
 
 
 

 

APPLICATION NOTE 

Atmel AVR1610: Guide to IEC 60730 Class B Compliance 
with XMEGA 

8-bit Atmel Microcontroller 

Features 

• List of Class B component test requirements 

• Firmware library for general Class B tests 

Description 

IEC 60730 is a safety standard for household appliances that addresses many 
aspects of both product design and operation. This standard is also referred to by 
other standards for safety-critical devices, for example, IEC 60335. System-wide 
compliance with this standard is necessary for an appliance to be certified as safe to 
operate. 

This application note is a guide to compliance with Annex H of the standard, which 
regards electronic controls. Further, we supply a certified firmware library and usage 
examples for IAR Embedded Workbench® and Atmel® AVR® GCC. The firmware 
library is designed to cover the most general parts of the standard, while much 
depends on both the application and implementation choices. 

The outline of this document is as follows. Chapter 1 presents some definitions from 
the IEC 60730 standard. Chapter 2 describes the requirements for Class B software. 
Chapter 3 presents an overview of the embedded self-tests. Chapter 4 introduces our 
certified library and the files that are included. Chapters 5 to 10 describe in detail the 
embedded self-tests in the library. Finally, Chapter 11 presents other safety features 
included in the Atmel AVR XMEGA®. 
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1. Definitions in Annex H of IEC 60730 

1.1 Software classes 
Annex H of the IEC 60730 safety standard defines three classes of control software for appliances: 

• Class A – control functions which are not intended to be relied upon for the safety of the equipment (H.2.21.1) 

• Class B – software that includes code intended to prevent hazards if a fault, other than a software fault, occurs 
in the appliance (H.2.21.2) 

• Class C – software that includes code intended to prevent hazards without the use of other protective devices 
(H.2.21.3) 

Software used in protective control functions are either Class B or Class C. This application note deals with Class B 
controls, which applies to most household appliances. 

1.2 Control structures 
Class B controls can be designed according to one of three defined structures (H.11.12.2): 

• Single channel with functional test – a single channel structure in which test data is introduced to the functional 
unit prior to its operation (H.2.16.5) 

• Single channel with periodic self-test – a single channel structure in which components of the control are 
periodically tested during operation (H.2.16.6) 

• Dual channel without comparison – a structure which contains two mutually independent functional means to 
execute specified operations (H.2.16.1) 

The term channel refers to the number of MCUs in the appliance. The single channel structure tends to be the preferred 
structure since it has the lowest cost. 

A single channel structure with functional test means that the system is tested at the point of manufacture only. This 
structure can only be used if the appliance does not use any components that require periodic testing. However, 
periodic testing is a safer option because this allows for faults to be detected during operation of the product. Typically, 
the time interval between the tests must be shorter than it takes for a fault in the relevant component to cause hazard. 

Dual channel without comparison is essentially a structure in which two MCUs operate independently, with different 
tasks, and either MCU can check that the other is operating correctly. One approach is to use one MCU strictly for 
supervision, rather than sharing control tasks between the two. In this case, a lower cost device can often be used as 
the supervisor. 

This application note focuses on the single channel structure. 
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2. Class B requirements 
For an appliance to comply with the Class B requirements, the control software must detect and handle the faults 
specified for the system components in Table 2-1. In addition to these tests and fault detections, the software must be 
properly documented to pass a certification. This includes the program sequence, control and data flow, timing, fault 
tree and the general design philosophy. 

Table 2-1. Overview of components and faults/errors for test (H.11.12.7). 

Component to test Fault/error to test for 

1 CPU - 

1.1 Registers Stuck at 

1.3 Program counter Stuck at 

2 Interrupt handling and execution No/too frequent interrupts 

3 Clock Wrong frequency 

4 Memory (1) - 

4.1 Invariable memory All single bit faults 

4.2 Variable memory DC fault 

4.3 Addressing Stuck at 

5 Internal data path (1) - 

5.1 Data Stuck at 

5.2 Addressing Wrong address 

6 External communication - 

6.1 Data Hamming distance 3 

6.3 Timing Wrong point in time 

7 I/O periphery - 

7.1 Digital I/O Fault conditions specific in H.27.1 (2) 

7.2.1 A/D- and D/A-converter Fault conditions specific in H.27.1 (2) 

7.2.2 Analog multiplexer Wrong addressing 

9 Custom chips Any output outside static and dynamic functional specification 

Notes: 1. These are essentially the same for AVRs since SRAM, FLASH and EEPROM are all internal. 
 2. This table lists various external components and indicates whether a short and/or open fault must be 

detected. 

Several of these tests are inevitably application dependent. As an example, for I/O periphery it is required to do 
plausibility checking of the input/output signals. This in turn depends on both the application and its implementation. The 
firmware library supplied with this application note therefore cannot cover all of the requirements in Table 2-1. 
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3. Component tests 
Acceptable fault detection measures and considerations for the individual components in Table 2-1 are explained 
below.  

Note: The single channel structure with functional test cannot be used if functional test is not listed under acceptable 
measures for the components that are used in the appliance. 

3.1 CPU registers – Component 1.1 
Purpose of test: Detect stuck bits in the registers. 

The CPU registers are the most vital part of the MCU, and must be tested since correct operation is impossible with 
faulty registers. 

Acceptable measures for fault detection are functional test and/or periodic self-test using static memory testing or word 
protection with a parity check. In this library we have chosen the first method because the parity check would require a 
hardware implementation, which is not an option with the Atmel AVR XMEGA family. However, other methods for data 
redundancy could be implemented in software, for example, using two registers to keep the same value, in which case it 
would be convenient that the Atmel AVR CPU features 32 general-purpose registers. 

