AVR32758: AVR32 UC3 USB Host Mass Storage
Bootloader

Features

* In-System Programming (ISP) and Field Upgrade
— Configurable Start Condition with an Upgrade Firmware File ‘avr32fwupgrade.uc3’
Located on a USB Device Implementing the USB Mass Storage Class
* USB Protocol
— Based on the USB Host Mass Storage Class (MSC)
* USB MSC bootloader is additional to the pre-programmed USB Device Firmware
Upgrade (DFU) bootloader
* No computer required

1. Description

This USB host mass storage class bootloader allows to perform In-System Program-
ming of AVR®32 UC3 parts from a USB device implementing the Mass Storage class
(USB drive), without:

- removing the part from the system

- any external programming interface other than USB.

Figure 1-1. Physical Environment

< USB Mass Storage Class USB MSC Write / FI_ash»

. ﬁ — = Application
Bootloader Verify N
Section
@

USB Device Implementing
Mass Storage Class

The condition used to request the start of the ISP is the presence of a specific
upgrade file located on a USB device implementing the mass storage class.

This document describes the USB host mass storage class bootloader functionalities
and its usage in various contexts.

Note that all the AT32UC3 devices with a USB interface are shipped with a pre-pro-
grammed USB Device Firmware Upgrade (DFU) bootloader. This DFU bootloader
behaves as a USB DFU device and is used to upgrade the firmware of the AVR32
UC3 from a computer (acting as a USB DFU host).

The UC3 USB MSC bootloader (acting as a USB host) comes in addition to the first
bootloader (acting as USB device), but is not pre-programmed on the shipped part.
Both bootloaders can be present and used on the same part.

ATMEL

Y ()

32-bit AVR®
Microcontroller

Application Note

7818B-AVR32-07/09

2. Related Parts

3. Related Items

ATMEL

In the rest of this document, we will suppose that the USB DFU bootloader is always present
and located at the beginning of the internal Flash memory. Consequently, the USB MSC boot-
loader is located in the memory map above the USB DFU bootloader.

For more information on the USB DFU bootloader, please refer to the AVR32 UC3 USB DFU
Bootloader datasheet.

This application note comes with a software package avr32758.zip which contains project exam-
ples and script to program the bootloaders.

This documentation applies to the following AT32UC3 parts:
+ AT32UC3A0512
+ AT32UC3A0256
+ AT32UC3A0128
+ AT32UC3A1512
+ AT32UC3A1256
+ AT32UC3A1128
+ AT32UC3B0256
« AT32UC3B0128
+ AT32UC3B064
+ AT32UC3B1256
+ AT32UC3B1128
+ AT32UC3B164

The bootloader needs to be re-compiled:

e For each AT32UC3x series (AT32UC3A, AT32UC3B) due to differences in the MCU
peripheral memory map. The functionalities are however the same between series.

e For each hardware board, since the oscillator value and the USB VBOF pin multiplexing
value may be different.

The provided software example are by default configured with the largest flash size part (i.e

AT32UC3A0512) with the series evaluation kit (i.e. EVK1100 for the UC3A).

e AT32UCS3A Series Datasheet:
http://www.atmel.com/dyn/resources/prod_documents/doc32058.pdf

e AT32UC3B Series Datasheet:
http://www.atmel.com/dyn/resources/prod_documents/doc32059.pdf

* AVR32 UC3 Software Framework:
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4192

e AVR32 Studio:
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4116

e AVR32 GNU toolchain:
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4118

* AVR32 UC3 USB DFU Bootloader datasheet:
http://www.atmel.com/dyn/resources/prod_documents/doc7745.pdf

2 AV R 3275 8 musssss e —

7818B-AVR32-07/09

http://www.atmel.com/dyn/resources/prod_documents/doc32058.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc32058.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc32059.pdf
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4116
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4118
http://www.atmel.com/dyn/resources/prod_documents/doc7745.pdf
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=4192

4. Abbreviations

5. Inner Working

5.1 Memory Layout

7818B-AVR32-07/09

e ISP: In-System Programming

« BOD: Brown-Out Detector

« USB: Universal Serial Bus

e DFU: Device Firmware Upgrade
e MSC: Mass Storage Class

e Udrive: USB MSC Device

The USB MSC bootloader manages the USB communication protocol and performs erase, pro-
gram and verify operations of the on-chip memories.

