

APPLICATION NOTE

AT04113: How to implement SleepWalking on an ARM
Cortex-M4 MCU Application: Step-by-step Project

Building Guide

Atmel ARM Cortex-M4 SAM4L Product Family

Introduction

The aim of this document is to provide a step by step guide on how to implement
SleepWalking on an Atmel® ARM® Cortex®-M4 MCU, from the SAM4L product
family.

By using Atmel Studio 6 and the Atmel Software Framework (ASF), the user will
have a complete application example allowing interactions with touch and light
sensors and the LCD Display of the Atmel SAM4L-EK board.

In order to save a maximum of energy, the SleepWalking allows the CPU to sleep
peacefully until a relevant event occurs. To be able to perform SleepWalking, the
Atmel SAM4L is a picoPower® branded ARM MCU, which embeds power scaling
and power saving capabilities, coupled with a high flexibility in terms of clock
management. These features are mandatory to implement SleepWalking in the
most advantageous way.

As the SleepWalking is just an optimization in using low power modes; this can be
used over any kind of application. In this example a real time watch application is
proposed.

Finally, thanks to this application, full examples on how to use the different
embedded peripherals involved into the SleepWalking are covered, such as the
Peripheral Event Controller (PEVC), the hardware QTouch® (CATB), the ADC
window mode (ADCIFE), the External Interrupt Controller (EIC) and the
Asynchronous Timer (AST).

Prerequisites

• Hardware prerequisites
– Atmel SAM4L-EK Evaluation kit
– Micro-USB cable – 1 No.

• Software prerequisites
– Atmel Studio 6.1 (build 2730) or higher
– Atmel Software Framework 1.13.1 or higher

Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

2

Table of Contents

1 Introduction to SleepWalking .. 4
1.1 On what does SleepWalking consist in? .. 4
1.2 SAM4L Features to Perform SleepWalking .. 4

1.2.1 Low Power Techniques Overview ... 4
1.2.2 Peripheral Clock Management Overview .. 6
1.2.3 Peripheral Event System Controller (PEVC) Overview 7

2 SleepWalking Application Description 9
2.1 Atmel SAM4L-EK Evaluation Kit Overview .. 9

2.1.1 Powering the Board ... 9
2.1.2 The Board Monitor... 10

2.2 Application Overview .. 10
2.2.1 Application Sequential Flowchart .. 12
2.2.2 Function Descriptions .. 12

2.2.2.1 ACTIVE_MODE ... 13
2.2.2.2 INIT_SLEEPWALKING .. 14
2.2.2.3 SLEEPWALKING .. 14
2.2.2.4 INIT_ACTIVE_MODE .. 14

2.3 Software Package Description ... 14
2.4 Main Steps Summary ... 14

3 Atmel Studio 6 Project Creation .. 16
3.1 Atmel Studio Introduction ... 16

3.1.1 IDE Introduction .. 16
3.1.2 Atmel Software Framework (ASF) Introduction 17

3.2 Create a Project under Atmel Studio using a Specific Board
Template .. 17

3.3 Add Existing File to the Project .. 20
3.4 Atmel Software Framework Module Importation .. 22
3.5 Debugger Settings ... 27

4 System Initialization ... 29
4.1 Starting Point.. 29

4.1.1 Include Example Library File ... 29
4.2 Application Init Function Implementation .. 29
4.3 Application’s Clock Setting Configuration ... 30

5 SAM4L Peripherals Configuration Method 35
5.1 Application Peripheral Configuration Overview .. 35
5.2 Methodology... 35

6 Analog to Digital Converter (ADCIFE) Configuration 37
6.1 Check any Hardware Configuration Related to the Peripheral 37
6.2 Use the Online API Documentation which provides Simple

Example on ADCIF .. 37
6.3 Code Implementation ... 41

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

3

6.3.1 Configure the ADCIFE using the Quick Start Guide
Workflow ... 41
6.3.1.1 Define the ADCIFE Interrupt Handler in the

Application ... 41
6.3.1.2 Configure ADC Module .. 42

7 Capacitive Touch (CATB) Configuration 45
7.1 Autonomous Touch Overview .. 45
7.2 Code Implementation ... 45

8 Asynchronous Timer (AST) Configuration 48
8.1 Code Implementation ... 48

9 Peripheral Event System Controller (PEVC)
Configuration .. 51
9.1 Code Implementation ... 51

10 External Interrupt Controller (EIC) Configuration 54
10.1 Code Implementation ... 54

11 Test the App Init Function Implementation 57

12 State Machine Implementation .. 59
12.1 Code Implementation ... 59

12.1.1 Implement the App Function ... 59
12.1.2 ACTIVE_MODE Implementation ... 60
12.1.3 Prepare to SleepWalking Implementation 61

12.1.3.1 Code Implementation .. 61
12.1.4 SLEEPWALKING State Implementation ... 62

12.1.4.1 Code Implementation .. 62
12.1.5 INIT_ACTIVE_MODE State Implementation 63

12.1.5.1 Code Implementation .. 64
12.1.6 Update the Main Function to Call the App Function 65

13 Conclusion .. 66

14 Suggested Reading .. 67
14.1 Device Datasheet ... 67
14.2 Evaluation Kit User Guide .. 67
14.3 ARM Documentation on Cortex-M4 Core ... 67

15 Revision History ... 68

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

4

1 Introduction to SleepWalking

1.1 On what does SleepWalking consist in?
As part of the Atmel picoPower technology SleepWalking adds intelligence to the SAM4L peripherals. This
allows a peripheral to determine if incoming data requires use of the CPU or not. We call this SleepWalking
because it allows the CPU to sleep peacefully until a relevant event occurs.

In the traditional way of addressing this, the internal timer wakes up the microcontroller periodically to check
whether certain conditions that require its attention are present or not. The CPU and RAM traditionally consume
the majority of the power in active mode, and so waking up the CPU to check for these conditions will consume a
lot of power in the long run. In some cases where the reaction time is too short, it might not even be possible for
the CPU to go back into sleep mode at all.

The Atmel SAM4L microcontroller solves this problem with its SleepWalking peripherals. SleepWalking allows
the microcontroller to be put into deep sleep and wake up only upon a pre-qualified event. The CPU no longer
needs to check whether or not a specific condition is present, such as an address match condition on the TWI
(I2C) interface, or a sensor connected to an ADC that has exceeded a specific threshold.

With SleepWalking, this is done entirely by the peripherals themselves. The CPU and RAM will not wake up until
the condition true.

 A great video which perfectly described the SleepWalking is available and could be a
good introduction to this application note. This video is available here: Atmel -
picoPower Labs - SleepWalking. This video is based on Atmel AVR® UC3 microcon-
trollers but it can be extrapolated to ARM SAM4L microcontrollers.

1.2 SAM4L Features to Perform SleepWalking
SleepWalking allows reducing the total system power consumption in your application.

To perform SleepWalking, the SAM4L has to embed flexible capabilities regarding its peripheral clock
management and must be able to get a higher modularity in power consumption versus performance ratio. This
is done with its embedded features which the user needs to be familiar with. These features are described below:

• Low power techniques: Power Saving and Power Scaling
• Peripheral Clock Management flexibility
• Peripheral Event System

1.2.1 Low Power Techniques Overview
The low power techniques are illustrated in the Figure 1-1 and are composed of:

• Power Save modes intended to reduce the logic activity and to adapt the power configuration. See “Power
Save Modes” chapter from the product datasheet. Table 1-1 is taken from the SAM4L product family
datasheet, and gives a brief description on the power saving mode.

• Power Scaling technique consists of adjusting the internal regulator output voltage (voltage scaling) to
reduce the power consumption. According to the requirements in terms of performance, operating modes,
and current consumption, the user can select the Power Scaling configuration that fits the best with its
application. See “Power Scaling” chapter from the product datasheet. Figure 2-1 shows what the main
Power Scaling modes available are.

http://www.youtube.com/watch?v=BpLIw5BqJJQ
http://www.youtube.com/watch?v=BpLIw5BqJJQ

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

5

Figure 1-1. Low Power Techniques Scheme for SAM4L

Regarding SleepWalking, PS1 is the best Power scaling mode in term of performance/consumption ratio thanks
to the internal regulator low power mode.

The Wait mode is the most interesting mode to perform SleepWalking in terms of consumption. All clock sources
are stopped; the core and all the peripherals are stopped except the modules running with the 32kHz clock if
enabled. This is the lowest power mode where SleepWalking is supported.

Table 1-1. Power Save Mode Configuration Summary

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

6

Once the power scaling and the power saving modes are identified to run SleepWalking, the next step is to enable/disable
the used/unused peripheral thanks to the SAM4L high flexibility in term of clock management.

1.2.2 Peripheral Clock Management Overview
The SAM4L clock sources depend on two controllers that manage main clock sources and 32kHz clock generation: (see
Figure 1-2).

• The Backup system controller which manages and outputs the 32kHz sources and the RC 1MHz
• The system controller which manages all the other main clock sources such as RC FAST, RCSYS, OSC0,

PLL and DFLL (new feature on SAM4L product family) and outputs them to the Power manager

Figure 1-2. SAM4L Clock Management Scheme

Regarding SleepWalking activity, the user has to identify what is the main clock source he wants to use in run
mode and in Wait mode (during the SleepWalking), according to his application specifications.

Concerning the wait mode, a good choice would be to use the RC FAST oscillator to have the benefit of the
SAM4L fast Wake up feature when the core is woken up by the peripheral interrupt.

Once the main clock selection is done in the power manager, each system clock can be enabled through its own
mask register and its frequency can also be divided by its own divider.

Regarding the SleepWalking activity, the user has to identify what are the peripheral clocks he wants to use
during the SleepWalking according to his application specifications.

For instance, if the AST is used during SleepWalking, its peripheral clock and its source clock must be configured
before entering in SleepWalking.

After the clock management, the next step is to maintain some SAM4L peripheral to stay awaked by keeping
their clock enabled during the SleepWalking.

The aim is to make measurement or detection while the core is sleeping. Then once an event (e.g.: ADCIFE
threshold reached) or a detection (e.g.: In touch CATB sensing detected) occurs, the peripheral wakes up the
core with an interrupt related to the event. This peripheral interconnection is done by using the Peripheral Event
System Controller.

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

7

1.2.3 Peripheral Event System Controller (PEVC) Overview
The Peripheral Event System allows the SAM4L to:

• Manage directly peripheral to peripheral communication
• Receive, react to, and send peripheral events without CPU intervention
• Have cycle deterministic event communication
• Enable SleepWalking and asynchronous interrupts for peripheral operation in Power Save Modes

Several peripheral modules can be configured to emit or respond to signals known as peripheral events. The
exact condition to trigger a peripheral event, or the action taken upon receiving a peripheral event, is specific to
each module.

Peripherals that respond to events are called users and peripherals that emit events are called generators.

A module may be both a generator and user. The peripheral event generators and users are interconnected by a
network known as the Peripheral Event System as described in Figure 1-3.

Figure 1-3. Peripheral Event System Array Representation

The Peripheral Event Controller (PEVC) controls the interconnection parameters, such as generator-to-user
multiplexing and peripheral event enable/disable.