3.2 Program counter – Component 1.3 
Purpose of test: Detect stuck bits in the program counter. 

A correctly functioning program counter is important for any software to successfully run on an MCU. However, the 
program counter cannot be tested directly for stuck bits since any such test will rely on the program counter to function 
correctly in the first place. 

Acceptable measures for fault detection are functional test, periodic self-test, independent time-slot monitoring or logical 
monitoring of program sequence. 

The preferred solution is to use the watchdog for indirect time-slot monitoring of the application. If a program counter 
fault occurs, the watchdog timer will either be reset at the wrong time or not reset at all, eventually causing a device 
reset. Since it is an integral safety feature, the XMEGA family’s watchdog must be tested for proper operation in both 
regular and window mode before it can be relied on for catching program counter faults. 

After it has been tested, the watchdog should be enabled in window mode at all times. Further, the closed period should 
be at least as long as the open period, that is, at least 50% of the total period. 

For more information on the watchdog functionality of the XMEGA, please refer to the Atmel AVR1310 application note. 

3.3 Interrupts – Component 2 
Purpose of test: Verify that interrupts occur and are handled at expected rate. 

Most applications rely on interrupts for their operation, and it is therefore important to verify that these occur at the time 
they are expected, and are handled accordingly. 

Acceptable measures for fault detection include functional testing and/or time-slot monitoring of the interrupts. Time-slot 
monitoring is recommended since this will help detect faulty operation once the appliance is in use. Any interrupt testing 
will also indirectly test the XMEGA interrupt controller. 

 

 

http://www.atmel.com/Images/doc8034.pdf�
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3.4 Clock – Component 3 
Purpose of test: Detect unexpected deviations in system clock frequency. 

For the MCU to operate correctly and with correct timing, the frequency of the system clock must be verified to be within 
specification. 

Acceptable measures for fault detection are frequency or time-slot monitoring. For clocks based on crystal oscillators, 
the requirement is to detect that it is not oscillating at (sub)harmonics. 

A reference clock is needed for verification of the system clock frequency. The Atmel AVR XMEGA family’s Event 
System allows for timer/counter captures to be triggered by an external clock signal or the RTC (Real Time Counter), 
allowing for frequency comparison. It is also possible to use the Event System to count the timer/counters up or down. 

As an extra security feature, the XMEGA family features clock failure detection for the external oscillator. 

3.5 Static RAM – Components 4.2, 4.3 and 5 
Purpose of test: Detect stuck bits and coupling faults in SRAM and on the data bus, and any addressing problems. 

The internal SRAM is used for volatile storage of data and any faults related to this can be catastrophic for the 
appliance control. 

Acceptable measures for fault detection include periodic testing and/or data redundancy, for example, parity bits. The 
latter is cumbersome without hardware implementation specific for this purpose, leaving periodic testing with, for 
example March algorithms as the best choice. 

If the entire SRAM cannot be tested in one go, the tested memory sections must have some overlap to allow for 
detection of coupling faults. 

3.6 Flash and EEPROM – Components 4.1 
Purpose of test: Detect all single bit faults in non-volatile memory. 

In all Atmel AVR microcontrollers, the application software is stored in Flash memory while EEPROM memory can be 
used for, for example, device-specific settings and constants. For the device to operate safely, these non-volatile 
memories must be checked for corruption. 

Acceptable measures for fault detection are periodic self-test using a single or multiple checksums and/or single-bit data 
redundancy, for example, parity check in hardware. Multiple checksums is the recommended option, since this allows 
for one section of Flash or EEPROM to be checked at a time. The method is then to compute a checksum for the target 
memory range, then compare the result with a reference checksum that is stored elsewhere in non-volatile memory. 

3.6.1 Note on self-programming 
It is not recommended to perform self-programming of the Flash in harsh environments because, for example, power 
failure during writing will have unpredictable results. 

If self-programming is absolutely necessary, it is recommended to do this in a boot loader that is protected by lock bits 
so accidental self-overwrites are impossible. In this case, the boot loader should check the application section of Flash 
before any code in it is executed. 

All Atmel AVR XMEGA features a boot loader section in the Flash memory. 
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3.7 External communication – Component 6 
Purpose of test: Verify correctness of transferred data, sequence and timing of communication. 

Communication with external devices is an important part of many applications. This represents a potential source of 
faults since communication is susceptible to noise and either end of the communication line may be operating 
incorrectly. Consequently, steps must be taken to ensure that noise or faulty operation in one device does not cause 
faulty operation in another. 

Acceptable measures for detecting faults in data are multi-bit data redundancy such as repetition, CRC or Hamming 
codes, or protocol tests. Acceptable measures for detecting faults in timing are time-slot monitoring or scheduled 
transmissions. Acceptable measures for detecting faults in communication sequence are the same as those for timing, 
but also include logical monitoring. 

In short, a state machine based communications driver with time-outs, scheduling and transfer redundancy should be 
used. 

3.8 Input/output periphery – Component 7 
Purpose of test: Verify that input/output is as expected, and that signals are correctly routed. 

Analog and/or digital I/O is needed in all applications, and can be used to detect faulty operation in either the periphery 
or in the MCU itself. 

The acceptable measure for fault detection is plausibility checking, which means that the software verifies that it is 
getting the expected input and giving the desired output at any time. 
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4. Class B library for Atmel AVR XMEGA 
The purpose of the library is to simplify the design of safe and reliable applications based on the XMEGA family of 
microcontrollers. Further, this library has been certified to simplify the design and certification processes for our 
customers. 

