
 SMART ARM-Based Microcontroller

 AT16743: SAM V7/E7/S7 Safe and Secure
Bootloader

 APPLICATION NOTE

Introduction

The Atmel® | SMART ARM® Cortex®- M7 based MCUs deliver the highest
performing Cortex-M7 based MCUs to the market with an exceptional
memory and connectivity options for design flexibility making them ideal for
the automotive, IoT, and industrial connectivity markets. The ARM Cortex-M7
architecture enhances performance and at the same time keeps the cost
and power consumption in under control.

Microcontrollers are used in a variety of electronic products. The devices are
becoming more flexible, due to the reprogrammable memory (Flash
memory) often used to store the firmware of the product. This enables the
firmware in a device to be upgraded in the field for correcting bugs or adding
new functionalities.

Features

This application note discusses the boot sequence, upgrade sequence,
safety, and security in bootloader. It also provides an example bootloader
implementation for Atmel SAM V7/E7/S7 ARM Cortex-M7 based
microcontrollers.

Atmel-42725A-Safe-and-Secure-Bootloader-for-SAM-V7-E7-S7-MCUs_AT16743_Application Note-06/2016

Table of Contents

Introduction..1

Features.. 1

1. Abbreviations...3

2. Bootloader... 4
2.1. Boot Sequence...4
2.2. Upgrade Sequence...4
2.3. Safety... 5
2.4. Security...5

2.4.1. Privacy... 5
2.4.2. Integrity.. 6
2.4.3. Authenticity.. 8

3. Example Bootloader and User Application.. 9
3.1. Hardware/Software Requirements... 9
3.2. Design Considerations... 9

3.2.1. Safety...9
3.2.2. Security..9
3.2.3. Software Considerations..9
3.2.4. Hardware Requirements..9
3.2.5. Software Limitations.. 10
3.2.6. Porting Considerations.. 10

3.3. Software Architecture... 10
3.3.1. Features...10
3.3.2. Communication Protocol..10
3.3.3. Code Locations.. 11
3.3.4. Switching between Applications.. 12
3.3.5. Linking Options.. 15
3.3.6. User Application Customization for Bootloader... 16
3.3.7. Modules Description.. 18

3.4. Memory Footprint... 20

4. Firmware Packager and Updater...21
4.1. Steps to Upgrade User Application.. 22
4.2. Preparing Secure Application...22
4.3. Programming Application... 22

5. References.. 23

6. Revision History...24

Atmel AT16743: SAM V7/E7/S7 Safe and Secure Bootloader [APPLICATION NOTE]
Atmel-42725A-Safe-and-Secure-Bootloader-for-SAM-V7-E7-S7-MCUs_AT16743_Application Note-06/2016

2

1. Abbreviations
AES Advanced Encryption Standard

ASF Atmel Software Framework

CAN Controller Area Network

CBC Cipher Block Chaining

CDC Communication Device Class

CFB Cipher FeedBack

CTR Counter

ECB Electronic CodeBook

ICM Integrity Check Monitor

MCU Memory Control Unit

OFB Output FeedBack

PC Personal Computer

PLL Phase Locked Loop

POR Power On Reset

RAM Random Access Memory

SHA Secure Hash Algorithm

SP Stack Pointer

USB Universal Serial Bus

VTOR Vector Table Offset Register

Atmel AT16743: SAM V7/E7/S7 Safe and Secure Bootloader [APPLICATION NOTE]
Atmel-42725A-Safe-and-Secure-Bootloader-for-SAM-V7-E7-S7-MCUs_AT16743_Application Note-06/2016

3

2. Bootloader
Modern microcontrollers use Flash memory to store their application code. The main advantage of Flash
is that the memory can be modified by the software itself. This is the key to in-field programming: a small
section of code is added to the main application to provide the ability to download updates, replacing the
old firmware of the device. This code is called as bootloader, as its role is to load a new program at boot.

The bootloader implementation poses several challenges such as correctly remapping memories,
effective resource utilization, ensuring firmware upgrade is successful, and including necessary safety
and security precautions.

A bootloader always resides in the memory to enable the firmware of the device to be upgraded at any
time. Therefore, the bootloader must be as small as possible as it does not add any direct functionality for
the user.

Downloading a new firmware into the device requires a process to initiate the bootloader to prepare for
the transfer. There are two types of such trigger conditions: hardware and software.

A hardware condition can be triggered using a button press during a reset. Whereas, a software condition
could be lack of a valid application in the system. When the system starts, the bootloader checks the
predefined conditions. If one of them is true, it will connect to a host and wait for a new firmware. This
host can be any device. However, a standard PC with the appropriate software is most often used. The
firmware can be transferred using any protocol supported by the target such as RS232, USB, and CAN.

