
Application Note AC398

Implementation of 9×9 Multiplications,
Wide-Multiplier, and Extended Addition Using
IGLOO2 and SmartFusion2
Mathblock - Libero SoC v11.7

Table of Contents

Purpose
This application note highlights the design guidelines and different implementation methods to achieve
better performance results while implementing wide-multipliers, 9-bit×9-bit multiplications, and extended
addition with the IGLOO®2 field programmable gate array (FPGA) and SmartFusion®2 system-on-chip
(SoC) FPGA mathblock (MACC). The 9-bit×9-bit multiplications, wide-multiplier, and extended addition
are ideal for applications with high-performance and computationally intensive signal processing
operations. Some of them are finite impulse response (FIR) filtering, fast fourier transforms (FFT), and
digital up or down conversion. These functions are widely used in video processing, 2D or 3D image
processing, wireless, industrial applications, and other digital signal processing (DSP) applications.

Purpose . 1

Introduction . 2

References . 2
Design Requirements . 2

Using 9x9 Multiplier Mode . 3
Overview . .3

Configuration . .3

Guidelines .5

Design Examples .5

Wide-Multiplier . 11
Overview . 11

Configuration . 11

Guidelines . 11

Design Examples . 11

Extended Addition . 17
Overview . 17

Configuration . 17

Guidelines . 17

Design Examples . 18

Conclusion . 24

Appendix: Design Files . 25

List of Changes . 26
March 2016 1

© 2016 Microsemi Corporation

Implementation of 9×9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2 and SmartFusion2
Introduction
The IGLOO2 and SmartFusion2 mathblock architecture is optimized to implement various common DSP
functions with maximum performance and minimum logic resource utilization. The dedicated routing
region around the mathblock and the feedback paths provided in each mathblock result in routing
improvements. The IGLOO2 and SmartFusion2 mathblock has a variety of features for fast and easy
implementation of many basic math functions. The high-speed multiplier (9×9, 18×18), adder or
subtracter, and accumulator in mathblock delivers high speed math functions. For more information on
IGLOO2 and SmartFusion2 mathblock, refer to the UG0445: IGLOO2 FPGA and SmartFusion2 SoC
FPGA Fabric User Guide and for usage of mathblock refer to the Inferring Microsemi SmartFusion2
MACC Blocks Application Note.

This application note explains the design considerations and different methods for implementing the
following:

• Using 9×9 Multiplier Mode

• Wide-Multiplier

• Extended Addition

References
The following documents are referenced in this document.

• UG0445: IGLOO2 FPGA and SmartFusion2 SoC FPGA Fabric User Guide

• Inferring Microsemi SmartFusion2 MACC Blocks Application Note

• IGLOO2/SmartFusion2 Hard Multiplier AddSub Configuration User Guide

• IGLOO2/SmartFusion2 Hard Multiplier Accumulator Configuration User Guide

• IGLOO2/SmartFusion2 Hard Multiplier Configuration User Guide

Design Requirements
Table 1 shows the design requirements.

Table 1 • Design Requirements

Design Requirements Description

Hardware Requirements

Host PC Any 64-bit Windows Operating System

Software Requirements

Libero® System-on-Chip (SoC) v11.7

Modelsim® v10.4c
2

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132008
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132008
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129965
http://coredocs.s3.amazonaws.com/Actel/SgCore/HARD_MULT_ACC/sf2_hard_mult_acc_config_ug_1.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132008
http://coredocs.s3.amazonaws.com/Actel/SgCore/HARD_MULT/sf2_hard_mult_config_ug_1.pdf
http://coredocs.s3.amazonaws.com/Actel/SgCore/HARD_MULT_ADDSUB/sf2_hard_mult_addsub_config_ug_1.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129965
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129965

Using 9×9 Multiplier Mode
Using 9×9 Multiplier Mode

Overview
The 9-bit×9-bit multipliers are extensively used in low precision video processing applications. In video
applications, the color conversion formats such as YUV to RGB, RGB to YUV, and RGB to YCbCr,
NTSC, PAL, and so on of 9-bit×9-bit multipliers are used. In image processing, the operations involving
8-bit RGB such as 3×3, 5×5, 7×7 matrix multiplications, image enhancement techniques, scaling,
resizing, and so on 9-bit×9-bit multipliers are used. The IGLOO2 and SmartFusion2 devices address
these applications by using the mathblock in dot product (DOTP) mode.