This library has been developed to be flexible enough to embed the self-test modules in many different applications. 
The final user is then responsible to configure and use it in a way that the application complies with IEC 60730 Class B. 

We have added support for the AVR GCC compiler, which is included in Atmel Studio 6, and for IAR™. A number of 
examples have been included in order to show how the self-diagnostic routines can be embedded in a user application.  

The source code of the library has been prepared for automatic documentation generation with Doxygen 
(www.doxygen.org). This documentation complements the information provided in this document. 

4.1 Error handling 
In order for the test modules to be as general as possible, we have defined a number of error handlers that can be 
configured by the user. Errors have been divided into critical and non-critical, and have a default value for the error 
handlers. 

Critical errors are those that cannot be handled, for example when the register that should return the result of the 
register self-diagnostic routine has a stuck bit. Critical errors hang the CPU by default, that is, the CPU is left executing 
and infinite loop. In principle this should lead to a Watchdog reset, and the actions to take after a system reset issued by 
the Watchdog Timer (hereafter referred to as WDT) can be configured as well. 

Non-critical errors are those that, even if they prevent the MCU from working correctly, they can still be handled by the 
program. For example if one register is stuck (other than the one that returns the result of the test or the stack registers) 
the program could still take some actions to leave the system on a safe state. Non-critical errors set a global error flag 
by default. This flag is called classb_error and it can be used by the main application to leave the system on a safe 
state. This was the approach followed in the examples. 

4.2 Source files 
Common files: 

• avr_compiler.h: this file contains some general definitions and macros to ensure code compatibility with IAR 
and GCC 

• classb_rtc_common.c/h: this is an optional driver for the real time counter 

• error_handler.h: macros and definitions related to error handlers and configurable actions 

CPU registers: 

• classb_cpu.h: settings, definitions and macros for the test 

• classb_cpu_gcc/iar.c: implementation of the self-diagnostic routine 

• UserApplication.c: an example application where the test is embedded 

CPU program counter (Watchdog Timer test): 

• classb_wdt.c/h: code and header file for the test 

• UserApplication.c: an example application where the test is embedded 

Interrupt manager: 

• classb_interrupt_monitor.c/h: code and header file for the test 

• UserApplication.c: an example application where the test is embedded 

http://www.atmel.com/Microsite/atmel_studio6/default.aspx�
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System Clock: 

• classb_freq.c/h: code and header file for the test 

• UserApplication.c: an example application where the test is embedded 

Variable memory (March test for SRAM): 

• classb_sram: code and header file for the test 

• UserApplication.c: an example application where the test is embedded 

Invariable memory (CRC test for Flash and EEPROM): 

• classb_crc.h: header file with general configuration settings 

• classb_crc_hw.c/h: code and header file for the hardware implementation 

• classb_crc_sw.c/h: code and header file for the software implementation 

• UserApplication.c: an example application where the test is embedded 

Analog I/O: 

• classb_analog.c/h: code and header file for the test 

• UserApplication.c: an example application where the test is embedded 
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5. Registers 
In our self-diagnostic routine the CPU registers are tested for stuck bits and some coupling faults. The basic algorithm 
works as follows: In the first step the register is set in a known value. In the second step register bits are forced to 
change state. In the third step the content of the register is verified. After that, register bits are forced to change value 
again and, finally, the content of the register is verified again. In both cases, if the content of the register is incorrect, the 
error variable is set. 

We will test two types of registers: register file (R0 to R31) and I/O registers. These are located in separate memory 
spaces and are accessed with different instructions. In addition, there are a number of issues that have to be 
considered. Firstly, some registers cannot be manipulated destructively because they could be in use. The type of 
register and the specific compiler determines which registers must be preserved. We have used one auxiliary register to 
store the value of these registers. Secondly, registers from R0 to R15 and I/O registers cannot use immediate 
instructions, for example, LDI and CPI. Therefore, we have chosen to load and compare through another auxiliary 
register. 

The registers are tested following this order (GCC compiler implementation): 
1. Return value register: R24. 
2. Auxiliary registers: R31, R30. 
3. Stack pointer: SPL, SPH. 
4. Register file: R29 to R25 and R23 to R0. 
5. Extended addressing registers: RAMPD/X/Y/Z, EIND. 
6. Status register: SREG (except interrupt flag). 

In the first three steps we test those registers that are critical for the self-diagnostic routine: 

• Return value register: used to deliver the result of this self-test 

• Auxiliary register 1: used to store the value of those registers that must be preserved 

• Auxiliary register 2: used to copy values when testing registers that cannot be used with the LDI or CPI 
instruction (R0 to R15) 

• Stack pointer: necessary to return to the main program 

The auxiliary registers are critical because they are required to test the stack pointer. If there is an error in these 
registers the device will by default stay executing an infinite loop. However, it is possible to call the error handler 
instead. 

In the following steps the rest of the register file and the I/O registers are tested. If there should be an error, the self-
diagnostic routine would call the error handler and return the value of the test. However, it is possible to configure the 
same behavior as in the critical registers, that is, the device would hang if there should be a fault in any register. 

The self-diagnostic routine is coded with inline assembler to offer more flexibility for register manipulation. In order to 
simplify the assembly coding we defined a number of macros. 