PEVC routes incoming events to users by means of one channel per user. Channels operate in parallel, allowing
multiple users to listen to the same generator.

The Channel Multiplexer Register (CHMXi) is written to allocate a generator to a given channel. The channel
setting is then enabled by setting a one to the appropriate bit in the Channel Enable Register (CHER). It is
disabled by writing a one to the appropriate bit in the Channel Disable Register (CHDR).

To safely configure a channel, user software must follow this process:

• disable the channel by using the CHDR
• Allocate generator by configuring the CHMXi register
• enable the channel by setting the CHER

The PEVC supports asynchronous events in addition to standard synchronous events. Asynchronous events can
even be processed in various sleep modes with no running system clock. This is accomplished by taking
advantage of some Advanced Power Manager features such as Sleep Walking and Asynchronous Wakeup.

SleepWalking is a particular mode which allows the PEVC to handle asynchronous events in various sleep
modes by requesting a module local clock for the duration of the Event processing. Once the event processing is
done, the requested clock is disserted and the module goes back to sleep. As a consequence there are some
peripherals which are not able to support SleepWalking. Table 31-7 in the SAM4L product family datasheet

http://www.atmel.com/images/atmel-42023-arm-microcontroller-atsam4l-low-power-lcd_datasheet.pdf

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

8

specifies what the generators able to perform SleepWalking are, and the Table 31-8 specifies which the users
are.

Therefore, before configuring the PEVC, the user must enable peripheral events at generator level and at the
User Interface level. Next, the Generator will generate peripheral events periodically, and the Peripheral Event
System will route the peripheral events to the ADC Interface, which will perform ADC conversions or CATB
sensing (e.g.) at the selected intervals.

 If you want to learn more about the Peripheral Event System, refer to the SAM4L product family datasheet
available directly from this web address:
http://www.atmel.com/images/atmel-42023-arm-microcontroller-atsam4l-low-power-lcd_datasheet.pdf.

http://www.atmel.com/images/atmel-42023-arm-microcontroller-atsam4l-low-power-lcd_datasheet.pdf

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

9

2 SleepWalking Application Description
This application note has been built from the Atmel Training documentation, where the hands-on is based on the
Atmel SAM4L-EK.

As the SleepWalking is just the definition of a particular ability of the SAM4L during low power modes, we can use
it with any application where the current consumption is considered as a key parameter. Regarding this
application note, even if a detailed description is given, the main application could be considered as a “Black Box”
to stay a maximum focused on the SleepWalking purpose.

This Application note is therefore built to make the reader able to skip the part of the “Black box” application
implementation.

2.1 Atmel SAM4L-EK Evaluation Kit Overview

Figure 2-1. ATSAM4L-EK Board Overview

2.1.1 Powering the Board
The ATSAM4L-EK offers three interfaces to power up the board:

• USB embedded debugger SEGGER J-Link OB (J1)
• USB ATSAM4LC4C (J305)
• External 5V (DC) source connected to the J303 2-pin header

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

10

To select the USB or the external power supply, a mechanical switch is used (SW300).

The default kit configuration is using ATSAM4LC4C BUCK regulator configuration, where ATSAM4LC4C is
powered at 3.3V (VDDIN, VDDIO, VDDANA).

The following board configuration has to be checked:

LDO INDUCTOR JUMPER OPENED

LDO/BUCK JUMPER BUCK

The power is supplied through the USB embedded debugger SEGGER J-LINK OB connector (J1).

2.1.2 The Board Monitor
The Board monitor is an on board tool which makes possible the chip current consumption real time monitoring.

It is implemented by an on board ATSAM3N4A MCU. The SAM4LC4C sends commands to update the board
monitor status through the UART, to the ATSAM3N4A.

The Board Monitor features:

• 1x OLED display (128x64)
• 5x LEDs
• 1x joystick
• 1x USART connected to the ATSAM4LC4C MCU
• 1x TWI connected to the ATSAM4LC4C MCU

The board monitor will be very useful to see when the CPU is in Low Power mode.

2.2 Application Overview
Any application can be coupled with SleepWalking. In this example a real time watch application is implemented.
After the main initialization, the main application is based on a state machine sequence which allows the user to
jump from a state to another through interrupt which are directly triggered by acting on:

• The QTouch key sensor (CS0) used to wake up the SAM4L device from the WAIT mode using
SleepWalking

• The Push Button (PB0) used to go back in WAIT mode with SleepWalking enabled

Figure 2-2. PB0 and CS0 Board Implementation

According to this, the timing diagrams are the following:

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

11

Figure 2-3. Timing Diagrams on the QTouch Activity

An additional feature is implemented regarding the initial training. As described in the Figure 2-4, the user will be
able to exit from power saving mode thanks to the embedded light sensor which is directly connected to an ADC
input.

Figure 2-4. Wake the System up thanks to the Light Detection

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

12

2.2.1 Application Sequential Flowchart
Figure 2-5 sums up the SAM4L SleepWalking application flowchart.

Figure 2-5. SleepWalking Application Sequential Flowchart

2.2.2 Function Descriptions
The application initialization (app_init()) function is called after a power up and executes the following functions:

• sysclk_init(): The main clock is the PLL using the main oscillator running @48MHz
• board_init():Initializes the SAM4L-EK board
• init_qtouch():Initializes the Capacitive Touch (CATB) Module and the QTOUCH Library
• init_lcda():Initializes the Segment LCD Controller (LCDCA) to display the clock time
• init_pdca():Initializes the Peripheral DMA (PDCA)
• set_clock_time():Set Clock Time
• CATB_PEVC_init():Initializes the CATB module as a SleepWalking User peripheral with the AST as

generator
• PDCA_PEVC_init():Initializes the PDCA module as another SleepWalking User peripheral with the AST as

generator
• init_ast():Initializes the AST in calendar mode

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

13

Figure 2-6. app_init Flowchart

Peripheral Event System is enabled, allowing the interconnection between one generator and two users:

• AST (Asynchronous Timer) as the generator
• CATB (Capacitive Touch Module) as a user
• ADCIFE (Analog to digital Converter) as a user

As described in the application flowchart (Figure 2-5), after the application initialization function, the user will
either use a push button or a QTouch button to change the state of the sequential state machine implemented in
the code.

2.2.2.1 ACTIVE_MODE

This state is the RUN mode of the application where:

• The main clock is 48MHz
• The LCD display is ON with the clock time displayed on it
• We stay in this mode while an external interrupt event (EIC controller) is not detected (PB0 pushed)

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

14

2.2.2.2 INIT_SLEEPWALKING

This state allows preparing the SAM4L device to go back to Wait mode, and configure peripherals to perform
SleepWalking by:

• Disable PDCA used to manage transfer data to the LCD while the LCD is OFF to avoid extra power
consumption in SleepWalking

• Restore the slow clock running @12MHz with FastRC as clock source (PS1 available)
• Enable the CATB module clock to allow QTouch interrupt
• Configure the ADC
• Initialize the AST
• Enable the Peripheral Event Controller to interconnect AST, CATB and the ADC
• Disable the LCD clock and the LCD Back Light to avoid extra power consumption in SleepWalking
• Disable the external the External Interrupt Controller (EIC) to avoid interrupt coming from PB0
• Change the State machine state to go into SLEEPWALKING

2.2.2.3 SLEEPWALKING

In this mode, the CPU clock is OFF, and only the 32kHz oscillator is enabled for the AST trig event activity. The
PEVC is the peripheral which makes the SleepWalking available by interconnecting The AST as Generator and
the CATB as user.

2.2.2.4 INIT_ACTIVE_MODE

Once in the state machine, this state is an intermediary state which is used just after wake up (touch on CS0) and
allows configuring the peripheral used in ACTIVE state such as:

• Switch the clock to full speed to have a powerful data processing
• Disable the CATB module clock
• Enable PDCA used to manage transfer data to the LCD
• Enable and Initializes the LCD controller
• Enable the External Interrupt Controller (EIC)
• Enable LCD Back Light to display the time
• Change the State machine state to go into ACTIVE_MODE

2.3 Software Package Description
According to the “black box” mentioned previously, to correctly follow this application you have to download the
related package which includes the code used to implement the real time watch application.

You will find the files:

• sleepwalking_appnote.c
• sleepwalking_appnote.h

These files have to be added to your project, once it has been created. You will be able to find all the functions
used to realize the real time watch and to build therefore the application.

 A more detailed description of these files is provided in annexes of this application note.

2.4 Main Steps Summary
Here are the outlines which describe how a SleepWalking application will be implemented:

Once familiarized with the SAM4L SleepWalking dedicated feature, the first steps will be to prepare correctly the
project in Atmel Studio 6.

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

15

Then the SleepWalking implementation will begin by:

• Setup an Atmel Studio 6 Project:
– Create an Atmel Studio 6 Project using a specific board template
– Add the sleepwalking_appnote files (.c and .h)
– Import the related modules used in the application by using the ASF wizard

• Configure the Clocks and Low Power modes
– Configure the main System Clock setting to use the PLL0 using the main oscillator as clock source to

have a 48MHz running frequency
– Configure the main System Clock setting to be able to jump in Wait mode

• RCFAST oscillator running at 12MHz
• Allowing Fast wake up
• Power Scaling set to PS1

• Configure the Peripherals
– Configure the Asynchronous Timer (AST) to be able to trig vent for the other peripherals
– CATB and QTouch Library
– Configure the ADCIFE with the Light Sensor
– Configure the Peripheral Event System Controller (PEVC) to interconnect the AST trigger event to

the CATB autonomous QTouch sensing, or to the ADCIFE
– Configuring the External interrupt Controller (EIC) to go back to SleepWalking

• The last step will be to implement the State machine described in the Figure 2-5
• Compile and run the application with AST as generator and CATB and ADCIFE as users

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

16

3 Atmel Studio 6 Project Creation

3.1 Atmel Studio Introduction

Atmel Studio 6 is the integrated development platform (IDP) for developing and debugging Atmel ARM Cortex-M
processor-based and Atmel AVR microcontroller applications.

The Atmel Studio 6 IDP gives you a seamless and easy-to-use environment to write, build and debug your
applications written in C/C++ or assembly code. Atmel Studio 6 supports all 8- and 32-bit AVR, the new SoC
wireless family, SAM3 and SAM4 microcontrollers, and connects seamlessly to Atmel debuggers and
development kits.

Download link: http://www.atmel.com/microsite/atmel_studio6/

Additionally, the IDP now includes two new features designed to further enhance your productivity: Atmel Gallery
and Atmel Spaces:

• Atmel Gallery is an online apps store built in to Studio 6, allowing you to purchase both
in-house and third-party development tools and embedded software.
Link: http://gallery.atmel.com/

• Atmel Spaces is a collaborative workspace where you can securely share embedded
design and track progress of projects with your peers.
Link: http://spaces.atmel.com/gf/

3.1.1 IDE Introduction
As described in the Figure 3-1, the Atmel Studio 6 environment is composed of:

• An editor window, this is where the user will implement his code lines
• A Solution Explorer window, used to browse all your project directories
• An output window to read messages from the compiler

http://www.atmel.com/microsite/atmel_studio6/
http://gallery.atmel.com/
http://spaces.atmel.com/gf/
http://www.atmel.com/tools/ATMELSTUDIO.aspx

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

17

Figure 3-1. Atmel Studio 6.1 Overview

3.1.2 Atmel Software Framework (ASF) Introduction
The Atmel Software Framework (ASF) is a collection of embedded software for the Atmel Flash MCUs:
megaAVR®, AVR XMEGA®, AVR UC3, and ARM Cortex-M processor-based devices.