2.1. Boot Sequence
The startup sequence of the Bootloader is as follows:

1. Initialization
2. Trigger condition check
3. Firmware upgrade (if trigger condition is set)
4. Firmware verification (optional)
5. Firmware loading (if verification is ok or disabled)

2.2. Upgrade Sequence
The basic upgrade flow starts with the host sending the firmware to the target, which then programs it into
the memory. When the programming is complete, the new application is loaded. In theory, the “download”
and “programming” steps are different, this is not the case in practice. Indeed, AT91SAM microcontrollers
usually have 4x more Flash memory than RAM. The device cannot store the entire firmware in the RAM
before writing it permanently to the Flash.

It is preferred that the code must be written to the memory while it is received. Since a Flash write
operation consumes time, a communication protocol is required to halt the transfer when the data is being
written and resume it afterwards.

The Flash memory is split up into fixed-size blocks called pages. Depending on the quantity of Flash in
the microcontroller, the page size varies. A memory write operation can upgrade one page (or less) at a
time; thus it is more logical to send packets containing one full page.

There are several optional post-processing features to consider. If code encryption is activated, then each
page must be decrypted before being any data is written. If a digital signature or a message
authentication code is available, it must be verified as soon as the download is complete.

Atmel AT16743: SAM V7/E7/S7 Safe and Secure Bootloader [APPLICATION NOTE]
Atmel-42725A-Safe-and-Secure-Bootloader-for-SAM-V7-E7-S7-MCUs_AT16743_Application Note-06/2016

4

2.3. Safety
It is important that a working firmware is embedded in the device at all times. However, the use of a
bootloader can result in the conflicting situation where the new firmware has not been installed properly,
compromising the behavior of the system.

This application note offers an example safety solution. Most of the techniques to circumvent those
problems present a trade-off between the level of security and safety against the size and speed of the
system. The safest and most secure solution is also probably the biggest and slowest in terms of
performance. This also means that one must first carefully analyze safety and security requirements in a
system, to implement only the required functionality.

Among the other features, a protocol stack is used in most communication standards to offer reliable
transfers. This reliability is important for a bootloader application as the firmware must not get corrupted
during the download.

2.4. Security
Securing a system enforces several features such as privacy, integrity, and authenticity.

2.4.1. Privacy
Privacy feature ensures that a piece of data cannot be accessed by unauthorized users or devices. It is a
major concern for firmware developers to ensure that their application design is not accessible to the
competitors. This feature ensures that the code is private and the target devices being the only authorized
“users”.

Microcontrollers provide a mechanism making it difficult for malicious users to read the program code
written in the device. However, for in-field firmware upgrade, the manufacturer has to provide the new
code image to customers so they can patch their devices themselves. Which on the other hand enables a
skilled person to potentially decompile and retrieve the original code.

Data privacy is enforced using encryption: the data is processed using a cryptographic algorithm along
with an encryption key, generating a cipher text which is different from the original one. Without the
specific decryption key, the data will be illegible, preventing anyone unauthorized from reading it.

A private-key algorithm is used to generate the encrypted firmware. A public-key system cannot be used,
as the firmware would then be decipherable by anyone. The encryption and decryption keys are thus
identical and shared only between the bootloader and the manufacturer.
Figure 2-1. Firmware Encryption

All security issues cannot be solved by encrypting the code. An attacker can probably pinpoint the
location in the code of an important variable and tweak it until he gets the desired result.

The code encryption combines itself with a message authentication code. Since they both use a
symmetric encryption algorithm, one can use the same algorithm to save the code size.

Atmel AT16743: SAM V7/E7/S7 Safe and Secure Bootloader [APPLICATION NOTE]
Atmel-42725A-Safe-and-Secure-Bootloader-for-SAM-V7-E7-S7-MCUs_AT16743_Application Note-06/2016

5

2.4.1.1. Selecting an Algorithm
A symmetric encryption algorithm can be defined by several characteristics:

• Key length in bits
• Block length in bits
• Security
• Size and Speed

The Key length used by an algorithm is an important parameter of the algorithm. The larger it is, the more
difficult it is to perform a brute-force attack. As computers become faster and faster, longer keys are
required. A reasonable length seems to be 128 bits at the moment, it is one of the Key lengths selected
for Advanced Encryption Standard (AES) cipher.

A large Block length is required to avoid a “code-book attack”, i.e., someone getting enough blocks of
plain text and their corresponding cipher text to build a table, enabling decipher further information. In this
scenario (firmware upgrading), an attacker is very unlikely to get access to any plain text at all. Therefore,
the block length can be of any reasonable size. Most block ciphers will use at least 64 bits, with modern
ciphers using at least 128 bits.

2.4.1.2. Modes of Operation
Different modes of operations are possible when using a symmetric cipher:

• Electronic Code Book (ECB)
• Cipher Block Chaining (CBC, CFB, OFB, CTR)
• Authenticated Encryption (EAX, CCM, OCB)

The basic mode of operation is ECB. In this mode each block of plain text is encrypted using the key and
the selected algorithm, resulting in a block of cipher text. However, this mode is very insecure as it does
not hide the patterns. Two identical blocks of plain text will be encrypted to the same cipher text block.

To solve this issue, Cipher Block Chaining modes are used. Encryption is not only done with the current
block of plain text, but also with the last encrypted block. It makes each block depend on the previously
encrypted data, making everything interdependent.

