AVR32714: UC3A Schematic Checklist

AVINOZA 14. GGOA GONOMANO GNOGANIO

Features

- · Power circuit
- Reset circuit
- USB connection
- External bus interface
- ABDAC sound DAC interface
- JTAG and Nexus debug ports
- · Clocks and crystal oscillators

1 Introduction

A good hardware design comes from a proper schematic. Since UC3A devices have a fair number of pins and functions, the schematic for these devices can be large and quite complex.

This application note describes a common checklist which should be used when starting and reviewing the schematics for a UC3A design.

32-bit **AVR**® Microcontrollers

Application Note

Rev. 32090E-AVR32-12/08

2 Power circuit

2.1 Single 3.3 volt power supply

Figure 2-1. Single 3.3 volt power example schematic

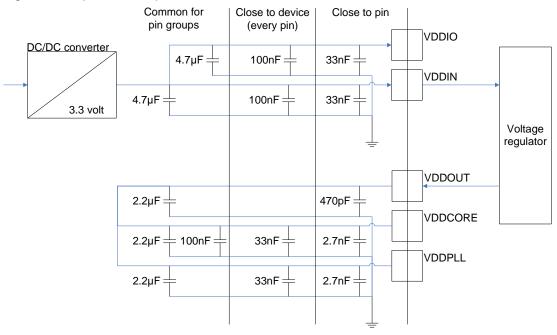


Table 2-1. Single 3.3 volt power supply checklist

$ \sqrt{} $	Signal name	Recommended pin connection	Description
		3.0 V to 3.6 V	Powers I/O lines and USB transceiver.
	VDDIO	Decoupling/filtering capacitors 33 nF ⁽¹⁾⁽²⁾ , 100 nF ⁽¹⁾⁽³⁾ and 4.7 µF ⁽¹⁾	Decoupling/filtering capacitors must be added to improve startup stability and reduce source voltage drop.
		3.0 V to 3.6 V	Powers on-chip voltage regulator.
	VDDIN	Decoupling/filtering capacitors 33 nF ⁽¹⁾⁽²⁾ , 100 nF ⁽¹⁾⁽³⁾ and 4.7 µF ⁽¹⁾	Decoupling/filtering capacitors must be added to improve startup stability and reduce source voltage drop.
			Output of the on-chip 1.8V voltage regulator.
	VDDOUT	Decoupling/filtering capacitors 470 pF ⁽¹⁾⁽²⁾ and 4.7 µF ⁽¹⁾	Decoupling/filtering capacitors must be added to guarantee 1.8V stability.
		1.65 V to 1.95 V Connected to VDDOUT Decoupling/filtering capacitors	Powers device, flash logic and on-chip RC.
	VDDCORE	2.7 nF ^{(1)(2),} 33 nF ⁽¹⁾⁽³⁾ , 100 nF ⁽¹⁾ and 4.7 μ F ⁽¹⁾	Decoupling/filtering capacitors must be added to improve startup stability and reduce source voltage drop.

V	Signal name	Recommended pin connection	Description
		1.65 V to 1.95 V	Powers the main oscillator and the PLL.
		Connected to VDDOUT	
		Decoupling/filtering capacitors	Decoupling/filtering capacitors must be added to improve startup
	VDDPLL	2.7 nF ^{(1)(2),} 33 nF ⁽¹⁾⁽³⁾ and 4.7 μ F ⁽¹⁾	stability and reduce source voltage drop.

Note 1: These values are given only as a typical example.

Note 2: Decoupling capacitor should be placed as close as possible to each pin in the signal group, vias should be avoided.

Note 3: Decoupling capacitor should be placed close to the device for each pin in the signal group.