The example application lights an LED and sets up a switch that can interrupt the main program, which is basically an 
infinite loop. In the switch interrupt routine, the LED is toggled and the register test is called. In principle the CPU 
registers should be working correctly and, therefore, the register test will not find an error. The switch interrupt will return 
then to the main program, which continues execution normally: the global error is not set and the application stays in the 
infinite loop. The main program can then be interrupted again at anytime by pressing the button. 
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In order to simulate an error, we can set breakpoints in the self-diagnostic routine. The application can then be started 
and, after stopping in a breakpoint, the content of a register can be modified to simulate a stuck bit. The execution can 
then be resumed and we will find that the self-diagnostic routine has detected the error. Depending on the register that 
is modified and the value of the constants CLASSB_ERROR_CRIT and CLASSB_ERROR_NON_CRIT we will either 
find that the global error variable has been set to one (which leads to an exit in the endless loop and switching the LED 
off) or that the CPU is stuck in an endless loop inside the self-diagnostic routine. In any case, the application will not 
respond to pressing a button any more. 
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6. Program counter 
The watchdog timer WDT is a system function for monitoring correct program operation that allows recovering from 
error situations such as runaway or deadlocked code. The WDT is a timer clocked independently from the CPU, it is 
configured to a predefined timeout period and it is constantly running when enabled. 

If the WDT is not reset within the timeout period, it will issue a microcontroller reset. This can be done by executing the 
WDT reset instruction from the application code. In addition, the WDT in the Atmel AVR XMEGA has a window mode. 
This makes it possible to define a time slot or window inside the total timeout period during which the WDT must be 
reset. If the WDT is reset outside this window, either too early or too late, a system reset will be issued. Compared to 
the normal mode, this can also catch situations where a code error causes constant execution of the WDT reset 
instruction. Therefore, it is required that Class B software uses this windowed mode and that the closed period that is at 
least 50% of the total period. 

The WDT will run in active mode and all sleep modes, if enabled. It is asynchronous, running from a CPU-independent 
clock source, and it will continue to operate and issue a system reset even if the main clocks fails. 

There is a configuration change protection mechanism in XMEGA that ensures that WDT settings cannot be changed 
by accident. For increased safety, a fuse for locking the WDT settings is also available. 

Since the WDT is an integral safety feature in the Atmel AVR XMEGA family, we have designed a self-diagnostic 
routine that tests this module in normal and window mode. This is executed after reset in the pre-init section of the 
application that is, before the main function. A flow diagram of the test is shown in Figure 6-1. 

The self-diagnostic routine basically makes sure that: 

• system reset is issued after WDT timeout 

• WDT can be reset 

• device is reset upon untimely WDT reset in window mode 

The flow diagram shows that the device is reset a number of times during the WDT test. Therefore, a SRAM variable 
and the reset flags of the device are used by the self-diagnostic routine to keep track of the test phase. Further, the user 
can configure what to do for brown-out or software reset, or how to process a reset caused by the watchdog when the 
test is in the "ok" state. 

Our self-diagnostic routine uses the real time counter (RTC) in order to check the timing of the WDT oscillator. The RTC 
has a clock source independent from the CPU and the WDT. Both modules have oscillators working at the nominal 
frequency of 32.768kHz. However, the WDT oscillator is optimized for low power consumption, at the cost of reduced 
accuracy. The oscillator of the RTC can be assumed accurate. The RTC is used to estimate the period of the WDT and 
the program checks that this estimate is within the interval (T/2, 3T/2), where T is the nominal period of the WDT.  

Note: The RTC is implicitly tested by this self-diagnostic routine; if the difference in frequency between RTC and WDT is more 
than 50%, the error state is set. 

The expected (error-free) execution flow is as follows: 
1. After power-on or external reset, check that WDT can issue a system reset. Set test state 1 and system reset 

by WDT. 
2. Check that WDT can be reset. Set test state 2 and WDT issues system reset. 
3. Check that window mode works correctly. Set test state 3 and WDT issues system reset. 
4. Set up WDT according to settings. Set test state "ok" and continue to the main function. 
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The first step is to make sure that the WDT can issue a system reset. This is basically done by setting up the WDT as 
specified in the configuration file and waiting until it issues a reset. In addition, the RTC is used to estimate the 
watchdog period, which is required in later phases of the test. This is done by setting up the RTC with a small period 
(approx. 3ms) and counting the number of RTC-periods until system reset. There is a configurable maximum time to 
wait and, after this time, the program sets the error state. 

The second step is to make sure that the WDT can be reset and to check the timing of the WDT. The error state is set 
temporarily and then it is checked that the estimated WDT period is higher than a minimum. Checking that the 
difference in frequency between the WDT and the RTC is within an interval gives us confidence that both modules are 
working as expected. Next, the WDT is set up and we use the RTC to wait for approximately ¾ of the WDT period, 
which was estimated in the previous step. This checks that the WDT does not expire earlier than expected. After this 
the WDT is reset and the program waits again ¾ of the period. Note that if there was any problem in the mechanism 
that resets the WDT, there would be a system reset while the program is waiting for the second time. This is because 
the total waiting time would be 1.5 times of the estimated WDT period. In addition, this early system reset would leave 
the test in the error state. Further, assuming that the WDT was reset correctly, a system reset should come in 
approximately ¼ of the period. The next test state is then set and the program wait for the system reset. 

The third step checks that the WDT works correctly in window mode. This basically consists on setting up the WDT and 
the next state of the test and doing an early reset of the WDT. Given that the time constraints are not followed, the WDT 
should issue a system reset. Therefore, after the untimely WDT reset, the program waits for the system reset during ¼ 
of the WDT period. If there was any problem with the window, the device would not be reset and the program would set 
the error state. 
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Figure 6-1. Watchdog test. 
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In the fourth and final step the program simply sets up the WDT in window mode and the test in the ok state. Note that 
after this the main application is responsible to reset the WDT according to the configured settings. 