The first block is encrypted using a random Initialization Vector (IV). While this vector can be transmitted
in clear text, the same vector should not be reused with the same key. A manufacturer will produce more
than one firmware upgrade for a product in its lifetime. So, the IV cannot be stored in the chip similar to
the key. It has to be transmitted by the host.
Figure 2-2. CBC Mode of Operation

2.4.2. Integrity
Integrity feature ensures that any change in the data is detected. For example, an authorized firmware
may be slightly modified. Although the firmware may appear genuine, there could be attacks which migh
change the data.

Atmel AT16743: SAM V7/E7/S7 Safe and Secure Bootloader [APPLICATION NOTE]
Atmel-42725A-Safe-and-Secure-Bootloader-for-SAM-V7-E7-S7-MCUs_AT16743_Application Note-06/2016

6

To verify Integrity, check for:
• an intentional modification of the firmware
• an accidental modification of the firmware

Accidental modification is a safety problem. It is typically solved by using error detection codes.

Hash Function produces a digital “fingerprint” for a piece of data. It means conversely to an error
detection code, every piece of data must have its own unique fingerprint.

To verify the integrity of a firmware, its fingerprint is calculated and attached to the file. When the
bootloader receives both the firmware and its fingerprint, it re-computes the fingerprint and compares it to
the original fingerprint. If both are identical, then the firmware has not been altered.

In practice, a hash function takes a string of any length as an input and produces a fixed-size output
called a message digest. It also has several important properties such as good diffusion (the ability to
produce a completely different output even if only one bit of the input is flipped).

Figure 2-3. Firmware Hashing

Since the output length is fixed irrespective of the input, it is not possible to generate a unique digest for
every piece of data. However, hash functions ensure that it is almost impossible to find two different
messages with the same digest. This achieves almost the same result as uniqueness, at least in practice.

The disadvantage of hashing the firmware is its simplicity. An attacker can easily modify the file and re-
compute the hash. The bootloader would not be able to detect that modification.

During run time, a hash function can be used to verify the firmware integrity to avoid executing a
corrupted application.

2.4.2.1. Hash Functions
A hash function has three defining characteristics:

1. Output length
2. Security
3. Size and Speed

The output length of a hash must be large enough to make it almost impossible to find collisions (two
different files having the same digest). This prevents anyone from finding a piece of data producing the
same hash. Most modern hash functions has at least a 160-bit output (like SHA-1).
Note:  Of late the hash algorithms with hash length of 512 bits are preferred .

The security of the hash function is much more critical than the length of its output. Indeed, MD5 (which
only has a 128-bit output) would still be secure if it did not have serious design flaws in it. Similarly to
block ciphers, finding a flaw in a hash does not imply that it has been cracked; most attacks are not
feasible without gigantic computational power. Recent designs considered secure should be preferred
rather than using any deprecated algorithms.

Atmel AT16743: SAM V7/E7/S7 Safe and Secure Bootloader [APPLICATION NOTE]
Atmel-42725A-Safe-and-Secure-Bootloader-for-SAM-V7-E7-S7-MCUs_AT16743_Application Note-06/2016

7

When deciding on a hash function, its size and speed performances should also be evaluated. However,
the stronger algorithms are often the slowest ones (which is not true for block ciphers), so there will be a
security/speed trade-off.

The most commonly used hash algorithms are listed in the following table.

Table 2-1. Hash Algorithms

Algorithm Hash Length Security Size & Speed

MD5 128 bits Broken Fast

RIPEMD-160 160 bits Secure Slow

SHA-1 160 bits Broken Slow

SHA-256 256 bits Secure Slow

WHIRLPOOL 512 bits Secure Very Slow

Tiger 192 bits Secure Fast

HAVAL 128 to 256 bits Broken Moderately Fast

2.4.3. Authenticity
Authenticity feature helps to verify if the firmware is from the authentic manufacturer. While
reprogramming a device, the firmware could be from a third party. This may be problematic if that
firmware is intented for malicious use such as bypassing security protections and illegally using critical
functions of the device.

Authentication is about verifying the identity of the sender and the receiver of a message. A bootloader
should verify authenticity of the manufacturer and target.

Atmel AT16743: SAM V7/E7/S7 Safe and Secure Bootloader [APPLICATION NOTE]
Atmel-42725A-Safe-and-Secure-Bootloader-for-SAM-V7-E7-S7-MCUs_AT16743_Application Note-06/2016

8

3. Example Bootloader and User Application

3.1. Hardware/Software Requirements
• Hardware Prerequisites

– Atmel SMART SAM V71 Xplained ULTRA Kit
– Interfacing Cables

• Two Micro-USB type-B cable (EDBG & Target USB)
• Software Prerequisites

– Atmel Studio 7.0
– ASF 3.30.1

3.2. Design Considerations

3.2.1. Safety
• Erase operations are triggered only on the user application area. This ensures that bootloader

application is always available to run on the device.
• USB–CDC protocol is chosen for data transfers between host and device. This takes care of error

detection, transmission loses, and packet acknowledgment.

