLAB Harmony, the driver corresponding to the UART and USART is the USART
driver.

@ MICROCHIP

30

Figure 4-7. Configuring MPLAB Harmony v2 USART Driver

=I-USART
=} [7] Use USART Driver?

--Driver Implemeniﬁhon STATIC i

----- [] Byte Model Support

----- [] readiWrite Model Support

----- Buffer Quewe Support

-Mumber of USART Driver Instances |1

----- =% Each instance can have only one dient in STATIC driver mode ****

=] [«] USART Driver Instance 0

~USART Module ID USART_ID_&

--Baud Rate | 9600

~Transmit Interrupt Priority |INT_PRIORITY_LEVEL1 e
-Transmit Interrupt Sub-priority [INT_SUBPRICRITY _LEVELD -
—Receive Interrupt Priority | INT_PRIORITY _LEVEL1 e
-Receive Interrupt Sub-priority | INT_SUBPRIORITY_LEVELD -
--Operation Mode |DRY_USART OPERATION _MODE_NORMAL
- [] Wake On Start

- [] Auto Baud

- [] Stop In Idle

-Line Control | DRV_USART_LINE_COMTROL_SMOMEL -
~Handshake Mode |DRY_USART_HANDSHAKE_MONE w
~Transmit Queue Size |10

~-Receive Queue Size |10

« [] Transmit DMA Support

- [] Receive DMA Support

3. Generate the code using the MHC,

4. Follow these steps to update the application:

a. The UART initialization code is already generated by the MHC based on the configuration, as
described in step 2.2, hence it does not required to be added.

b. Update the app.c file and app.h file with application logic. The following figure shows the
application logic to be developed in the app. c file, which has the following three states:

i. Open the driver: This state is required for the driver model which supports multiple
clients. For example, the dynamic driver. It can be skipped for static drivers as they are

single client.

ii. Queue transfer requests: This state adds the transfer request in the queue. In this
application, there is no back-to-back requests to be queued, but a queueing model has
been used for representation.

iii. Check status of the transfer: This state checks the transfer status. The status of the
transfer can be checked by these methods:

1.

@ MICROCHIP

Polling: Application continuously polls for transfer status using an API. In this example
the polling method is used.

31

4.6

@ MICROCHIP

2. Callback: Callback can be registered using a dedicated APl which can be called once
the transfer completes.

uint8 t consoleMsg[] = "Hello World\n\r";
void APP_Tasks (void)
{

/* Check the application's current state. */
switch (appData.state)
{
/* Application's initial state. */
case APP_STATE_OPEN_DRIVER:
{
appData.myUSARTHandle = DRV _USART Open (DRV_USART INDEX 0, DRV IO INTENT READWRITE |
DRV IO INTENT NONBLOCKING) ;
if (appData.myUSARTHandle != DRV_HANDLE INVALID)
{
appData.state = APP_STATE ADD REQUEST;
}
break;
}
case APP_STATE_ADD_REQUEST:
{
DRV_USART BufferAddWrite (appData.myUSARTHandle, &appData.bufferHandle,

&consoleMsg[0], sizeof (consoleMsq)) ;
appData.state = APP_STATE STATUS CHECK;
break;

}
case APP_STATE_STATUS_CHECK:
{
if (DRV_USART TRANSFER STATUS TRANSMIT EMPTY &
DRV_USART TransferStatus (appData.myUSARTHandle))
{
// Data has been transmitted, go to next state
appData.state = APP_STATE COMPLETE;

break;

}

Note: If the user wants to use a dynamic driver or non-interrupt mode of a driver for this
application, the application code in the app. c file must be the same. The only change is the MCC
configuration change, as described in the step 2.2.

Application Example Using MPLAB Harmony v3 Driver

To create an application to display a message on a computer console using the MPLAB Harmony v3
drivers, follow these steps:

1. Create an MPLAB Harmony v3 project.
2. Configure using the MCC.

a. Configure the UART pin: Launch the pin manager, go to the Pin Setting window of the MCC
and configure the UART Transmit pin.

b. Follow these steps to configure the UART PLIB:
i. Add the UARTG6 Peripheral Library from the Device Resources window.

ii. Click on the added UART6 PLIB box on the project graph to see its configuration options
in the window on the right.

iii. Keep the Interrupt mode enabled and change the baud rate to 115,200 as shown in the
following figure:

32

Figure 4-8. Configure UART PLIB

inTable x| Pns.. ({2)(Z(E)| c
EH

ion Options x | =

v | View: Root v

=-UARTE
Operating Mode
Stop Selection bit
Parity and Data Selection bits
- High Baud Rate Enable bit
~~UARTx Enable bits
~Clock Frequency
| Baud Rate
“*** Baud Error = 0.0061 % ***

Non-blocking mode
1Stopbit +
8-bitdata, no parity v
High-Speed mode 4x baud dock enabled v
UxTX and UxRX pins are enabled and used; UXCTS and UxRTS/UxBCLK pins are controlled by corresponding bits in the PORTx register v
100,000,000 =
115,200 5]

UART6
Peripheral Library
UART

Follow these steps to configure the USART Driver:

iii.
iv.

Add the USART Driver from the Device Resources window.
Add the Core (HarmonyCore) component when asked in the pop up window.
Do not add the FreeRTOS component when asked in the pop up window.

Right-click on the USART driver instance 0 dependency box, and satisfy the dependency
with the UART6 PLIB as shown in the following figure:

Note: In MPLAB Harmony, the driver corresponding to the UART and USART, is the
USART driver.

Figure 4-9. Configuring MPLAB Harmony v3 USART Driver 1

StartPage x | #f MPLABXStore x| KitWindow x| ProjectGraph x| PinDiagram x| PinTable x| Pins.. [*](*](&)

X TRERE 4| ® s <

View: |Root v

USART
Driver
O Core Service

Device Family Pack (DFP)

UART6
FreeRTOS

Third Party Library
RTOS ©

Instances - = —+

Instance 0
1IADT

Peripheral Library
UART

V.

drv_usart_UART_dependency (UART)
Unsatisfied Direct Dependency
Core
Harmony Core Service
O RTOS

Core Service ©

Satisfiers UART1 (uart1)
UART2 (uart2)
UARTS3 (uart3)
UART4 (uartd)
UARTS (uart5)

UARTG (uart6)

Click on the upper side of the USART driver box on the project graph to see the USART
driver common configuration options in the window on the right. Let the Driver Mode be
Asynchronous as shown in the following figure:

@ MICROCHIP

33

Vi.

Figure 4-10. Configuring MPLAB Harmony v3 USART Driver 2

E-LISART

e i----Dri\fer Mode | Asynchronous

Diriver

< Core Service

Instances = —+
Instance 0

Pearipheral Library
UART

Click on the lower side of the USART driver box on the project graph to see the

USART driver instance 0 configuration options in the window on the right. Leave the
configurations set as is. Notice the ‘PLIB Used' is automatically configured as UART®. If
UART®6 is not shown, that means the USART driver is not yet connected with the UART6
PLIB, and this connection needs to be made.

Figure 4-11. Configuring MPLAB Harmony v3 USART Driver 3

indow x| ProjectGraph x| PinDiagram... | *][(~](®) | configuration Options x|
v | View: Root v ||| H
= USART
USART {PLIE Used UART6]
Deves Number of Clients 15
© Core Service ~~Use DMA for Transmit ? []
UART6 - Instances =+ | Use DMA for Receive 2 [

Peripheral Library nstance 0
UART L UART

‘ DRV_USART

3. Generate the code using the MCC.
4. Update the application:

a. The UART PLIB and driver initialization code is already generated by the MCC, which is based
on the configuration described in the step 2.2 and 2.3.

b.

Update the app.c file and the app.h file with application logic. The following figure shows
the application logic to be developed in the app. c file, which has three states:

Open the driver: This state is compulsory for MPLAB Harmony v3 drivers as they are
multi-client. Which means even if driver has one client, the application needs to open the
driver before using it.

Queue transfer request: This state adds the transfer request in the queue.

Check status of the transfer: This state checks the transfer status. As with MPLAB
Harmony v2, the status of the transfer can be checked by these methods:

1. Polling: Application continuously polls for the transfer status using an API. In this
example the polling method is used.

