@ Micr Osemi Application Note AC398

Implementation of 9%x9 Multiplications,
Wide-Multiplier, and Extended Addition Using
IGLOO2 and SmartFusion2

Mathblock - Libero SoC v11.7

Table of Contents

Purpose L e e 1
Introduction L 2
References e e 2
Design Requirements L e e 2
Using 9x9 Multiplier Mode L e 3
OVEIVIEW e e 3
Configuration e 3
Guidelines e 5
Design Examples L 5
Wide-Multiplier 1
OVervIEW e 11
Configuration e 11
Guidelines L e 11
Design Examples L 11
Extended Addition L L e 17
OVEeIVIEW 17
Configuration e 17
Guidelines e 17
Design Examples L e e 18
Conclusion L 24
Appendix: Design Files e 25
Listof Changes e 26
Purpose

This application note highlights the design guidelines and different implementation methods to achieve
better performance results while implementing wide-multipliers, 9-bitx9-bit multiplications, and extended
addition with the IGLOO®2 field programmable gate array (FPGA) and SmartFusion®2 system-on-chip
(SoC) FPGA mathblock (MACC). The 9-bitx9-bit multiplications, wide-multiplier, and extended addition
are ideal for applications with high-performance and computationally intensive signal processing
operations. Some of them are finite impulse response (FIR) filtering, fast fourier transforms (FFT), and
digital up or down conversion. These functions are widely used in video processing, 2D or 3D image
processing, wireless, industrial applications, and other digital signal processing (DSP) applications.

March 2016 1
© 2016 Microsemi Corporation

& Microsemi

Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2 and SmartFusion2

Introduction

The IGLOO2 and SmartFusion2 mathblock architecture is optimized to implement various common DSP
functions with maximum performance and minimum logic resource utilization. The dedicated routing
region around the mathblock and the feedback paths provided in each mathblock result in routing
improvements. The IGLOO2 and SmartFusion2 mathblock has a variety of features for fast and easy
implementation of many basic math functions. The high-speed multiplier (9x9, 18x18), adder or
subtracter, and accumulator in mathblock delivers high speed math functions. For more information on
IGLOO2 and SmartFusion2 mathblock, refer to the UG0445: IGLOO2 FPGA and SmartFusion2 SoC
FPGA Fabric User Guide and for usage of mathblock refer to the Inferring Microsemi SmartFusion2
MACC Blocks Application Note.

This application note explains the design considerations and different methods for implementing the
following:

* Using 9%x9 Multiplier Mode
* Wide-Multiplier
+ Extended Addition

References

The following documents are referenced in this document.
* UG0445: IGLOO2 FPGA and SmartFusion2 SoC FPGA Fabric User Guide
* Inferring Microsemi SmartFusion2 MACC Blocks Application Note
* IGLOO2/SmartFusion2 Hard Multiplier AddSub Configuration User Guide
* IGLOO2/SmartFusion2 Hard Multiplier Accumulator Configuration User Guide
* IGLOOZ2/SmartFusion2 Hard Multiplier Configuration User Guide

Design Requirements
Table 1 shows the design requirements.

Table 1 « Design Requirements

Design Requirements ‘ Description

Hardware Requirements

Host PC ‘Any 64-bit Windows Operating System

Software Requirements

Libero® System-on-Chip (SoC) v11.7

Modelsim® v10.4c

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132008
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132008
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129965
http://coredocs.s3.amazonaws.com/Actel/SgCore/HARD_MULT_ACC/sf2_hard_mult_acc_config_ug_1.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132008
http://coredocs.s3.amazonaws.com/Actel/SgCore/HARD_MULT/sf2_hard_mult_config_ug_1.pdf
http://coredocs.s3.amazonaws.com/Actel/SgCore/HARD_MULT_ADDSUB/sf2_hard_mult_addsub_config_ug_1.pdf
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129965
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129965

& Microsemi

Using 9x9 Multiplier Mode
Using 9%x9 Multiplier Mode

Overview

The 9-bitx9-bit multipliers are extensively used in low precision video processing applications. In video
applications, the color conversion formats such as YUV to RGB, RGB to YUV, and RGB to YCbCr,
NTSC, PAL, and so on of 9-bitx9-bit multipliers are used. In image processing, the operations involving
8-bit RGB such as 3x3, 5x5, 7x7 matrix multiplications, image enhancement techniques, scaling,
resizing, and so on 9-bitx9-bit multipliers are used. The IGLOO2 and SmartFusion2 devices address
these applications by using the mathblock in dot product (DOTP) mode.

The following sections explain the DOTP configurations and capabilities, guidelines, different
implementation methods with design examples, and their performance and simulation results.

The mathblock when configured in DOTP mode has two independent 9-bitx9-bit multipliers followed by
adder. The sum of the dual independent 9x9 multiplier (DOTP) result is stored in upper 35-bit of 44-bit
register. In DOTP mode, mathblock implements the following equation:

Multiplier result = (A[8:0] x B[17:9] + A 17:9] x B[8:0]) x 2°
EQ 1

Configuration
The IGLOO2 and SmartFusion2 mathblock in DOTP mode can be used in three different configurations.
These configurations are available in the Libero software, Catalog > Arithmetic as given below:
* Multiplier
* Multiplier accumulator
* Multiplier addsub
Figure 1 shows the DOTP multiplier adder with the IGLOO2 and SmartFusion2 mathblock.

| SmartFusion2/
AQ[8:0] IGLOO2 MACC

B0[8:0]
P | —= Carry Out or Over Flow
>]
_ — CDOUT[43:0]
B1[8:0]
> |
C[43:0]]
Carryin

- C

Pn=Pn-1+ (A0*BO + A1*B1) + Carryin + C[43:0]

Figure 1 « DOTP Multiplier Adder

& Microsemi

Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2 and SmartFusion2

Figure 2 shows the DOTP multiplier accumulator with mathblock.