3.2.2. Security
• AES Cipher Block Chaining (CBC) algorithm is implemented to ensure data privacy. This encryption

is not only done with the current block of plain text, but also with the last encrypted block. Before
sending data to the device, it is encrypted page by page with predefined Key and Initial Vector.

• SHA-1 algorithm is used to produce digital “fingerprint“ for entire user application. Before executing
user application, bootloader verifies fingerprint to check integrity of the user application.

3.2.3. Software Considerations
• This design uses AES and ICM hardware modules for Decryption, Hash functions, and Software

Components, Services provided in ASF.
• Applications Start address and length are aligned to Page boundaries, hardware requirements such

as Vector Table locations, and alignment for SHA padding requirements.
• Other than 32 bytes used by Jump Signature, entire RAM is available for both bootloader and user

applications.
• A soft reset is required to jump to User Application after completing Programming sequence.
• A soft reset is required to switch to Bootloader Application after receiving switch to bootloader

command / sequence.

3.2.4. Hardware Requirements
In this example, following hardware points are considered as USB Device is activated on ATSAMV71Q21

1. An external crystal or external clock with a frequency of 12MHz or 16MHz is required to generate
USB and PLL clocks correctly

2. External clock must be 2500ppm and VDDIO square wave signal
3. Flash wait states (6 wait states) are enabled as per device suggestions

Atmel AT16743: SAM V7/E7/S7 Safe and Secure Bootloader [APPLICATION NOTE]
Atmel-42725A-Safe-and-Secure-Bootloader-for-SAM-V7-E7-S7-MCUs_AT16743_Application Note-06/2016

9

3.2.5. Software Limitations
1. For the first time, it is required to program Bootloader Application with help of available

programmers
1.1. If Bootloader is erased accidentally, it must be programed again using programmers / other

available options.
2. On power cycle between Jump to Bootloader instruction and board reset, control is returned to user

application. In such case, it is required to issue Jump to Bootloader instruction once again.
3. Application customized for bootloader cannot run on its own because its start address is changed

to different location in the flash.

3.2.6. Porting Considerations
Bootloader application can be ported to interfaces other than USB-CDC. However following points must
be considered in such cases

1. Replace USB-CDC interface with preferred interface
2. Redefine functions

2.1. To transmit and receive messages from/to Host
2.2. To process received data and trigger actions same as in the example project

3. Revisit Firmware Packager and Updater to match with selected interface

3.3. Software Architecture

3.3.1. Features
The features of the example implementation are:

• Basic boot loading capabilities using a USB-CDC to transmit the firmware
• Code encryption using AES CBC
• Both applications are provided with Footers, which contains

– Application Versions
– Applications Start Address and Length
– Option to add Authentication information
– SHA-1 padding bytes
– Hash Digest

• Example user application which responds to USB-CDC Messages

3.3.2. Communication Protocol
A simple communication protocol is defined over USB-CDC Class. The following tables provide
information about communication protocol and the messages.

Table 3-1. Communication Protocol

Header Command Length (Optional) Data n Bytes

0xFF 0xB0-0xB6 n Data in big endian
format

Atmel AT16743: SAM V7/E7/S7 Safe and Secure Bootloader [APPLICATION NOTE]
Atmel-42725A-Safe-and-Secure-Bootloader-for-SAM-V7-E7-S7-MCUs_AT16743_Application Note-06/2016

10

Table 3-2. Communication Messages

Command Description Sample Message

0xB0 Request to Jump to Bootloader
Application

• Command - 0xFF 0xB0
• Response – 0xFF 0xB0

0x00/0x01 (Boot/User App)

0xB1 Request to raise a soft reset • Command - 0xFF 0xB1

0xB2 Query to know device mode • Command - 0xFF 0xB2
• Response – 0xFF 0xB2

0x00/0x01 (Boot/User App)

0xB3 Set AES Key and Initial Vector
Index

• Command – 0xFF 0xB3
KEYINDEX IV_INDEX

• Response – 0xFF 0xB3
0x00/0xFF (Success/Fail)

0xB4 Erase Flash • Command - 0xFF 0xB4
• Response – 0xFF 0xB4

0x00/0xFF (Success/Fail)

0xB5 Send Upper 256 bytes of the
Page data. Device receives data
and wait for Lower 256 bytes.

• Command – 0xFF 0xB5
– Flash Address [3:0]
– 0x01/0x00 - Encrypt

ON/OFF
– DATA[256:512]

• Response – 0xFF 0xB5
0x00/0xFF (Success/Fail)

0xB6 Send Lower 256 bytes of the
Page data. Device triggers Flash
Write on receiving this command.

• Command – 0xFF 0xB6
– Flash Address [3:0]
– 0x01/0x00 - Encrypt

ON/OFF
– DATA[0:255]

• Response – 0xFF 0xB6
0x00/0xFF (Success/Fail)

3.3.3. Code Locations
The Flash is divided into 2 sections, one for Bootloader Application and another for User Application.
Each section reserves 256 bytes Footer at the end of the section. Following graphic illustrates the Flash
Sections and Application Footer information.