2.2 Dual 3.3 volt and 1.8 volt power supply

Figure 2-2. Dual 3.3 volt and 1.8 volt power example schematic

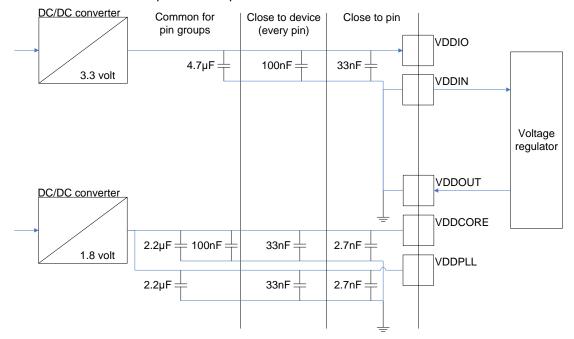


Table 2-2. Dual 3.3 volt and 1.8 volt power supply checklist

\checkmark	Signal name	Recommended pin connection	Description
	VDDIO	3.0 V to 3.6 V Decoupling/filtering capacitors 33 nF ⁽¹⁾⁽²⁾ , 100 nF ⁽¹⁾⁽³⁾ and 4.7 µF ⁽¹⁾	Powers I/O lines and USB transceiver. Decoupling/filtering capacitors must be added to improve startup stability and reduce source voltage drop.
	VDDIN	Connected to ground	On-chip voltage regulator not in use.
	VDDOUT	Connected to ground	On-chip voltage regulator not in use.
	VDDCORE	1.65 V to 1.95 V Decoupling/filtering capacitors 2.7 nF ^{(1)(2),} 33 nF ⁽¹⁾⁽³⁾ , 100 nF ⁽¹⁾ and 2.2 µF ⁽¹⁾	Powers device, flash logic and on-chip RC. Decoupling/filtering capacitors must be added to improve startup stability and reduce source voltage drop.

\checkmark	Signal name	Recommended pin connection	Description
			Powers the main oscillator and the PLL.
		1.65 V to 1.95 V	
		Decoupling/filtering capacitors	Decoupling/filtering capacitors must be added to improve startup
	VDDPLL	2.7 nF ^{(1)(2),} 33 nF ⁽¹⁾⁽³⁾ and 2.2 µF ⁽¹⁾	stability and reduce source voltage drop.

Note 1: These values are given only as a typical example.

Note 2: Decoupling capacitor should be placed as close as possible to each pin in the signal group, vias should be avoided.

Note 3: Decoupling capacitor should be placed close to the device for each pin in the signal group.

2.3 ADC reference power supply

The following schematic checklist is only necessary if the design is using the internal analog to digital converter.

Figure 2-3. ADC reference power supply example schematic

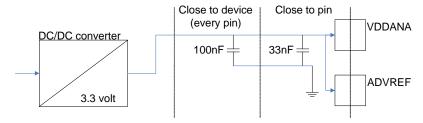


Table 2-3. ADC reference power supply checklist

	and a division of power supply streetmen			
V	Signal name	Recommended pin connection	Description	
			Powers on-chip ADC.	
		3.0 V to 3.6 V		
		Decoupling/filtering capacitors	Decoupling/filtering capacitors must be added to improve startup	
	VDDANA	33 nF ⁽¹⁾⁽²⁾ and 100 nF ⁽¹⁾⁽³⁾	stability and reduce source voltage drop.	
		2.6 V to VDDANA		
	ADVREF	Connect with VDDANA	ADVREF is a pure analog input.	

Note 1: These values are given only as a typical example.

Note 2: Decoupling capacitor should be placed as close as possible to each pin in the signal group, vias should be avoided.

Note 3: Decoupling capacitor should be placed close to the device for each pin in the signal group.

2.4 No ADC power supply

The following schematic checklist is only necessary if the design is not using the internal analog to digital converter.