The USB DFU bootloader (USB device only) is located at the beginning of the on-chip Flash.
The USB DFU bootloader size is 8kB and is protected against erasure by the BOOTPROT
fuses.

The USB MSC bootloader (USB host only) is located above the USB DFU bootloader in the on-
chip Flash as detailed in the Figure 5-1, page 4. The USB MSC bootloader is not protected by
the BOOTPROT fuse, however the programming script, that programs the two bootloaders, is
using the Flash lock bits during the programming to protect the two bootloaders.

An AT32UC3 part having the bootloader programmed resets as any other part at 80000000h.
The first bootloader execution begins here:

« The USB DFU bootloader first performs its boot process to know whether it should start the
USB DFU ISP or another program located at 80002000h. If the tested conditions indicate
that the USB DFU ISP should be started, then execution continues in the USB DFU
bootloader area, i.e. between 80000000h and 80002000h, else the execution resumes at
80002000h and starts the USB MSC bootloader or the user’s application whether the USB
MSC bootloader is programmed or not.

 The USB MSC bootloader performs its own boot process to know if it should start the USB
MSC ISP or the application located at 80008000h. If the tested conditions indicate that the
USB MSC ISP should be started, then execution continues in the USB MSC bootloader
area, i.e. between 80002000h and 80008000h, else the bootloader launches the application
at 80008000h.

ATMEL ;

ATMEL

Figure 5-1. AT32UC3A0512 Non-Volatile Memory Layout with USB DFU Bootloader and USB
MSC Bootloader
32-bit DFU

bootloader
configuration word is

32-bit MSC
bootloader @ 808001FCh
configuration word is
@ 808001F8h \ \
 — —

32 GP Fuse
512 B Bits

User page is Flash User Page

@ 80800000h >

Free Flash Space

User 480 kB
Application
512-kB
Application is > Flash
@ 80008000h > Array
USB MSC USB MSC Bootloader 24 kB

Bootloader is
@ 80002000h

. USB DFU Bootloader
Reset vector is

@ 80000000h

H e —
J

MCU Address Space

5.2 USB DFU Bootloader Configuration

The conditions tested by the USB DFU boot process are configured by the general-purpose fuse
bits located outside of the MCU address space and by a 32-bit configuration word located at the
end of the Flash User page.

The DFU bootloader has a configuration which determines the behavior of the boot process and
of the ISP. This configuration is non-volatile and is stored Flash User page (see Figure 5-1). The
USB DFU configuration word is located in the Flash user page at 808001FCh.
Note:
1. Refer to the AT32UC3 datasheets (see Section 3, page 2) for further information about the
Flash User page.

2. See the USB DFU Bootloader datasheet (see Section 3, page 2) for further information about
the DFU configuration.

5.3 USB MSC Bootloader Configuration

A 32-bit word located near the end of the Flash user page, before the USB DFU configuration
word (see Section 5.3.1, page 4), is used internally by the boot process

5.3.1 Programming the User Page USB MSC Word

The USB MSC bootloader uses one word located in the Flash user page at 808001F8h for its
boot process.

The USB MSC bootloader will start after a reset when this word is set to a specific value by the
user application. Refer to Section 6.2.1.1, page 7 for further information.

AV R 3275 mmmmm———

7818B-AVR32-07/09

5.3.2 Boot Process

After being started by the USB DFU bootloader, the USB MSC bootloader starts its boot process

and checks the following condition:

A USB key implementing the USB mass storage device class (compatible with, full speed or
high speed USB keys) is plugged in,

Note: The Udrive should be previously formatted with one of the following file system: FAT12, FAT16 or

FAT32 and contain only one single file named “avr32fwupgrade.uc3” (default name), generated by
the script described in Section 6.2.3, page 9.

Once the new user application firmware is programmed in the on-chip Flash memory (in the
range [80008000h-end of the Flash array]), the USB MSC bootloader updates the Flash user
page configuration word (to avoid restart at next start-up) and resets the part.

6. Using The usB MSC Bootloader

6.1 Building a USB MSC Bootloader Compliant Application

An example is provided in the software package, refer to Section 7.2 “Projects” on page 10.

6.1.1 Taking care of the bootloader overlay

7818B-AVR32-07/09

In order to avoid that application code being placed inside the bootloaders area, a trampoline
code must be placed at the reset vector (80000000h) that simply jumps to the beginning of the
user application (80008000h). This trampoline code ensures that the application code starts at
80008000h and is located above this address.