Atmel AT16743: SAM V7/E7/S7 Safe and Secure Bootloader [APPLICATION NOTE]
Atmel-42725A-Safe-and-Secure-Bootloader-for-SAM-V7-E7-S7-MCUs_AT16743_Application Note-06/2016

11

Figure 3-1. Flash Sections

Table 3-3. Application Footer

Parameter Data Type Description

App Major Version uint32_t Application Software’s Major
Version

App Minor Version uint32_t Application Software’s Minor
Version

App Jump Handler void (*fpJumpHandler)
(void)

Function pointer to Jump to
Application

Boot App Start Address uint32_t Start address of bootloader
application

Boot App Length uint32_t Length of bootloader application

User App Start Address uint32_t Start Address of user application

User App Length uint32_t Length of user application

Reserved uint32_t[24:0] Reserved. Used for application
authentication, if required.

SHA Padding Data uint32_t[15:0] SHA algorithms requires padding
bytes. This space is reserved for
them.

SHA Digest uint32_t[15:0] SHA output is stored here.
Bootloader uses this value to
check Integrity of user
application.

3.3.4. Switching between Applications

3.3.4.1. Bootloader Application to User Application
In the bootloader application, Jump Signature plays a critical role in deciding whether control should
remain in bootloader application or check for user application execution.

Atmel AT16743: SAM V7/E7/S7 Safe and Secure Bootloader [APPLICATION NOTE]
Atmel-42725A-Safe-and-Secure-Bootloader-for-SAM-V7-E7-S7-MCUs_AT16743_Application Note-06/2016

12

Jump Signature is the RAM memory reserved by both bootloader application and user application.
“StayInBootLoader” is a string, which will be loaded in to Jump Signature location when control must
remain in bootloader application on next soft reset.

• On POR, it contains zeros which makes bootloader application to check for user application
existence.

• If user application requires control to remain in bootloader application, it updates Jump Signature
with “StayInBootLoader”.

• When bootloader application detects “StayInBootLoader”, it clears Jump Signature and remains in
bootloader application until next soft reset.

On soft reset, control starts executing bootloader application. The bootloader application,
1. Checks for Jump Signature, if it is not “StayInBootLoader”,

1.1. Reads bootloader application footer to determine user application Start address and
Length

1.2. Reads user application Footer with help of Start Address and Length
1.3. Calculates digest for the given area and compares with digest available in Footer
1.4. On detecting valid digest,

1.4.1. Releases resources such as peripherals
1.4.2. Disables interrupts (if required)
1.4.3. Updates vector table offset (VTOR) and Stack pointer (SP)
1.4.4. Jumps to reset handler provided in vector table

2. If Jump Signature is “StayInBootLoader”,
2.1. Initialize Flash Wait states
2.2. Start USB-CDC Device functionality
2.3. Wait for USB-CDC messages and start processing

Following flow charts present Boot and Upgrade sequences used in this example.

Atmel AT16743: SAM V7/E7/S7 Safe and Secure Bootloader [APPLICATION NOTE]
Atmel-42725A-Safe-and-Secure-Bootloader-for-SAM-V7-E7-S7-MCUs_AT16743_Application Note-06/2016

13

Figure 3-2. Boot Sequence Diagram

Atmel AT16743: SAM V7/E7/S7 Safe and Secure Bootloader [APPLICATION NOTE]
Atmel-42725A-Safe-and-Secure-Bootloader-for-SAM-V7-E7-S7-MCUs_AT16743_Application Note-06/2016

14

Figure 3-3. Firmware Upgrade Sequence

3.3.4.2. User Application to Bootloader Application
When the user application receives a request for firmware upgrade,

1. Reads user application Footer to know bootloader application Start Address and Length.
2. Reads bootloader application Footer for Bootloader Jump handler and executes it.

– Bootloader Jump handler updates Jump Signature with “StayInBootLoader”.
3. At this point, a soft reset is required. On receiving soft reset, control goes to bootloader application

and remain there as Jump signature indicates it.

3.3.5. Linking Options
The linker modifications are done for this example project. Linker file is updated to

• Define application’s start address and length in rom section
• Define footer at end of application section
• Reserve 32 bytes of RAM at the start so that both applications use it
• Fill unused locations with known data (0xFF)

In this example, bootloader application and user application are defined at following locations:

Atmel AT16743: SAM V7/E7/S7 Safe and Secure Bootloader [APPLICATION NOTE]
Atmel-42725A-Safe-and-Secure-Bootloader-for-SAM-V7-E7-S7-MCUs_AT16743_Application Note-06/2016

15

Table 3-4. Memory Allocations

Application Type Section Flash Start Address Reserved Space

Bootloader Application Application 0x00400000 0x0000BF00

Footer 0x0040BF00 0x00000100

User Application Application 0x0040C000 0x001F3F00

Footer 0x005FFF00 0x00000100

32 bytes of RAM is reserved so that space is available for both bootloader and user application to share
next steps to carry on.