The following sections explain the DOTP configurations and capabilities, guidelines, different
implementation methods with design examples, and their performance and simulation results.

The mathblock when configured in DOTP mode has two independent 9-bit×9-bit multipliers followed by
adder. The sum of the dual independent 9×9 multiplier (DOTP) result is stored in upper 35-bit of 44-bit
register. In DOTP mode, mathblock implements the following equation:

Multiplier result = (A[8:0] × B[17:9] + A 17:9] × B[8:0]) × 29

EQ 1

Configuration
The IGLOO2 and SmartFusion2 mathblock in DOTP mode can be used in three different configurations.
These configurations are available in the Libero software, Catalog > Arithmetic as given below:

• Multiplier

• Multiplier accumulator

• Multiplier addsub

Figure 1 shows the DOTP multiplier adder with the IGLOO2 and SmartFusion2 mathblock.

Figure 1 • DOTP Multiplier Adder
3

Implementation of 9×9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2 and SmartFusion2
Figure 2 shows the DOTP multiplier accumulator with mathblock.

Figure 3 shows the implemented DOTP multiplier.

Figure 2 • DOTP Multiplier Accumulator

PN = (A0*B0 + A1*B1) + Carryin + C[43:0] + CDIN

Carryin

B0[8:0]

SmartFusion2/
IGLOO2 MACC

P[43:0]

Carry Out or Over Flow

CDOUT[43:0]

0 or 1

0’s

CDIN

A0[8:0]

A1[8:0]

B1[8:0]

C[43:0]

Figure 3 • DOTP Multiplier

A0[8:0]

P[18:0]

P = A0*B0 + A1*B1

SmartFusion2/
IGLOO2 MACC

B0[8:0]

A1[8:0]

B1[8:0]
4

Using 9×9 Multiplier Mode
Math Functions with DOTP
When DOTP is enabled, several mathematical functions can be implemented. Some of them are listed in
Table 2.

Single Mathblock (DOTP Enabled)

In this method, several 9-bit mathematical functions can be implemented using DOTP mode with a single
mathblock.

Guidelines
Microsemi recommends to use the following when designing with the DOTP multiplier:

• To perform Y = A×B + C×D equation, instantiate Arithmetic IP cores with DOTP enabled for 9×9
multiplications. This avoids inferring two 18×18 multipliers.

• Register the inputs and outputs, when using Arithmetic IP cores (mathblock).

• The registered inputs and outputs must use the same clock.

• Use the cascaded feature to connect the multiple mathblocks. This is achieved by connecting the
cascade output (CDOUT) of one MACC block to the cascade input (CDIN) of another mathblock.

For more information on VHDL or Verilog coding styles for inferring mathblocks, refer to the
Inferring Microsemi SmartFusion2 MACC Blocks Application Note.

Design Examples
This section describes the 9×9 Multiplier mode usage with the following design examples:

• Example 1: 6-tap FIR Filter Using Mathblocks

• Example 2: Alpha Blending

Example 1: 6-tap FIR Filter Using Mathblocks
This design example (Figure 4 on page 6) shows the 6-tap FIR filter (systolic FIR filter) implementation
with mathblocks and also shows the performance results of the implementation.

Design Description
The 6-tap FIR filter design with mathblocks is a systolic architecture implementation, refer Figure 4 on
page 6. This architecture utilizes a single IGLOO2 and SmartFusion2 mathblock to perform two
independent 9×9 multiplications followed by an addition, instead of using two mathblocks that have a
single multiplication unit. With this architecture implementation, only three mathblocks are required to
design a 6-tap FIR filter. The 6-tap FIR design uses cascaded chains (CDOUT to CDIN) for propagating
the sum to achieve the best performance and reducing fabric resources. In this implementation
technique, the mathblock is configured as DOTP multiplier Adder. Eight pipeline registers are added in
fabric only at the input.