] SmartFusion2/
AQ[8:0] IGLOO2 MACC

> |
BO[8:0]—] |

> | »Carry Out or Over Flow
A1[8:0] »P[43:0]

, +

CDOUT[43:0]

B18:0— |

> |
C[43:0] []
Carryin

> |

Oor1] X
> |
0’s
CDIN
Pn = (A0*BO + A1*B1) + Carryin + C[43:0] + CDIN
Figure 2 » DOTP Multiplier Accumulator
Figure 3 shows the implemented DOTP multiplier.
SmartFusion2/
A0[8:0] IGLOO2 MACC
BO[8:0]
L P[18:0]

A1[8:0]

B1[8:0]

oo o

P = A0*B0 + A1*B1

Figure 3 - DOTP Multiplier

& Microsemi

Using 9x9 Multiplier Mode

Math Functions with DOTP

When DOTP is enabled, several mathematical functions can be implemented. Some of them are listed in
Table 2.

Single Mathblock (DOTP Enabled)

Table 2 «+ Math Functions with DOTP

Conditions Implemented Equations
P = A[8:0] = B[17:9]; M = A[17:9]; N = B[8:0] Y = P2+ MxN

P = A[8:0] = B[17:9]; Q = A[17:9] = B[8:0] Y=P2+Q?

A[8:0] = B[17:9] = 1; B = A[17:9]; Q = B[8:0] Y=1+Q2

A[8:0] = B[17:9] = 1; P = A[17:9]; Q = B[8:0] Y =1+PxQ

P = A[8:0] = A[17:9]; Q = B[17:9] = B[8:0] Y = PxQ + PxQ = 2xPxQ

In this method, several 9-bit mathematical functions can be implemented using DOTP mode with a single
mathblock.

Guidelines

Microsemi recommends to use the following when designing with the DOTP multiplier:
+ To perform Y = AxB + CxD equation, instantiate Arithmetic IP cores with DOTP enabled for 9x9
multiplications. This avoids inferring two 18x18 multipliers.
* Register the inputs and outputs, when using Arithmetic IP cores (mathblock).
* The registered inputs and outputs must use the same clock.

» Use the cascaded feature to connect the multiple mathblocks. This is achieved by connecting the
cascade output (CDOUT) of one MACC block to the cascade input (CDIN) of another mathblock.

For more information on VHDL or Verilog coding styles for inferring mathblocks, refer to the
Inferring Microsemi SmartFusion2 MACC Blocks Application Note.

Design Examples

This section describes the 9x9 Multiplier mode usage with the following design examples:
+ Example 1: 6-tap FIR Filter Using Mathblocks
+ Example 2: Alpha Blending

Example 1: 6-tap FIR Filter Using Mathblocks

This design example (Figure 4 on page 6) shows the 6-tap FIR filter (systolic FIR filter) implementation
with mathblocks and also shows the performance results of the implementation.

Design Description

The 6-tap FIR filter design with mathblocks is a systolic architecture implementation, refer Figure 4 on
page 6. This architecture utilizes a single IGLOO2 and SmartFusion2 mathblock to perform two
independent 9x9 multiplications followed by an addition, instead of using two mathblocks that have a
single multiplication unit. With this architecture implementation, only three mathblocks are required to
design a 6-tap FIR filter. The 6-tap FIR design uses cascaded chains (CDOUT to CDIN) for propagating
the sum to achieve the best performance and reducing fabric resources. In this implementation
technique, the mathblock is configured as DOTP multiplier Adder. Eight pipeline registers are added in
fabric only at the input.

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129965

& Microsemi

Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2 and SmartFusion2

When designing n-tap systolic FIR filters with IGLOO2 and SmartFusion2 mathblock for 9-bit input data
and 9-bit coefficient, only n/2 mathblocks are utilized, saving n/2 mathblock resources.

6-tap FIR (9-bit x 9-bit)
Xin[8:0]—>4D— 1 —
11 LTt LTt

CO[8:0] C1[8:0] C2[8:0] C3[8:0] CA[8:0] C5[8:0]
reset_ n —m- | | | | | |

CDIN CDIN CDIN
Zeros
‘l Y Y

+ + +
SmartFusion2/ SmartFusion2/ martFusion2/

IGLOO2 MACC IGLOO2 MACC IGLOO2 MACC

»Yn_out

Figure 4 + 6-tap Systolic FIR Filter

In this design, the FIR filter generates outputs for every clock cycle after an initial latency of 10 clock
cycles.

Total initial latency = 8 clock cycles for 6 input samples + 2 clock cycles (MACC block input and output
are registered)

=10 clock cycles

Design Files

For information on the implementation of the 6-tap FIR filter design, refer to the FIR 6 tap.vhd design
file provided in <Design files 'FIR_6_TAP>.