It simplifies the use of our microcontrollers by providing an abstraction to the hardware and high-value
middleware. ASF is designed to be used for evaluation, prototyping, design and production phases.

ASF is integrated in the Atmel Studio IDP with a graphical user interface or available as standalone for GCC,
IAR™ compilers. ASF can be downloaded for free.

ASF Standalone for GCC and IAR link: http://www.atmel.com/tools/AVRSOFTWAREFRAMEWORK.aspx

ASF Documentation: http://asf.atmel.com/docs/latest/

This example has been developed with the ASF version 3.13.1.

3.2 Create a Project under Atmel Studio using a Specific Board Template
After having launched Atmel Studio 6, the Start Page appears. To create a project using a specific board
template, the “create project” menu must be chosen as described in Figure 3-2.

http://www.atmel.com/tools/AVRSOFTWAREFRAMEWORK.aspx
http://asf.atmel.com/docs/latest/

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

18

Figure 3-2. Create a new Project from the Atmel Studio 6.1 Start Page

As shown in Figure 3-3, the new project window appears. The SAM4L-EK board template has to be selected
from the “Atmel-Boards” list which is selected in the “Installed Templates” from the left column. This will avoid all
the board descriptions and initialization code writing. All these functions are already implemented in the Atmel
Software Framework (ASF); it would be a mess to not keep this benefit. The project name and its related location
are set from this menu as well.

In this example the following naming is used:

Project Name SAM4L_SLEEPWALKING_AN (Application Note)

Location C:\\Users\username\Documents\atmel Studio\6.1\ (Default location)

Solution Name SAM4L_SLEEPWALKING_AN

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

19

Figure 3-3. SAM4L-EK Board Template Selection

Once these steps are done, the project is then generated and the main window appears as previously described
in the Figure 3-1.

At this time:

• A dedicated folder, called “SAM4L_SLEEPWALKING_AN”, is generated at the project location
“C:\Users\username\Documents\Atmel Studio\6.1”. This folder contains the project and all the source files.
All these files can be also opened from the solution explorer window (see Figure 3-1).

• The main.c file is automatically opened in the editor window and contains the following code lines:
/**

 * \file

 *

 * \brief Empty user application template

 *

 */

/**

 * \mainpage User Application template doxygen documentation

 *

 * \par Empty user application template

 *

 * Bare minimum empty user application template

 *

 * \par Content

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

20

 *

 * -# Include the ASF header files (through asf.h)

 * -# Minimal main function that starts with a call to board_init()

 * -# "Insert application code here" comment

 *

 */

/*

 * Include header files for all drivers that have been imported from

 * Atmel Software Framework (ASF).

 */

#include <asf.h>

int main (void)

{
 board_init();

 // Insert application code here, after the board has been initialized.

}

• “#include <asf.h>” means that the project is based on the ASF library. The asf.h file contains all the header
files related to the peripheral modules included into the project. When a project is created from a board
template, the asf.h file already contains the minimum required modules to set main clocks, and to initialize
the board, such as start up code, low level init, ioport, board description.
This file is automatically updated when a new module is added to the project. Refer to Section 3.4 Atmel
Software Framework Module Importation.

• “board_init();” refers to init.c file located under the following ASF folder.
SAM4L_SLEEPWALKING_AN\src\ASF\sam\boards\sam4l_ek\. This file allows a first configuration of the
board and complies with the ASF board description available at the same location: the sam4l_ek.h header
file.

3.3 Add Existing File to the Project
Once the project is created, the sleepwalking_appnote files (.c & .h) have to be added to the project. These files
are initially located into the Application note package, under the following path:
SAM4_L_EK_Application_Note_SleepWalking_ADCIFE_&_Qtouch_rev_0.1\ATMEL_STUDIO_PROJECT\Solu
tion\example library.

To add these files to the project:

• From the solution explorer window:
– Right click on the targeted destination folder, “src”
– Select the “Add” menu
– Select “Existing Item…” as described:

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

21

Figure 3-4. Access to the Add File Menu

• Browse the explorer and go to the path previously mentioned

“SAM4_L_EK_Application_Note_SleepWalking_ADCIFE_&_Qtouch_rev_0.1\\ATMEL_STUDIO_PROJE
CT\Solution\example library”

– Select the two files with CTRL
– Click on “Add”. The files must be copied into your src project folder. That means that a particular

care has to be taken regarding the add button. To do that, the “Add” option must be chosen, and not
the “Add as a link” option, which will not copy the file into the src directory.

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

22

Figure 3-5. Add the sleepwalking_appnote .c and .h Files

Once the files are added to the project, they should appear in the src folder from the Solution Explorer window
like this:

Figure 3-6. The sleepwalking_appnote .c and .h Files once added to the Atmel Studio 6 Project

3.4 Atmel Software Framework Module Importation
In this example several peripherals, services, drivers and components are used to implement the whole
SleepWalking application.

As a first task just after the project creation, is to add the related ASF modules.

To open the ASF wizard:

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

23

• Click on the button from the Standard Tool Bar. The ASF Wizard window tab appears from the editor
window area:

Figure 3-7. ASF Wizard Window Tab

Figure 3-8 and Figure 3-9 describe the list of modules which are included by default for a new project creation,
and the one which have to be added for this example of application.

Figure 3-8. The ASF Selected Modules List at the End of the Modules Importation

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

24

Figure 3-9. The ASF Selected Modules List at the Project Creation

As described in Chapter 2 SleepWalking Application Description, several peripherals will be used in this
application. Therefore the following modules have to be imported:

• ADCIFE - ADC Interface. Driver for the ADCIFE (Analog-to-Digital Converter Interface). Provides
functions for configuration of conversion parameters (up to 12-bit signed at 350ksps), channel sequencing
(max. 16 channels, w/ 16 different inputs and up to 64x gain), window monitoring, interrupt and conversion
triggering

• AST - Asynchronous Timer. Driver for the AST: Provides functions for configuring and operating the AST
in the calendar or timer/counter modes. Or to configure the Asynchronous Timer (AST) to be able to trig
event for the other peripherals

• EIC - External Interrupt Controller. Provides functions for EIC allowing pins to be configured as external
interrupts. As for example to configure the External interrupt Controller (EIC) to go back to SleepWalking

• PEVC - Peripheral Event Controller Driver for SAM. Provide a unified interface for the configuration and
management of the event channels within the device. For example to configure the Peripheral Event
System Controller (PEVC) to interconnect the AST trigger event to the CATB autonomous QTouch
sensing, or to the ADCIFE

• QTouch Library for SAM4L: CATB and QTouch Library
• Exclusively used for the Black Box Application:

– PDCA - Peripheral DMA Controller. The Peripheral DMA Controller transfers data between
on-chip serial peripherals and the on- and/or off-chip memories. The link between the PDC and a
serial peripheral is operated by the AHB to APB bridge

– LCDCA Controller driver. Driver for the LCDCA controller. Provides functions for using the on-chip
LCDCA controller

– Sam.components.display.c42364a (component): Low-level driver for the C42364 LCD Glass

To import a module into a new project is a very simple task in Atmel Studio 6. Follow the instructions below to add
a module and repeat them again for all the modules to be added into the project.

Here is a module importation example:
To add the AST (Asynchronous Timer) Module into the Atmel Studio Project:

• Select from the “Available Modules” list the AST - Asynchronous Timer (driver) item

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

25

Figure 3-10. Module Selection

• Click on the “Add” button

Figure 3-11. Module Addition

• Repeat these last two steps (Select and Add) for the ADCIFE, EIC, PEVC, the QTouch Library, and the

LCD Glass Drivers
• Finally click on the “Apply” button to apply your modules importation to your project

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

26

Figure 3-12. Module Addition

Figure 3-13. Module Addition Processing

Once the importation process has finished, the Atmel Studio 6 project should contain all the driver files related to
the modules which just has been added. The asf.h file is also automatically modified accordingly. The table below
just sums up the main resulting project modifications after the modules importation:

Modules Driver paths files Config. files

ADCIFE SAM4L_SLEEPWALKING_AN\src\ASF\sam\drivers\adcife\ adcife.c

adcife.h

conf_adcife.h

AST SAM4L_SLEEPWALKING_AN\src\ASF\sam\drivers\ast\ ast.c

ast.h

conf_ast.h

EIC SAM4L_SLEEPWALKING_AN\src\ASF\sam\drivers\eic\ eic.c

eic.h

conf_lcdca.h

PEVC SAM4L_SLEEPWALKING_AN\src\ASF\sam\drivers\bpm\

SAM4L_SLEEPWALKING_AN\src\ASF\sam\drivers\flashcalw\

bpm.c

bpm.h

flashcalw.c

flashcalw.h

QTouch SAM4L_SLEEPWALKING_AN\src\ASF\thirdparty\qtouch\devspecific\sam4\sam4l\lib\gcc\

SAM4L_SLEEPWALKING_AN\src\ASF\thirdparty\qtouch\devspecific\sam4\sam4l\include\

libsam4l-qt-gnu.a

touch_api_sam4l.h

touch_config_sam4l.h

LCD SAM4L_SLEEPWALKING_AN\src\ASF\sam\drivers\lcdca\ lcdca.c

lcdca.h

conf_lcdca.h

conf_c42364a_lcdca.h

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

27

All the configuration files should be added to the project in the
SAM4L_SLEEPWALKING_AN\SAM4L_SLEEPWALKING_AN\src\config\ folder, as described below:

Figure 3-14. The Configuration Folder

3.5 Debugger Settings
The SAM4L-EK board is designed to use the Serial Wire Debug protocol (SWD) instead of standard JTAG. Thus,
the project has to be correctly configured to use the SWD interface in order to be able to program the chip. To
configure the project to use the SWD protocol instead of JTAG, the project properties have to be modified as
follow:

• As described in Figure 3-13, from the solution explorer window, right click on the
SAM4L_SLEEPWALKING_AN project file name and select “Properties”

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

28

Figure 3-15. Open Project Properties in Atmel Studio 6.1

• Select then, as the Figure 3-14 shows:

– Tool Tab
– Then, J-Link- debugger/programmer (J-Link
– Finally the Serial Wire Interface (SWD)

Figure 3-16. Change the Debugger/programmer Interface in Atmel Studio 6.1

• Save the new project properties to apply them simply by clicking on the save button:

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

29

4 System Initialization
In this chapter the code implementation will follow the functional diagram described by the Figure 2-6 app_init
Flowchart in the Section 2.2.2 Function Descriptions.

4.1 Starting Point
As a starting point, the main.c file looks like this:

#include <asf.h>

int main (void)

{
 board_init();

 // Insert application code here, after the board has been initialized.

