®
A t l I IeL SMART ARM-based Microcontrollers

AT09192: SAM L22 Segment Liquid Crystal
Display (SLCD) Controller

APPLICATION NOTE

Introduction

This application note briefly describes the following features of the Segment
Liquid Crystal Display (SLCD) Controller available on the Atmel® | SMART
SAM L22 microcontrollers.

The software example mentioned in this document is available with the latest
Atmel Software Framework (ASF).

For more details on SLCD module, refer SAM L22 datasheet.

Features

« Blink mode and frequency configuration (up to 16 segments)
* Regular and low power waveform

« Software contrast adjustment control

» Character mapping

« Automated characters string scrolling

* Automated bit mapping

* DMA support

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

Table of Contents

INEFOAUCTION. ... 1
FALUIES. ..., 1
P €1 [0 1L | PP PP U PRPPTPRR 3
2. Pre-reqUISIteS......cooi i 4
B TS 7= (1] o RSO RRPRR 5
B Tt I o F= 10 AV =T d IR 1= (U o J USROSt 5
3.2, SOftWAIE SEIUP.....c ea i raeaeeaanrres 7
4. Segment Liquid Crystal Display (SLCD) Controller.............ccooiiiiiiiiiiiiciiiieeeee 10
A OVBIVIBW. . ittt et b et s b e et n b et e e e he e bt e e e e e b e s n e e ae e s rnennee e 10
N =1 (o To1 QI 1 - To | - o PRSP 11
G TR U oo (o] b= I D T=T o o] 1 o] o PSS 1"
5. Overview of Peripherals USed..............ooooiiiiiiiiiiiiiee e 15
LT T B | Y RSP STPR PSRRI 15
5.2, SERCOM — USARTcetiiiieiteeeeteete et ee ettt sttt st et st e saesaeesaeameesaeemeeaseenaeaeeenseaseenseeneeaseenneaneenes 15
6. SLCD Example Implementation in SAM L22 MCUS...........ccoociiiiiiiieeeeeiiiiieeeeeenn 16
6.1, IMAIN CHOCK......eeeiii ettt b et s e e 16
6.2. BasiC CONfIQUIAtiON.eiiiiiiie ettt e e e s e e e e e et e e e enaeeas 16
(SRS T O F= T = Tor (=T 1V F= o] o] o o TSP RP 17
6.4. Automated Character Mapping.........occeie it 21
(SR T N0 (o) ¢ F=Y C=Yo I =T 1Y F=T o] o113 T PSSRSO 27
6.6. Blink Mode and Frequency Configuration.............cccououuieiiiireniiee e e 34
7. REFEIEINCES.oiiiiie ettt ettt e e e 38
8. REVISION HISTOY......ciiiiiiiiiie e e 39

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION
NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

2

1. Glossary
ASF
ABM
ACM
Atmel Studio

CDC
CLK
COM
CTRL
DMAC
EDBG
EVSYS
GPIO
IDE
NVIC
PM
SERCOM
SEG
SLCD
SRAM
USART

Atmel Software Framework
Automated Bit Mapping
Automated Character Mapping

Integrated Development Environment (IDE) for Atmel
Microcontrollers

USB Communication Device Class
Clock

Common

Control

DMA (Direct Memory Access) Controller
Embedded Debugger

Event System

General Purpose Input/Output
Integrated Development Environment
Nested Vectored Interrupt Controller
Power Manager

Serial Communication Interface
Segment

Segmented Liquid Crystal Display

Static Random-Access Memory

Universal Synchronous and Asynchronous Serial Receiver and

Transmitter

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION

NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

3

Pre-requisites
The solutions discussed in this document require basic familiarity with the following tools:

* Atmel Studio 6.2 SP2 or later versions

* ASF version 3.26.10 or later versions

* SAM L22 Xplained Pro Evaluation Kit with USB cable
* Segment LCD1 Xplained Pro

Note:
Make sure that the SAM L22 Part Pack for Atmel Studio is installed before using the example application.

This application note covers the overview of the following peripherals:

+ SERCOM - USART
- DMAC

Refer to the product datasheet for better understanding of each of the peripherals.