Hardware Conf

iguration

& Microsemi

Using 9x9 Multiplier Mode

For 6-tap systolic FIR filter, mathblock is configured as DOTP multiplier adder with inputs and outputs
registered, refer to Figure 5.

f [EL Configuring Dotmul_add_0) (HARD_MULT_ADDSUS - 1.0.100) » — = B [|
Configuration -
Operation Mode I
) Normal @ Dot Product
Multiplier Functions
Function |Multipier with Adder
AD and Al Inputs
Use Al Constant |:| Use Al Constant |:|
AD Constant value (Hex) |0x1 Al Constant value (Hex) |0x1
AD Width 9 Al Width 9
Register Ports AQ Register Ports Al
BO and B1 Inputs
BO Width 9 B1Width 9
Register Ports BO Register Ports B1 E
Input Port C to Adder
Use Constant Constant value (Hex) 0x0
Width 35 Carry In
Register Port
Input Port D to Adder
Function |CDIN form previous math block
Input Port ARSHFT17
Right shift of cascade input Register Port
Input Port SUB
Register Paort
Output Port P | 4
Register Port P Overflow/CarryOut 5
[OK] [Cancel
h

Figure 5 « DOTP Multiplier Adder for 6-tap Systolic FIR

& Microsemi

Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2 and SmartFusion2

Compile and Place-and-Route Results
Figure 6 shows the 6-tap systolic FIR filter resource utilization that uses multiple mathblocks.

Note: The results shown are specific to the IGLOO2 device. Similar results can be achieved using the
SmartFusion2 device.

Resource Utilization

Resource Usage

Type Used | Total |Percentage
4LUT 109 | 56340 0.19
DFF 180 | 56340 0.32
I/O Register 0 1125 0.00
User 1/O 46 375 12.27

-- Single-ended /O |46 375 12.27

-- Differential /O Pairs | 0 187 10.00
RAM64x18 0 72 0.00
RAM1K18 0 69 0.00
MACC 3 72 417
Chip Globals 2 16 12.50
CcC 0 6 0.00
RCOSC_25_50MHZ 0 1 0.00
RCOSC_1MHZ 0 1 0.00
XTLOSC 0 1 0.00
FDDR 0 1 0.00
MSS 0 1 0.00

Figure 6 * Resource Utilization for a 6-tap Systolic FIR Filter

Place-and-Route Results
The frequency of operation is achieved with this implementation after place-and-route, refer to Figure 7.

Clock Period | Frequency |Required Required External External Min Clock-To- | Max Clock-To-
Domain (ns) (MHz) Period (ns) Frequency (MHz) Setup (ns) Hold (ns) Qut (ns) Qut (ns)
clk 2245 445434 5.000 200.000 1.577 0.279 4.240 7487

Figure 7 * Place-and-Route Results for 6-tap Systolic FIR Filter

& Microsemi

Using 9x9 Multiplier Mode

Simulation Results

Figure 8 shows the post layout simulation results. The coefficient values (c0-c5) are configured in design
asC0=5,C1=3,C2=7,C3=-4,C4=1,C5=-2. The simulation results show that the 6-tap FIR filter
outputs on every clock cycle. It has an initial latency of 10 clock cycles.

focs — Jooa] 0C

2 007 s Jooc | 00 [ooF — Jow
51 {51 ST

Figure 8 * 6-tap FIR Filter Post Layout Simulation
Example 2: Alpha Blending

The following example shows the implementation of Alpha blending used in image processing as shown
in Figure 9. Alpha blending is the process of combining a translucent foreground color with a background
color, thereby producing a new blended color.

Design Description
The Alpha blending for each Ry, Gnews Bnew @s shown in Figure 9 is implemented using the following
equations:

Rnew = (1-alpha) x RO [7:0] + alpha x R1[7:0]

EQ2
Ghew = (1-alpha) x GO [7:0] + alpha x G1[7:0]

EQ3
Bnew = (1-alpha) x BO [7:0] + alpha x B1[7:0]

EQ4

This implementation uses three mathblocks to output R', G', B' values simultaneously for blended image.
Each mathblock is configured as DOTP multiplier for performing 9-bitx9-bit multiplications.

RGB1[23:0]
(Image2 Pixel)
Alpha (1-Alpha) Alpha (1-Alpha) Alpha (1-Alpha)
SmartFusion2/ SmartFusion2/ SmartFusion2/
IGLOO2 MACC IGLOO2 MACC IGLOO2 MACC
Rrew Grew Brew

Figure 9 * Alpha Blending Implementation Using IGLOO2 and SmartFusion2 Mathblocks

Hardware Configuration
For Alpha blending, mathblock is configured as DOTP multiplier with inputs and outputs registered.

& Microsemi

Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2 and SmartFusion2

Compile and Place-and-Route Results
Figure 10 shows the alpha blending resource utilization using three mathblocks.

Note: The results shown are specific to the IGLOO2 device. Similar results can be achieved using the
SmartFusion2 device.