Figure 2-4. No ADC power supply example schematic

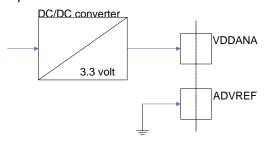


Table 2-4. No ADC power supply checklist

\checkmark	Signal name	Recommended pin connection	Description
	VDDANA	3.0 V to 3.6 V	
	ADVREF	Connected to ground	

3 Reset circuit

Figure 3-1. Reset circuit example schematic

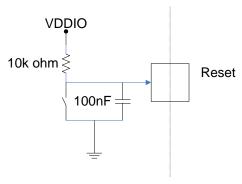


Table 3-1. Reset circuit checklist

\checkmark	Signal name	Recommended pin connection	Description
	RESET	,	The RESET_N pin is a Schmitt input and integrates a permanent pull-up resistor to VDDIO.

4 Clocks and crystal oscillators

4.1 External clock source

Figure 4-1. External clock source schematic

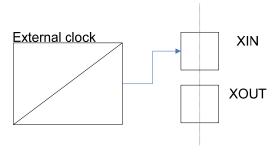


Table 4-1. External clock source checklist

\checkmark	Signal name	Recommended pin connection	Description
	XIN	Connected to clock output from external clock source	Up to VDDIO volt square wave signal up to 50 MHz.
	XOUT	Can be left unconnected or used as GPIO	

4.2 Crystal oscillator

Figure 4-2. Crystal oscillator example schematic

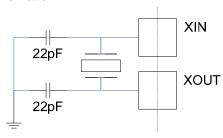


Table 4-2. Crystal oscillator checklist

\checkmark	Signal name	Recommended pin connection	Description
	XIN	Biasing capacitor 22 pF ⁽¹⁾⁽²⁾	External crystal between 450 kHz and 16 MHz.
	XOUT	Biasing capacitor 22 pF ⁽¹⁾⁽²⁾	

Note 1:

These values are given only as a typical example. The capacitance C of the biasing capacitors can be computed based on the crystal load capacitance C_L and the internal capacitance C_I of the MCU as follows:

$$C = 2 (C_L - C_i)$$

The value of C_L can be found in the crystal datasheet and the value of C_i can be found in the MCU datasheet.

Note 2:

6

Decoupling capacitor should be placed as close as possible to each pin in the signal group, vias should be avoided.

5 USB connection

5.1 Device mode, powered from bus connection

Figure 5-1. USB in device mode, bus powered connection example schematic

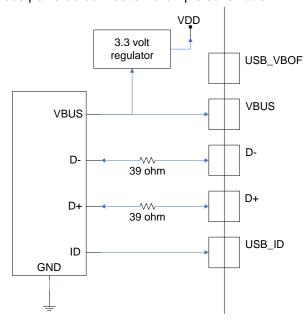


Table 5-1. USB bus powered connection checklist

\checkmark	Signal name	Recommended pin connection	Description
	USB_VBOF	Can be left unconnected	USB power control pin.
	VBUS	Directly to connector	USB power measurement pin.
	D-	39 ohm series resistor Placed as close as possible to pin	Negative differential data line.
	D+	39 ohm series resistor Placed as close as possible to pin	Positive differential data line.
	USB_ID	Can be left unconnected	Mini connector USB identification pin.

5.2 Device mode, self powered connection

Figure 5-2. USB in device mode, self powered connection example schematic

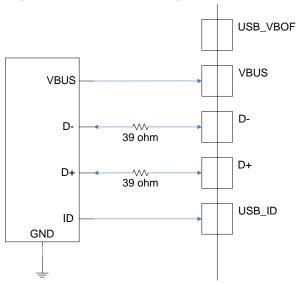


Table 5-2. USB self powered connection checklist

V	Signal name	Recommended pin connection	Description
	USB_VBOF	Can be left unconnected	USB power control pin.
	VBUS	Directly to connector	USB power measurement pin.
		39 ohm series resistor	
	D-	Placed as close as possible to pin	Negative differential data line.
		39 ohm series resistor	
	D+	Placed as close as possible to pin	Positive differential data line.
	USB_ID	Can be left unconnected	Mini connector USB identification pin.