}

Before entering in the main function the program will start by the low level initialization, which is implemented in
the startup_sam4l.c located in the following path:
SAM4L_SLEEPWALKING_AN\src\ASF\sam\utils\cmsis\sam4l\source\templates\gcc\.

At this step, the board_init() function is the only content of the main function. Its aim consists into configuring the
IOPORTs of the chip according to the SAM4L-EK hardware components. This function is implemented in the
init.c file located in the folder SAM4L_SLEEPWALKING_AN\src\ASF\sam\boards\sam4l_ek\.

As a preliminary step, we have to include to the main.c file the example library files.

4.1.1 Include Example Library File
The sleepwalking_appnote.c and .h files contain the “Black Box” application code and they have to be included
from the main.c file as described:

 In the whole document, all the modifications are highlighted in BOLD.

/*

 * Include header files for all drivers that have been imported from

 * Atmel Software Framework (ASF).

 */

#include <asf.h>

/* Include sleepwalking_appnote header */

#include "sleepwalking_appnote.h"

int main (void)

{

 board_init();

 // Insert application code here, after the board has been initialized.

}

4.2 Application Init Function Implementation
All the initialization functions are grouped into one app_init() function (refer to Figure 2-6). Therefore the main
function can be directly modified as follow:

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

30

As described above, the app_init function has been implemented just before the main function, and the
board_init function moved from the main function to the app_init function.

 In the next coming paragraph the focus will be done on the app_init function imple-
mentation to reach the model described by Figure 2-6.

4.3 Application’s Clock Setting Configuration
When ASF is used, the clock settings functions are already provided thanks to the System Clock Control module
service. This module has the following implementation:

Modules Driver paths files Config files
Clocks SAM4L_SLEEPWALKING_AN\src\ASF\common\services\clock\sam4l\ sysclk.c

sysclk.h
pll.c
pll.h
osc.c
osc.h
genclk.h
dfll.c
dfll.h

conf_clock.h

/*

 * Include header files for all drivers that have been imported from

 * Atmel Software Framework (ASF).

 */

#include <asf.h>

/* Include sleepwalking_appnote header */

#include "sleepwalking_appnote.h"

/**

 * Application Initialization function Implementation

 */

static void app_init(void)

{

 /* Initialize the SAM4L-EK board */

 board_init();

}//end app_init

/**

 * MAIN Function

 */

int main (void)

{

 app_init();

 // Insert application code here, after the board has been initialized.

}

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

31

As described above, each couple of .c and .h files relates to a SAM4L dedicated clock source driver, except the
sysclk.c and .h files which implement functions configuring the clock sources according to the conf_clock.h
located in the folder SAM4L_SLEEPWALKING_AN\src\config\ which is described below:

/**

 * \file

 *

 * \brief Chip-specific system clock manager configuration

 *

 */

#ifndef CONF_CLOCK_H_INCLUDED

#define CONF_CLOCK_H_INCLUDED

//#define CONFIG_SYSCLK_INIT_CPUMASK (1 << SYSCLK_OCD)

//#define CONFIG_SYSCLK_INIT_PBAMASK (1 << SYSCLK_IISC)

//#define CONFIG_SYSCLK_INIT_PBBMASK (1 << SYSCLK_USBC_REGS)

//#define CONFIG_SYSCLK_INIT_PBCMASK (1 << SYSCLK_CHIPID)

//#define CONFIG_SYSCLK_INIT_PBDMASK (1 << SYSCLK_AST)

//#define CONFIG_SYSCLK_INIT_HSBMASK (1 << SYSCLK_PDCA_HSB)

#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_RCSYS

//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_OSC0

//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_PLL0

//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_DFLL

//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_RC80M

//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_RCFAST

//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_RC1M

/* RCFAST frequency selection: 0 for 4MHz, 1 for 8MHz and 2 for 12MHz */

//#define CONFIG_RCFAST_FRANGE 0

//#define CONFIG_RCFAST_FRANGE 1

//#define CONFIG_RCFAST_FRANGE 2

/* 0: disable PicoCache, 1: enable PicoCache */

#define CONFIG_HCACHE_ENABLE 1

/*

 * To use low power mode for flash read mode (PS0, PS1), don't define it.

 * To use high speed mode for flash read mode (PS2), define it.

 *

 * \note

 * For early engineer samples, ONLY low power mode support for flash read mode.

 */

//#define CONFIG_FLASH_READ_MODE_HIGH_SPEED_ENABLE

/* Fbus = Fsys / (2 ^ BUS_div) */

#define CONFIG_SYSCLK_CPU_DIV 0

#define CONFIG_SYSCLK_PBA_DIV 0

#define CONFIG_SYSCLK_PBB_DIV 0

#define CONFIG_SYSCLK_PBC_DIV 0

#define CONFIG_SYSCLK_PBD_DIV 0

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

32

//#define CONFIG_USBCLK_SOURCE USBCLK_SRC_OSC0

#define CONFIG_USBCLK_SOURCE USBCLK_SRC_PLL0

//#define CONFIG_USBCLK_STARTUP_TIMEOUT (OSC0_STARTUP_TIMEOUT*(1000000/OSC_RCSYS_NOMINAL_HZ))

/* Fusb = Fsys / USB_div */

#define CONFIG_USBCLK_DIV 1

#define CONFIG_PLL0_SOURCE PLL_SRC_OSC0

/* Fpll0 = (Fclk * PLL_mul) / PLL_div */

#define CONFIG_PLL0_MUL (48000000UL / BOARD_OSC0_HZ)

#define CONFIG_PLL0_DIV 1

//#define CONFIG_DFLL0_SOURCE GENCLK_SRC_RCSYS

//#define CONFIG_DFLL0_SOURCE GENCLK_SRC_OSC32K

//#define CONFIG_DFLL0_SOURCE GENCLK_SRC_RC32K

/* Fdfll = (Fclk * DFLL_mul) / DFLL_div */

//#define CONFIG_DFLL0_FREQ 48000000UL

//#define CONFIG_DFLL0_MUL (CONFIG_DFLL0_FREQ / BOARD_OSC32_HZ)

//#define CONFIG_DFLL0_DIV 1

#endif /* CONF_CLOCK_H_INCLUDED */

As shown from this file above, the clock configuration is determined by the definition settings chosen by the user.
As explained by the Figure 2-5 and then by the Section 2.2.2.1 ACTIVE_MODE, just after the initialization
process, the application will jump directly into the Active mode of the state machine.

Therefore, the parameters of the conf_clock.h file must be set to get:

• 48MHz core clock
• Using the on board crystal oscillator
• Using the PLL0 for the multiplication

To get this configuration the main parameters to modify are:

Parameter definition Parameter setting definitions Comments
CONFIG_SYSCLK_SOURCE =SYSCLK_SRC_PLL0 System Clock source set to PLL0. This value is then set in the

MCSEL bitfield of the MCCTRL register.
CONFIG_PLL0_SOURCE =PLL_SRC_OSC0 PLL0 clock source is the main crystal oscillator (OSC0) running

@ 12MHz. This value is then set into the PLLOSC bitfield of the
PLL0 control Register. And the OSC0 is enabled
(SCIF.OSCEN).

CONFIG_PLL0_MUL =(48000000/BOARD_OSC0_HZ) =4 The multiply factor of the PLL0. This value is then set into the
PLLMUL bitfield of the PLL0 control Register. Here the on board
oscillator must multiplied by 4 (12MHz*4 = 48MHz).

CONFIG_PLL0_DIV =1 (no division required) The division factor of the PLL0. This value is then set into the
PLLDIV bitfield of the PLL0 control Register.

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

33

 All the parameter setting definitions are described in the sysclk.h, osc.h, and in the pll.h
files.

Here are the modifications to be done from the current state of the conf_clock.h file:

/**

 * \file

 *

 * \brief Chip-specific system clock manager configuration

 *

 */

#ifndef CONF_CLOCK_H_INCLUDED

#define CONF_CLOCK_H_INCLUDED

//#define CONFIG_SYSCLK_INIT_CPUMASK (1 << SYSCLK_OCD)

//#define CONFIG_SYSCLK_INIT_PBAMASK (1 << SYSCLK_IISC)

//#define CONFIG_SYSCLK_INIT_PBBMASK (1 << SYSCLK_USBC_REGS)

//#define CONFIG_SYSCLK_INIT_PBCMASK (1 << SYSCLK_CHIPID)

//#define CONFIG_SYSCLK_INIT_PBDMASK (1 << SYSCLK_AST)

//#define CONFIG_SYSCLK_INIT_HSBMASK (1 << SYSCLK_PDCA_HSB)

//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_RCSYS TO COMMENT

//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_OSC0

#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_PLL0

//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_DFLL

//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_RC80M

//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_RCFAST

//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_RC1M

/* RCFAST frequency selection: 0 for 4MHz, 1 for 8MHz and 2 for 12MHz */

//#define CONFIG_RCFAST_FRANGE 0

//#define CONFIG_RCFAST_FRANGE 1

//#define CONFIG_RCFAST_FRANGE 2

/* 0: disable PicoCache, 1: enable PicoCache */

#define CONFIG_HCACHE_ENABLE 1

/*

 * To use low power mode for flash read mode (PS0, PS1), don't define it.

 * To use high speed mode for flash read mode (PS2), define it.

 *

 * \note

 * For early engineer samples, ONLY low power mode support for flash read mode.

 */

//#define CONFIG_FLASH_READ_MODE_HIGH_SPEED_ENABLE

/* Fbus = Fsys / (2 ^ BUS_div) */

#define CONFIG_SYSCLK_CPU_DIV 0

#define CONFIG_SYSCLK_PBA_DIV 0

#define CONFIG_SYSCLK_PBB_DIV 0

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

34

#define CONFIG_SYSCLK_PBC_DIV 0

#define CONFIG_SYSCLK_PBD_DIV 0

//#define CONFIG_USBCLK_SOURCE USBCLK_SRC_OSC0

#define CONFIG_USBCLK_SOURCE USBCLK_SRC_PLL0

//#define CONFIG_USBCLK_STARTUP_TIMEOUT (OSC0_STARTUP_TIMEOUT*(1000000/OSC_RCSYS_NOMINAL_HZ))

/* Fusb = Fsys / USB_div */

#define CONFIG_USBCLK_DIV 1

#define CONFIG_PLL0_SOURCE PLL_SRC_OSC0

/* Fpll0 = (Fclk * PLL_mul) / PLL_div */

#define CONFIG_PLL0_MUL (48000000UL / BOARD_OSC0_HZ)

#define CONFIG_PLL0_DIV 1

//#define CONFIG_DFLL0_SOURCE GENCLK_SRC_RCSYS

//#define CONFIG_DFLL0_SOURCE GENCLK_SRC_OSC32K

//#define CONFIG_DFLL0_SOURCE GENCLK_SRC_RC32K

/* Fdfll = (Fclk * DFLL_mul) / DFLL_div */

//#define CONFIG_DFLL0_FREQ 48000000UL

//#define CONFIG_DFLL0_MUL (CONFIG_DFLL0_FREQ / BOARD_OSC32_HZ)

//#define CONFIG_DFLL0_DIV 1

#endif /* CONF_CLOCK_H_INCLUDED */

At this time the conf_clock.h file is correctly modified according to the application requirements. But the main.c
file must be modified by calling the sysclk_init function (implemented in the sysclk.c file) from the app_init
function as described:

/**

 * Initialize the Application System and Peripherals for the example.