Resource Utilization

Resource Usage

Type Used Total Percentage
4LUT 139 56340/ 0.25
DFF 135 | 56340/0.24
I/O Register 0 1125 | 0.00
User I/O 69 375 | 18.40

-- Single-ended 1/O 69 375 | 18.40

-- Differential I/O Pairs 0 187 | 0.00
RAMB4x18 0 72 0.00
RAM1K18 0 69 0.00
MACC 3 72 417
Chip Globals 2 16 12.50
CCC 0 6 0.00
RCOSC_25 50MHZ |0 1 0.00
RCOSC_1MHZ 0 1 0.00
XTLOSC 0 1 0.00
FDDR 0 1 0.00
MSS 0 1 0.00

Figure 10 » Resource Utilization Results for Alpha Blending

Place-and-Route Results
The frequency of operation achieved with this implementation after place-and-route is shown in

Figure 11.
Clock Period Frequency Required Required External External Min Clock-To- | Max Clock-To-
Domain (ns) (MHz) Period (ns) Frequency (MHz) Setup (ns) Hold (ns) Out (ns) Out (ns)
clk 2354 424809 5.000 200.000 2.019 0.432 4 687 8.972

Figure 11 « Place-and-Route Results for Alpha Blending

10

& Microsemi

Wide-Multiplier
Wide-Multiplier

Overview

The wide-multipliers are extensively used in high precision (more than 18x18 multiplication) wireless and
medical applications. These applications require high precision at every stage when implementing
complex arithmetic functions used in FFT, filters and so on. Military, test, and high-performance
computing also require performance and precision requirements, and sometimes require single-precision
and double-precision floating-point calculations for implementing complex matrix operations and signal
transforms.

To implement DSP functions that require high precision, the IGLOO2 and SmartFusion2 devices offer
implementing wide-multipliers (that is, operands width more than 18x18) with the IGLOO2 and
SmartFusion2 mathblock. The wide-multipliers are implemented by cascading multiple IGLOO2 and
SmartFusion2 mathblocks using Cpoyt and Cpjy to propagate the result and to achieve the best
performance results.

This section describes wide-multiplier guidelines and different implementation methods with design
example to achieve the best performance results.

Configuration

When implementing the wide-multipliers, the IGLOO2 and SmartFusion2 mathblocks are configured in
Normal mode to function as normal multiplier (18x18), normal multiplier accumulator, and normal
multiplier addsub.

Guidelines

Microsemi recommends to use the following for implementing wide-multiplier to achieve the best results.
« The inputs and output are registered with the same clock.

* Add pipeline stages in RTL, so that the synthesis tool can automatically infer registers of
mathblock or register the inputs and outputs of mathblock, if arithmetic cores (mathblock) are
used.

« CDOUT of one mathblock is connected to the CDIN of another mathblock.

Design Examples

This section shows the wide-multiplier with the following design examples:
* Multiplier 32x32 implementation using multiple mathblock
« Multiplier 32x32 implementation using single mathblock

The following section explains the 32x32 multiplier implementation with multiple mathblocks and with
single mathblock. It also shows the performance results for both the implementations.

Example1: Multiplier 32x32 Implementation Using Multiple Mathblocks

The following section explains the 32x32 multiplier implementation with multiple mathblocks and shows
the performance results:

Design Description
The 32x32 multiplier is implemented using the following algorithm:
A= (AH x 2'7) + AL;
B =(BH x 2'7) + BL;
AxB = (AH x 217 + AL) x (BH x 2'7 + BL)
= ((AHxBH) x 234) + ((AHxBL +ALxBH) x 2'7) + ALxBL

1"

& Microsemi

Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOOZ2 and SmartFusion2

The 32x32 multiplier is implemented efficiently using four mathblocks without using fabric resources to
produce 64-bit result, as shown in Figure 12 and Figure 13 on page 13. To achieve the best performance

results, mathblock input and output registers are used.

AH= A[31],A[31],A[31], A[31:17] AL= ‘0’, A[16:0]
A[31:0] x B[31:0] =
X BH=B[31],B[31], B[31], B[31:17] BL= ‘0’, B[16:0]

43 33 AL x BL 0
Mathblock1 —s= SignExtend 10 bits ALBLI33:17] ALBL{16:0]
43 33 AH xBL 0
17 bit offset
Mathblock2 — | signExtend 12 bits AHBL[33:17] AHBL{16:0] | -——
43 33 AL xBH 9
17 bit offset
Mathblock3 —* SignExtend 12 bits ALBH33:17] ALBH16:0] -
|
29 AH x BH 0
34 bit pffset
Mathblock4d —p AHBH31:17] AHBH16:0] ~ =
Y Y
P[63:34] P[33:17] P[16:0]

Figure 12 » 32x32 Multiplication

12

& Microsemi

Wide-Multiplier

Multiplier 32x32

Zero’sf—

SmartFusion2/|
1GLOO2 MACC

SmartFusion2/
1GLO02 MACC

\J y Y

P[16:0] P[33:17] P[63:34]

Figure 13 « Implementation of 32x32 Multiplier

When implementing using HDL, to infer mathblock input and output registers by synthesis tool, pipeline
stages are added at output and input to achieve the maximum throughput. In this design, two pipeline
stages are added at input and output. Refer to design files for information on implementation of 32x32
multiplier.

Design Files

For information on the implementation of the multiplier 32x32 design, refer to the
Mult32x32 multipleMACC.vhd design file provided in <Design files -> Mult32x32_multipleMACC>.

Hardware Configuration

For 32x32 multiplier using single mathblock, mathblock is configured to function as normal multiplier,
normal multiplier addsub with ARSHFT enabled, inputs and outputs registered.