When programming the user application with the USB MSC bootloader, the USB MSC boot-
loader takes into consideration the whole binary image including the trampoline. Since the
trampoline cannot overwrite the USB DFU and the USB MSC bootloaders, it is not programmed
and thus, only the user application (starting at location 80008000h) is programmed.

Figure 6-1. User Application Programming on AT32UC3A0512 with the USB MSC Bootloader

MCU Address
Space
with Bootloader
Binary Image of
User Application D\ ™
Linked with Free Flash Space
Trampoline
> 480 kB
512-kB
Ulser_ User Flash
Application — Application Array
User
Application is J
@ 80008000h
ump USB MSC 24 kB
Trampoline _x Bootloader } J
USB DFU
Reset vector is N Bootloader }8 kB

@ 80000000h ”

The trampoline and configuration files for GCC and IAR® compilers can be found into:
\SERV ICES\USB\CLASS\MASS_STORAGE\EXAMPLES\1SP\BOOT

ATMEL ;

6.1.1.1 AVR32 Studio

6.1.1.2 GCC Compiler

6.1.1.3 IAR Compiler

ATMEL

e Addthe trampoline. S and the conf_isp.h to the project assembly source file.

e The entry point must be set to the _trampoline section. Add the *“-wl,-
e,_trampoline” to the AVR32/GNU C Linker / Miscellaneous section of the project
properties.

e Addthe trampoline. S and the conf_isp.h to the project assembly source file.

¢ The entry point must be set to the _trampoline section. In the config.mk, simply add -
e,_trampoline to the linker option LD_EXTRA_FLAGS.

e Addthe trampoline.s82 and the conf_isp.h to the project source file.

« In the project option, linker->Config field, specify “override the default program entry” with
Entry label: __ trampoline.

6.1.2 Starting the USB MSC bootloader from the application

To allow upgrade of the existing application in the field, the application must provide the way to
restart the bootloader.

To activate the ISP, the user application must set the configuration word located in the Flash
user page at 808001F8h to a specific value (ISP_FORCE_VALUE, See Section 6.2.1.1, page 7).

These C code lines program the USB MSC configuration word in the Flash user page to start the
USB MSC bootloader after the next reset:
Disable_global_interrupt();

// Write at destination (AVR32_FLASHC_USER_PAGE + ISP_FORCE_OFFSET) the value

// 1SP_FORCE_VALUE. Size of ISP_FORCE_VALUE is 4 bytes.
Tlashc_memset32(AVR32_FLASHC_USER_PAGE+ISP_FORCE_OFFSET, ISP_FORCE_VALUE, 4, TRUE);
wdt_enable(17777);

while (1); // wait WDT time-out to reset and start the MSC bootloader

Note: The code above supposes that the user application uses the software drivers from the UC3 Soft-
ware Framework (DRIVERS/FLASHC/flashc.c, DRIVERS/WDT/wdt.c and dependency files).

Refer to the Section 7.2.2 “User Project” on page 10 for example of user project.

6.2 Implementing the USB MSC Bootloader

The USB MSC bootloader can be programmed to the UC3 part using the USB DFU bootloader
through its USB interface or using a JTAG programmer (AVR ONE!, JTAGICE mKkll) through its
JTAG interface.

This section is a step-by-step guide of the USB MSC bootloader:

¢ How to build the USB MSC bootloader,

e How to program the USB MSC bootloader,

* How to activate the USB MSC bootloader,

e How to build a USB MSC bootloader compliant application,

¢ How to build the application upgrade file,

* How to setup the Udrive for UC3 firmware upgrade,

¢ How to program the user firmware with the USB MSC bootloader.

6 AV R 3275 mmmmm———

7818B-AVR32-07/09

6.2.1 Building the USB MSC Bootloader .hex File

An example of USB MSC bootloader project is provided in the software package, refer to Sec-
tion 7.2 “Projects” on page 10.

6.2.1.1 Static Configuration

The static configuration of the USB MSC bootloader is done in the conf_isp.h file located in:
SERVICES\USB\CLASS\MASS STORAGE\EXAMPLES\ISP\CONF.

The following configuration items are available:

e ISP version. Default value is 1000000h (stands for 1.0.0 build number 0).