Table 2 • Math Functions with DOTP

Conditions Implemented Equations

P = A[8:0] = B[17:9]; M = A[17:9]; N = B[8:0] Y = P² + M×N

P = A[8:0] = B[17:9]; Q = A[17:9] = B[8:0] Y = P² + Q²

A[8:0] = B[17:9] = 1; B = A[17:9]; Q = B[8:0] Y = 1 + Q²

A[8:0] = B[17:9] = 1; P = A[17:9]; Q = B[8:0] Y = 1 + P×Q

P = A[8:0] = A[17:9]; Q = B[17:9] = B[8:0] Y = P×Q + P×Q = 2×P×Q
5

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129965

Implementation of 9×9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2 and SmartFusion2
When designing n-tap systolic FIR filters with IGLOO2 and SmartFusion2 mathblock for 9-bit input data
and 9-bit coefficient, only n/2 mathblocks are utilized, saving n/2 mathblock resources.

In this design, the FIR filter generates outputs for every clock cycle after an initial latency of 10 clock
cycles.

Total initial latency = 8 clock cycles for 6 input samples + 2 clock cycles (MACC block input and output
are registered)

= 10 clock cycles

Design Files

For information on the implementation of the 6-tap FIR filter design, refer to the FIR_6_tap.vhd design
file provided in <Design files 'FIR_6_TAP>.

Figure 4 • 6-tap Systolic FIR Filter

reset_n

Xin[8:0]

clk

C0 [8:0] C1 [8:0] C2 [8:0] C5 [8:0]

CDIN CDIN CDIN

SmartFusion2/
IGLOO2 MACC

Yn_out

Zeros

C4 [8:0]C3 [8:0]

6 - tap FIR (9-bit x 9-bit)

SmartFusion2/
IGLOO2 MACC

SmartFusion2/
IGLOO2 MACC
6

Using 9×9 Multiplier Mode
Hardware Configuration
For 6-tap systolic FIR filter, mathblock is configured as DOTP multiplier adder with inputs and outputs
registered, refer to Figure 5.

Figure 5 • DOTP Multiplier Adder for 6-tap Systolic FIR
7

Implementation of 9×9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2 and SmartFusion2
Compile and Place-and-Route Results
Figure 6 shows the 6-tap systolic FIR filter resource utilization that uses multiple mathblocks.

Note: The results shown are specific to the IGLOO2 device. Similar results can be achieved using the
SmartFusion2 device.

Resource Utilization

Place-and-Route Results

The frequency of operation is achieved with this implementation after place-and-route, refer to Figure 7.

Figure 6 • Resource Utilization for a 6-tap Systolic FIR Filter

Figure 7 • Place-and-Route Results for 6-tap Systolic FIR Filter
8

Using 9×9 Multiplier Mode
Simulation Results
Figure 8 shows the post layout simulation results. The coefficient values (c0-c5) are configured in design
as C0 = 5, C1 = 3, C2 = 7, C3 = -4, C4 = 1, C5 = -2. The simulation results show that the 6-tap FIR filter
outputs on every clock cycle. It has an initial latency of 10 clock cycles.

Example 2: Alpha Blending
The following example shows the implementation of Alpha blending used in image processing as shown
in Figure 9. Alpha blending is the process of combining a translucent foreground color with a background
color, thereby producing a new blended color.

Design Description
The Alpha blending for each Rnew, Gnew, Bnew as shown in Figure 9 is implemented using the following
equations:

Rnew = (1-alpha) × R0 [7:0] + alpha × R1[7:0]

EQ 2

Gnew = (1-alpha) × G0 [7:0] + alpha × G1[7:0]

EQ 3

Bnew = (1-alpha) × B0 [7:0] + alpha × B1[7:0]

EQ 4

This implementation uses three mathblocks to output R', G', B' values simultaneously for blended image.
Each mathblock is configured as DOTP multiplier for performing 9-bit×9-bit multiplications.

Hardware Configuration
For Alpha blending, mathblock is configured as DOTP multiplier with inputs and outputs registered.