 */
static void app_init(void)

{

 /* Initialize the SAM4L-EK board */

 board_init();

 /* Application’s clock setting configuration */

 sysclk_init();

}//end app_init

The sysclk_init function is the ASF function used to apply these modifications into the related registers
(MCCTRL.MCSEL, SCIF.OSCEN etc…).

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

35

5 SAM4L Peripherals Configuration Method

5.1 Application Peripheral Configuration Overview
After having set the clock correctly, each peripheral configuration function can be implemented as described in
Figure 2-6 app_init Flowchart. The first function would be the init_ADCIFE, and the last would be the init_AST.
The aim is to configure the peripheral registers getting:

• ADC and the CATB (touch) as peripheral users interconnected through the PEVC, to the AST which is a
generator as described in Figure 5-1

• EIC to catch interrupts coming from PB0
• The “Black Box” application initialized (set the clock time)

Figure 5-1. PEV SleepWalking Matrix

5.2 Methodology
By using ASF, the methodology to configure a peripheral is really similar between each peripheral. Before
starting to implement the peripheral configuration functions, let’s try to summarize the step by step method:

1. Read main information at the peripheral chapter from product datasheet (for sure…).
2. Check if any hardware board configuration is required before peripheral using (Jumpers, PIO multiplexing,

external components relationships).

 These two first steps are not specific to ASF using…

3. Use the online API documentation which provides simple example on each ASF modules. This will explain
how the driver files (.c and .h) (e.g.: adc.h and adc.c) are built to identify:

1. What are the existing structures to be used to configure the peripheral?
2. What the functions to be used as well..?

4. Declare the configuration structure type variables.
5. Get the default values of each structure field (if required).
6. Set The configuration Structure.
7. Apply the settings.

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

36

8. Enable the peripheral clocks (at bridge level and at cell level).
9. Enable interrupts (at core level and at peripheral level).

By assuming that the user has already performed Step 1 for the next coming paragraphs, the peripheral
configurations should be really close to this methodology starting from Step 2.

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

37

6 Analog to Digital Converter (ADCIFE) Configuration

6.1 Check any Hardware Configuration Related to the Peripheral
The aim is to use the on board Light Sensor on the SAM4L-EK, which is directly connected to the PB5 GPIO as
described by the schematic below: (refer to the SAM4L-EK design manual).

Figure 6-1. How to Connect the Embedded Ii

This is done by closing the J101 jumper in position 2-3.

6.2 Use the Online API Documentation which provides Simple Example on ADCIF
To open the online documentation directly from Atmel Studio 6, make sure having the ASF Explorer window
opened:

• Click on ASF menu and choose ASF Explorer:

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

38

• The ASF Explorer window should appear instead of the Solution explorer. User can switch from Solution to
ASF explorers using tabs. The module is then displayed from the ASF Explorer as shown:

• Deploy the ADCIFE module from this list and click on the API Documentation link, to directly access to the
online ADCIFE API documentation:

• The following window should appear from an Internet browser.

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

39

– Click on the link: See Quickstart guide for SAM ADCIFE driver, as described after

http://asf.atmel.com/docs/3.13.1/sam4l/html/sam_adcife_quickstart.html

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

40

This is the Quickstart guide for the SAM ADCIFE driver, with step-by-step instructions on how to configure and
use the driver in a selection of use cases.

The use cases contain several code fragments. The code fragments in the steps for setup can be copied into a
custom initialization function, while the steps for usage can be copied into, e.g., the main application function.

Thanks to the API documentation, the process to do is fully based on the workflow described above.

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

41

6.3 Code Implementation

6.3.1 Configure the ADCIFE using the Quick Start Guide Workflow
From the API Documentation:

6.3.1.1 Define the ADCIFE Interrupt Handler in the Application
/*

 * Include header files for all drivers that have been imported from

 * Atmel Software Framework (ASF).

 */

#include <asf.h>

/* Include sleepwalking_appnote header */

#include "sleepwalking_appnote.h"

/**

 * ADCIFE callback when light sensor detection

 */

void ADCIFE_Callback_sleepwalking(void)

{

 /* clear All interrupt flags for the ADCIFE */

 adc_clear_status(&g_adc_inst,

 ADCIFE_SCR_TTO |

 ADCIFE_SCR_SMTRG |

 ADCIFE_SCR_WM |

 ADCIFE_SCR_LOVR |

 ADCIFE_SCR_SEOC);

 /* Change the state of the sequential variable to initialize the Active Mode*/

 seq_state = INIT_ACTIVE_MODE;

 /* Switch ON the LED0 to see when interrupt Hits */

 ioport_set_pin_level(PIN_PC10,LED0_ACTIVE_LEVEL);

}

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

42

6.3.1.2 Configure ADC Module

Before starting the initialization of the ADC module, the ADC instance has to be declared at the beginning of the
main file as a global variable:

/* Include sleepwalking_appnote header */
#include "sleepwalking_appnote.h"

/* ADC Instance declaration */
struct adc_dev_inst g_adc_inst;

In this application, the whole ADCIFE configuration is done by the function init_ADCIFE(), just before the
app_init:

• Implement the init_ADIFE function which will be used to perform the workflow Step 2 to 5
/**

 * Analog to Digital Converter (ADCIFE) configuration

 */

void init_ADCIFE(void)

{

}//end init ADCIFE

/**
 * Application Initialization function Implementation
 */
static void app_init(void)
{

As described from the workflow above several steps are implemented through three dedicated structures which
are already declared in the adcife.h file:

• The ADC configuration structure (struct adc_config)
/**

 * Analog to Digital Converter (ADCIFE) configuration

 */

void init_ADCIFE(void)

{

 /** ADC Configuration structure. **/

 struct adc_config adc_cfg;

 //0.625*VCC, 75k speed, DIV16, Generic clock sources

 /* System clock division factor is 16 */

 adc_cfg.prescal = ADC_PRESCAL_DIV16;

 /* The Generic clock clock is used */

 //.clksel = ADC_CLKSEL_GCLK,

 adc_cfg.clksel = ADC_CLKSEL_GCLK;

 /* Max speed is 75K */

 adc_cfg.speed = ADC_SPEED_75K;

 /* ADC Reference voltage is 0.625*VCC */

 adc_cfg.refsel = ADC_REFSEL_2;

 /* Enables the Startup time */

 adc_cfg.start_up = CONFIG_ADC_STARTUP; //enable the ADC start up value==> the ADC need 12

 ADC_CLK at least before starting to convert (see

 conf_adcife.h)

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

43

• The ADC sequencer configuration structure (struct adc_seq_config)
 /** ADC Sequencer Configuration structure. **/

 struct adc_seq_config adc_seq_cfg;

 /* Select Vref for shift cycle */

 adc_seq_cfg.zoomrange = ADC_ZOOMRANGE_0;

 /* Pad Ground */

 adc_seq_cfg.muxneg = ADC_MUXNEG_1;

 /* Input PB5 ==> Light Sensor */

 adc_seq_cfg.muxpos = ADC_MUXPOS_6;

 /* Enables the internal voltage sources */

 adc_seq_cfg.internal = ADC_INTERNAL_2;

 /* Disables the ADC gain error reduction */

 adc_seq_cfg.gcomp = ADC_GCOMP_DIS;

 /* Disables the HWLA mode */

 adc_seq_cfg.hwla = ADC_HWLA_DIS;

 /* 12-bits resolution */

 adc_seq_cfg.res = ADC_RES_12_BIT;

 /* Enables the single-ended mode */

 adc_seq_cfg.bipolar = ADC_BIPOLAR_SINGLEENDED;

 /* Use the internal Trig source which would correspond to the peripheral event system and

so the AST */

 adc_seq_cfg.trgsel = ADC_TRIG_INTL_TRIG_SRC;

 /* Set gain to 0.5 */

 adc_seq_cfg.gain = ADC_GAIN_HALF;

• The ADC channel configuration structure (struct adc_ch_config)

 /** ADC Channel Configuration structure. **/

 struct adc_ch_config adc_ch_cfg;

 adc_ch_cfg.seq_cfg = &adc_seq_cfg;

 /* Internal Timer Max Counter */

 adc_ch_cfg.internal_timer_max_count = 60;

 /* Window monitor mode is on */

 adc_ch_cfg.window_mode = 3; //Window Mode 3: active when LT < result<HT , Channel 6 enabled

 adc_ch_cfg.low_threshold = 200;

 adc_ch_cfg.high_threshold = 300;

• Initialize the previous settings
 /* Enable The GPIO for the Light Sensor*/

 ioport_set_pin_mode(GPIO_PB05A_ADCIFE_AD6, MUX_PB05A_ADCIFE_AD6);

 ioport_disable_pin(GPIO_PB05A_ADCIFE_AD6);

 /* Apply ADC Configurations */

 adc_init(&g_adc_inst, ADCIFE, &adc_cfg);

 /* Enable the ADC */

 adc_enable(&g_adc_inst);

 /* ADC Sequencer Config */

 adc_ch_set_config(&g_adc_inst, &adc_ch_cfg);

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

44

 /* Window mode interupt config */

 adc_set_callback(&g_adc_inst,

 ADC_WINDOW_MONITOR,

 ADCIFE_Callback_sleepwalking,

 ADCIFE_IRQn, 1);

}//end init ADCIFE

 The I/O Port PB05 MUX has to be configured as AD6 input (analog input to be sampled
by the ADC); this is done with ioport_set_pin_mode and ioport_disable_pin above.

• And finally the app_init function can be updated as:

/**

 * Application Initialization function Implementation

 */

static void app_init(void)

{

 /* Initialize the SAM4L-EK board */

 board_init();

 /* Application’s clock setting configuration */

 sysclk_init();

 /* Analog to Digital Converter (ADCIFE) configuration */

 init_ADCIFE();

}

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

45

7 Capacitive Touch (CATB) Configuration

7.1 Autonomous Touch Overview
The objective of this application is to perform touch measurement without CPU intervention and to wake up the
CPU from sleep when the autonomous sensor electrode is touched / untouched. On wakeup, CPU should switch
ON/OFF a LED based on the touch status. In this task the SleepWalking feature of the SAM4L device will be
used in order to perform Autonomous touch sensing.

 Further details are given from the application note “Atmel AT04150: QTouch with
SAM4L Training Guide”.

As this peripheral does not have its own API documentation, the datasheet has to be used to identify the register
to be configured. As a result, the main steps to configure the CATB module are listed below:
• First implement the init_qtouch function just before the app_init
• Enable the CATB Peripheral Clock which is not enabled by default after a RESET (unlike the AST)
• Enable the software reset to reinitialize the CATB module
• Enable the CATB clock at cell level
• Enable Peripheral event in CATB module
• Enable Interrupt at core level
• Enable Interrupt at Peripheral level
• Implement the CATB callback required to wake up the core from wait mode
• Update the app_init to call the init_qtouch function

 The QTouch library configuration will not be covered in this Application Note. But it is
already implemented in the code, QTouch functions are mandatory to set the sensor
threshold value, discharge time, etc. The GPIO settings are available in the
touch_sensors_init() function described in the touch.c file located in /src/qtouch folder.