« Offset of the USB MSC configuration word in the Flash user page (see Section 5.3.1,
page 4). Default value is 1F8h (i.e. it is located at address 1F8h of the page).

« Value of the USB MSC configuration word in the Flash user page to start the USB MSC
bootloader (ISP_FORCE_VALUE). Default value is:
("M* << 24 | "S" << 16 | "I" << 8 | "F").

* Firmware upgrade file name. Default value is “avr32fwupgrade.uc3”.

« Program start offset: the offset of the application start in the Flash. Default value is 8000h
(i.e. the address is 80008000h).

6.2.1.2 Hardware Considerations

6.2.1.3 Projects

In order to work, the ISP requires that either an external clock or a crystal is mounted on OscO.

Oscl can be used instead of OscO, but in this case, the user has to change the 1Sp_osc prepro-

cessor definition to 1 in

SERVICES/USB/CLASS/MASS_STORAGE/EXAMPLES/ISP/AT32UC3A0512/GCC/config.mk

for GCC orin the

SERVICES/USB/CLASS/MASS_STORAGE/EXAMPLES/ISP/AT32UC3A0512/GCC//IAR/isp.eww

workspace project options for IAR.

Note: By default, the USB DFU bootloader preprogrammed on all UC3 parts is configured to run on
OSCoO.

The default hardware pin connection is set for the EVK1100 board for UC3A family and the
EVK1101 board for UC3B family.

Board definition can be changed in
SERVICES/USB/CLASS/MASS_STORAGE/EXAMPLES/ISP/AT32UC3x_EVK110x/GCC/config.mk for
GCC

or in the
SERVICES/USB/CLASS/MASS_STORAGE/EXAMPLES/ISP/AT32UC3x_EVK110x/IAR/isp.eww
workspace project options for IAR.

The GCC and IAR project files are stored in
\SERVICES\USB\CLASS\MASS_STORAGE\EXAMPLES\ISP.

Refer to Section 8.3 “Building the UC3A USB MSC project” on page 13.

6.2.2 Programming the USB MSC Bootloader

7818B-AVR32-07/09

A script example is provided in the software package, refer to Section 7.4 “Script to Program the
Bootloaders” on page 10.

The following command script is an example to program through JTAG:
« the released USB DFU bootloader (in Flash array),

ATMEL 7

ATMEL

« the USB MSC bootloader (in Flash array),

» the user application firmware (in Flash array),

« the USB DFU ISP configuration word (in the Flash user page),
e the general-purpose fuse bits,

« the security bit.

And start the user application.

6.2.2.1 Performing a Flash Chip Erase

The following lines erase the Flash area, the Flash user page, the general-purpose fuse bits and
the security bit.
echo.

echo Performing a JTAG Chip Erase command.
avr32program chiperase

6.2.2.2 Programming the .hex Files in the Flash Array

The following lines program:

» the USB DFU bootloader: at32uc3a-isp-1.0.2.hex (located in
\SERVICES\USB\CLASS\DFU\EXAMPLES\ISP\AT32UC3A\Releases\AT32UC3A-ISP-1.0.2\).

* the USB MSC bootloader: at32uc3a0512-ms-isp-1.0.0.hex

e The user application: Release\Exe\user_application.hex
echo.

echo Programming MCU memory from ~at32uc3a-isp-1.0.2_.hex", ~at32uc3a0512-ms-isp-
1.0.0.hex® and “user_application._hex".

srec_cat "

\SERVICES\USB\CLASS\DFU\EXAMPLES\ ISP\AT32UC3A\Releases\AT32UC3A-1SP-1.0.2\at32uc3a-
isp-1.0.2.hex -intel ©

-crop 0x80000000 0x80002000 ~

-offset -0x80000000 ~

. -\at32uc3a0512-ms-isp-1.0.0.hex -intel ~

-crop 0x80002000 0x80008000 ~

-offset -0x80000000 ~

Release\Exe\user_application.hex -intel »

-crop 0x80008000 0x80080000 ~

-offset -0x80000000 ~

-0 at32uc3a-isp-1.0.2_at32uc3a0512-ms-isp-1.0.0_user_application.bin -binary

avr32program program -finternal@0x80000000,512Kb -cxtal -v -00x80000000 -Fbin
at32uc3a-isp-1.0.2_at32uc3a0512-ms-isp-1.0.0_user_application.bin

del at32uc3a-isp-1.0.2_at32uc3a0512-ms-isp-1.0.0_user_application.bin

6.2.2.3 Programming the USB DFU Configuration Word in the Flash User Page

The following lines program the USB DFU configuration word in the Flash user page (at
808001FCh):
echo.