Linker options for both bootloader and user applications are modified as follows:
• rom (rx) ORIGIN and LENGTH updated to match above
• Created ApplicationFooter (rx) section to hold footer information
• Created JumpSignature (rwx) section to reserve RAM
• Fill unused locations of the application with known data (0xFF)

3.3.6. User Application Customization for Bootloader
The following section provides detailed steps to convert a standard user application compatible with this
bootloader application. This process requires

1. Remapping of flash locations
2. Adding application footers
3. Reserving RAM location
4. Fill unused locations with 0xFF
5. Define sequence for bootloader switching

3.3.6.1. Remapping of Flash locations
It is important to avoid storing User Application in the Bootloader Application locations. As described in
previous sections, User Application should be remapped to different location. This can be achieved with
help of linker file. For example,

rom (rx): ORIGIN = 0x0040C000, LENGTH = 0x001F3F00
This sets start address of the User Application to the address specified as ORIGIN defined above and
allocates specified LENGTH bytes for User Application.

Ensure User Application start address and length are updated in Footers because Bootloader Application
reads this information before jumping to User Application.

Note:  Ensure that the Flash information stored in Bootloader Footer and Application Footer are same.

3.3.6.2. Adding Application Footer
Application Footer is an important parameter used by both Application and Bootloader. They use these
parameters to read critical information before switching to other application. It is important to place this at
the end of Flash memory allocated to the User Application.

• Adding Footer in Application
/** Application Footer information */
__attribute__ ((section(".ApplicationFooterData")))
const TS_ApplicationFooter sUserApplicationFooter =
{
 {
 U32_USB_CAN_FD_SW_RELEASE_MAJOR_VERSION,

Atmel AT16743: SAM V7/E7/S7 Safe and Secure Bootloader [APPLICATION NOTE]
Atmel-42725A-Safe-and-Secure-Bootloader-for-SAM-V7-E7-S7-MCUs_AT16743_Application Note-06/2016

16

 U32_USB_CAN_FD_SW_RELEASE_MINOR_VERSION,
 NULL,
 U32_BOOT_LOADER_APPLICATION_START_ADDRESS,
 U32_BOOT_LOADER_APPLICATION_ALLOCATED_SIZE,
 U32_USER_APPLICATION_START_ADDRESS,
 U32_USER_APPLICATION_ALLOCATED_SIZE,
 },
 {0},
 {0},
};

• Updates to be performed in User Application linker file
– Add in Memory Space definitions

ApplicationFooter(rx) : ORIGIN = 0x005FFF00, LENGTH = 0x00000100

– Add in Section definitions
.ApplicationFooter :
{
 KEEP(*(.ApplicationFooterData .ApplicationFooterData.*))
} > ApplicationFooter

3.3.6.3. Reserving RAM location
User Application and Bootloader Application uses few bytes of RAM to control applications switching
between them. Both User Application and Bootloader Application must reserve the same location in both
Applications to avoid conflicts. In the example project provided, 32 bytes of RAM is reserved for
switching. This can be done with following modifications in linker file.

ram (rwx) : ORIGIN = 0x20400020, LENGTH = 0x0005FFE0
The value of ram ORIGIN is changed from default 0x20400000 to 0x20400020, which restricts linker from
using first 32 bytes of RAM.

3.3.6.4. Fill Unused Locations with 0xFF
Filling unused locations with known data (0xFF) helps tool and Bootloader Application to synchronize
during Hash functions. The Hash value generated by tool must match with value generated by Bootloader
Application. Otherwise, Bootloader assumes User Application is invalid.

To Fill the unused locations with known data,
1. Create a dummy section in the User Application

/** Creating a dummy section to fill unused flash with 0xFF.. */
const U8 u8Dummy __attribute__ ((section(".fill"))) = 0xFF;

2. Fill this section with known data
2.1. Allow linker to relocate initialized data

.relocate :
{
 . = ALIGN(4);
 _srelocate = .;
 (.ramfunc .ramfunc.);
 (.data .data.);
 . = ALIGN(4);
 _erelocate = .;
} > ram AT > rom

2.2. Fill 0xFF till Application Footer
.Fill_FF :
{
 KEEP(*(.fill))
 FILL(0xFF);
 . = LOADADDR(.ApplicationFooter);
} AT > rom

Atmel AT16743: SAM V7/E7/S7 Safe and Secure Bootloader [APPLICATION NOTE]
Atmel-42725A-Safe-and-Secure-Bootloader-for-SAM-V7-E7-S7-MCUs_AT16743_Application Note-06/2016

17

3.3.6.5. Define Sequence for Bootloader Switching
This is another important step. User Application must define switching sequence to Bootloader. In the
example project provided, this is achieved with help of USB-CDC command from host.

When this command is received, User Application calls JumpToBootloaderHandler to update
JumpSignature with “StayInBootLoader” string to remain in Bootloader.

On soft reset, device starts executing from Bootloader and remains in Bootloader.