@ MICROCHIP

34

2. Callback: Callback can be registered using a dedicated API which will be called once
the transfer completes.

uint8 t consoleMsg[] = "Hello World\n\r";
void APP_Tasks (void)
{

/* Check the application's current state. */
switch (appData.state)
{
/* Application's initial state. */
case APP_STATE OPEN DRIVER:
{
appData.myUSARTHandle = DRV _USART Open (DRV_USART INDEX 0, DRV IO INTENT READWRITE|
DRV_IO INTENT NONBLOCKING) ;
if (appData.myUSARTHandle != DRV _HANDLE INVALID)
{
appData.state = APP_STATE ADD REQUEST;

break;

}
case APP_STATE ADD REQUEST:
{
DRV_USART WriteBufferAdd(appData.myUSARTHandle, &consoleMsg[0], sizeof(consoleMsg),
&appData.bufferHandle);
appData.state = APP_STATE STATUS CHECK;
break;

}
case APP STATE STATUS CHECK:

{
if (DRV_USART BUFFER_EVENT_COMPLETE & DRV_USART_BufferStatusGet(appData.bufferHandle))

// Data has been transmitted, go to next state
appData.state = APP STATE COMPLETE;
}

break;

4.6.1 Comparison Between MPLAB Harmony v2 and MPLAB Harmony v3 Driver Examples

The MCC configuration items are similar in MPLAB Harmony v2 and MPLAB Harmony v3. MPLAB
Harmony v3 requires configuration in two parts (as shown in steps 2.2 and 2.3), but the same
configuration items are configured in MPLAB Harmony v2 in one step (2.2).

MPLAB Harmony v2 and MPLAB Harmony v3 have the similar driver usage model and application
logic except the API changes in MPLAB Harmony v3. The API changes are highlighted in the previous
code example.

@ MICROCHIP

5.1

System Services

MPLAB Harmony provides System Service libraries to support common functionality and manage
resources that are shared by multiple drivers, libraries, and other modules. MPLAB Harmony v3
System Services are similar to MPLAB Harmony v2 System Services.

How to Start Using MPLAB Harmony v3 System Services

MPLAB Harmony v3 system services are also part of the Harmony Core Service and they can be
used by downloading (cloning) the core repository from the MPLAB Harmony GitHub as described
in the Tools and Installation section. As described in the MCC section above, all the MPLAB Harmony
v3 resources, including system services, are listed in the Device Resources window as shown in the
following figure. The user can double-click on them to place them on the project graph to configure
and use them.

Figure 5-1. Device Resources - System Services

Device Resources (Z Content Manager

¥ Libraries
¥ Harmony

» Board Support Packages (BSPs)
» Bootloader
» Drivers
P Graphics
» Input
» Libraries

» Peripherals

¥ System Services
COMMAND
CONSOLE
DEBUG
FILE SYSTEM
TIME

» TCPIP

P Third Party Libraries
» Tools

> USB

A few System services, commonly used by drivers, middleware libraries and applications (Ports
system service, Interrupt system service, and so on) can be configured from the configuration

tree of the core component (Harmony Core Service) as shown in the following figure. Any MPLAB
Harmony v3 resources which need these system services, will select these options automatically.
The user needs to select them manually only if they are not selected by default, and the application
needs to use them.

@ MICROCHIP

36

https://github.com/Microchip-MPLAB-Harmony

Figure 5-2. Common System Services

gram x| PinTable... ID|8]E) Configuration Options x |

v} View: Root v | =] [

=-Core
~Generate Harmony Application Files
Corg Generate Harmony Driver Common Files
T e e T ~Generate Harmony System Service Common Files
O RTOS ~Generate Harmony System Media Files
Core Service © ~Enable System Interrupt
~Enable System Ports
Enable System Cache
~Enable System DMA
~~Enable System Reset
~-Enable 0SAL

@ MICROCHIP

O0OorROOO0O0O0O

6. Middleware Libraries
MPLAB Harmony v3 has the same middleware libraries as in MPLAB Harmony v2. The
implementation of the middleware is updated to use the latest drivers and system services, but the
APIs will remain the same. To get the middleware listed in the MPLAB Harmony v3 Device Resources
list, the user must download (clone) the corresponding middleware repository from GitHub as
explained in the Tools and Installation section.

@ MICROCHIP

38

7.1

Real Time Operating System (RTOS) Support

MPLAB Harmony v3 drivers, system services, and middleware, same as in MPLAB Harmony v2,
support multiple third party RTOS through the Operating System Abstraction Layer (OSAL). The
OSAL provides a consistent interface to allow MPLAB Harmony compliant libraries to take advantage
of the operating system constructs when running in an OS environment or when operating without
one. The OSAL layer in MPLAB Harmony v3 is same as in MPLAB Harmony v2.

How to Start Using RTOS in MPLAB Harmony v3
To use any RTOS in MPLAB Harmony v3, two repositories (for each RTOS) are required:

+ Harmony Configuration Repository: This repository will have the MPLAB Code Configuration
files and MPLAB Harmony applications of the RTOS. It is provided by Microchip and can be
downloaded from GitHub as explained in the Tools and Installation section.