5.3 Host/OTG mode, power from bus connection

Figure 5-3. USB host and OTG powering connection example schematic

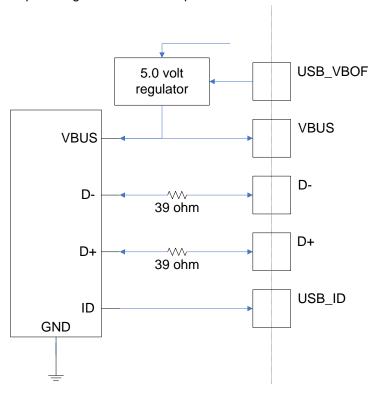


Table 5-3. USB host and OTG powering connection checklist

$\overline{\mathbf{V}}$	Signal name	Recommended pin connection	Description
	USB_VBOF	GPIO connected to VBUS 5.0 volt regulator enable signal	USB power control pin.
	VBUS	Directly to connector	USB power measurement pin.
	D-	39 ohm series resistor Placed as close as possible to pin	Negative differential data line.
	D+	39 ohm series resistor Placed as close as possible to pin	Positive differential data line.
	USB_ID	GPIO directly connected to connector, mandatory in OTG mode	Mini connector USB identification pin. For OTG it will be tied to ground in host mode, and left floating in device mode. Pull-up on GPIO pin must be enabled.

6 Ethernet interface

When designing in the Ethernet physical device (PHY) the designer should refer to the datasheet for the PHY. This datasheet usually contains layout advice, connection schematics, reference design, etc.

The information in the PHY datasheet is vital to get optimal performance and stability.

6.1 Ethernet interface in MII mode

Figure 6-1. Ethernet interface in MII mode example schematic

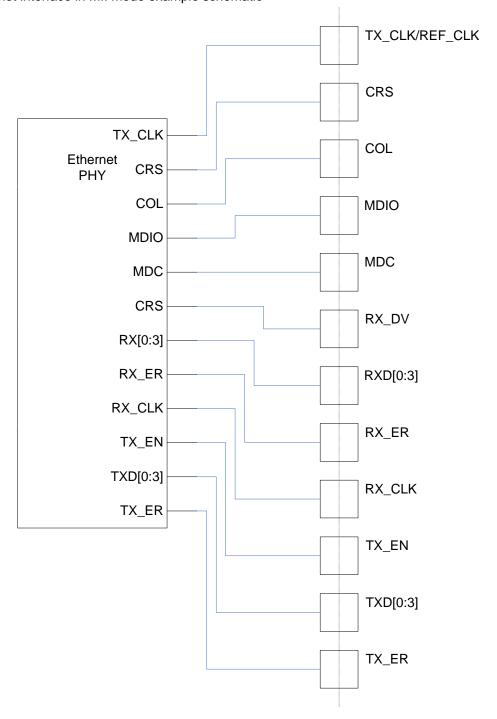


Table 6-1. Ethernet interface in MII mode checklist

V	Signal name	Recommended pin connection	Description
	TX_CLK/		
	REF_CLK		Transmit clock, 25 MHz for 100 Mb/s data rate
	CRS		Carrier sense
	COL		Collision detect
	MDIO		PHY maintenance data
	MDC		PHY maintenance clock
	RX_DV		Receive data valid
	RXD[0:3]		Receive data 4-bit
	RX_ER		Receive error
	RX_CLK		Receive clock, 25 MHz for 100 Mb/s data rate
	TX_EN		Transmit enable
	TXD[0:3]		Transmit data 4-bit
	TX_ER		Transmit error