Normal Multiplier Accumulator —> Pn = Pn-1 + CARRYIN + C +/- AOxB0
Normal Multiplier Addsub —> Pn = D + CARRYIN + C +/- A0xBO (if ARSHFT is disabled)
—>Pn = (D>>17) + CARRYIN + C +/- AOxBO (if ARSHFT is enabled)
Normal Multiplier —> P = AOxB0

13

& Microsemi

Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2 and SmartFusion2

Compile and Place-and-Route Results
Figure 14 shows the 32x32 multiplier resource utilization when using multiple mathblocks.

Note: The results shown are specific to the IGLOO2 device. Similar results can be achieved using the
SmartFusion2 device.

Resource Utilization

Resource Usage

Type Used | Total Percentage
4LUT 145 56340 0.26
DFF 289 56340 0.51
I/O Register 0 1125 0.00
User I/O 130 375 | 34.67
-- Single-ended 1/O 130 375 | 34.67
-- Differential 1/0 Pairs | 0 187 0.00
RAMG4x18 0 72 0.00
RAM1K18 0 69 0.00
MACC 4 72 5.56
Chip Globals 2 16 12.50
Ccc 0 6 0.00
RCOSC_25_50MHZ 0 1 0.00
RCOSC_1MHZ 0 1 0.00
XTLOSC 0 1 0.00
FDDR 0 1 0.00
MSS 0 1 0.00

Figure 14 < Resource Utilization for Multiple Mathblocks

Place-and-Route Results
The frequency of operation achieved with this implementation after place-and-route is shown in

Figure 15.
Clock Period | Frequency |Required Required External External Min Clock-To- | Max Clock-To-
Domain | (ns) (MHz) Period (ns) Frequency (MHz) Setup (ns) Hold (ns) Qut (ns) Out (ns)
clk 2245 445434 5.000 200.000 3187 0.451 4.646 5.961

Figure 15 * Place-and-Route Results for 32x32 With Multiple Mathblock

14

& Microsemi

Wide-Multiplier

Example 2: 32x32 Multiplier Implementation Using Single Mathblock

The following section explains the 32x32 multiplier implementation with a single mathblock and also
shows the performance results.

Design Description

The 32x32 multiplier is implemented using the same algorithm as shown in "Example 1: 6-tap FIR Filter
Using Mathblocks" section on page 5.
AxB = ((AHxBH) x 23%) + ((AHxBL +ALxBH) x 217) + ALxBL

= ((AHxBH) x 234) + (AHxBL x 217) + (ALxBH x 217) + ALxBL
In this implementation, the four multiplications are computed using a single mathblock in sequential
manner. The control finite-state machine (FSM) in the design provides the inputs to the mathblock
sequentially in four successive states as shown in Figure 16 and appropriately enables the shift
operation in the corresponding state. The mathblock used in this design is configured as normal
multiplier accumulator Arithmetic IP core. Refer to the Hard Multiplier Accumulator User Guide for
configuration.

The time taken to generate output = 4 clock cycles for providing inputs
+ 2 clock cycles as the inputs and output is registered
+ 2 clock cycles by mathblock at input and output.
= 8 clock cycles

SmartFusion2/IGLOO2 MACC Block

] .

] P
L —D - Result
Curr_State > +
C
mul_en—m- Zeros
b - mul_result_valid
Control FSM /

ARSHFT . S

reset_n —m A_[17:0],B[17:0]

Clk—i
Ayl17:0],B [17:0]

B[31:0] AL[17:0],By[17:0]

AQI17:0],By{17:0]

A[31:0]
—

Multiplier 32 x 32

Figure 16 « Multiplier 32x32 with One MACC Block

Design Files
For more information on the implementation of the multiplier 32x32 design, refer to the Mmu1t32x32.vhd
design file provided in <Design files'Mult32x32>.
Hardware Configuration

For 32x32 multiplier using single mathblock, it is configured to function as normal multiplier accumulator
with inputs and outputs registered.

15

http://coredocs.s3.amazonaws.com/Actel/SgCore/HARD_MULT_ACC/sf2_hard_mult_acc_config_ug_1.pdf

& Microsemi

Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2 and SmartFusion2

Compile and Place-and-Route results
Figure 17 shows the 32x32 multiplier resource utilization when using a single mathblock.

Note: The results shown are specific to the IGLOO2 device. Similar results can be achieved using the
SmartFusion2 device.

Resource Utilization

Resource Usage

Type Used Total Percentage
4LUT 84 56340 0.15

DFF 141 | 56340 | 0.25

I/C Register 0 1125 | 0.00

User 11O 132 | 375 3520

-- Single-ended 1/O 132 | 375 35.20
-- Differential 1/O Pairs 0 187 0.00

RAMB4x18 0 T2 0.00
RAM1K18 0 69 0.00
MACC 1 72 1.39
Chip Globals 2 16 12.50
ccc 0 6 0.00
RCOSC 25 50MHZ |0 1 0.00
RCOSC 1MHZ 0 1 0.00
XTLOSC 0 1 0.00
FDDR 0 1 0.00
MSS 0 1 0.00

Figure 17 * Resource Utilization for a Single Mathblock

Place-and-Route Results
The frequency of operation is achieved with this implementation after place-and-route is shown in

Figure 18.
Clock Period Frequency @ Required Required External External Min Clock-To- | Max Clock-To-
Domain | (ns) (MHz) Period (ns) Frequency (MHz) Setup (ns) Hold {ns) Out (ns) Out (ns)
clk 2387 | 418.936 5.000 200.000 2.852 0.309 4526 9.650