Figure 8 • 6-tap FIR Filter Post Layout Simulation

Figure 9 • Alpha Blending Implementation Using IGLOO2 and SmartFusion2 Mathblocks

SmartFusion2/
IGLOO2 MACC

Alpha Alpha Alpha(1-Alpha) (1-Alpha) (1-Alpha)

Rnew Gnew Bnew

RGB0[23:0]
(Image1 Pixel)

RGB1[23:0]
(Image2 Pixel)

SmartFusion2/
IGLOO2 MACC

SmartFusion2/
IGLOO2 MACC
9

Implementation of 9×9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2 and SmartFusion2
Compile and Place-and-Route Results
Figure 10 shows the alpha blending resource utilization using three mathblocks.

Note: The results shown are specific to the IGLOO2 device. Similar results can be achieved using the
SmartFusion2 device.

Resource Utilization

Place-and-Route Results

The frequency of operation achieved with this implementation after place-and-route is shown in
Figure 11.

Figure 10 • Resource Utilization Results for Alpha Blending

Figure 11 • Place-and-Route Results for Alpha Blending
10

Wide-Multiplier
Wide-Multiplier

Overview
The wide-multipliers are extensively used in high precision (more than 18×18 multiplication) wireless and
medical applications. These applications require high precision at every stage when implementing
complex arithmetic functions used in FFT, filters and so on. Military, test, and high-performance
computing also require performance and precision requirements, and sometimes require single-precision
and double-precision floating-point calculations for implementing complex matrix operations and signal
transforms.

To implement DSP functions that require high precision, the IGLOO2 and SmartFusion2 devices offer
implementing wide-multipliers (that is, operands width more than 18×18) with the IGLOO2 and
SmartFusion2 mathblock. The wide-multipliers are implemented by cascading multiple IGLOO2 and
SmartFusion2 mathblocks using CDOUT and CDIN to propagate the result and to achieve the best
performance results.

This section describes wide-multiplier guidelines and different implementation methods with design
example to achieve the best performance results.

Configuration
When implementing the wide-multipliers, the IGLOO2 and SmartFusion2 mathblocks are configured in
Normal mode to function as normal multiplier (18×18), normal multiplier accumulator, and normal
multiplier addsub.

Guidelines
Microsemi recommends to use the following for implementing wide-multiplier to achieve the best results.

• The inputs and output are registered with the same clock.

• Add pipeline stages in RTL, so that the synthesis tool can automatically infer registers of
mathblock or register the inputs and outputs of mathblock, if arithmetic cores (mathblock) are
used.

• CDOUT of one mathblock is connected to the CDIN of another mathblock.

Design Examples
This section shows the wide-multiplier with the following design examples:

• Multiplier 32×32 implementation using multiple mathblock

• Multiplier 32×32 implementation using single mathblock

The following section explains the 32×32 multiplier implementation with multiple mathblocks and with
single mathblock. It also shows the performance results for both the implementations.

Example1: Multiplier 32×32 Implementation Using Multiple Mathblocks
The following section explains the 32×32 multiplier implementation with multiple mathblocks and shows
the performance results:

Design Description
The 32×32 multiplier is implemented using the following algorithm:

A = (AH × 217) + AL;

B = (BH × 217) + BL;

A×B = (AH × 217 + AL) × (BH × 217 + BL)

 = ((AH×BH) × 234) + ((AH×BL +AL×BH) × 217) + AL×BL
11

Implementation of 9×9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2 and SmartFusion2
The 32×32 multiplier is implemented efficiently using four mathblocks without using fabric resources to
produce 64-bit result, as shown in Figure 12 and Figure 13 on page 13. To achieve the best performance
results, mathblock input and output registers are used.

Figure 12 • 32×32 Multiplication
12

Wide-Multiplier
When implementing using HDL, to infer mathblock input and output registers by synthesis tool, pipeline
stages are added at output and input to achieve the maximum throughput. In this design, two pipeline
stages are added at input and output. Refer to design files for information on implementation of 32×32
multiplier.

Design Files

For information on the implementation of the multiplier 32×32 design, refer to the
Mult32×32_multipleMACC.vhd design file provided in <Design files -> Mult32×32_multipleMACC>.

Hardware Configuration
For 32×32 multiplier using single mathblock, mathblock is configured to function as normal multiplier,
normal multiplier addsub with ARSHFT enabled, inputs and outputs registered.