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 4

NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

3.1.

3.1.1.

3.1.2.

Setup

The application is developed for SAM L22 Xplained Pro board in Atmel Studio 6.2. This chapter covers
hardware and software setup needed to test this application.

Hardware Setup

SAM L22 Xplained Pro

The Atmel SAM L22 Xplained Pro evaluation kit is a hardware platform to evaluate the ATSAML22N18A
microcontroller. The SAM L22 Xplained Pro kit will be used to run the example application.

This evaluation kit allows connecting multiple external components via a wing connector. A wing is a self-
contained board that can be connected to the Xplained Pro using a wing connector. The SAM L22
Xplained Pro has four such wing connectors marked as EXT1, EXT2, EXT3, and EXT4.

To explore more about SAM L22 Xplained Pro hardware, refer the hardware user guide and schematics.

Figure 3-1 SAM L22 Xplained Pro

9. "
L ajs ™
L] res 4
PR T
-
| }, MEASURE

|} eveass

15)

R 8

Segment LCD1 Xplained Pro Board

Atmel Segment LCD1 Xplained Pro extension board is a small circuit board with a custom backlit
segment LCD display, which is compatible with Xplained Pro MCU boards with a segment LCD
connector. Segment LCD1 Xplained Pro requires four common terminals and segment terminal 0 to 23 to
control all the segments.

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 5

NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

Figure 3-2 Segment LCD1 Xplained Pro Top Overview

YMCC42412AAAFDCL Segment LCD

— ATTARRERARAERERETITY

Figure 3-3 Segment LCD1 Xplained Pro Bottom Overview

PAAARARAARANRARAAARR S5STD-A
SECRTEDRT RS AEREP Y IO ® o) 04\

) SETTTINRRREIRNNNNNNNRNNNNNY
| SAASALLLLLLRARRIIA

steddee Atmdcorpjzmz

XPLANED PRO ID CHP XPLANED PRO SEGMENT BACKLIGHT
ATSHA204 LCO CONNECTOR SWITCH

Segment LCD1 Xplained Pro has been designed to be used with Xplained Pro MCU boards that contains
a Segment LCD connector.

In SAM L22 Xplained Pro kit, it is connected to EXT5 header as shown in Figure 3-4 SAM L22 Xplained
Pro with Segment LCD1 Xplained Pro Board Connection on page 7. This application utilizes custom
backlit segment LCD display on Segment LCD1 Xplained Pro board

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 6
NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

Figure 3-4 SAM L22 Xplained Pro with Segment LCD1 Xplained Pro Board Connection

3.2. Software Setup

There are two USB ports on the SAM L22 Xplained Pro board; DEBUG USB and TARGET USB. For
debugging using the Embedded debugger (EDBG), the DEBUG USB port has to be connected. Once the
SAM L22 Xplained Pro kit is connected to the PC, the Windows® task bar will pop up a message as
shown in the figure below.

Figure 3-5 SAM L22 Xplained Pro Driver Installation
r_‘_! Driver Software Installation . - X

Your device is ready to use

EDBG Debugger «/ Ready to use
EDBG Virtual COM Port (COM30) «/ Ready to use
EDBG Data Gateway «/ Ready to use

If the driver installation is proper, EDBG will be listed in the Device Manager as shown in Figure 3-6
Successful EDBG Driver Installation on page 8.

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 7
NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

Figure 3-6 Successful EDBG Driver Installation

'a Device Manager o & “
Ede Action Yew Hep
L A oliRiN " Rod BN 4. ¥ ¢
[& CHELTON03
WL T EE—
B EDBG Data Gateway
8, EDEG Debugger
_W
& Computes
,\ ControlVault Device
s Dwsk drives
* Dwsplay adapters
o DVD/CD-ROM drives
Q5 Human Interface Devices
¢ IDE ATAVATAP comtrollers
B0 Imaging devices
& Jungo
- Keydoardt
M Mice and other pomnting devices
& Monaors
& Network adapters
o "7 Ports (COM & LPT)
¥ Communications Peet (COMI)
*F ECP Printer Port (LPT1)

Processory

9 Smart card readers

. —— — — —_—

To ensure that the EDBG tool is getting detected in Atmel Studio:

Open Atmel Studio 6.2, go to ‘View’ — ‘Available Atmel Tools’. The EDBG should get listed in the tools
as "EDBG" and the tool status should display as "Connected" as shown in the figure below. This indicates
that the tool is communicating properly with the Atmel Studio.