echo Programming DFU ISP configuration word from “at32uc3a-isp_cfg-1.0.2.bin".

avr32program program -finternal@0x80000000,512Kb -cxtal -e -v -00x808001FC -Fbin
\SERVICES\USB\CLASS\DFU\EXAMPLES\ISP\AT32UC3A\Releases\AT32UC3A-1SP-1.0.2\at32uc3a-
isp_cfg-1.0.2._bin

8 AV R 3275 mmmmm———

6.2.2.4 Programming the general-purpose fuse bits

The following lines program the general-purpose fuse bits (set to 7CO7FFFEh) used by the USB
DFU bootloader:
echo.

echo Programming general-purpose fuse bits.
avr32program writefuses -finternal@0x80000000,512Kb gp=0x7CO7FFFE
Note: The general-purpose fuses configure the USB DFU behavior.

6.2.2.5 Setting the Security bit

The following lines set the Security bit:
echo.

echo Setting Security bit.
avr32program secureflash

6.2.2.6 Starting the User Application

The following lines start the bootloader:
echo.

echo Starting the Bootloader.
avr32program run -R

6.2.3 Generating the Firmware Upgrade File “avr32fwupgrade.uc3”

To generate the firmware upgrade file “avr32fwupgrade.uc3” from a user application .hex or .bin
file, execute the following script with the user application hex or binary file (generated in Sec-
tion 6.2.1.3, page 7) as input:
gen_uc3.cmd for Windows® machine or gen_uc3.sh for Unix® machine.
1. The scripts require the SRecord utility software to be installed (http://srecord.sourceforge.net/.
For Windows machine, the .exe path must be setup in the PATH variable).
2. Refer to Section, page 9 for more information on the user application memory layout
constraints.

Refer to Section 7.3 “Generate the .uc3 upgrade file” on page 10 for location of this script.

6.2.4 Setting-up the Udrive for UC3 Firmware Upgrade
* Format a Udrive in either FAT12, FAT16 or FAT32.
« Copy the generated “avr32fwupgrade.uc3” file (see Section 6.2.3, page 9).
e Safely detach the Udrive.

6.2.5 Programming an Application Firmware

6.2.5.1 Programming

The USB MSC ISP is activated when the Udrive, previously set-up as described in Sec-
tion 6.2.4, page 9, is connected to the USB port.

If the boot condition is met, the USB MSC boot process starts and programs the user application
into the Flash array.

Once the programming is done and verified, configuration word is changed and then the applica-
tion starts at the location 80008000h.

6.2.5.2 Upgrading

To upgrade an existing application, The application must provide a way to restart the bootloader
as detailed in Section 6.1.2, page 6. Then upgrade is done like in Section 6.2.5.1, page 9.

ATMEL ;

7818B-AVR32-07/09

http://srecord.sourceforge.net/

7. Software Package

7.1 Tools

7.2 Projects

7.2.1 USB MSC bootloader

7.2.2 User Project

ATMEL

This section details the content of the software package avr32758.zip delivered with this applica-
tion note.

/tools folder
For Windows machine, this folder contains the srec_cat . exe tool that needs to be copied to a
folder included in your system path.

/avr32_studio folder
This folder contains some AVR32 Studio projects
Note: These projects require AVR32 Studio V2.1 or higher to be properly compiled.

uc3al_l-msc-bootloader.zip file
This file contains the USB MSC bootloader project for the UC3A0/1 on EVK1100.

uc3b0_1l-msc-bootloader.zip file
This file contains the USB MSC bootloader project for the UC3B0/1 on EVK1101.

evkl1l00-start-msc-bl-example.zip file
This file contains the project of an EVK1100 example showing how to launch the USB
MSC bootloader from the user application.

evkllOl-start-msc-bl-example.zip file
This file contains the project of an EVK1101 example showing how to launch the USB
MSC bootloader from the user application.

evkll05-start-msc-bl-example.zip file

This file contains the project of an EVK1105 example showing how to launch the USB
MSC bootloader from the user application.