Figure 18 * Place-and-Route Results for 32x32 Multiplier with Single Mathblock

16

& Microsemi

Extended Addition

Simulation Results
Figure 19 shows the post layout simulation results. The simulation result shows the multiplier outputs on
8 clock cycles after input is provided.

ftestbench/ck
[testbenchjreset_n
Jtestbench/a
Jracthanrh R

[testhenchResult
ftestbenchjmul_en

Figure 19 « Multiplier 32x32 Post Layout Simulation Results

Extended Addition

Overview

Mathblock has a 3-input adder and supports accumulation up to 44-bits. In some applications, such as
floating point multiplication, complex-FFT and filters, high precision data has to be maintained at every
stage. These DSP functions require more than 44-bit addition (extended addition), which can be realized
using the IGLOO2 and SmartFusion2 mathblock (3-input adder) and fabric logic. The extended addition
is implemented by dividing the addition into two parts. The lower part (LSB) of addition is implemented
using the IGLOO2 and SmartFusion2 mathblock and upper part (MSB) of addition is implemented with
minimal fabric adder logic.
For a 2-input addition, the inputs can be from any one of the following:

1. CDIN and C input

2. Multiplier output and CDIN

3. Multiplier output and C input
For a 3-input addition, the inputs are from multiplier output, CDIN, and C-input. To perform arithmetic
additions, the IGLOO2 and SmartFusion2 mathblock provides Carryin input and Carryout signal for
propagating the carry from one mathblock to another mathblock or from mathblock to fabric logic.

Configuration

When implementing the extended addition, the IGLOO2 and SmartFusion2 mathblock is configured in
Normal mode to function as normal multiplier addsub.

Guidelines
+ Mathblock must be configured to function as multiplier adder or subtracter to perform 2-input
extended signed addition.

+ Add pipeline stages in RTL, so that the synthesis tool can automatically infer registers of
mathblock or register the inputs and outputs of mathblock, if arithmetic cores (mathblock) are
used.

e Ensure that the CDOUT of one mathblock is connected to the CDIN of another mathblock.

17

& Microsemi

Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2 and SmartFusion2

Design Examples

This section shows the extended addition with the following design examples:
* 2-input extended signed addition
+ 3-input extended signed addition

Example 1: 2-input Signed Extended Addition

The following section shows a 2-input extended signed addition—if one operand is more than 44-bit
wide. In this section, it is also shown that the 2-input extended signed addition implementation logic with
fabric resources are implemented with the multiplier adder.

Design Description

2-Input Addition

For computing 2-input extended signed addition Z = U + V, with one operand width more than the
mathblock output width 44, the following logic must be implemented in fabric, as shown in Figure 20.

Um-1 Um2.. U2 Un#1 Un Un1 Un2 ... Uo

+ wvad Vo1 Ved Vet Ved Vad Ve2 .. Vo

Em-i Eme2 .. Ine2 Enedl In Fnd En2 ... &0

Figure 20 « 2-input Extended Signed Addition

Where U is an m-bit value (where m > 44), V is a sign-extended n-bit value (where n < 44). The 2-input
extended signed addition is divided in to two parts. The lower part is computed in the mathblock and the
upper part is computed in the fabric.

Z = (Sumupper, Sumlower)

EQS5

The lower part of the sum, Z = U + V, is calculated by providing the U[(n-1): 0], V[(n-1): 0] inputs to the
mathblock, where n = 44 is mathblock output width.

Sumlower = U[(n-1): 0] + V[(n-1): 0]
EQ6
The Upper part of sum Z = U + V is calculated as shown below:
Sumupper = U[m: n] + V[m: n] (where U[m: n], V[m: n] are the MSB bits)
EQ7
VIm:n]={S, S....S, X},
S =P[n-1] AND X

Where:
P [n-1] is MSB of Sumlower

X is the overflow of the Sumlower (from the mathblock)
(m-n-1) number of S's must be appended in MSB bits of the V[m: n].

18

& Microsemi

Extended Addition

Hardware Implementation
Figure 21 shows the operand width of C as 52-bit wide and explains the implementation for 2-input
extended signed addition. For 3-input addition, mathblock is configured as multiplier addsub in Normal
mode. The upper part and lower part of the sum are shown as follows:
For 52-bit, 2-input extended signed addition,

Sumlower = C[43:0] + A[17:0]xB[17:0]

Sumupper = {C[51:44] + {S, S, S, CARRYOUT}}

Result [51:0] = {Sumupper, Sumlower}

Result [61:0] = {C[51:44] + {S, S, S, CARRYOUT}}, P[43:0]

Where, S = P[43] AND CARRYOUT

SmartFusion2/ Fabric Logic for 2-input Adder
|GLOO2 MACC
A[17:0]
B[17:0] n _D Plasor , -
e > '—
C[43:0] >

1NOAYHHEVYD
[evld

HResult [51:0]

T

U[8:0] = {S,5,5,5.8,8.X}

T

C[51:44]

%

Figure 21 « Fabric Logic for 2-input Extended Addition

Design Files
For information on the implementation of the 2-input extended addition, refer to the
Extended adder 2 input.vhd design file provided in <Design files'Extended_adder 2 _input>.