Normal Multiplier Accumulator —> Pn = Pn-1 + CARRYIN + C +/- A0×B0

 Normal Multiplier Addsub —> Pn = D + CARRYIN + C +/- A0×B0 (if ARSHFT is disabled)

 —> Pn = (D>>17) + CARRYIN + C +/- A0×B0 (if ARSHFT is enabled)

Normal Multiplier —> P = A0×B0

Figure 13 • Implementation of 32×32 Multiplier
13

Implementation of 9×9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2 and SmartFusion2
Compile and Place-and-Route Results
Figure 14 shows the 32×32 multiplier resource utilization when using multiple mathblocks.

Note: The results shown are specific to the IGLOO2 device. Similar results can be achieved using the
SmartFusion2 device.

Resource Utilization

Place-and-Route Results

The frequency of operation achieved with this implementation after place-and-route is shown in
Figure 15.

Figure 14 • Resource Utilization for Multiple Mathblocks

Figure 15 • Place-and-Route Results for 32×32 With Multiple Mathblock
14

Wide-Multiplier
Example 2: 32×32 Multiplier Implementation Using Single Mathblock
The following section explains the 32×32 multiplier implementation with a single mathblock and also
shows the performance results.

Design Description
The 32×32 multiplier is implemented using the same algorithm as shown in "Example 1: 6-tap FIR Filter
Using Mathblocks" section on page 5.

A×B = ((AH×BH) × 234) + ((AH×BL +AL×BH) × 217) + AL×BL

= ((AH×BH) × 234) + (AH×BL × 217) + (AL×BH × 217) + AL×BL

In this implementation, the four multiplications are computed using a single mathblock in sequential
manner. The control finite-state machine (FSM) in the design provides the inputs to the mathblock
sequentially in four successive states as shown in Figure 16 and appropriately enables the shift
operation in the corresponding state. The mathblock used in this design is configured as normal
multiplier accumulator Arithmetic IP core. Refer to the Hard Multiplier Accumulator User Guide for
configuration.

The time taken to generate output = 4 clock cycles for providing inputs

+ 2 clock cycles as the inputs and output is registered

+ 2 clock cycles by mathblock at input and output.

= 8 clock cycles

Design Files

For more information on the implementation of the multiplier 32×32 design, refer to the Mult32×32.vhd
design file provided in <Design files'Mult32×32>.

Hardware Configuration
For 32×32 multiplier using single mathblock, it is configured to function as normal multiplier accumulator
with inputs and outputs registered.

Figure 16 • Multiplier 32×32 with One MACC Block

Control FSM

D

C

P

SmartFusion2/IGLOO2 MACC Block
A L[17 :0] ,BL[17 :0]

Zeros

Curr_State

ARSHFT

A

B

reset_n
clk

mul_en

B [31 : 0]

A [31 : 0]

Result

mul_result_valid

AL [17 : 0], BH[17 : 0]

AH[17 : 0] , BL[17 : 0]

AH[17 :0] , BH[17 : 0]

Multiplier 32 x 32
15

http://coredocs.s3.amazonaws.com/Actel/SgCore/HARD_MULT_ACC/sf2_hard_mult_acc_config_ug_1.pdf

Implementation of 9×9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2 and SmartFusion2
Compile and Place-and-Route results
Figure 17 shows the 32×32 multiplier resource utilization when using a single mathblock.

Note: The results shown are specific to the IGLOO2 device. Similar results can be achieved using the
SmartFusion2 device.

Resource Utilization

Place-and-Route Results

The frequency of operation is achieved with this implementation after place-and-route is shown in
Figure 18.

Figure 17 • Resource Utilization for a Single Mathblock

Figure 18 • Place-and-Route Results for 32×32 Multiplier with Single Mathblock
16

Extended Addition
Simulation Results
Figure 19 shows the post layout simulation results. The simulation result shows the multiplier outputs on
8 clock cycles after input is provided.

Extended Addition

Overview
Mathblock has a 3-input adder and supports accumulation up to 44-bits. In some applications, such as
floating point multiplication, complex-FFT and filters, high precision data has to be maintained at every
stage. These DSP functions require more than 44-bit addition (extended addition), which can be realized
using the IGLOO2 and SmartFusion2 mathblock (3-input adder) and fabric logic. The extended addition
is implemented by dividing the addition into two parts. The lower part (LSB) of addition is implemented
using the IGLOO2 and SmartFusion2 mathblock and upper part (MSB) of addition is implemented with
minimal fabric adder logic.