7.2 Code Implementation
• First implement the init_qtouch function just before the app_init

/**

 * Initialize the CATB and the Qtouch library for the example.

 */

static void init_qtouch(void)

{

}//End init_qtouch

/**

 * Application Initialization function Implementation

 */

static void app_init(void)

{

• Set the CATB bit in the Power Manager Clock Mask Register System to enable the CATB Peripheral
Clock:

http://www.atmel.com/images/atmel-42180-qtouch-with-sam4l-training-guide_ap-note_at04150.pdf
http://www.atmel.com/images/atmel-42180-qtouch-with-sam4l-training-guide_ap-note_at04150.pdf

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

46

/**

 * Initialize the CATB and the Qtouch library for the example.

 */

static void init_qtouch(void)

{

 /*Enable CATB clock at peripheral level */

 sysclk_enable_peripheral_clock(CATB);

• Enable the software reset to reinitialize the CATB module by setting the SWRST bit field of the CATB
configuration register:
 /* Perform a qtouch Soft reset */

 CATB->CATB_CR|=CATB_CR_SWRST;

• Set the EN bit in CATB configuration Register to enable the CATB Clock at Cell level:
 /* enable CATB clock at cell level in the control register(EN bit) */

 CATB->CATB_CR|=CATB_CR_EN;

• Set the ETRIG bit in CATB configuration Register, to enable Peripheral event in CATB module:
 /* Enable Peripheral event in CATB module by setting the ETRIG bit */

 CATB->CATB_CR|=CATB_CR_ETRIG;

• Initialize the QTouch sensor Library by calling the touch_autonomous_sensor_enable() function:
 /* Configure the QTouch Library to enable the autonomous QTouch detection */

 touch_autonomous_sensor_enable();

• Adjust the CS0 sensor sensitivity by setting the CR.ESAMPLE register bitfield:
 /* Adjust the Qtouch sensitivity */

 CATB->CATB_CR |= CATB_CR_ESAMPLES(13);

• Enable CATB_IRQn Interrupt at core level:
 /* Enable CATB IRQN interrupts at core level (NVIC) */

 NVIC_ClearPendingIRQ(CATB_IRQn);

 NVIC_SetPriority(CATB_IRQn,0);

 NVIC_EnableIRQ(CATB_IRQn);

• Enable CATB Interrupt at peripheral level by setting the INTCH bit for an In Touch detection as described
on the next page:
 /*Enable the in touch (INTCH) IT at Peripheral Level*/

 CATB->CATB_IER|=CATB_IER_INTCH;

}//End init_qtouch

• At the beginning of the main.c file Implement the CATB callback required to wake up the core from wait
mode:
/**

 * CATB intouch callback.

 */

void CATB_callback_sleepwalking(void)

{

 /* Clear CATB IT */

 CATB->CATB_SCR = CATB_SCR_INTCH;

 while (CATB->CATB_ISR & CATB_ISR_INTCH) {

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

47

 }

 /* Change the state of the sequential variable to initialize the Active

 * Mode*/

 seq_state = INIT_ACTIVE_MODE;

 ioport_set_pin_level(PIN_PC10,LED0_ACTIVE_LEVEL);

}//End CATB_callback_sleepwalking

• Update the app_init to call the init_qtouch function:

/**

 * Application Initialization function Implementation

 */

static void app_init(void)

{

 /* Initialize the SAM4L-EK board */

 board_init();

 /* Application’s clock setting configuration */

 sysclk_init();

 /* Analog to Digital Converter (ADCIFE) configuration */

 init_ADCIFE();

 /* Initialize the CATB module and the Qtouch Library */

 init_qtouch();

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

48

8 Asynchronous Timer (AST) Configuration
In this chapter, we will learn how to configure the Asynchronous Timer of SAM4L device in order to generate a
periodic event every second.

To do so, the AST will be configured in Calendar mode and will use the 32kHz as input to generate the event.

It is mandatory to use an external 32kHz oscillator in order to have the best precision for our watch application.

As for most of the integrated peripherals, the AST initialization should respect a specific workflow.

• First implement the init_ast function just before the app_init
• Enable first the OSC32K (AST clock source without prescaler)
• Enable the AST clock at cell level
• Configure the AST registers to set the AST as

– Set the AST in counter mode
– Set the OSC32K as the AST clock source
– Initialize the AST counter value to 0

• Apply AST configuration
• Initialize Calendar value
• Set Periodic event 0 every seconds
• Enable the Event Interface for Peripheral Event system use in the AST Level
• Update the app_init to call the ast_qtouch function

 The AST Peripheral Clock is already enabled after a RESET.

8.1 Code Implementation
• First implement the init_ast function just before the app_init.

/**

 * Initialize the Asynchronous Timer (AST) in calendar mode using

 * the 32Khz oscillator as clock source.

 */

void init_ast(void)

{

}//end init_ast

/**

 * Application Initialization function Implementation

 */

static void app_init(void)

{

• Enable first the OSC32K (AST clock source without prescaler)

AST

(Calendar Mode)
OSC32 Event every second

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

49

/**

 * Initialize the Asynchronous Timer (AST) in calendar mode using

 * the 32Khz oscillator as clock source.

 */

void init_ast(void)

{

 osc_enable(OSC_ID_OSC32);

 /* wait while the OSC has not started */

 while(!osc_is_ready(OSC_ID_OSC32));

• Enable the AST clock at cell level
 /*Enable the AST clock at peripheral bridge level and at cell level */

 ast_enable(AST);

• Configure the AST registers to set the AST as:
– Set the AST in calendar mode
– Set the OSC32K as the AST clock source
– Initialize the AST calendar value to “calendar” (see annexes sleepwalking_appnote.h) file for the

calendar definition
 /*Configure the AST registers to

 • Set the AST in counter mode

 • Set the OSCI32KHz as the AST clock source

 • Initialize the AST counter value to 0 */

 struct ast_config ast_conf;

 ast_conf.mode = AST_CALENDAR_MODE; // we set the AST in CALendar mode

 ast_conf.osc_type = AST_OSC_32KHZ; //The OSCI 32KHz is the AST clock source

 ast_conf.psel = AST_PSEL_32KHZ_1HZ; //We want a 1s clock frequency

 ast_conf.calendar = calendar; // the calendar struct is used to set up the calendar

 register

void ast_set_config(&ast_cfg);

Where ast_cfg is an instance of the structure “ast_config”, defined below:

• ast_mode_t mode Set counting mode

• ast_oscillator_type_t osc_type Set oscillator input

• uint8_t psel Set counting Prescaler

• uint32_t counter Set initial counter value(counter mode)

• struct ast_calendar calendar Set initial calendar value(calendar mode)

• Apply AST configuration
 /* Apply AST configuration */

 ast_set_config(AST, &ast_conf);

• Initialize Calendar value
 /* Initialize Calendar value*/

 ast_write_calendar_value(AST, calendar);

http://asf.atmel.com/docs/3.7.2/sam4l/html/group__group__sam__drivers__lcdca.html#ga9e5d20688eb6fb39b011ea85b84a3846

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

50

// Set Periodic event
void ast_write_periodic0_value (Ast *ast, uint32_t pir)

The pir argument allows setting periodic event frequency according to following formula:

𝑓𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐_𝑒𝑣𝑒𝑛𝑡 =
𝑓𝑜𝑠𝑐

(2𝑝𝑖𝑟+1)

 Set Periodic event 0 every seconds.

/*Set Periodic event 0 every 0.5 second INSEL bitfield of the Periodic interval register */

 ast_write_periodic0_value(AST, AST_PSEL_32KHZ_1HZ-1);

 Enable the Event Interface for Peripheral Event system use in the AST Level.

/*Enable the Event Interface for Peripheral Event system use in the AST Level*/

 ast_enable_event(AST, AST_EVENT_PER);

}//end init_ast

 Update the app_init to call the init_qtouch function.

/**

 * Application Initialization function Implementation

 */

static void app_init(void)

{

 /* Initialize the SAM4L-EK board */

 board_init();

 /* Application’s clock setting configuration */

 sysclk_init();

 /* Analog to Digital Converter (ADCIFE) configuration */

 init_ADCIFE();

 /* Initialize the CATB module and the Qtouch Library */

 init_qtouch();

 /* Initialize & configure the AST */

 init_ast();

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

51

9 Peripheral Event System Controller (PEVC) Configuration
The aim of this Peripheral is to interconnect the AST trigger event to the CATB autonomous QTouch sensing and
to the ADCIFE Start Conversion triggering as described below:

The main steps to do this are listed below:

• First implement the init_PEVC function just before the app_init
• Declare a peripheral event channel configuration structure
• Enable the PEVC Peripheral Clock which is not enabled by default after a RESET (unlike the AST)

 From this point, one can be noticed that the same steps are reproduced for the ADCIFE.

• Get the event channel default config to initialize the structure
• Configure the PEVC channel to link the

– AST - Periodic Event 0 (Generator Channel no. 8) to the CATB - Trigger one autonomous touch
sensing Event (User Channel no. 6), refer to the datasheet for more details

• Enable the PEVC channel which corresponds to CATB trigger one autonomous touch sensing
• Update the app_init to call the init_PEVC function

9.1 Code Implementation
• First implement the init_PEVC function just before the app_init:

/**

 * Initialize the Peripheral Event Controller for the CATB.

 */

void init_PEVC(void)

{

}//end init_PEVC

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

52

/**
 * Application Initialization function Implementation
 */
static void app_init(void)
{

• Declare a peripheral CATB event channel configuration structure
/**

 * Initialize the Peripheral Event Controller for the CATB and the ADCIFE.

 */

void init_PEVC(void)

{

 /*declare the peripheral event channel configuration structure */

 struct events_ch_conf ch_config;

• Declare a peripheral ADCIFE event channel configuration structure
 /*declare the peripheral ADCIFE event channel configuration structure */

 struct events_ch_conf ch_config_adcife;

• Enable the PEVC Peripheral Clock which is not enabled by default after a RESET (unlike the AST)
 /*Enable the PEVC Peripheral Clock which is not

 enabled by default after a RESET (contrary to the AST) */

 events_enable();

 From this point, one can be noticed that the same steps are reproduced for the ADCIFE.