Figure 3-7 EDBG under Available Atmel Tools
Available Tools vAX

Tools and Simulators Status

DBG (ATML2178011800000003)

6 Simulator Connected

If the tool is not displayed in ‘Available Atmel Tools’, disconnect the tool and reconnect again.

Right click on the tool in the ‘Available Tools’ list and click on "Upgrade". This will check if the firmware
in the tool is up to date. Click on "upgrade" to upgrade the firmware of the tool to the latest version.

After the software is successfully installed, open the terminal window with the COM port (EDBG Virtual
COM port) number detected in Device Manager. The terminal window can be downloaded and installed
either from ‘Atmel Gallery’ or through ‘Tools’ — ‘Extension Manager’ in Atmel Studio.

Now the terminal window can be opened from ‘View’ — ‘Terminal Window’. The COM port should be
opened with a baudrate of 115200 with the display type as ‘hex’ (see Figure 3-8 Terminal Window in
Atmel Studio on page 9). This step ensures that the COM port (EDBG Virtual COM port) enumurates
properly, and is used to select the mode of operation. The user input string from the terminal via USART
DATA register in this application for the demonstration purpose, which is explained in the following
chapters.

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 8

NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

Figure 3-8 Terminal Window in Atmel Studio

Terminal Window *+Oox

o v o 551 | e o L
Receive

-

Send History
Send
(asca -] ue] (e8] [send
EDBG Virtual COM Port (COMA0)

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 9
NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

41.

Segment Liquid Crystal Display (SLCD) Controller

Overview

An LCD display is made of several segments such as pixels or complete symbols which can be made
visible or invisible. A segment has two electrodes with a liquid crystal between them. These electrodes
are the common terminal (COM pin) and the segment terminal (SEG pin). When a voltage above a
threshold voltage is applied across the liquid crystal, the segment becomes visible.

The SLCD controller is intended for monochrome passive liquid crystal display (LCD) with up to eight
common terminals and up to 44 segment terminals.

Figure 4-1 LCD Panel - Segment/Common Terminals Connections

SEGOD SEG1 SEG2

J X J

como [

com1 [

Note:
In order to avoid degradation due to electrophoresis in the liquid crystal, the waveform of the voltage
across a segment must not have a DC component.

The Segment LCD1 Xplained Pro has four common and 24 segment terminals.

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 10

NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

4.2. Block Diagram
Figure 4-2 SLCD Block Diagram

SLCD Controller

! 1

! 1

- 1

! 1

! |

! |

! 1

! 1

: dLCD 1
System ! | APB Display Shadow riving !
interface *interface [™®memory [P memory [~ pattern '

I generator | 1 —>

! 1 —»

| | o

I 1 s

I : -

| 1=

| Configuration data T : g

b e ———————] ! <

V

VLCD CAP

Note:
LPx - LCD Pin x (COM or SEG terminal) - Analog output

VLCD - LCD Voltage - Analog input or output

4.3. Functional Description

4.3.1. Basic Operation
In the SAM L22 when a bit in the display memory is written to '1', the corresponding segment will be
energized (ON / opaque), and de-energized (OFF / transparent) when this bit is written to '0". The display
memory stores the values of all segments to display. It is accessible through APB and should be filled
before the next frame starts. A start of a new frame triggers copying the display memory into the shadow
display memory. A display memory refresh is thus possible without affecting data already sent to the
panel.

Note:
The display memory is not initialized at startup.

Each COM line has identical waveforms but different phases. For each phase of the frame according to
the bit value in the shadow display memory the SEG lines are driven to VLCD and GND when the pixel is
ON, or to one of the bias voltages when the pixel is OFF.