* RTOS Source Code Repository: This repository will have the source code for the RTOS. It must
be obtained from a corresponding third-party vendor.

The following table provides the list of currently supported RTOS and the required repositories for
use in MPLAB Harmony v3:

Table 7-1. Supported RTOS and Corresponding Repositories

RTOS Name MPLAB Harmony Configuration Repository RTOS Source Code Repository

FreeRTOS core FreeRTOS
Micrium ucos3 micrium_ucos3 Need to be obtained from the vendor
Thread-X threadx Need to be obtained from the vendor

@ MICROCHIP

39

https://github.com/Microchip-MPLAB-Harmony/core
https://github.com/Microchip-MPLAB-Harmony/CMSIS-FreeRTOS
https://github.com/Microchip-MPLAB-Harmony/micrium_ucos3
https://github.com/Microchip-MPLAB-Harmony/threadx

8.1

8.2

8.3

8.4

8.5

Porting MPLAB Harmony v2 Application to MPLAB Harmony v3

An MPLAB Harmony v2 application which needs to be developed on MPLAB Harmony v3, might be
using multiple components, such as a PLIB, driver, and middleware. The following is the summary of
components for developing an application in MPLAB Harmony v3:

PLIB

If an application uses the MPLAB Harmony v2 PLIBs, it can be developed using the MPLAB Harmony
v3 PLIBs, but it may not be straightforward as the MPLAB Harmony v3 PLIBs are different as
compared to the MPLAB Harmony v2 PLIBs. For more information, refer to Application Example
Using MPLAB Harmony v2 PLIBS, and Application Example Using MPLAB Harmony v3 PLIBS.

Static Driver

If an MPLAB Harmony v2 application uses the static driver, it can be developed on MPLAB Harmony
v3 in two ways:

1. Instead of the MPLAB Harmony v2 static driver, the MPLAB Harmony v3 PLIB can be used.
Application Example Using MPLAB Harmony v3 PLIBS shows an example.

2. Instead of the MPLAB Harmony v2 static driver, the MPLAB Harmony v3 dynamic driver can be
used. Application Example Using MPLAB Harmony v3 Driver shows an example.

Dynamic Driver

If an MPLAB Harmony v2 application uses the dynamic driver, it can be developed on MPLAB
Harmony v3 by using the MPLAB Harmony v3 dynamic driver. Application Example Using MPLAB
Harmony 3 Driver shows an example.

System Services

If an MPLAB Harmony v2 application uses the system services, it can be developed on MPLAB
Harmony v3 by using the MPLAB Harmony v3 system services. There is no example shown for
this as it should be a straightforward change. Refer to System Services for details on the MPLAB
Harmony v3 system services.

Middleware

MPLAB Harmony v3 middleware libraries are same as those in MPLAB Harmony v2. There should
not be any API level change needed to port a middleware-based application. However, the MCC
configuration options and style has changed in MPLAB Harmony v3, so care must be taken. The
following migration documents can be referred to for developing MPLAB Harmony v3 middleware-
based applications:

USB:
github.com/Microchip-MPLAB-Harmony/usb
TCP/IP:
github.com/Microchip-MPLAB-Harmony/net
Graphics:
github.com/Microchip-MPLAB-Harmony/gfx

@ MICROCHIP

40

https://github.com/Microchip-MPLAB-Harmony/usb
https://github.com/Microchip-MPLAB-Harmony/net
https://github.com/Microchip-MPLAB-Harmony/gfx

9. MPLAB Harmony Development Models

MPLAB Harmony architecture allows the implementation of a variety of applications from small
real-time applications to larger feature rich applications. These applications can be developed
using various MPLAB Harmony components (modules) as described in the previous sections. The
following development models are derived based on the MPLAB Harmony components used in the
application development:

+ Simple device configuration and initialization using the MCC

+ Peripheral library-based application

+ Powerful, conflict-free drivers-based application

+ Application requiring MPLAB Harmony middleware

+ RTOS-based application for optimum Central Processing Unit (CPU) utilization

The following figure shows the MPLAB Harmony components used in different development
models. The first two models are used for simple applications and they only need the csp repository
to be downloaded (cloned). The last three models are for advanced applications which need core
and other repositories.