If the test was in the error state, a user-configurable error handler would be called. By default the device would simply 
hang, because a working WDT is critical for a reliable software application. 

The counter and the test state variables are declared so that the compiler does not initialize them after reset. This 
allows us to use them across resets. The Atmel AVR XMEGA has a register that stores the reset cause, which is used 
to decide whether it is the first iteration of the test. 

The demo application sets up an interrupt for SW0, switches an LED on and then stays in a loop where the WDT is 
reset as long as the variable classb_error is not set. If this variable is set then the LED is turned off and the application 
ends. 

When the SW0 button is pressed, the program stops resetting the WDT, which leads to a WDT timeout and, therefore, a 
system reset. This "unexpected" reset should be caught by the self-diagnostic routine, which in this demo is configured 
to set the variable classb_error, set up the WDT and continue to the main application. Therefore, after pressing the 
button, the LED will be switched off and the application will not be responsive. 

6.2 How the self-diagnostic routine can be tested 
The first step of the self-diagnostic routine will set the error state unless there is a system reset. A problem in the WDT 
that prevents it from being able to issue system resets could be replicated simply by not starting the WDT. The error 
state would be set and the device would hang. 

Frequency failure of the WDT or the RTC could be simulated by setting a break point and modifying the value of the 
rtc_count variable, so that it is out of the interval of confidence. 

Failure in the WDT reset mechanism could be simulated by removing the line where the WDT is reset. Given the 
structure of the program, the second step in the self-diagnostic routine will set the error state unless the WDT follows 
the time constraints that are imposed. 

Failure in the WDT window mode could be simulated by removing the setup of that mode. The code would then reset 
the WDT and wait for ¼ of the WDT period. At that point the WDT period would be greater or equal to the estimated 
WDT period (the total timeout period is the sum of the open and close periods). Therefore, the device would not be 
reset before setting the error state. 

The configured actions for a system issued by the WDT can be tested through the demo application. Pressing the 
button will lead to the WDT expiring and then the self-diagnostic routine would execute the configured actions, which in 
this case are to set up the WDT and set the variable classb_error. 
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7. Interrupt handling 
An interrupt signals a change of state in peripherals, and this can be used to alter program execution. Embedded 
applications use interrupts, for example, to respond to events in real-time. Therefore, it is important that a system can 
detect errors in the interrupt functionality. Specifically, Class B applications should be able to detect whether an interrupt 
is not being executed as often as expected (or not at all). 

The chosen method is time-slot monitoring with the Real Time Counter (RTC, clock independent from the CPU clock). 
In short, any interrupt to be monitored has to increase a counter every time it is executed. Further, the RTC generates 
an interrupt periodically where the interrupts counters are checked. If any counter should be out of an interrupt-specific 
configurable range, the error handler would be called. 

The interrupt monitor checks the frequency of those interrupts that are both registered and activated. Registering an 
interrupt means to give the interrupt monitor information the following information on the interrupt to check: identifier, 
expected frequency and deviation tolerance. The interrupt monitor creates a data structure with this information. 
Activating an interrupt means to tell the monitor that it should start checking a registered interrupt. In order to activate 
the monitoring of interrupts dynamically, we have implemented a state variable related to each registered interrupt. The 
possible transitions between states are shown in Figure 7-1. 

Figure 7-1. Interrupt states. 

 
The default state for any interrupt is OFF and in this state the interrupt manager does not check the frequency of the 
interrupt. The state of the interrupt should be set to ENABLE when the main application wants the monitor to start 
checking the interrupt frequency. The next time the interrupt monitor is executed it will then change the interrupt state to 
ON. This ensures that the interrupt counter is synchronized with the interrupt monitor, that is, the interrupt counter starts 
being increased exactly after a period of the interrupt monitor. Similarly, if the main application decides that an interrupt 
should not be monitored anymore, the interrupt state should then be set to DISABLE. The interrupt monitor will change 
the state to OFF the next time it is executed. 

Note: There should only be one enable/disable request per RTC period. 



 
 

Atmel AVR1610: Guide to IEC 60730 Class B Compliance with XMEGA [APPLICATION NOTE] 
42008A−AVR−07/12 

17

The implemented interrupt monitor has two features that further increase the robustness of the main application. The 
first one is an interrupt counter that increases only if the interrupt is ON and, therefore, the counter should be zero while 
an interrupt is OFF. This is checked by the interrupt counter for all registered interrupts and otherwise the error handler 
is called. The second feature is that enabling an interrupt that is ON or disabling an interrupt that is OFF will call the 
error handler if the constant CLASSB_STRICT is defined. 

The RTC calls the interrupt monitor function periodically. All registered interrupts are processed according to their state. 
Active interrupts are checked for their frequency. If there is no error, the interrupt monitor resets the counter. Otherwise 
the error handler is called and the monitor ends immediately (this is configurable). The counter of inactive interrupts is 
compared to zero for coherence. If the main application has requested to activate an interrupt, its state is set to ON, and 
vice versa. Note that in the latter case the interrupt counter is reset. 