Note:
The COM and SEG signal waveform depends on the waveform mode being selected either Standard
waveform mode or Low power waveform mode

4.3.2. DUTY and BIAS
The configuration of the DUTY bits (DUTY[2:0] in CTRLA) define the number of COM lines used and thus
the number of phases. BIAS bits (BIAS[1:0] in CTRLA) define the number of bias voltages. SAM L22
SLCD supports up to eight COM and up to three bias voltages.

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 11
NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

4.3.3.

4.3.4.

4.3.5.

For this application, Segment LCD1 Xplained Pro requires four common terminals and segment terminal
0 to 23 to control all segments. So, the Duty and Bias bits are configured as 011 and 10 respectively.

Different Waveform Modes
The LCD controller drives different waveforms according to the different bias configurations and the LCD
controller supports two types of waveform drive as follows:

« Bit-inversion (type A, standard) called as Standard waveform mode

* Frame-inversion (type B, low-power) called as Low power waveform mode
The frame-inversion mode has a lower switching frequency than the bit-inversion mode, and thus reduce
the power consumption compared to standard waveform. Both waveform modes have the same period
and the DC-component is null. For static bias, standard and low-power waveform don’t have any

differences. However, for 1/2, 1/3, and 1/4 bias, low-power waveform provide less toggle rate compared
to standard one.

By default the low-power waveform mode is enabled.

Refer the SAM L22 datasheet for different Standard and Low power waveform templates for the different
Duty and Bias configurations.

LCD Frame Frequency

The LCD frame frequency is defined as the number of times the segments are energized per second. The
optimal frame frequency should be in range from 30Hz up to 100Hz to avoid flickering and ghosting
effect. Frame frequency (or frame rate) depends on the parameters such as SLCD clock source 32KHz
oscillator clock CLK_SLCD_OSC, duty setting (CTRLA.DUTY[2:0] bits). prescaler setting
(CTRLA.PRESCI1:0] bits), and Clock Divider settings (CTRLA.CKDIV[2:0] bits).

Figure 4-3 Framerate

F(CLK_SLCD_OSC)

|
|
|
: PVAL x (CKDIV+1) x (DUTY+1)
|
|

For this application the frame rate is calculated as 32Hz with 1/4 DUTY and 32768Hz input clock (CLK
32768 Hz, Prescaler 32 and CKDIV value is 7).

FrameRate = 32768/(32*(7+1)*4) = 32Hz.

Note:
The example values for the various configurations to select the FrameRate is given in the device
datasheet.

LCD Pins Selection
Selection of maximum 48 segment/common lines from 52 LCD pins.

There are 52 LCD pins (LPx) from which up to 48 LCD pins can be enabled or disabled individually
according to the LCD glass. Each LCD pin can be configured as front plane (SEG) or back plane (COM),
offering various configurations. For 1/4 duty settings the maximum number of SEG lines and COM lines
are 4 and 44 respectively. For the other duty configuration, this is mentioned in the device datasheet.

Write a '1" to a bit in LPENL or LPENH registers will enable the corresponding LCD pin.
* For LP[31:0], write to LCD Pin Enable Low register bits LPENL[31:0]

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 12

NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

4.3.6.

* For LP[51:32], write to LCD Pin Enable High register bits LPENH[18:0]
Writing a '0' to a bit in LPENL or LPENH registers will disable the corresponding LCD pin.

Note:
« LCD pins can be enabled individually. LCD pins need not be enabled in a contiguous manner.
* Adisabled LCD pin can thus be used as GPIO or any other alternate function

* The number of LCD pins enabled should not be higher than the maximum of COM and SEG lines
supported

The assignment of the COM and SEG lines are always in ascending order. According to their duty
configuration COM lines are assigned first to the LCD pins enabled. The number of SEG lines enabled is
thus the number of LCD pins enabled minus the number of COM lines assigned.