Figure 9-1. MPLAB Harmony v3 Development Models

Chip Support Package (CSP)

‘ Application(s) | ‘ Application

| 1o

Application

Configuration

Driver

‘ Services Driver

Configuration | | PLIB | ‘ PLIB | ‘ PLIB | ‘ PLIB |

PLIB Application

’ Middleware ‘ ‘ Driver | ‘ PLIB ‘

Configuration PLIB

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
H Middleware 1
. Services e H
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1

1

] o] o |
s [[[[B

PLIB
Application

Middleware

Driver
Application(s)

Application(s)

Middleware
‘r:,:g.sm Services e

o] o

All five models are supported by both MPLAB Harmony v2 and MPLAB Harmony v3. However, using
the 2nd model for application development is easier in MPLAB Harmony v3 compared to MPLAB
Harmony v2.

@ MICROCHIP

10. Conclusion

MPLAB Harmony v3 provides a modular download and updates through GitHub for better
installation and configuration management. It enhances the way MPLAB Harmony modules can
be configured using the Project Graph window of the MPLAB Code Configurator (MCC). MPLAB

Harmony v3 provides ease of use, and optimized peripheral libraries to develop applications quickly.

Applications which use MPLAB Harmony v2 drivers, system services, and middleware libraries can
be ported to MPLAB Harmony v3 with few code changes.

@ MICROCHIP

42

11. References

For additional information on MPLAB Harmony v3, refer to the Microchip web site:
www.microchip.com/mplab/mplab-harmony

microchipdeveloper.com/harmony3:start
How to Setup the MPLAB Harmony v3 Software Development Framework:

ww1.microchip.com/downloads/en/DeviceDoc/
How_to_Setup_MPLAB_%20Harmony_v3_Software_Development_Framework_DS90003232C.pdf

Detailed documentation on various MPLAB Harmony 3 resources can be found in the
documentation folder of the corresponding repository

For additional information about 32-bit Microcontroller Collaterals and Solutions, refer to:
DS70005534: 32-bit Microcontroller Collateral and Solutions Reference Guide

For other relevant information, refer to the Microchip web site
www.microchip.com/

@ MICROCHIP

43

https://www.microchip.com/mplab/mplab-harmony
https://microchipdeveloper.com/harmony3:start
https://ww1.microchip.com/downloads/en/DeviceDoc/How_to_Setup_MPLAB_%20Harmony_v3_Software_Development_Framework_DS90003232C.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/How_to_Setup_MPLAB_%20Harmony_v3_Software_Development_Framework_DS90003232C.pdf
http://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/ReferenceManuals/32-bit-Microcontroller-Collateral-and-Solutions-Reference-Guide-DS70005534.pdf
http://www.microchip.com/

12. Revision History

Revision B - 12/2024
The following updates were performed for this revision:

« Throughout the document references to the MHC were converted to MCC to reflect a tool
upgrade

+ The following sections were updated with new links, images and minor content additions to
reflect the tool upgrade:

- Tools and Installation
- MPLAB Code Configurator GUI
- Device Resources
- Project Resources
- Capability
- Configuration Options
- Output
- Generate
- MCC Utilities or Plugins
- Pin Configuration
- ADC Configuration
- DMA Configuration
- Enhanced Vectored Interrupt Controller (EVIC) Configuration
- How to Start Using Harmony v3 PLIBs
- Understanding MPLAB Harmony v3 PLIB Generated Code
- MPLAB Harmony v2 and MPLAB Harmony v3 PLIBs Differences
- Application Example Using MPLAB Harmony v3 PLIB in Blocking Mode
- Application Example Using Status Polling
- How to Start Using MPLAB Harmony v3 Drivers
- Multiple Clients Support
- Application Example Using MPLAB Harmony v3 Driver
- How to Start Using MPLAB Harmony v3 System Services
- Middleware Libraries
- How to Start Using RTOS in MPLAB Harmony v3
- Middleware
- Conclusion
- References
+ The following new sections were added to this document:
- Event Configurator
- Arm TrustZone for Armv8-M
- TCP IP Configuration

Revision A - 02/2020
This is the initial release of the document.

@ MICROCHIP

Microchip Information

Trademarks

The “Microchip” name and logo, the “M" logo, and other names, logos, and brands are registered
and unregistered trademarks of Microchip Technology Incorporated or its affiliates and/or
subsidiaries in the United States and/or other countries (“Microchip Trademarks"). Information
regarding Microchip Trademarks can be found at https://www.microchip.com/en-us/about/legal-
information/microchip-trademarks.