• Get the event channel default config to initialize the structure
 /*Configure the PEVC channel to link the AST Periodic

 event 0 to the Peripheral Event system CATB trigger one autonomous

 touch sensing */

 events_ch_get_config_defaults(&ch_config_catb);

• Configure the PEVC channel to link the
– AST - Periodic Event 0 (Generator Channel no. 8) to the CATB - Trigger one autonomous touch

sensing Event (User Channel no. 6), refer to the datasheet for more details
 ch_config_catb.channel_id = PEVC_ID_USER_CATB;

 ch_config_catb.generator_id = PEVC_ID_GEN_AST_2;

 ch_config_catb.shaper_enable = true;

 /* call the events_ch_configure() function, defined

 in events.h to configure the PEVC channel new parameters*/

 events_ch_configure(&ch_config_catb);

• Enable the PEVC channel which corresponds to CATB trigger one autonomous touch sensing
 /*Enable the EVENT channel dedicated to the CATB*/

 events_ch_enable(PEVC_ID_USER_CATB);

• Reproduce the three previous steps for the ADCIFE
– Get the event channel default config to initialize the structure

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

53

 /*Configure the PEVC channel to link the AST Periodic

 event 0 to the Peripheral Event system ADCIFE trigger one autonomous

 touch sensing */

 events_ch_get_config_defaults(&ch_config_adcife);

– Configure the PEVC channel to link the
• AST - Periodic Event 0 (Generator Channel no. 8) to the ADCIFE - Trigger one autonomous

touch sensing Event (User Channel no. 4), refer to the datasheet for more details
 ch_config_adcife.channel_id = PEVC_ID_USER_ADCIFE_SOC;

 ch_config_adcife.generator_id = PEVC_ID_GEN_AST_2;

 ch_config_adcife.shaper_enable = true;

 /* call the events_ch_configure() function, defined

 in events.h to configure the PEVC channel new parameters*/

 events_ch_configure(&ch_config_adcife);

– Enable the PEVC channel which corresponds to CATB trigger one autonomous touch sensing
 /*Enable the EVENT channel dedicated to the ADCIFE*/

 events_ch_enable(PEVC_ID_USER_ADCIFE_SOC);

}//end init_PEVC

• Update the app_init to call the init_PEVC function (ast_init must remain as the last init function called
because the counting is supposed to start just after…)
/**

 * Application Initialization function Implementation

 */

static void app_init(void)

{

 /* Initialize the SAM4L-EK board */

 board_init();

 /* Application’s clock setting configuration */

 sysclk_init();

 /* Analog to Digital Converter (ADCIFE) configuration */

 init_ADCIFE();

 /* Initialize the CATB module and the Qtouch Library */

 init_qtouch();

 /* Initialize the peripheral Event System Controller allowing

 * Peripherals to request theirs clocks */

 init_PEVC();

 /* Initialize & configure the AST */

 init_ast();

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

54

10 External Interrupt Controller (EIC) Configuration
In this paragraph, the External Interrupt Controller will be configured in order to use the PB0 push button to
generate an External Interrupt allowing the core to go back into WAIT mode.

To correctly configure the External Interrupt Controller (EIC), the main steps to do this are listed below:
• First implement the init_eic function just before the app_init
• Declare an EIC config structure variable
• Configure the structure
• Enable the peripheral clock of the EIC module
• Apply the configuration

– Interrupt type configuration
• Edge triggered
• Falling edge
• low level
• Filter disabled
• Asynchronous Mode

• Callback implementation:
• Enable the corresponding line
• Update the app_init to call the init_eic function
• Finish the app_init implementation by calling the black_box_app_init function

10.1 Code Implementation
• First implement the init_eic function just before the app_init

/**

 * Initialize the External Interrupt Controller for the example.

 */

void init_eic(void)

{

} //end init_eic

/**

 * Application Initialization function Implementation

 */

static void app_init(void)

{

• Declare an EIC config structure variable
void init_eic(void)

{

 /*Configure EIC module to as described previously*/

 struct eic_line_config eic_line_conf;

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

55

• Configure the structure
– Interrupt type configuration

• Edge triggered
• Falling edge
• low level
• Filter disabled
• Asynchronous Mode

 /* set the EIC mode Triggered*/

 eic_line_conf.eic_mode = EIC_MODE_EDGE_TRIGGERED;

 /* set the EIC mode detection on falling edge*/

 eic_line_conf.eic_edge = EIC_EDGE_FALLING_EDGE;

 /* EIC_LEVEL_LOW_LEVEL is defined in eic.h to set the EIC mode detection on low level */

 eic_line_conf.eic_level = EIC_LEVEL_LOW_LEVEL;

 /*disable the EIC input filter */

 eic_line_conf.eic_filter = EIC_FILTER_DISABLED;

 /* enable the EIC asynchronous mode detection */

 eic_line_conf.eic_async = EIC_ASYNCH_MODE;

• Enable the peripheral clock of the EIC module
 /*Enable the peripheral clock of the EIC module */

 eic_enable(EIC);

• Apply the configuration
 /*Apply the interrupt configuration*/

 eic_line_set_config(EIC, GPIO_PUSH_BUTTON_EIC_LINE, &eic_line_conf);

• Callback implementation
/*Enable the peripheral clock of the EIC module */

 eic_line_set_callback(EIC, GPIO_PUSH_BUTTON_EIC_LINE, Button_Callback, EIC_5_IRQn, 1);

• Enable the corresponding line
 /*Enable the corresponding line */

 eic_line_enable(EIC, GPIO_PUSH_BUTTON_EIC_LINE);

}//end of init EIC

• Update the app_init to call the init_eic function

/**

 * Application Initialization function Implementation

 */

static void app_init(void)

{

 /* Initialize the SAM4L-EK board */

 board_init();

 /* Application’s clock setting configuration */

 sysclk_init();

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

56

 /* Analog to Digital Converter (ADCIFE) configuration */

 init_ADCIFE();

 /* Initialize the CATB module and the Qtouch Library */

 init_qtouch();

 /* Initialize the peripheral Event System Controller allowing

 * Peripherals to request theirs clocks */

 init_PEVC();

 /* Initialize the EIC module */

 init_eic();

• Finish the app_init implementation by calling the black_box_app_init function

/* Initialize the EIC module */

 init_eic();

 /* Initialize the black box application */

 black_box_app_init();

 /* Initialize & configure the AST */

 init_ast();

}//end app_init

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

57

11 Test the App Init Function Implementation
• Build, program and run the application

– In order to build the project, click on the Build button:

 Make sure the SAM4L-EK board is connected to your PC with a micro-USB cable through the J1 connector.

• Then download the program in the internal flash of the SAM4L by clicking on the Start Debugging and

break button:

Atmel Studio will ask you to select the Debug Tool.

• Select the on-board J-Link (note that the serial number in parentheses differs from one board to another):

• Once programmed, start the code execution by clicking on the green arrow:

Set the clock of your application by using PB0.

• Press PB0 to set the Minutes

• Hold PB0 for a short duration (~2 seconds) to set Hours
• Press PB0 to set the Hours

• Hold PB0 for a short duration (~2 seconds) to start the clock
• Touching the CS0 QTouch button should lit the LED0

RESULT The application is running correctly and uses the PLL + OSC0 oscillator to run @48MHz.

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

58

 When the debug session is running, the Stop button stops program execution and exits the debug session.

If you want to stop the program but keep the debug session active, simply click on the Pause button .

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

59

12 State Machine Implementation
The last step of the code implementation is the state machine as described in Figure 2-5. At this step the App init
function has been implemented successfully. The state machine requires other functions to be implemented as
described in the updated representation below:

The app function h will be executed in the infinite loop. It is only composed of a state machine based on a
switch/case algorithm. Each case is defined by a particular state of the state machine, and the state is updated
after each function called from a state to another, till reaching the SLEEPWALKING state, which requires an
interrupt either coming from the ADCIFE or from the CATB, waking up the core and exit from the WAIT mode.

The first step will be to implement the app function as described in the figure above.

After this step, three functions remain to be implemented allowing the SleepWalking application to be functional:
• prepare_to_active_mode
• prepare_to_sleepwalking
• enter_wait_mode

12.1 Code Implementation

12.1.1 Implement the App Function
• Just before the main function, implement the app function which contains the state machine

/**

 * State Machine Function

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

60

 * Sleepwalking Application State machine

 */

void app(void)

{

 switch (seq_state) {

 case INIT_SLEEPWALKING:

 /* Prepare the application to enter in Sleepwalking */

 prepare_to_sleepwalking();

 break;

 case SLEEPWALKING:

 /* Sleepwalking : enter in wait mode... */

 enter_wait_mode();

 break;

 case INIT_ACTIVE_MODE:

 /* Prepare the application to enter in active mode */

 prepare_to_active_mode();

 break;

 case ACTIVE_MODE:

 while (seq_state == ACTIVE_MODE) {

 /* use PB0 to hit interrupt to perform the

 *break */

 }

 break;

 default:

 break;

 }

}//end App

/***/

/* MAIN Function */

/***/

void main(void)

• Declare the seq_state variable as global volatile at the beginning of the main.c file:
/***/

/* Global var */

/***/

/* Initial State */

volatile char seq_state = INIT_ACTIVE_MODE;

/* ADC Instance declaration */

struct adc_dev_inst g_adc_inst;

12.1.2 ACTIVE_MODE Implementation
This state is the RUN mode of the application where:

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

61

• The main clock is 48MHz
• The LCD display is ON with the clock time displayed on it
• We stay in this mode while an external interrupt event (EIC controller) is not detected (PB0 pushed)

12.1.3 Prepare to SleepWalking Implementation
This state allows preparing the SAM4L device to go back to Wait mode, and configure peripherals to perform
SleepWalking by:
• Implement the prepare_to_sleepwalking function just before the app function
• Disable PDCA used to manage transfer data to the LCD while the LCD is OFF to avoid extra power

consumption in SleepWalking
• Disable the LCD clock and the LCD Back Light to avoid extra power consumption in SleepWalking
• Restore the slow clock running @12MHz with FastRC as clock source (PS1 available)
• Enable the CATB module clock to allow QTouch interrupt
• Configure the ADC
• Initialize the AST
• Enable the Peripheral Event Controller to interconnect AST, CATB, and the ADC
• Disable the external the External Interrupt Controller (EIC) to avoid interrupt coming from PB0
• Change the State machine state to go into SLEEPWALKING

12.1.3.1 Code Implementation
• Implement the prepare_to_sleepwalking function just before the app function:

/**

 * Prepare the application to enter in Sleepwalking

 */

static void prepare_to_sleepwalking(void)

{

}//end prepare_to_sleepwalking

/**

 * State Machine Function

 * Sleepwalking Application

 */

void app(void)

{

• Prepare the “Black Box” application for SleepWalking reducing power consumption:
– Disable PDCA used to manage transfer data to the LCD while the LCD is OFF to avoid extra power

consumption in SleepWalking
– Disable the LCD clock and the LCD Back Light to avoid extra power consumption in SleepWalking

/**

 * Prepare the application to enter in Sleepwalking

 */

static void prepare_to_sleepwalking(void)

{

 /* Prepare the Black Box application to reduce consumption*/

 black_box_prepare_to_sleepwalking();

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

62

• Restore the slow clock running @12MHz with FastRC as clock source to make power scaling mode PS1
available
 /* Change the clock source by Switching to the FAST RC clock running at 12MHz */

 switch_to_slower_clock();

 See the sleepwalking_appnote.c file to see the switch to slower clock function imple-
mentation.