19

& Microsemi

Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2 and SmartFusion2

Compile and Place-and-Route Results

Figure 22 shows the 2-input extended addition resource utilization when using the mathblock and fabric

logic.

Note: The results shown are specific to the IGLOO2 device. Similar results can be achieved using the
SmartFusion2 device.

Resource Utilization with Fabric Adder Logic

Type Used | Total Percentage
4LUT 45 56340 | 0.08
DFF 88 56340 | 0.16
/0 Register 0 1125 | 0.00
User /O 142 | 375 | 37.87

- Single-ended /O 142 | 375 37.87

- Differential I/0 Pairs | 0 187 | 0.00
RAMB4x18 0 72 0.00
RAM1KAE 0 69 0.00
MACC 1 72 1.39
Chip Globals 2 16 12.50
CCC 0 B 0.00
RCOSC_25 50MHZ |0 1 0.00
RCOSC_1MHZ 0 1 0.00
KTLOSC 0 1 0.00
FODR 0 1 0.00
MSS 0 1 0.00

Figure 22 « Resource Utilization for 2-input Extended Addition with Fabric Resources

Place-and-Route Results with Fabric Adder Logic
The frequency of operation achieved with this implementation after place-and-route is shown in

Figure 23.
Clock Period | Frequency | Required Required External External Min Clock-To- | Max Clock-To-
Domain | (ns) (MHz) Period (ns) | Frequency (MHz) Setup (ns) | Hold (ns) Out (ns) Out (ns)
clk 2474 1404.204 5.000 200.000 2153 0.446 4.652 8.466

Figure 23 Place-and-Route Results for 2-input Extended Addition with Fabric Resources

20

& Microsemi

Extended Addition

Simulation Results
Figure 24 show the post layout simulation results. The simulation result shows that the 2-input addition

outputs on the third clock cycle after the input is provided.

58| Wave - Default

Jextendedadder_testbenchick
Jextendedadder_testbenchjreset_n
Jextendedadder_testbench/Xn_in

Jextendedadder_testbench/INPUTA
Jextendedadder_testbench/INPUTE
Jextendedadder_testbench/INPUTC

Jextendedadder_testbench/AddOutput
Jextendedadder_testbench/stop

Figure 24 + Post Layout Simulation Results for 2-Input Extended Addition with Fabric Adder
Example 1: 3-input Signed Extended Addition

The following section explains the 3-input extended signed addition, if one or more operands are more
than 44-bit wide. In this section, it shows the 3-input extended signed addition implementation logic with

fabric resources.
Design Description

3-input Extended Addition
For performing 3-input extended addition, Z = T + U + V, with two operands width more than the
mathblock input width 44, the following logic must be implemented in fabric as shown in Figure 25.

Tm1 Tm2 .. Tie2z Ta#1 Tn ETn-i Tnz .. To
Um-1 Um2 ... Un+#2 Un+1t Un (Un1 Unz .. Uo

L Vot Vndd Vi Vi Vit | Vnd V2 .. Vo

Zml EIm2 ... In+2 vt In Ena EInz ... £0

Figure 25 « 3-input Extended Signed Addition

Where, T and U are m-bit values (where m > 44), V is a sign-extended n-bit value (where n < 44). The
3-input extended signed addition is divided in two parts. The lower part is computed in the mathblock and

the upper part is computed in the fabric.
Z = {Sumupper, Sumlower}

EQ8
The lower part of the sum Z=T + U +V, is calculated by providing the {'0', T[(n-2): 0]},
{0, U [(n-2}: O]}, V [(n-1): O] inputs to Mathblock, where n = 44 is mathblock output width.
Sumlower = {'0', T[(n-2): 0]} + {'0', U[(n-2): O]} + V[(n-1): 0]
EQ9

21

& Microsemi

Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2 and SmartFusion2

The upper part of sum Z=T + U + V is calculated as shown below

Sumupper = T[m: n-1] + U[m: n-1] + V[m: n]
EQ 10

(where, T[m: n], U[m: n], V[m: n] are the MSB bits)
VIm:n]={S, S....S, X, P [n-1]}
S =P[n-1] AND X
Where, 'P [n-1]" is the MSB bit of the Sumlower
X is the overflow of the Sumlower (from the mathblock),
(m-n-2) number of S's should be appended in MSB bits of the V[m: n].

Hardware Implementation

Figure 26 shows the operand widths of C, D are 52-bit wide and explains implementation for 3-input
extended signed addition. For 3-input addition, mathblock is configured as multiplier addsub in Normal
mode. The lower part of the sum and upper part of the sum are shown as follows:

For 52-bit, 3-input extended signed addition,

Sumlower = P [43:0] = {'0', C [42:0]} + {'0', D [42:0]} + A[17:0]xB[17:0]

Sumupper = {C[51:44] +{S, S, S, CARRYOUT}}

Result [51:0] = {Sumupper, Sumlower}

Result [51:0] = {C[51:43] + D[51:43]+ {S, S, S, S, S, S, S, CARRYOUT, P[43]}}, P[42:0]
Where, S = P[43] AND CARRYOUT

SmartFusion2
MACC
A[17:0] _ Fabric Logic for 3-input Adder
B[17:0]|— P[43:0] -
+ 1] [
0, C[42:0] -
S
0, D[42:0] > 2
/ A %
< | &
o e
c
_|
- Z[51:0]
>_/

0

0
D[51:43]

S
X
[evld

SmartFusion2

MACC >
{S.S,S,S,S,S,X,P[43]}
+
C[51:43] D D >

-+
A B D >

—

Figure 26 * Fabric Logic for 3-input Extended Addition

22

& Microsemi

Extended Addition

Design Files

For more information on how to implement the 3-input extended addition, refer to the
Extended adder 3 input.vhd design file provided in <Design files'Extended_adder_3_input>.
Compile and Place-and-Route Results

Figure 27 shows the 3-input extended addition resource utilization when using the fabric logic.