6.2 Ethernet interface in RMII mode

Figure 6-2. Ethernet interface in RMII mode example schematic

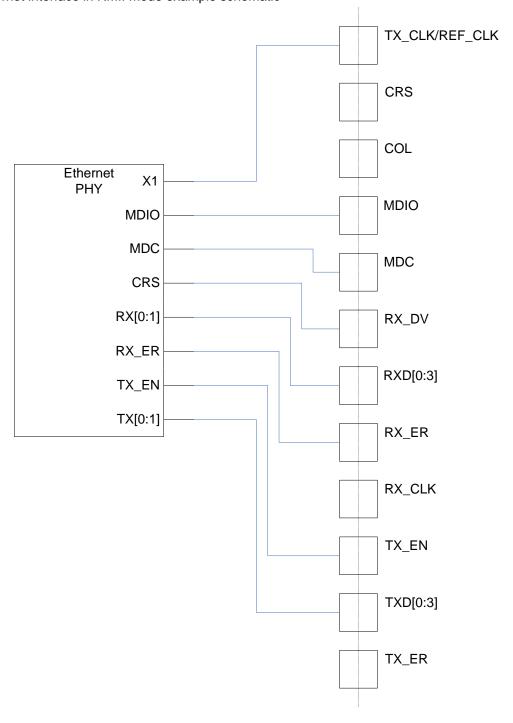


Table 6-2. Ethernet interface in RMII mode checklist

\checkmark	Signal name	Recommended pin connection	Description
	TX_CLK/		
	REF_CLK		Reference clock, 50 MHz for 100 Mb/s data rate
	CRS	Not used in RMII mode	
	COL	Not used in RMII mode	
	MDIO		PHY maintenance data
	MDC		PHY maintenance clock
	RX_DV		Carrier sense, data valid
	RXD[0:1]		Receive data 2-bit
	RXD[2:3]	Not used in RMII mode	
	RX_ER		Receive error
	RX_CLK	Not used in RMII mode	
	TX_EN		Transmit enable
	TXD[0:1]		Transmit data 2-bit
	TXD[2:3]	Not used in RMII mode	
	TX_ER	Not used in RMII mode	

7 External bus interface

7.1 Static memory

7.1.1 16-bit static memory

Table 7-1. 16-bit static memory pin wiring

$\overline{\mathbf{V}}$	SMC EBI signal	16-bit static memory
	D[0:15]	D[0:15]
	A[1:23]	A[0:22]
	NBS0	LBE
	NBS1	HBE
	NWE	WE
	NRD	OE
	NWAIT	WAIT
	NCSx	CS

7.1.2 8-bit static memory

Table 7-2. 8-bit static memory pin wiring

	Table 1-2. 0-bit static memory pin wining		
$ \overline{\mathbf{A}} $	SMC EBI signal	8-bit static memory	
	D[0:7]	D[0:7]	
	A[0:23]	A[0:23]	
	NWE	WE	
	NRD	OE	

SMC EBI signal		8-bit static memory
	NWAIT	WAIT
	NCSx	CS

7.1.3 2 x 8-bit static memory

Table 7-3. 2 x 8-bit static memory pin wiring

V	SMC EBI signal	8-bit static memory	8-bit static memory
	D[0:7]	D[0:7]	
	D[8:15]		D[0:7]
	A[1:23]	A[0:22]	A[0:22]
	NWE0	WE	
	NWE1		WE
	NRD	OE	OE
	NWAIT	WAIT	WAIT
	NCSx	CS	CS

7.2 SDRAM

7.2.1 16-bit SDRAM

Table 7-4. 16-bit SDRAM pin wiring

V	SMC EBI signal	16-bit SDRAM
	D[0:15]	DQ[0:15]
	A[2:11]	A[0:9]
	SDA10	A[10]
	A[13:14]	A[11:12]
	BA[0:1]	BA[0:1]
	SDCK	CLK
	SDCKE	CKE
	SDWE	WE
	RAS	RAS
	CAS	CAS
	NBS0	DQML
	NBS1	DQMH
	SDCS0	CS

7.2.2 2 x 8-bit SDRAM

Table 7-5. 2 x 8-bit SDRAM pin wiring

	e i ei e x e ex ee	ro an par wang	
$ \mathbf{V} $	SMC EBI signal	8-bit SDRAM	8-bit SDRAM
	D[0:7]	DQ[0:7]	
	D[7:15]		DQ[0:7]
	A[2:11]	A[0:9]	A[0:9]