7.3 Generate the .uc3 upgrade file

/uc3-file-gen folder
This folder contains the scripts that generate the avr32fwupgrade.uc3 upgrade file.

gen_uc3.cmd file

DOS® script file.

Usage: gen_uc3 {<user_hexfile>[<user_binfile>}
gen_uc3.shfile

UNIX script file.

Usage: gen_uc3 {<user_hexfile> / <user_binfile>}

7.4 Script to Program the Bootloaders

/msc-bl-prog folder
This folder contains the scripts that program the user application code with the requested
bootloaders.

dfuprogram-uc3a-ms_bl-user_appli.cmd file:
dfuprogram-uc3b-ms_bl-user_appli.cmd file:
DOS script file using the USB DFU bootloader.

10 AV R 3275 mmmmm———

7818B-AVR32-07/09

7818B-AVR32-07/09

This script programs the MSC bootloader and the user application. The USB DFU
bootloader must be present.
Usage: dfuprogram-ms_bl-user_appli {<user_hexfile>}

dfuprogram-uc3a-ms_bl-user_appli.sh file:
dfuprogram-uc3b-ms_bl-user_appli.sh file:

UNIX script file using the USB DFU bootloader.

This script programs the USB MSC bootloader and the user application.
Usage: dfuprogram-ms_bl-user_appli {<user_hexfile>}

jtagprogram-uc3a-dfu_bl-ms_bl-user_appli.cmd file:
jtagprogram-uc3b-dfu_bl-ms_bl-user_appli.cmd file:

DOS script file using a JTAG programmer.

This script programs the DFU bootloader, the MSC bootloader and the user application.
Usage: jtagprogram-dfu_bl-ms_bl-user appli {<user_hexfile>}
jtagprogram-uc3a-dfu_bl-ms_bl-user_appli.sh file
jtagprogram-uc3b-dfu_bl-ms_bl-user_appli.sh file

UNIX script file using a JTAG programmer.

This script programs the DFU bootloader, the MSC bootloader and the user application.
Usage: jtagprogram-dfu_bl-ms_bl-user_appli {<user_hexfile>}

ATMEL Y

ATMEL

8. Getting Started

8.1 Example with EVK1100

This section details a quick way to test the MSC bootloader functionality. The step by step pro-
cedure is as follow:

1. Program the MSC bootloader
2. Start the MSC bootloader

3. Generate the upgrade file

4. Upgrade the application

8.1.1 Programming the MSC Bootloader

8.1.1.1 Using DFU
Program with USB the USB MSC bootloader + the EVK1100 example application with the pro-
gramming script: jtagprogram-uc3a-dfu_bl-ms_bl-user_appli.
Type:

msc-bl-prog/dfuprogram-uc3a-ms_bl-user_appli evkll00-start-msc-bl-example.hex

Note: To launch the DFU bootloader, press the joystick center and power cycle the board.

8.1.1.2 Using JTAG
Program with JTAG the USB DFU bootloader + USB MSC bootloader + the EVK1100 example
application with the programming script: jtagprogram-uc3a-dfu_bl-ms_bl-user_appli.
Type:
msc-bl-prog/jtagprogram-ucl3a-dfu_bl-ms_bl-user_appli evkll00-start-msc-bl-

example.hex

8.1.2 Starting the USB MSC Bootloader
Now the EVK1100 is programmed with the DFU bootloader, the MSC bootloader, and a user
application that allows user to launch the MSC bootloader.
Reset the board to start the application. LEDO blinks slowly.

Press EVK1100 PBO button, it will start the USB MSC bootloader.

8.1.3 Generating the Firmware Upgrade File
Use the gen_uc3 script to generate a new version of the EVK1100 user project.
Type:
gen_uc3 evkl100-blink-example.hex
Copy the avr32 fwupgrade.uc3 in the empty root directory of a Udrive.

Note: Don't forget to install the srec_cat tool as detailed in Section “Tools”, page 10.
Note: Any user code can be used at this step. To generate the .hex file, refer to Section 8.2.3, page 13.

8.1.4 Upgrading the Firmware Using the USB MSC Bootloader
Once the USB MSC bootloader is running, plug the Udrive on the EVK1100 USB connector. At
the end of programming, the new application will start running on the EVK1100.
If the blink-example is used the LEDs will blink sequentially.