For a 2-input addition, the inputs can be from any one of the following:

1. CDIN and C input

2. Multiplier output and CDIN

3. Multiplier output and C input

For a 3-input addition, the inputs are from multiplier output, CDIN, and C-input. To perform arithmetic
additions, the IGLOO2 and SmartFusion2 mathblock provides Carryin input and Carryout signal for
propagating the carry from one mathblock to another mathblock or from mathblock to fabric logic.

Configuration
When implementing the extended addition, the IGLOO2 and SmartFusion2 mathblock is configured in
Normal mode to function as normal multiplier addsub.

Guidelines
• Mathblock must be configured to function as multiplier adder or subtracter to perform 2-input

extended signed addition.

• Add pipeline stages in RTL, so that the synthesis tool can automatically infer registers of
mathblock or register the inputs and outputs of mathblock, if arithmetic cores (mathblock) are
used.

• Ensure that the CDOUT of one mathblock is connected to the CDIN of another mathblock.

Figure 19 • Multiplier 32×32 Post Layout Simulation Results
17

Implementation of 9×9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2 and SmartFusion2
Design Examples
This section shows the extended addition with the following design examples:

• 2-input extended signed addition

• 3-input extended signed addition

Example 1: 2-input Signed Extended Addition
The following section shows a 2-input extended signed addition—if one operand is more than 44-bit
wide. In this section, it is also shown that the 2-input extended signed addition implementation logic with
fabric resources are implemented with the multiplier adder.

Design Description

2-Input Addition

For computing 2-input extended signed addition Z = U + V, with one operand width more than the
mathblock output width 44, the following logic must be implemented in fabric, as shown in Figure 20.

Where U is an m-bit value (where m > 44), V is a sign-extended n-bit value (where n < 44). The 2-input
extended signed addition is divided in to two parts. The lower part is computed in the mathblock and the
upper part is computed in the fabric.

Z = (Sumupper, Sumlower)

EQ 5

The lower part of the sum, Z = U + V, is calculated by providing the U[(n-1): 0], V[(n-1): 0] inputs to the
mathblock, where n = 44 is mathblock output width.

Sumlower = U[(n-1): 0] + V[(n-1): 0]

EQ 6

The Upper part of sum Z = U + V is calculated as shown below:

Sumupper = U[m: n] + V[m: n] (where U[m: n], V[m: n] are the MSB bits)

EQ 7

V [m: n] = {S, S….S, X},

S = P[n-1] AND X

Where:
P [n-1] is MSB of Sumlower

X is the overflow of the Sumlower (from the mathblock)

(m-n-1) number of S's must be appended in MSB bits of the V[m: n].

Figure 20 • 2-input Extended Signed Addition
18

Extended Addition
Hardware Implementation
Figure 21 shows the operand width of C as 52-bit wide and explains the implementation for 2-input
extended signed addition. For 3-input addition, mathblock is configured as multiplier addsub in Normal
mode. The upper part and lower part of the sum are shown as follows:
For 52-bit, 2-input extended signed addition,

Sumlower = C[43:0] + A[17:0]×B[17:0]

Sumupper = {C[51:44] + {S, S, S, CARRYOUT}}

Result [51:0] = {Sumupper, Sumlower}

Result [51:0] = {C[51:44] + {S, S, S, CARRYOUT}}, P[43:0]
Where, S = P[43] AND CARRYOUT

Design Files
For information on the implementation of the 2-input extended addition, refer to the
Extended_adder_2_input.vhd design file provided in <Design files'Extended_adder_2_input>.

Figure 21 • Fabric Logic for 2-input Extended Addition

A[17:0]

B [17:0]

C[43:0]

Result [51:0]

P[43:0]

P
[43]

C
A

R
R

Y
O

U
T

SmartFusion2/
IGLOO2 MACC

U[8:0] = {S,S,S,S,S,S,X }

X

Fabric Logic for 2-input Adder

C [51:44]

S

19

Implementation of 9×9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2 and SmartFusion2
Compile and Place-and-Route Results
Figure 22 shows the 2-input extended addition resource utilization when using the mathblock and fabric
logic.