\checkmark	SMC EBI signal	8-bit SDRAM	8-bit SDRAM
	SDA10	A[10]	A[10]
	A[13:14]	A[11:12]	A[11:12]
	BA[0:1]	BA[0:1]	BA[0:1]
	SDCK	CLK	CLK
	SDCKE	CKE	CKE
	SDWE	WE	WE
	RAS	RAS	RAS
	CAS	CAS	CAS
	NBS0	DQM	
	NBS1		DQM
	SDCS0	CS	CS

7.2.3 4 x 4-bit SDRAM

Table 7-6. 4 x 4-bit SDRAM pin wiring

V	SMC EBI signal	4-bit SDRAM	4-bit SDRAM	4-bit SDRAM	4-bit SDRAM
	D[0:3]	DQ[0:3]			
	D[4:7]		DQ[0:3]		
	D[8:11]			DQ[0:3]	
	D[12:15]				DQ[0:3]
	A[2:11]	A[0:9]	A[0:9]	A[0:9]	A[0:9]
	SDA10	A[10]	A[10]	A[10]	A[10]
	A[13:14]	A[11:12]	A[11:12]	A[11:12]	A[11:12]
	BA[0:1]	BA[0:1]	BA[0:1]	BA[0:1]	BA[0:1]
	SDCK	CLK	CLK	CLK	CLK
	SDCKE	CKE	CKE	CKE	CKE
	SDWE	WE	WE	WE	WE
	RAS	RAS	RAS	RAS	RAS
	CAS	CAS	CAS	CAS	CAS
	NBS0	DQM	DQM		
	NBS1			DQM	DQM
	SDCS0	CS	CS	CS	CS

8 ABDAC stereo sound DAC interface

The output from the ABDAC is not intended for driving headphones or speakers. The pads are limiting the maximum amount of current. In the majority of all practical cases, this will not be enough to drive a low impedance source.

Because of this limitation, an external amplifier should be connected to the output lines to amplify these signals. This amplifier device could also be used to control the volume.

For testing purposes a line in or microphone input on a sound system can be used to evaluate the output signal.

8.1 Line out with passive filter

Figure 8-1. Line out with passive filter example schematic



Table 8-1. Line out with passive filter checklist

\checkmark	Signal name	Recommended pin connection	Description
	DATA[0]	Connected to low pass filter and 1 µF capacitor to remove DC bias	
	DATAN[0]	Not in use	
	DATA[1]	Connected to low pass filter and 1 µF capacitor to remove DC bias	
	DATAN[1]	Not in use	

8.2 High power output with external amplifier

Figure 8-2. High power output with external amplifier example schematic

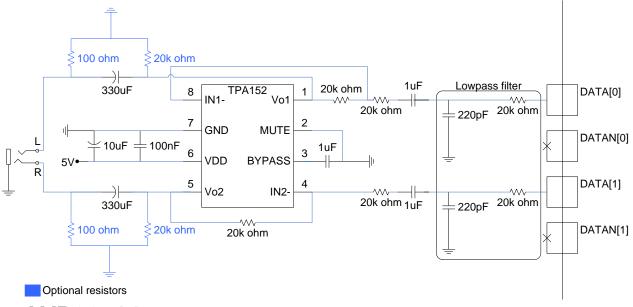


Table 8-2. High power output with external amplifier checklist

$\overline{\mathbf{V}}$	Signal name	Recommended pin connection	Description
	DATA[0]	Connected to low pass filter and external amplifier	
	DATAN[0]	Not in use	
	DATA[1]	Connected to low pass filter and external amplifier	
	DATAN[1]	Not in use	