Figure 4-4 LCD Pins Configuration Example

7 6 5 4 3 2 1 0
1]o0] 1] 1[1]0[1]0] LPENL
LPO = _
LP1 = COMO duty = 1/2
LP2 = _
LP3 = COM1
LP4 = SEGO
LPS = SEG1
LP6 = _
LP7 = SEG2

Display Memory Mapping
The display memory size depends on the configured duty ratio. For 1/4 duty ratio the display memory is
44 bits wide per COM line. For 1/6 duty and 1/8 it is 42 bits and 40 bits wide respectively per COM line.

Figure 4-5 Display Memory Mapping

offset
4] SEGI39:0] T com7
offset 36" SEG[39:0] T COMé
5f[SEGL41:01 ¢ 30] SEGI39:01 T COMs
offset 24] (SEGI41:0] T .7 SEG[39:0] | COM4
6] SEGl43:0]1 7] SEGl4r:0) ¢ s] SEGI39:0] T com3
2] SEcle3:0] 7 2] SEGl4r:0) ¢ 2] SEGI39:0] T com2
6] SEGI43:0] T e SEGI41:0) T e SEG[39:0) T comi
z 277727, 3 (7 7z 7z 2 2777907977074
3 . + * + + - 3 + - * 4+ 3 * . + + + + .
2 |7 [sec[a5:0]] 2| sEG[ar:0]] 2| [SEG[35:0], | como
1 1 1
0 0 0 T
76543210 76543210 76543210
Duty = 1/4 Duty = 1/6 Duty = 1/8

The CPU can access the display memory either through direct access or through indirect access.

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 13

NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

43.7.

With Direct access, the CPU can update the display memory by writing to the corresponding Segment's
Data Low/ High for COMx Line register (SDATAL/HXx). For example, to update the segment connected to
SEG4/COM2, write to bit 4 of the SDATALZ2 register.

With In-direct access, the CPU can update the display memory by writing to the Indirect Segments Data
Access register (ISDATA). This register allows to write up to eight contiguous bits in a single write
operation to the display memory:

« SDATA[7:0] - segments data value (see the figure above)
+ SDMASK]|7:0] - mask for SDATA. When SDMASK]y]=1, SDATA[y] is not written to display memory.
* OFF[5:0] - byte offset in display memory (see the figure above)

Frame Counters

The frame counters are used as time base for the different functions (e.g. blinking or automated modes).
There are three independent frame counters FCO, FC1, and FC2, which can be associated with any
function.

The frame counter is synchronized to the LCD frame start and generates an internal event each time the
counter overflows. The maximum value can be set for the (FCx.OVF) is Ox1F.

The formula used to generate the frequency of the interval event is frcx = (FrameRate) / ((FCx.OVF x 8)
+1).

Note:
The FCx register can only be written when the frame counter x is disabled.

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 14

NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

5.1.

5.2.

Overview of Peripherals Used

Other than SLCD and basic peripherals this chapter covers the overview of the other peripherals used for
this applicaiton note. Refer to the respective sections in the product datasheet for more detailed
description about their function and configuration.

DMAC

The Direct Memory Access Controller (DMAC) can transfer data between memories and peripherals, and
thus off-load these tasks from the CPU. It enables high data transfer rates (using AHB clock) with
minimum CPU intervention and frees up CPU time. This will allow the CPU to sleep for a longer time and
thus reduce the power consumption.

A complete DMA read and write operation between memories and/or peripherals is called a DMA
transaction. DMA reads data from the source address before writing to the destination address. A new
data is read when the previous write operation is completed.

The transaction is initiated by a trigger and uses a DMA channel. The DMA trigger source can be
application software, peripheral, or events from Event System (EVSYS).

Each read and write operation are done in blocks. The size of transfer is controlled by the block transfer
size and is configured in the software. The size of the block can be from 1 to 64K beats. The beat can be
byte, half-word, or word

SERCOM - USART

The SERCOM serial engine consists of a transmitter and receiver, baud-rate generator, and address
matching functionality. The transmitter consists of a single write buffer and a shift register. The receiver
consists of a two-levels receive buffer and a shift register. The baud-rate generator is capable of running
on the GCLK_SERCOMx_CORE clock or an external clock.