Note: The results shown are specific to the IGLOO2 device. Similar results can be achieved using the
SmartFusion2 device.

Resource Utilization with Fabric Adder Logic Implemented with MACC Block

Resource Usage

Type Used | Total Percentage
4LUT 92 56340/ 0.16
DFF 120 | 56340/ 0.21
I/O Register 0 1125 0.00
User /O 194 |375 | 51.73

-- Single-ended 1/O 194 | 375 51.73
-- Differential /O Pairs | 0 187 0.00

RAM64x18 0 72 0.00
RAM1K18 0 69 0.00
MACC 2 72 278
Chip Globals 2 16 12,50
cce 0 6 0.00
RCOSC_25 50MHZ 0 1 0.00
RCOSC_1MHZ 0 1 0.00
XTLOSC 0 1 0.00
FDDR 0 1 0.00
MSS 0 1 0.00

Figure 27 * Resource Utilization for 3-input Extended Addition with Fabric Resources

Place-and-Route Results with Fabric Adder Logic Implemented with MACC Block
The frequency of operation achieved with this implementation after place-and-route is shown in

Figure 28.
Clock Period |Frequency |Required Required External External Min Clock-To- | Max Clock-To-
Domain (ns) (MHz) Period (ns) Frequency (MHz) Setup (ns) Hold {ns) Out (ns) Out (ns)
clk 2.252 444 050 5.000 200.000 3.189 0.768 4.907 9.549

Figure 28 * Place-and-Route Results for 3-input Extended Addition with Fabric Resources

23

& Microsemi

Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2 and SmartFusion2

Simulation Results

Figure 29 shows the post layout simulation results. The simulation result shows that the 3-input addition
outputs on the third clock cycles after the input is provided.

3 Clock Cycles|

Figure 29 « Post Layout Simulation Results for 3-input Extended Addition with Fabric Adder

Conclusion

This application notes explains IGLOO2 and SmartFusion2 mathblock features such as 9x9 Multiplier
mode, wide-multiplier, and extended addition. This document also provides implementation techniques
and guidelines along with the design examples for the 9x9 multiplication, wide-multiplier, and extended
addition for optimum performance.

24

& Microsemi

Appendix: Design Files

Appendix: Design Files

Download the design files (VHDL) from the Microsemi website:
http.//soc.microsemi.com/download/rsc/?f=m2s_m2gl_ac398_liberov11p7_df

Refer to the Readme . txt file included in the design file for the directory structure and description.

25

https://www.microchip.com/en-us/application-notes/ac398

& Microsemi

Implementation of 9x9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2 and SmartFusion2

List of Changes

The following table shows important changes made in this document for each revision.
Date Changes Page
Revision 4 Updated the document for Libero v11.7 software release (SAR 76819). NA
(March 2016)
Revision 3 Updated the document for Libero v11.6 software release (SAR 72381). NA
(October 2015)
Revision 2 Updated the document for Libero v11.5 software release (SAR 64344). NA
(March 2015)
Revision 1 Updated the document for Libero v11.4 software release (SAR 59686). NA
(September 2014)
Revision 0 Initial release. NA
(June 2013)

26

Microsemi.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136

Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2016 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor
and system solutions for communications, defense & security, aerospace and industrial
markets. Products include high-performance and radiation-hardened analog mixed-signal
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and
synchronization devices and precise time solutions, setting the world’s standard for time; voice
processing devices; RF solutions; discrete components; Enterprise Storage and
Communication solutions, security technologies and scalable anti-tamper products; Ethernet
Solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and
services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 4,800
employees globally. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or
the suitability of its products and services for any particular purpose, nor does Microsemi assume any
liability whatsoever arising out of the application or use of any product or circuit. The products sold
hereunder and any other products sold by Microsemi have been subject to limited testing and should not
be used in conjunction with mission-critical equipment or applications. Any performance specifications are
believed to be reliable but are not verified, and Buyer must conduct and complete all performance and
other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely
on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's
responsibility to independently determine suitability of any products and to test and verify the same. The
information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire
risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or
implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such
information itself or anything described by such information. Information provided in this document is
proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

51900274-4/03.16

mailto:sales.support@microsemi.com
www.microsemi.com

	Implementation of 9×9 Multiplications, Wide-Multiplier, and Extended Addition Using IGLOO2 and SmartFusion2 Mathblock - Libero SoC v11.7
	Purpose
	Introduction
	References
	Design Requirements
	Using 9×9 Multiplier Mode
	Overview
	Configuration
	Guidelines
	Design Examples

	Wide-Multiplier
	Overview
	Configuration
	Guidelines
	Design Examples

	Extended Addition
	Overview
	Configuration
	Guidelines
	Design Examples

	Conclusion
	Appendix: Design Files
	List of Changes