9 JTAG and Nexus debug ports

9.1 JTAG port interface

Figure 9-1. JTAG port interface example schematic

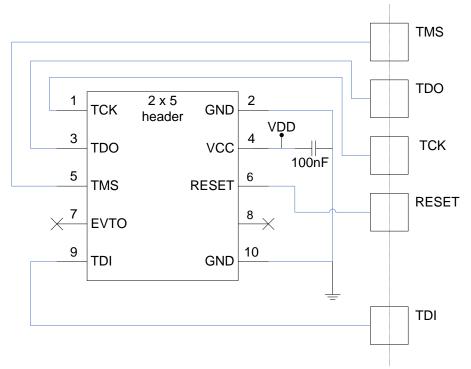


Table 9-1. JTAG port interface checklist

V	Signal name	Recommended pin connection	Description
	TMS		Test mode select, sampled on rising TCK.
	TDO		Test data output, driven on falling TCK.
	TCK		Test clock, fully asynchronous to system clock frequency.
	RESET		Device external reset line.
	TDI		Test data input, sampled on rising TCK.
	EVTO		Event output, not used.

9.2 Nexus port interface

Figure 9-2. Nexus port interface example schematic

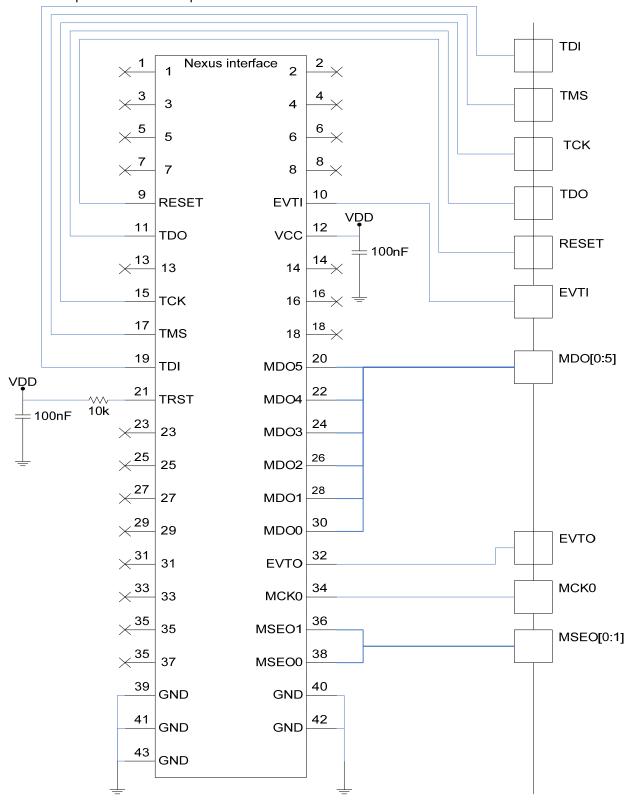


Table 9-2. Nexus port interface checklist

V	Signal name	Recommended pin connection	Description
	TDI		Test data input, sampled on rising TCK.
	TMS		Test mode select, sampled on rising TCK.
	TCK		Test clock, fully asynchronous to system clock frequency.
	TDO		Test data output, driven on falling TCK.
	RESET		Device external reset line.
	EVTI		Event input.
	MDO[0:5]		Trace data output.
	EVTO		Event output.
	MCK0		Trace data output clock.
	MSE[0:1]		Trace frame control.

10 Suggested reading

10.1 Device datasheet

The device datasheet contains block diagrams of the peripherals and details about implementing firmware for the device. The datasheet is available on http://www.atmel.com/AVR32 in the *Datasheets* section.

10.2 Evaluation kit schematic

The evaluation kit EVK1100 contains the full schematic for the board; it can be used as a reference design. The schematic is available on http://www.atmel.com/AVR32 in the *Tools & Software* section.

Headquarters

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 USA

Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia

Unit 1-5 & 16. 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong

Tel: (852) 2245-6100 Fax: (852) 2722-1369

Atmel Europe

Le Krebs 8, Rue Jean-Pierre Timbaud **BP 309** 78054 Saint-Quentin-en-Yvelines Cedex France

Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site

www.atmel.com

Technical Support

avr32@atmel.com

Sales Contact

www.atmel.com/contacts

Literature Request

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others, are the registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.