Note: The results shown are specific to the IGLOO2 device. Similar results can be achieved using the
SmartFusion2 device.

Resource Utilization with Fabric Adder Logic

Place-and-Route Results with Fabric Adder Logic

The frequency of operation achieved with this implementation after place-and-route is shown in
Figure 23.

Figure 22 • Resource Utilization for 2-input Extended Addition with Fabric Resources

Figure 23 • Place-and-Route Results for 2-input Extended Addition with Fabric Resources
20

Extended Addition
Simulation Results
Figure 24 show the post layout simulation results. The simulation result shows that the 2-input addition
outputs on the third clock cycle after the input is provided.

Example 1: 3-input Signed Extended Addition
The following section explains the 3-input extended signed addition, if one or more operands are more
than 44-bit wide. In this section, it shows the 3-input extended signed addition implementation logic with
fabric resources.

Design Description

3-input Extended Addition

For performing 3-input extended addition, Z = T + U + V, with two operands width more than the
mathblock input width 44, the following logic must be implemented in fabric as shown in Figure 25.

Where, T and U are m-bit values (where m > 44), V is a sign-extended n-bit value (where n < 44). The
3-input extended signed addition is divided in two parts. The lower part is computed in the mathblock and
the upper part is computed in the fabric.

Z = {Sumupper, Sumlower}

EQ 8

The lower part of the sum Z = T + U + V, is calculated by providing the {'0', T[(n-2): 0]},

{'0', U [(n-2}: 0]}, V [(n-1): 0] inputs to Mathblock, where n = 44 is mathblock output width.

Sumlower = {'0', T[(n-2): 0]} + {'0', U[(n-2): 0]} + V[(n-1): 0]

EQ 9

Figure 24 • Post Layout Simulation Results for 2-Input Extended Addition with Fabric Adder

Figure 25 • 3-input Extended Signed Addition
21

Implementation of 9×9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2 and SmartFusion2
The upper part of sum Z = T + U + V is calculated as shown below

Sumupper = T[m: n-1] + U[m: n-1] + V[m: n]

EQ 10

(where, T[m: n], U[m: n], V[m: n] are the MSB bits)

V [m: n] = {S, S….S, X, P [n-1]}

 S = P[n-1] AND X

Where, 'P [n-1]' is the MSB bit of the Sumlower

X is the overflow of the Sumlower (from the mathblock),

(m-n-2) number of S's should be appended in MSB bits of the V[m: n].

Hardware Implementation
Figure 26 shows the operand widths of C, D are 52-bit wide and explains implementation for 3-input
extended signed addition. For 3-input addition, mathblock is configured as multiplier addsub in Normal
mode. The lower part of the sum and upper part of the sum are shown as follows:

For 52-bit, 3-input extended signed addition,

Sumlower = P [43:0] = {'0', C [42:0]} + {'0', D [42:0]} + A[17:0]×B[17:0]

Sumupper = {C[51:44] + {S, S, S, CARRYOUT}}

Result [51:0] = {Sumupper, Sumlower}

Result [51:0] = {C[51:43] + D[51:43] + {S, S, S, S, S, S, S, CARRYOUT, P[43]}}, P[42:0]

Where, S = P[43] AND CARRYOUT

Figure 26 • Fabric Logic for 3-input Extended Addition
22

Extended Addition
Design Files
For more information on how to implement the 3-input extended addition, refer to the
Extended_adder_3_input.vhd design file provided in <Design files'Extended_adder_3_input>.

Compile and Place-and-Route Results
Figure 27 shows the 3-input extended addition resource utilization when using the fabric logic.

Note: The results shown are specific to the IGLOO2 device. Similar results can be achieved using the
SmartFusion2 device.

Resource Utilization with Fabric Adder Logic Implemented with MACC Block

Place-and-Route Results with Fabric Adder Logic Implemented with MACC Block

The frequency of operation achieved with this implementation after place-and-route is shown in
Figure 28.