12 AV R 3275 mmmmm———

8.2 Creating a MSC Bootloader Compliant Project

8.2.1 Starting with an existing Project
Modify the conf_isp.h file by changing the PROGRAM_START_OFFSET definition:
From:
#define PROGRAM_START OFFSET 0x00002000
to:
#define PROGRAM_START_OFFSET 0x00008000

This will force the user application to start above the bootloaders.

8.2.2 Starting with the Start-Example Project
Import the project example. In AVR32 Studio, select File -> New -> import -> Existing archive
into workspace -> select archive file:
/avr32_studio/evkl100-start-msc-bl-example.zip

This will create a project ready to use as base for your application.
8.2.3 Creating the .hex file

8.2.3.1 From a Shell

To create a .hex file from a .elf file use the following command line:
avr32-objcopy -0 ihex in_file.elf out_file.hex

8.2.3.2 From AVR32 Studio

In AVR32 Studio the post build option may be filled with following command line:
avr32-objcopy -0 ihex ${ProjName}.elf ${ProjName}.hex

8.3 Building the UC3A USB MSC project

8.3.1 From AVR32 Studio

Import the USB MSC bootloader project for EVK1100. In AVR32 Studio, select File -> New ->
import -> existing archive into workspace -> select archive file:
/avr32_studio/uc3al_l-msc-bootloader.zip.

Build the project, it will generate the at32uc3a0512-ms-isp-beta.elf file.

8.3.2 From Software Framework with GCC
Go to:
/SERVICES/USB/CLASS/MASS STORAGE/EXAMPLES/ISP/AT32UC3A0512_EVK1100/GCC

Type:
make rebuild

This will generate the uc3a0512-isp.elf file.
8.3.3 From Software Framework with IAR

Go to:
/ISERVICES/USB/CLASS/MASS _STORAGE/EXAMPLES/ISP/AT32UC3A0512_ EVK1100

Open the isp.eww IAR project file.

ATMEL 1

7818B-AVR32-07/09

ATMEL

9. Frequently Asked Questions

Q: 1do not want to use the USB DFU bootloader and | only want the USB MSC bootloader.
How do | do that?

Remove the USB DFU bootloader with JTAGICE mkll by unprotecting and erasing the MCU
Flash array with a command avr32program chiperase.

Now change the USB MSC bootloader start address (80002000h to be changed in 8000000h)
by changing the following file in

SERVICES\USB\CLASS\MASS_STORAGE\EXAMPLES\ISP\BOOT\:

e For GCC compiler: boot.S file: the line “ .org 0x00002000” must be removed.

e For IAR compiler: boot.s82 file: the line “* ORG 0x00002000” must be removed.

The user program Flash start offset is still set to 8000h (user application starts at 80008000h).
The user program needs to be aligned on a Flash region boundary because of the Flash lock
mechanism put in place by the USB MSC bootloader during the ISP process. It is also possible
to use the BOOTPROT fuse to protect the USB MSC bootloader here.

When programming the user application with a JTAGICE mkill, the whole binary image including
the trampoline and the application is copied to the Flash array. Consequently, when MCU exe-
cution is then started, the trampoline executes at the reset vector at 80000000h and jumps to the
application at 80008000h.

Figure 9-1. Application Programming on AT32UC3A0512 with JTAGICE mKll

MCU Address
Space
without
Bootloader
Binary Image of N N
Application Linked Free Flash Space

with Trampoline

Flash
Array

> 480 kB > 512-kB

Application — Application

User
Application is Y

@ 80008000h

Jump Jump
Reset vector is ; Trampoline Trampoline 32 kB /
@ 80000000h >

Reset vector is —
@ 80000000h

The following figures show how to program a user application with the USB MSC bootloader in
two steps:

* Generate the avr32fwupgrade.uc3 file
¢ Program the avr32fwupgrade.uc3 file with the USB MSC bootloader

AV R 3275 mmmmm———

7818B-AVR32-07/09

7818B-AVR32-07/09

Figure 9-2. Generating the avr32firmware.uc3 file

User
Application is

@ 80008000h —>

Reset vector is

@ 80000000h __,

Binary Image of
Application Linked
with Trampoline

Script
L (see section 7.2.2.) L
Application Application
. Firmware upgrade
_x header
Trampoline (includes CRC32)