In order to monitor an interrupt, the following steps should be followed: 
1. The interrupt should be declared in classb_int_identifiers by giving an identifier to the interrupt. 
2. The main application has to register the interrupt by calling classb_intmon_reg_int(). A structure is then 

created for the interrupt. 
3. The RTC has to be set up to generate an interrupt periodically and to call back the interrupt monitor. 
4. The interrupts that have to be monitored should call classb_intmon_increase() on each execution. 
5. The main application has to request that the monitor starts checking the interrupt. This is done by changing the 

interrupt state to ENABLE with classb_intmon_set_state(). 
6. If at some point an interrupt should not be monitored any more, the main application can change the state to 

DISABLE. 

In the example application a Timer/Counter (TC) is set up to generate an overflow interrupt periodically, which is 
checked by the monitor. In addition, the application sets up two switch interrupts. The first one changes the frequency of 
the TC interrupt. The second one deactivates the interrupt in the monitor. Further, an LED is switched on to show that 
the application is working correctly. The application stays on a loop with the LED on as long as the buttons are not 
pressed. If the first button is pressed first, the frequency of the TC interrupt will change and, therefore, the monitor 
should set the error flag. That will result on the main application leaving the loop and switching the LED off. However, 
the second button can be pressed in order to deactivate the TC interrupt in the monitor. In this case, pressing the first 
button still leads to a change in the frequency of the interrupt, but the monitor will not generate an error. 

The interrupt monitor relies on a working RTC. The latter supports other components of the library (WDT and CPU 
frequency tests) and it is checked in the related software modules. Therefore, it can be assumed that there is no failure 
in the RTC. However, in order to increase the reliability of the application, registered interrupts could have a maximum 
value for the counter, which could be tested within the interrupt. If the counter reached this value, it could be assumed 
that the interrupt monitor was not working. 

The monitor can be tested as follows. Firstly, an interrupt could be set up and then its frequency could be modified in 
order to generate an error. This is implemented in the example application. Secondly, the counter of an interrupt could 
be modified while debugging. This could be done both for active and inactive interrupts. Further, if the symbol 
CLASSB_STRICT is defined, the program could activate or deactivate an interrupt twice, which should lead to an error. 
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8. System clock 
The self-diagnostic routine has been implemented using the Real Time Counter (RTC) and a Timer/Counter (TC). We 
have chosen a TC because this peripheral has the same clock domain as the CPU. However, the RTC can be clocked 
from an independent clock source. For example the CPU could be clocked from the internal 2MHz oscillator and the 
RTC from the internal 32.768kHz oscillator. 

The RTC is set up to generate an interrupt periodically. In this interrupt, the count in the TC is compared to its expected 
value and, if it were not within a configurable range, the error handler would be called. 

In the TC overflow interrupt a 16-bit overflow counter variable is increased. This is because the TC will run in most 
cases at a much higher frequency than the RTC and, therefore, it is necessary to have a 32-bit counter. In addition, the 
error handler would be called if the overflow counter should be higher than a configurable threshold. Given that the 
overflow counter is cleared in the RTC interrupt, an overflow count higher than the threshold would mean that the RTC 
interrupt did not occur as often as expected. 

Considering these two measures (check of the RTC against the TC and vice versa), the self-test module would detect a 
failure in either the RTC or the TC. The risk of an undetected error is reduced to the scenario where there were failures 
in both the RTC and the TC but the ratio of their frequencies was correct. 

The RTC interrupt calls back a function where, firstly, the value of the overflow counter is appended to the TC so that 
the effective counter has 32 bits. After that the 32-bit count is compared to the reference. If the difference were higher 
than expected, the error handler would be called. After that the overflow counter and the TC count are reset. 

The example application is similar to previous examples. By default an XMEGA device runs from an internal 2Mhz 
oscillator, which is the system frequency that is considered when setting up the parameters of the self-diagnostic 
routine. If the button is pressed, the system clock is set to run from a 32MHz oscillator. This will make the test fail and 
the LED will be turned off. 

The implementation of the system frequency self-test is flexible so that it is possible to use different RTC and TC 
configurations. The RTC frequency and the RTC interrupt period can be configured in the files related to the RTC. Note 
that different RTC setups will be compatible with our self-diagnostic routine as long as the clock source is independent 
from the CPU and the constants CLASSB_RTC_INT_PERIOD and CLASSB_RTC_FREQ are defined according to the 
RTC settings. Further, it is also possible to configure the TC module, the prescaler, the tolerance for the test (in percent) 
and the system frequency. The latter has to correspond to the actual system frequency set by the main application, that 
is, the self-diagnostic routine will not change the clock system according to that setting. 

There are a number of methods to test this self-diagnostic routine. Firstly, the example application changes the system 
frequency after pushing the button. Secondly, the system frequency constant F_CPU could be modified so that it does 
not match the real system frequency, which is 2MHz. This can be combined with modification in the tolerance value. 
Thirdly, in order to simulate problems in the RTC or the TC the setup functions could be commented. 
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9. Memory 
In this chapter we describe the standard requirements for memories and the self-diagnostic tests that we have 
implemented. Section 9.1 refers to invariable memories, that is, internal Flash and EEPROM in the Atmel AVR XMEGA 
family. Section 9.2 refers to variable memory, which is the internal SRAM. 

9.1 Invariable memory 
A cyclic redundancy check (CRC) is an error detection technique test algorithm used to find accidental errors in data. 
This method is commonly used to determine the correctness of data transmissions and data present in the data and 
program memories. 