3.3.7. Modules Description

3.3.7.1. Bootloader Application Modules
The following table describes functions associated with the Bootloader Application.
Table 3-5. Functions and Descriptions

Function Description

static Bool
B_IsItRequiredToStayInBootloader(void
)

This function checks if source application
requested to stay in Bootloader Application

• Check if Jump signature updated to remain
in Bootloader Application

• Clear this instruction to avoid reusing it

static Bool
B_IsUserApplicationValid(void)

This function verifies User Application

• Get application header data
• Check if application footer is populated or not
• Check Integrity of application
• Indicate application is valid

static void
BootloaderJumpHandler(void)

This function enables calling application to jump to
Bootloader Application by updating Jump
Signature

• Update Jump Signature

static void
JumpToUserApplication(void)

This function jumps to User Application after taking
necessary steps in Bootloader Application.

• Release resources before jumping to User
Application

• Disable interrupts
• Get User Application header data
• Update vector table
• Update stack pointer
• Call application reset handler

Atmel AT16743: SAM V7/E7/S7 Safe and Secure Bootloader [APPLICATION NOTE]
Atmel-42725A-Safe-and-Secure-Bootloader-for-SAM-V7-E7-S7-MCUs_AT16743_Application Note-06/2016

18

Function Description

U8 U8_EraseUserApplication(void) This function takes care of reading received
message from USB buffers to application buffers
and then triggers processing of those messages

• Ensure User Application start address is on
page boundary

• Identify Pages & Sectors to Erase
• Get No of Pages to Erase
• Erase Pages / Erase Sector

U8 U8_WriteToFlash(U32 u32Address,
U8* pDataBuffer, U16 u16DataSize)

This function checks whether address is on Sector
boundary or not. Based on that it populates next
address to Erase by adding either page(s) size or
sector size

• Check Address is with in User Application
area

• Check if Address in Page aligned or not
• Check if Data size is matching with Flash

Page size
• Trigger Write request for entire page

U8* P_DecryptReceivedPageData(void*
pData, U16 u16DataSize)

This function Decrypts input data of size
u16DataSize

• Enable peripheral clock
• Configure the AES in CBC mode
• Update Initial Vector
• Loop through for all data
• Feed in initial set of data
• Read Decrypted data

void CalculateICM(U32
u32StartAddress, U32 u32Size, U32*
pu32Result)

This function executes SHA-1 algorithm and
updates result to output buffer.

• Set region descriptor start address
• Enable ICM
• Check region hash is completed

3.3.7.2. User Application Modules
The following table describes functions associated with Bootloader Application in the User Application.

Atmel AT16743: SAM V7/E7/S7 Safe and Secure Bootloader [APPLICATION NOTE]
Atmel-42725A-Safe-and-Secure-Bootloader-for-SAM-V7-E7-S7-MCUs_AT16743_Application Note-06/2016

19

Table 3-6. Functions and Descriptions

Function Description

void JumpToBootloaderHandler(void) This function enables calling application to jump to
Bootloader Application

• Get application data from User Application
Footer

• Get Bootloader application Data from
Bootloader Application Footer

• Set to remain in Boot loader by calling
application jump handler

3.4. Memory Footprint
This section provides memory utilization in Bootloader and User Application projects.

Table 3-7. Memory Details

Application Type Program Memory Usage Data Memory Usage

Bootloader 31596 bytes 13120 bytes

User Application 27516 bytes 14200 bytes

Note: 
• Optimization level (-O1) enabled for both Bootloader Application and User Application
• ARM/GNU C Compiler version : 4.9.3
• Program Memory Usage bytes are excluding the Fill section which is filled with 0xFF for Hash

functions.

Atmel AT16743: SAM V7/E7/S7 Safe and Secure Bootloader [APPLICATION NOTE]
Atmel-42725A-Safe-and-Secure-Bootloader-for-SAM-V7-E7-S7-MCUs_AT16743_Application Note-06/2016

20

4. Firmware Packager and Updater
This helper program assists to Encrypt User Application and transmit the firmware using Bootloader
Application. It is necessary to develop a program to interact with Applications using implemented
communication protocol.

This application enables the user to:
• Trigger User Application to Bootloader Application
• Erase User Application Area
• Choose the firmware file to send to device
• Select AES Key and Initial Vector Indexes
• Launch firmware upgrade

The same application is used to prepare the firmware prior to sending it to customers. This include
encrypting and generating Hash tag, etc.
Figure 4-1. PC Application

The following points explain the functionality of various options in the AES Bootloader application.
1. Select COM port – This drop down lists various Virtual COM ports available for the device.
2. Enter Bootloader – This triggers the application to switch between user application and

Bootloader.
When the button is clicked,

1. Application queries the current status of the device
2. Sends a command to switch to Bootloader
3. Issues soft reset command

Device returns to Bootloader and wait for commands from Application.
3. Erase – This triggers Erase Process on the device.

Note:  This command should be issued only when device is in Bootloader Application.
4. Select File – Displays File selected by User.
5. Open File – Enables user to select file.
6. Passcode – AES Key and Initial Vectors are predefined in device and PC Application. The

passcode is combination of Key Index and Initial Vector Index (0201 – Chooses Key Index as 02
and Initial Vector Index as 01).