>avr32fwupgrade. uc3

Figure 9-3. Application Programming on AT32UC3A0512 with the USB MSC Bootloader

avr32fwupgrade.uc3

MCU Address
Space

Free Flash Space

File
~
> 480 kB
Application — Application
80008000h /
Firmware upgrade
header
. —x USB MSC
(includes CRC32) | _/ Bootloader 32 kB

Reset vector is

@ 80000000h —>

ATMEL

’

512-kB
Flash
Array

15

AIMEL

Y (5

Headquarters

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA

Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

International

Atmel Asia

Unit 1-5 & 16, 19/F

BEA Tower, Millennium City 5
418 Kwun Tong Road

Kwun Tong, Kowloon

Hong Kong

Tel: (852) 2245-6100

Fax: (852) 2722-1369

Atmel Europe

Le Krebs

8, Rue Jean-Pierre Timbaud
BP 309

78054 Saint-Quentin-en-
Yvelines Cedex

France

Tel: (33) 1-30-60-70-00

Atmel Japan

9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa

Chuo-ku, Tokyo 104-0033
Japan

Tel: (81) 3-3523-3551

Fax: (81) 3-3523-7581

Fax: (33) 1-30-60-71-11

Product Contact

Sales Contact
www.atmel.com/contacts

Web Site Technical Support
www.atmel.com avr32@atmel.com

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR®32 and others are registered trademarks or
trademarks of Atmel Corporation or its subsidiaries. Windows® is a registered trademark of Microsoft Corporation in US and or other countries.
Other terms and product names may be trademarks of others.

7818B-AVR32-07/09

	AVR32758: AVR32 UC3 USB Host Mass Storage Bootloader
	Features
	1. Description
	2. Related Parts
	3. Related Items
	4. Abbreviations
	5. Inner Working
	5.1 Memory Layout
	5.2 USB DFU Bootloader Configuration
	5.3 USB MSC Bootloader Configuration
	5.3.1 Programming the User Page USB MSC Word
	5.3.2 Boot Process

	6. Using The USB MSC Bootloader
	6.1 Building a USB MSC Bootloader Compliant Application
	6.1.1 Taking care of the bootloader overlay
	6.1.1.1 AVR32 Studio
	6.1.1.2 GCC Compiler
	6.1.1.3 IAR Compiler

	6.1.2 Starting the USB MSC bootloader from the application

	6.2 Implementing the USB MSC Bootloader
	6.2.1 Building the USB MSC Bootloader .hex File
	6.2.1.1 Static Configuration
	6.2.1.2 Hardware Considerations
	6.2.1.3 Projects

	6.2.2 Programming the USB MSC Bootloader
	6.2.2.1 Performing a Flash Chip Erase
	6.2.2.2 Programming the .hex Files in the Flash Array
	6.2.2.3 Programming the USB DFU Configuration Word in the Flash User Page
	6.2.2.4 Programming the general-purpose fuse bits
	6.2.2.5 Setting the Security bit
	6.2.2.6 Starting the User Application

	6.2.3 Generating the Firmware Upgrade File “avr32fwupgrade.uc3”
	6.2.4 Setting-up the Udrive for UC3 Firmware Upgrade
	6.2.5 Programming an Application Firmware
	6.2.5.1 Programming
	6.2.5.2 Upgrading

	7. Software Package
	7.1 Tools
	7.2 Projects
	7.2.1 USB MSC bootloader
	7.2.2 User Project

	7.3 Generate the .uc3 upgrade file
	7.4 Script to Program the Bootloaders

	8. Getting Started
	8.1 Example with EVK1100
	8.1.1 Programming the MSC Bootloader
	8.1.1.1 Using DFU
	8.1.1.2 Using JTAG

	8.1.2 Starting the USB MSC Bootloader
	8.1.3 Generating the Firmware Upgrade File
	8.1.4 Upgrading the Firmware Using the USB MSC Bootloader

	8.2 Creating a MSC Bootloader Compliant Project
	8.2.1 Starting with an existing Project
	8.2.2 Starting with the Start-Example Project
	8.2.3 Creating the .hex file
	8.2.3.1 From a Shell
	8.2.3.2 From AVR32 Studio

	8.3 Building the UC3A USB MSC project
	8.3.1 From AVR32 Studio
	8.3.2 From Software Framework with GCC
	8.3.3 From Software Framework with IAR

	9. Frequently Asked Questions