The CRC algorithm processes an input data stream or block of data and generates an output checksum, which can be 
used to detect errors later. Two common methods to do this consist on the following: 

• Compute a first checksum of the data and store it. In order to detect errors a second checksum can be 
computed and compared with the previous one. If they are different, there is an error 

• Compute a first checksum of the data and append it to the data section. In order to detect errors, a second 
checksum can be computed for the new data section. The resulting checksum should be a fixed 
implementation-specific value, otherwise there is an error 

Typically, an n-bit CRC applied to a data block of arbitrary length will detect any single error burst not longer than n bits 
and will detect the fraction 1-2-n of all longer error bursts. If there is an error in the data, the application should take a 
corrective action, for example, requesting the data to be sent again or simply not using the incorrect data. 

We have developed self-diagnostic modules based on hardware or software implementations for CRC. Further, two 
commonly used CRC standards are supported: 

• 16-bit CRC CCITT 

• 32-bit CRC IEEE® 802.3 

The software implementation can be used by all XMEGA devices. In this case the CPU reads the data and computes 
the CRC checksum. It is possible to choose between two software implementations:  

• Lookup table: this uses a CRC lookup table to speed up the computations. The lookup table requires 512 (for 
16 bit) or 1024 (for 32 bit) bytes of flash memory 

• Direct computation: this calculates the checksum for each byte using a polynomial division. This version 
occupies no space in the flash memory, but is slower than the lookup table method 

In the software implementations, the CRC32-polynomial used is 0xEDB88320, the initial remainder is 0xFFFFFFFF, 
and the generated checksum is bit-reversed and complemented. The CCITT polynomial used is 0x1021, with 0x0000 as 
initial remainder. In this case the checksum is neither bit reversed nor complemented. 

The hardware implementation relies on a driver to interface the CRC module included in the new XMEGA AU devices. 
This means that other XMEGA devices have to use the software implementation. In this case, even if the CRC 
hardware module computes the checksum, the CPU can still be required to read the data and feed it to the module. For 
32-bit CRC computation in flash memory, the whole process can be run without support from the CPU. However, for the 
16-bit computation the CPU has to read from the Flash memory and transfer data to the CRC module. For CRC 
computations of data in SRAM, EEPROM or peripherals, the CPU has to transfer data to the CRC module unless a 
DMA transaction is set up. The CRC-CCITT polynomial is 0x1021 and IEEE 802.3 one is 0x04C11DB7. The setup for 
the initial values and the final checksum is the same as described above. 

The following functions are available to compute checksums for data stored in the EEPROM: 

• CLASSB_CRC16_EEPROM_SW 

• CLASSB_CRC16_EEPROM_HW 
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• CLASSB_CRC16_EEPROM_SW 

• CLASSB_CRC32_EEPROM_HW 

Similarly, the following functions are available to compute checksums for data stored in the Flash: 

• CLASSB_CRC16_FLASH_SW  

• CLASSB_CRC16_FLASH_HW  

• CLASSB_CRC16_FLASH_SW 

• CLASSB_CRC32_FLASH_HW 

Note: The hardware and software implementations have been configured so that equivalent CRC algorithms produce the 
same checksum. However, there are significant differences in processing time. 

As an example, we describe the function that computes 32-bit CRC for Flash using the hardware module. Firstly, the 
function receives the information needed: type of computation, start address, number of bytes of the data and the 
pointer to the “correct” checksum stored in the EEPROM. Secondly, the driver of the CRC module is used to compute 
the “new” checksum. Finally, the checksums are compared and the error handler is called if there should be any error. 

In the example application the pre-calculated checksums and some data are stored in the EEPROM memory. Then, the 
program lights up a LED that signals correct function of the system and sets up a button to produce an interrupt. After 
that the program stays in a loop as long as the global error flag is not set. If the button is pressed the Flash and the 
application section in Flash and the data stored in EEPROM are checked. If there were errors, the error flag would be 
set and the main application would switch off the LED. In normal conditions, the content of the application section in the 
Flash and the data stored in the EEPROM will be correct. This means that pressing the button will not lead to the error 
flag being set and then the program will return to the main loop and the LED stays on. The button can be pressed again 
and again with the same results. 

In order to check that the self-diagnostic tests are working correctly, the data stored in the EEPROM or the content of 
the application section in the Flash could be modified. For convenience, the example application has two symbols that 
can be defined to change the data stored in the EEPROM or to compile an extra loop after the line that switches off the 
LED. In this case, the LED will be on until the button is pressed. After that the CRC test will fail because the data has 
changed and the error flag will be set. This will lead to the main application leaving the loop and the LED being switched 
off. 

Pressing the button once more will have no effect. Finally, in order to check that all equivalent CRC computations lead 
to the same checksum, it is possible to call them and compare the results. Note that the algorithm for the software 
implementation (lookup or direct computation) is chosen by a setting in the corresponding header file and only one 
algorithm can be called during one execution. Since choosing one algorithm or the other will modify the content in 
Flash, the checksums across different executions for EEPROM should be compared instead. 

9.2 Variable memory 
The specific March algorithm implemented is known as March X test, which can be described as follows: 

Algorithm 1.  March X test. 

)0();0,1();1,0();0( rwrwrw cc ⇓⇑  

The first phase is to write a 0 to all memory locations, in any order. The second phase consists of three operations that 
are performed on each bit, starting with the lowest address: 

• Read a bit and verify that it is 0. If it is 1, a fault has occurred 

• Write 1 to its location 

• Repeat for the next bit 
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The third phase also consists of three operations that are done in the opposite order of addresses (with respect to the 
second phase): 

• Read a bit and verify that it is 1. If it is 0, a fault has occurred 

• Write 0 to its location 

• Repeat for the next bit 

The fourth and final phase consists in verifying that all bits are 0, in any order. Note that the actual address order used 
in phases two and three does not matter as long as they are done in the exact reverse order. Further, this test is 
equivalent to the well-known March C test where steps 3 and 4 are skipped. 