ISBN: 979-8-3371-0209-2

Legal Notice

This publication and the information herein may be used only with Microchip products, including

to design, test, and integrate Microchip products with your application. Use of this information

in any other manner violates these terms. Information regarding device applications is provided
only for your convenience and may be superseded by updates. It is your responsibility to ensure
that your application meets with your specifications. Contact your local Microchip sales office for
additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/
client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS IS”. MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY

OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR
CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR

ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO
MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk,

and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages,
claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise,
under any Microchip intellectual property rights unless otherwise stated.

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip products:

+ Microchip products meet the specifications contained in their particular Microchip Data Sheet.

« Microchip believes that its family of products is secure when used in the intended manner, within
operating specifications, and under normal conditions.

« Microchip values and aggressively protects its intellectual property rights. Attempts to breach the
code protection features of Microchip products are strictly prohibited and may violate the Digital
Millennium Copyright Act.

+ Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its
code. Code protection does not mean that we are guaranteeing the product is “unbreakable”.
Code protection is constantly evolving. Microchip is committed to continuously improving the
code protection features of our products.

@ MICROCHIP

45

https://www.microchip.com/en-us/about/legal-information/microchip-trademarks
https://www.microchip.com/en-us/about/legal-information/microchip-trademarks
https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services

	Introduction
	Table of Contents
	1. Tools and Installation
	2. MPLAB Code Configurator GUI
	2.1. Device Resources
	2.2. Project Resources
	2.3. Project Graph
	2.3.1. Dependency
	2.3.2. Capability

	2.4. Configuration Options
	2.5. Output
	2.6. Help
	2.7. Generate
	2.8. MCC Utilities or Plugins
	2.8.1. Clock Configuration
	2.8.2. Pin Configuration
	2.8.3. ADC Configuration
	2.8.4. DMA Configuration
	2.8.5. Enhanced Vectored Interrupt Controller (EVIC) Configuration
	2.8.6. Event Configurator
	2.8.7. Arm TrustZone for Armv8-M
	2.8.8. TCP IP Configuration

	3. Peripheral Libraries (PLIBs)
	3.1. How to Start Using Harmony v3 PLIBs
	3.2. Understanding MPLAB Harmony v3 PLIB Generated Code
	3.3. MPLAB Harmony v2 and MPLAB Harmony v3 PLIBs Differences
	3.4. Application Example Using MPLAB Harmony v2 PLIBs
	3.5. Application Example Using MPLAB Harmony v3 PLIBs
	3.5.1. Application Example Using MPLAB Harmony v3 PLIB in Blocking Mode
	3.5.2. Application Example Using MPLAB Harmony v3 PLIB in Non-Blocking (interrupt) Mode
	3.5.2.1. Application Example Using Status Polling
	3.5.2.2. Application Using Callback

	3.6. Comparison Between MPLAB Harmony v2 and MPLAB Harmony v3 PLIB Examples

	4. Drivers
	4.1. Using MPLAB Harmony v3 Drivers
	4.2. Understanding MPLAB Harmony v3 Driver Code
	4.3. MPLAB Harmony v2 and MPLAB Harmony v3 Similarities in Drivers
	4.3.1. Unique Interface
	4.3.2. Multiple Clients Support
	4.3.3. Buffer Queue Support
	4.3.4. Real Time Operating System (RTOS) Support

	4.4. MPLAB Harmony v2 and MPLAB Harmony v3 Differences in Drivers
	4.4.1. API Compatibility
	4.4.2. Synchronous and Asynchronous Model
	4.4.3. Interrupt and Polling Mode
	4.4.4. Static and Dynamic Model

	4.5. Application Example Using MPLAB Harmony v2 Driver
	4.6. Application Example Using MPLAB Harmony v3 Driver
	4.6.1. Comparison Between MPLAB Harmony v2 and MPLAB Harmony v3 Driver Examples

	5. System Services
	5.1. How to Start Using MPLAB Harmony v3 System Services

	6. Middleware Libraries
	7. Real Time Operating System (RTOS) Support
	7.1. How to Start Using RTOS in MPLAB Harmony v3

	8. Porting MPLAB Harmony v2 Application to MPLAB Harmony v3
	8.1. PLIB
	8.2. Static Driver
	8.3. Dynamic Driver
	8.4. System Services
	8.5. Middleware

	9. MPLAB Harmony Development Models
	10. Conclusion
	11. References
	12. Revision History
	Microchip Information
	Trademarks
	Legal Notice
	Microchip Devices Code Protection Feature