Figure 27 • Resource Utilization for 3-input Extended Addition with Fabric Resources

Figure 28 • Place-and-Route Results for 3-input Extended Addition with Fabric Resources
23

Implementation of 9×9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2 and SmartFusion2
Simulation Results
Figure 29 shows the post layout simulation results. The simulation result shows that the 3-input addition
outputs on the third clock cycles after the input is provided.

Conclusion
This application notes explains IGLOO2 and SmartFusion2 mathblock features such as 9×9 Multiplier
mode, wide-multiplier, and extended addition. This document also provides implementation techniques
and guidelines along with the design examples for the 9×9 multiplication, wide-multiplier, and extended
addition for optimum performance.

Figure 29 • Post Layout Simulation Results for 3-input Extended Addition with Fabric Adder
24

Appendix: Design Files
Appendix: Design Files
Download the design files (VHDL) from the Microsemi website:
http://soc.microsemi.com/download/rsc/?f=m2s_m2gl_ac398_liberov11p7_df

Refer to the Readme.txt file included in the design file for the directory structure and description.
25

https://www.microchip.com/en-us/application-notes/ac398

Implementation of 9×9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2 and SmartFusion2
List of Changes
The following table shows important changes made in this document for each revision.

Date Changes Page

Revision 4
(March 2016)

Updated the document for Libero v11.7 software release (SAR 76819). NA

Revision 3
(October 2015)

Updated the document for Libero v11.6 software release (SAR 72381). NA

Revision 2
(March 2015)

Updated the document for Libero v11.5 software release (SAR 64344). NA

Revision 1
(September 2014)

Updated the document for Libero v11.4 software release (SAR 59686). NA

Revision 0
(June 2013)

Initial release. NA
26

Microse
One Ent
CA 9265

Within t
Outside
Sales: +
Fax: +1

E-mail:

ctor
trial
nal

and
ice

and
rnet
and
800

© 2016
rights r
Microse
Microse
tradema
property

n or
any
sold
 not
 are
and
 rely
er's
The
ntire
y or
uch
t is

 this
mi Corporate Headquarters
erprise, Aliso Viejo,
6 USA

he USA: +1 (800) 713-4113
 the USA: +1 (949) 380-6100
1 (949) 380-6136
(949) 215-4996

sales.support@microsemi.com

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semicondu
and system solutions for communications, defense & security, aerospace and indus
markets. Products include high-performance and radiation-hardened analog mixed-sig
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing
synchronization devices and precise time solutions, setting the world’s standard for time; vo
processing devices; RF solutions; discrete components; Enterprise Storage
Communication solutions, security technologies and scalable anti-tamper products; Ethe
Solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities
services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 4,
employees globally. Learn more at www.microsemi.com.

 Microsemi Corporation. All
eserved. Microsemi and the
mi logo are trademarks of
mi Corporation. All other
rks and service marks are the

Microsemi makes no warranty, representation, or guarantee regarding the information contained herei
the suitability of its products and services for any particular purpose, nor does Microsemi assume
liability whatsoever arising out of the application or use of any product or circuit. The products
hereunder and any other products sold by Microsemi have been subject to limited testing and should
be used in conjunction with mission-critical equipment or applications. Any performance specifications
believed to be reliable but are not verified, and Buyer must conduct and complete all performance
other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
on any data and performance specifications or parameters provided by Microsemi. It is the Buy
responsibility to independently determine suitability of any products and to test and verify the same.
information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the e
risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitl
implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to s
information itself or anything described by such information. Information provided in this documen
proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in
51900274-4/03.16

 of their respective owners. document or to any products and services at any time without notice.

mailto:sales.support@microsemi.com
www.microsemi.com

	Implementation of 9×9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2 and SmartFusion2 Mathblock - Libero SoC v11.7
	Purpose
	Introduction
	References
	Design Requirements
	Using 9×9 Multiplier Mode
	Overview
	Configuration
	Guidelines
	Design Examples

	Wide-Multiplier
	Overview
	Configuration
	Guidelines
	Design Examples

	Extended Addition
	Overview
	Configuration
	Guidelines
	Design Examples

	Conclusion
	Appendix: Design Files
	List of Changes