March X can detect the following faults: 

• Address decoder 

• Single cell faults: stuck-at, transition or data retention faults 

• Faults between memory cells: some coupling faults (CFs) 

The March test that we have described is defined for bit-oriented memories (BOMs). However, the SRAM in XMEGA is 

a word-oriented memory (WOM). Replacing 0r , 1r , 0w  and 1w  by, respectively, Dr , Dr , Dw  and Dw , where D 

can be any data background, the BOM march test is converted to WOM march test that covers inter-word CFs. 
Specifically, in our implementation we have chosen the data background D=0x00. In order to cover intra-word CFs it is 
possible to concatenate an intra-word March test with different data backgrounds. 

It is important to consider the physical location of bits in a row of the memory cell array. In the case of XMEGA the bits 
from one word are interleaved, that is, physically separated by bits from other words. Therefore, the probability of CFs 
between cells from different words is diminished. Some sources do not consider intra-word CFs for interleaved 
memories, probably because in some fault models the aggressor cell must be physically adjacent to the victim cell. In 
addition, the inter-word march test covers some intra-word CFs, for example, intra-word inversion CFs. Taking these 
factors into consideration, the inter-word part of the test is probably enough to fulfill the requirement of the standard. 
However, the proposed self-diagnostic routine can be configured to append an additional march element with the 
background sequence {0x55, 0xAA, 0x33, 0xCC, 0x0F, 0xF0}. This will add coverage for the intra-word state CFs 
considered in the unrestricted intra-word CFs model. 

In order to speed up the test, the memory is divided into a configurable number of sections that are tested in turns. The 
simplest behavior of the test is when there is no overlap between memory sections. In this case all sections have the 
same size, except possibly the last one. The first memory section (referred to as the buffer) is reserved: it is used by the 
test to store the content of the other sections while they are being tested. This is necessary given that the implemented 
march test is destructive. 

Given that the March X algorithm is run on one memory section at a time, there is a user-configurable overlap between 
memory sections that will decrease the probability that an inter-word CFs is undetected. Every time a memory section is 
tested, a part of the previous section is tested as well. Note that this does not apply to the buffer, since it is the first 
section. The size of the buffer needs to be expanded with respect to the previous case (the size of the second section is 
decreased correspondingly). 

An example application that shows how the memory test can be embedded in an application is included. Basically, a 
LED that signals correct behavior of the system is lighted and then the program stays on a loop where the SRAM 
memory is tested as long as there are no errors. 

The self-diagnostic routine can be tested as follows. Firstly, a number of breakpoints can be set in the function that 
implement the March X algorithm. Secondly, the content of some memory locations can be modified to model different 
types of inter-word coupling faults. The test module will then set the error flag, which leads to the application exiting the 
main loop and the LED being switched off. 
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9.3 Further coverage 
Considering that SRAM, flash and EEPROM are internal memories in XMEGA, the previously described self-diagnostic 
routines cover the specifications of the standard for memory addressing and internal data path (subcomponent 4.3 and 
component 5. in Table H.11.12.7). 

10. Analog I/O 
A plausibility check is done to make sure that ADC and DAC work as expected. The test consists basically of the 
following steps: 

1. The DAC is configured to use 1V as a reference and to output five values (0%, 25%, 50%, 75% and 100% of 
the scale). 

2. The ADC is configured to use internal inputs and the same reference as the ADC. 
3. The multiplexer in the ADC is set up so that the ADC reads from the DAC for each generated value. 
4. The expected values are set according to the ADC configuration and the threshold according to the ADC 

characterization. 
5. If the read values should deviate from the expected values more than the threshold, the test would call the 

error handler. This is set on the error handling header file. 

We have included an example application that shows how the analog I/O test can be embedded in an application. A 
LED that signals correct behavior of the system is lit and then the program stays on a loop as long as there are no 
errors. When a button is pressed, the ADC and DAC are tested and the program returns to the main loop. 

There are different methods to test the self-diagnostic routine. Firstly, the value written to the ADC or the expected 
value of the ADC could be modified, which would lead to the ADC read value being wrong. Alternatively the threshold 
could be decreased so that the read measure is almost certainly out of range. In all these cases the test module would 
set the error flag, which would lead to the application exiting the main loop and the LED being switched off. Secondly, 
failure in the modules could also be simulated by clearing the enable bits of the DAC and ADC modules (this would 
disable the modules). This could be done by setting a breakpoint inside the self-diagnostic routine and clearing the bits 
manually. Further, this would lead to the self-test being stuck waiting for the end of conversion, which would ultimately 
lead to the WDT issuing a system reset. 

11. Additional safety features of XMEGA 
The Atmel AVR XMEGA family has some additional features that can be used for increased safety, but do not directly 
address any of the Class B requirements: 

• Configuration Change Protection (CCP) prevents change of certain I/O registers and writing/reading to 
nonvolatile memory if a timed code sequence is not followed 

• Fuses can be used to lock some configuration settings and sections of Flash from overwrites 

• Fuses can easily be read and verified by the application software 

• Brown-Out Detection (BOD), Power-On Reset (POR) and Spike Detection (SD) can prevent code execution 
when power fails, fluctuates too much, etc. 

• Internal temperature sensor can be used to detect wrong operating conditions or hardware faults 

• The clock system checks for oscillator stability before switching clock sources 

• XOSC failure detection ensures that the device does not stop operating even if the external oscillator does 
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