7. Start Address – Start Address of the User Application. This should be matched with Parameters in
Bootloader and User Application. PC Application uses this to Start writing User Application from this
Address.

8. Encrypted File – Indicates to application that chosen file is Encrypted. It allows PC Application to
indicate the device to decrypt incoming data.

Atmel AT16743: SAM V7/E7/S7 Safe and Secure Bootloader [APPLICATION NOTE]
Atmel-42725A-Safe-and-Secure-Bootloader-for-SAM-V7-E7-S7-MCUs_AT16743_Application Note-06/2016

21

9. Program – Triggers Flash Programming on the device.
10. Encrypt & Save – Triggers Encryption process on PC Application and Prompts to Save result file.

4.1. Steps to Upgrade User Application
Upgrading User Application is divided into 2 steps based on Encryption is required or not.

4.2. Preparing Secure Application
To Encrypt the User Application,

1. Select input file using Open File option
2. Enter passcode in Passcode text box
3. Click on Encrypt & Save

– This prompts Save As option, Please chose output file and Save

Now, encrypted file is ready for programming. Following information must be shared for programming
1. Encrypted User Application
2. Passcode
3. Start Address of the Application

4.3. Programming Application
To program the user application,

1. Select COM port enumerated by device.
– This could be different for user application and bootloader application.

2. Click Enter Bootloader, This should make device to remain in bootloader.
3. Again, Select COM port enumerated by device.
4. Click Erase button to erase user application.
5. Select the input file using Open File option.
6. For encrypted application, enter Passcode and check Encrypted File option. For non-Encrypted

Application, leave Passcode empty and uncheck Encrypted File option.
7. Update Start Address.
8. Click Program Button.

Atmel AT16743: SAM V7/E7/S7 Safe and Secure Bootloader [APPLICATION NOTE]
Atmel-42725A-Safe-and-Secure-Bootloader-for-SAM-V7-E7-S7-MCUs_AT16743_Application Note-06/2016

22

5. References
1. Safe and Secure Firmware Upgrade for AT91SAM Microcontrollers - http://www.atmel.com/images/

doc6253.pdf
2. Federal Information Processing Standards 180-2 - http://csrc.nist.gov/publications/fips/fips180-2/

fips180-2.pdf

Atmel AT16743: SAM V7/E7/S7 Safe and Secure Bootloader [APPLICATION NOTE]
Atmel-42725A-Safe-and-Secure-Bootloader-for-SAM-V7-E7-S7-MCUs_AT16743_Application Note-06/2016

23

http://www.atmel.com/images/doc6253.pdf
http://www.atmel.com/images/doc6253.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

6. Revision History
Doc. Rev. Date Comments

42725A 06/2016 Initial document release.

Atmel AT16743: SAM V7/E7/S7 Safe and Secure Bootloader [APPLICATION NOTE]
Atmel-42725A-Safe-and-Secure-Bootloader-for-SAM-V7-E7-S7-MCUs_AT16743_Application Note-06/2016

24

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-42725A-Safe-and-Secure-Bootloader-for-SAM-V7-E7-S7-MCUs_AT16743_Application Note-06/2016

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, Cortex®,ARM Connected® logo, and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be
trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Features
	Table of Contents
	1. Abbreviations
	2. Bootloader
	2.1. Boot Sequence
	2.2. Upgrade Sequence
	2.3. Safety
	2.4. Security
	2.4.1. Privacy
	2.4.1.1. Selecting an Algorithm
	2.4.1.2. Modes of Operation

	2.4.2. Integrity
	2.4.2.1. Hash Functions

	2.4.3. Authenticity

	3. Example Bootloader and User Application
	3.1. Hardware/Software Requirements
	3.2. Design Considerations
	3.2.1. Safety
	3.2.2. Security
	3.2.3. Software Considerations
	3.2.4. Hardware Requirements
	3.2.5. Software Limitations
	3.2.6. Porting Considerations

	3.3. Software Architecture
	3.3.1. Features
	3.3.2. Communication Protocol
	3.3.3. Code Locations
	3.3.4. Switching between Applications
	3.3.4.1. Bootloader Application to User Application
	3.3.4.2. User Application to Bootloader Application

	3.3.5. Linking Options
	3.3.6. User Application Customization for Bootloader
	3.3.6.1. Remapping of Flash locations
	3.3.6.2. Adding Application Footer
	3.3.6.3. Reserving RAM location
	3.3.6.4. Fill Unused Locations with 0xFF
	3.3.6.5. Define Sequence for Bootloader Switching

	3.3.7. Modules Description
	3.3.7.1. Bootloader Application Modules
	3.3.7.2. User Application Modules

	3.4. Memory Footprint

	4. Firmware Packager and Updater
	4.1. Steps to Upgrade User Application
	4.2. Preparing Secure Application
	4.3. Programming Application

	5. References
	6. Revision History