The serial communication interface (SERCOM) can be configured to support a number of modes; 12C,
SPI, and USART. Once configured and enabled, all SERCOM resources are dedicated to the selected
mode.

The universal synchronous and asynchronous receiver and transmitter (USART) is one of the available
modes in the Serial Communication Interface (SERCOM).

A data transmission is initiated by loading the DATA register with the data to be sent. The data in TxDATA
is moved to the shift register when the shift register is empty and ready to send a new frame. When the
shift register is loaded with data, one complete frame will be transmitted.

The Transmit Complete interrupt flag in the Interrupt Flag Status and Clear register (INTFLAG.TXC) is set
and the optional interrupt is generated, when the entire frame plus stop bit(s) have been shifted out.

The DATA register should only be written when the Data Register Empty flag in the Interrupt Flag Status
and Clear register (INTFLAG.DRE) is set, which indicates that the register is empty and ready for new
data.

USART can generate DMA request when the transmit buffer (TX DATA) is empty. The request is cleared
when DATA is written.

Note:
In this application SAM L22 Xplained pro board the EDGB CDC (SERCOM4) is utilized to select the
mode of operation and user input string from the terminal.

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 15

NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

6.1.

6.2.

6.2.1.

6.2.2.

6.2.3.

SLCD Example Implementation in SAM L22 MCUs

This chapter explains the application implementation in detail.

The objective of this application note is to demonstrate the features listed in this document and its
configuration.

The example covers the following features:

1. Character Mapping.
2. Automated Character Mapping Scrolling.
3. Automated Bit Mapping.
4. Blink and Blank Feature.
Main Clock

The SLCD bus clock (CLK_SLCD_APB) must be enabled to access the registers and it can be configured
in the Main Clock module MCLK,

A 32.768kHz oscillator clock (CLK SLCD_0SC) is required to clock the SLCD. This clock must be
configured and enabled in the 32KHz oscillator controller (0SC32KCTRL) before using the SLCD.

Basic Configuration

Basic configuration example covers pin initialization, clock initialization, EDBG USART initialization, and
SLCD initialization functions. Below are the function calls for the basic configuration.

. system init ()
D board init ()
« configure console()

. xpro_lcd init ()

The following sections will summarize each function.

System and Board Initialization

system _init () is an ASF function used to configure the generic clocks and clock sources as per the
settings in the conf_clocks.h file. The main clock will be configured as stated in section Main Clock on
page 16. board init () initializes the board hardware of SAM L22 Xplained Pro.

EDBG USART Initialization

In this application SERCOMA4 is connected to the EDBG USART lines through which the SAML22
Xplained pro will communicate with the PC terminal application. configure console () function
initializes the SERCOM USART module connected to the EDBG USART, configures the corresponding
USART pins and the studio serial initializations for the standard library APIs (like scanf, printf, etc,.)

SLCD Initialization

xpro_lcd init () function initializes the basic SLCD configurations such as Software contrast
selection and Frame counter initialization. The files conf_slcd.h and conf_xpro_lcd.h has the user
configurations macros, which defines the SLCD clock source, duty, bias, frame rate, contrast, VLCD
selection, SLCD pin selection, etc.

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 16

NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

6.3. Character Mapping

This feature is used to write the display memory for the each character by giving the character start index,
segment data, and mask value.

In this mode, multiple segments of the LCD panel can be gathered into digits in order to display as
characters. Digits can be of various types (e.g., 7-segment, 16-segment) and mapped in the display
memory accordingly. We can find the different memory mapping scenarios in the device datasheet. The
SLCD supports displaying up to 24-segment characters on any existing LCD panel.

The user can change the mapping order by configuring the CMCFG.DEC bit to match the display memory
mapping to their SLCD segment order.