• Enable the CATB module clock to allow QTouch interrupt
 /* Enable CATB clock at peripheral level */

 sysclk_enable_peripheral_clock(CATB);

• Enable the ADCIFE module clock
 /* Enable ADCIFE if used */

 adc_enable(&g_adc_inst);

• Initialize the AST
 /* Reinitialize the AST & the PEVC */

 init_ast();

• Enable the Peripheral Event Controller to interconnect AST, CATB and the ADC
 /* Reinitialize the AST & the PEVC */

 init_ast();

 init_PEVC();

• Disable the external the External Interrupt Controller (EIC) to avoid interrupt coming from PB0 during
SleepWalking state
 /* Disable EIC interrupt to avoid external interrupt from PB0 */

 eic_enable(EIC);

 eic_line_disable(EIC, GPIO_PUSH_BUTTON_EIC_LINE);

 eic_disable(EIC);

• Change the State machine state to go into SLEEPWALKING
 /* Go to Wait mode */

 seq_state = SLEEPWALKING;

}//end prepare_to_sleepwalking

12.1.4 SLEEPWALKING State Implementation
To perform SleepWalking, the SAM4L has to embed flexible capabilities regarding its peripheral clock
management and must be able to get a higher modularity in power consumption versus performance ratio. This
is done with its embedded Low power techniques: Power Saving and Power Scaling.

In this mode, the CPU clock is OFF, the core is in WAIT Mode, and only the 32kHz oscillator is enabled for the
AST trig event activity.

12.1.4.1 Code Implementation
• Implement the enter_wait_mode just before the app function

**

 * Function used to enter in wait mode used in Sleepwalking state

 * with power scaling 1 and Fast wake up enabled

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

63

 */

void enter_wait_mode(void)

{

}//end enter_wait_mode

/**

 * State Machine Function

 * Sleepwalking Application State machine

 */

void app(void)

{

• Change Power Scaling mode to be in very low power mode
**

 * Function used to enter in wait mode used in Sleepwalking state

 * with power scaling 1 and Fast wake up enabled

 */

void enter_wait_mode(void)

{

 /*Change Power scaling to be in very low power mode */

 bpm_power_scaling_cpu(BPM, BPM_PS_1);

• Power Saving is changed (WAIT mode) if the PMCON register is unlocked
 /* Unlock the BPM PMCON register before modifying it */

 BPM_UNLOCK(PMCON);

• Enable the fast wake-up capability by setting the FASTWKUP bit in the PMCON register
 /*enable the fast wake up capability by setting the FASTWKUP bit in the PMCON register*/

 bpm_enable_fast_wakeup(BPM);

• Enter in WAIT mode
 /* Enter in wait mode */

 bpm_sleep(BPM, BPM_SM_WAIT);

}//end enter_wait_mode

12.1.5 INIT_ACTIVE_MODE State Implementation
Once in the state machine, this state is an intermediary state which is used just after wake up (touch on CS0) and
allows configuring the peripheral used in ACTIVE state such as:

• Switch the clock to full speed to have a powerful data processing
• Disable the CATB module clock
• Enable PDCA used to manage transfer data to the LCD
• Enable and Initializes the LCD controller
• Enable the External Interrupt Controller (EIC)
• Enable LCD Back Light to display the time
• Change the State machine state to go into ACTIVE_MODE

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

64

12.1.5.1 Code Implementation
• Implement the prepare_to_active_mode just before the app function

/**

 * Prepare the application to enter in Active mode

 */

void prepare_to_active_mode(void)

{

}//end prepare_to_active_mode

/**

 * State Machine Function

 * Sleepwalking Application State machine

 */

void app(void)

{

• Switch the clock to full speed to have a powerful data processing (no power constraints in active mode)
/**

 * Prepare the application to enter in Active mode

 */

void prepare_to_active_mode(void)

{

 /* switch to Full speed mode (PLL+OSC0) making available powerful data processing capability

*/

 switch_to_full_speed_clock();

• Disable the CATB module clock
 /* Disable CATB clock at peripheral level to avoid qtouch interrupt*/

 sysclk_disable_peripheral_clock(CATB);

• Disable the ADCIFE module clock
 /* Disable ADCIFE clock at peripheral level to avoid Light sensor interrupt if ADCIFE is

used*/

 adc_disable(&g_adc_inst);

• Prepare the black box application to the active mode
– Enable PDCA used to manage transfer data to the LCD
– Enable and Initializes the LCD controller
– Enable LCD Back Light to display the time

 /* Prepare the Black Box application to active mode */

 black_box_prepare_to_active();

• Enable the External Interrupt Controller (EIC)
 /* Init the External interrupt Controller */

 init_eic();

• Change the State machine state to go into ACTIVE_MODE
 /* Go in Run Mode */

 seq_state = ACTIVE_MODE;

}//end prepare_to_active_mode

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

65

12.1.6 Update the Main Function to Call the App Function

}//end App

/***/

/* MAIN Function */

/***/

void main(void)

{

 /* Initialize the System and the App */

 app_init();

 while (1) {

 app();

 }

}

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

66

13 Conclusion
In this application note you have discovered the SAM4L main features used to perform Sleep Walking, such as:

• Low power techniques: Power Saving and Power Scaling
• Peripheral Clock Management flexibility
• Peripheral Event System

These main features make the SAM4L more flexible regarding its peripheral clock management and able to get a
higher modularity in power consumption versus performance ratio.

You are now familiar with how to use the AST to generate a trigger event clock source. You configured the
Peripheral Event System controller (PEVC) to link this trigger source to a user such as CATB or ADCIFE. And
finally you enabled the interrupt to wake up the core or to go back to sleep.

All these features are mandatory to perform the SAM4L SleepWalking mode.

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

67

14 Suggested Reading
• QTouch with SAM4L training Guide
• Getting Started with SAM4L
• SAM4L-EK User guide
• SAM4L-EK Production Files

14.1 Device Datasheet
The device datasheet contains block diagrams of the peripherals and details about implementing firmware for the
device. It also contains the electrical specifications and expected characteristics of the device.

The datasheet is available on http://www.atmel.com/ in the Datasheets section of the product page.

14.2 Evaluation Kit User Guide
The SAM4L-EK user guide contains schematics that can be used as a starting point when designing with the
SAM4L product family devices. This user guide is available on http://www.atmel.com/ in the documents section
of the SAM4L-EK page.

14.3 ARM Documentation on Cortex-M4 Core
• Cortex-M4 Devices Generic User Guide
• Cortex-M4 Technical Reference Manual
• These documents are available at http://www.arm.com/ in the info center section

http://www.atmel.com/ru/ru/Images/Atmel-42180-QTouch-with-SAM4L-Training-Guide_AP-Note_AT04150.pdf
http://www.atmel.com/Images/Atmel-42024-SAM4L-Getting-Started_Application-Note_AT01778.pdf
http://www.atmel.com/Images/Atmel-42026-ATSAM4L-EK-User-Guide_Application-Note_AVR32850.pdf
http://www.atmel.com/Images/ATSAM4L-EK_Hardware-References.zip
http://www.atmel.com/
http://www.atmel.com/
http://www.arm.com/

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

68

15 Revision History
Doc Rev. Date Comments

42320B 6/2014 The document title has been updated with “AT04113”.

42320A 5/2014 Initial document release.

How to Implement SleepWalking on ARM Cortex-M4 MCU Application: Step-by-step Guide [APPLICATION NOTE]
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014

69

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 │ www.atmel.com

© 2014 Atmel Corporation. / Rev.:
Atmel-42320B-Implementing-SleepWalking-on-ARM-Cortex-M4-MCU-Application-Step-by-step-Project-Building-Guide-ApplicationNote_AT04113_062014.

Atmel®, Atmel logo and combinations thereof, AVR®, Enabling Unlimited Possibilities®, megaAVR®, picoPower®, QTouch®, XMEGA®, and others are registered
trademarks or trademarks of Atmel Corporation in U.S. and other countries. ARM®, ARM Connected® logo, Cortex®, and others are the registered trademarks or
trademarks of ARM Ltd. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL
WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND
PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves
the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless
specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written consent.
Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products
are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor
intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.

http://www.atmel.com/
https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel

	Introduction
	Prerequisites
	1 Introduction to SleepWalking
	1.1 On what does SleepWalking consist in?
	1.2 SAM4L Features to Perform SleepWalking
	1.2.1 Low Power Techniques Overview
	1.2.2 Peripheral Clock Management Overview
	1.2.3 Peripheral Event System Controller (PEVC) Overview

	2 SleepWalking Application Description
	2.1 Atmel SAM4L-EK Evaluation Kit Overview
	2.1.1 Powering the Board
	2.1.2 The Board Monitor

	2.2 Application Overview
	2.2.1 Application Sequential Flowchart
	2.2.2 Function Descriptions
	2.2.2.1 ACTIVE_MODE
	2.2.2.2 INIT_SLEEPWALKING
	2.2.2.3 SLEEPWALKING
	2.2.2.4 INIT_ACTIVE_MODE

	2.3 Software Package Description
	2.4 Main Steps Summary

	3 Atmel Studio 6 Project Creation
	3.1 Atmel Studio Introduction
	3.1.1 IDE Introduction
	3.1.2 Atmel Software Framework (ASF) Introduction

	3.2 Create a Project under Atmel Studio using a Specific Board Template
	3.3 Add Existing File to the Project
	3.4 Atmel Software Framework Module Importation
	3.5 Debugger Settings

	4 System Initialization
	4.1 Starting Point
	4.1.1 Include Example Library File

	4.2 Application Init Function Implementation
	4.3 Application’s Clock Setting Configuration

	5 SAM4L Peripherals Configuration Method
	5.1 Application Peripheral Configuration Overview
	5.2 Methodology

	6 Analog to Digital Converter (ADCIFE) Configuration
	6.1 Check any Hardware Configuration Related to the Peripheral
	6.2 Use the Online API Documentation which provides Simple Example on ADCIF
	6.3 Code Implementation
	6.3.1 Configure the ADCIFE using the Quick Start Guide Workflow
	6.3.1.1 Define the ADCIFE Interrupt Handler in the Application
	6.3.1.2 Configure ADC Module

	7 Capacitive Touch (CATB) Configuration
	7.1 Autonomous Touch Overview
	7.2 Code Implementation

	8 Asynchronous Timer (AST) Configuration
	8.1 Code Implementation

	9 Peripheral Event System Controller (PEVC) Configuration
	9.1 Code Implementation

	10 External Interrupt Controller (EIC) Configuration
	10.1 Code Implementation

	11 Test the App Init Function Implementation
	12 State Machine Implementation
	12.1 Code Implementation
	12.1.1 Implement the App Function
	12.1.2 ACTIVE_MODE Implementation
	12.1.3 Prepare to SleepWalking Implementation
	12.1.3.1 Code Implementation

	12.1.4 SLEEPWALKING State Implementation
	12.1.4.1 Code Implementation

	12.1.5 INIT_ACTIVE_MODE State Implementation
	12.1.5.1 Code Implementation

	12.1.6 Update the Main Function to Call the App Function

	13 Conclusion
	14 Suggested Reading
	14.1 Device Datasheet
	14.2 Evaluation Kit User Guide
	14.3 ARM Documentation on Cortex-M4 Core

	15 Revision History