The CMCFG.NSEG defines the number of segments used to map a single digit. It should be the number
of SEG line - 1. In the figure below each digit requires four segment lines. So the value for NSEG = 3.

lWl

Figure 6-1 Segment LCD1 Xplained Pro Segments

Table 6-1 Segment LCD1 Xplained Pro Segments description

SEGO Atmel logo, four stage battery-, Dot-
SEGA GO G6 G7 G5 point-, usb-, and play indicator
SEG2 E7 ES E3 E1 Four stage wireless-, AM-, PM- Volt-,
SEG3 E6 E4 E2 EO and millivolt indicator
SEG4 AO0-h AO-i AO0-k AO-n
SEG5 B3 AO-f A0-e AO0-d
15t 14-segment character
SEG6 AO-a AO-b AO-c B4
SEG7 AO0-g AO-j AO-I AO-m
SEG8 A1-h Al-i A1-k A1-n
SEG9 B2 A1-f Al-e A1-d
2nd 14-segment character
SEG10 Al-a A1-b Al-c B5
SEG11 Al-g Al A1l A1-m

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 17
NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

Seaments Co—Cowi— Gowz——cots_—Commens

SEG12
SEG13
SEG14
SEG15
SEG16
SEG17
SEG18
SEG19
SEG20
SEG21
SEG22
SEG23

A2-h
B1

A2-a
A2-g
A3-h
BO

A3-a
A3-g
A4-h
B8

Ad-a
Ad-g

A2-i
A2-f
A2-b
A2+
A3-i
A3-f
A3-b
A3
Ad-i
Ad-f
Ad-b
Ad-|

A2-k
A2-e
A2-c
A2-|

A3-k
A3-e
A3-c
A3-l

Ad-k
Ad-e
Ad-c
A4-|

A2-n
A2-d
B6
A2-m
A3-n
A3-d
B7
A3-m
Ad-n
Ad-d
B9
Ad-m

314 14-segment character

4th 14-segment character

5t 14-segment character. Celsius and

Fahrenheit indicator.

In the figure above the Segment LCD1 Xplained Pro LCD requires four segment lines and four com lines
in each digit (14 segment per character). Icons starts from seg0 and alphanumeric digit starts from
segment 4/8/12/16/20. When we match the segment mapping with display memory mapping, we can get
the mapping order as shown in Figure 6-2 Example Character Mapping for Segment LCD1 Xplained Pro

on page 19.

In this mode to write the character value in the segment memory register, the CMDATA register is used.
Since the CMDATA register can be up to 24 bits, a mask can be configured to write only selected bits.
Based on the user SLCD glass an unwanted bit can be masked by writing a '1' to a bit in the Character
Mapping Data Mask register (CMDMASK). Then this bit will not be written in the display memory when

CMDATA register is written.

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

NOTE]

18

Figure 6-2 Example Character Mapping for Segment LCD1 Xplained Pro

SEG4
SEG5
SEG6
SEG7

DEC~0
NSEG=3

AO-h
B3

AO-a
AO-g

DEC=0
NSEG=3

A0-m| B4 | A04d |A0-n
A0l |ADc | AD-e (ALK
A0j |A0b| ADf (A0
A0-g |A0-a| B3 |A0-h
b a @
§ § § 8
SINDEX = 4
a4apb »
O =1
CMDATA = 0x07E4
AO-i AO-k
AO-f AO-e
AO0-b AO-c
AO-j AO-I

comM2

coM1
COoMo

DEC=0

NSEG»3 CMDMASK » 0xFF4002

A0d |A0-n

A0l |

Al-e (AO-Kk

A0f A0

“ps__|A0-h
W
}

SINDEX = 4

DEC=0
NSEG=3

A0-m

<

A0d |A0-n

-~

A0-1

A<

|A0-¢||A0-Kk)|

™

ol

A0-b

101 |[A0i

-

Adg

Al.a

B3 |A0-h

€ +ud3s

AO-n
AO-d
B4
AO0-m

T+ VO3S

6.3.1. Configuration Steps to Enable and Print the Character in this Mode

» Disable SLCD and disable all the previous running modes as given in xpro lcd clear all()

* Configure the NSEG and DEC values in the Character Mapping Configuration register (CMCFG) as
shown in Figure 6-2 Example Character Mapping for Segment LCD1 Xplained Pro on page 19 as

givenin slcd character map_ set ()

+ Write the coordinate of a character defined by the Character Mapping Index (CMINDEX) register
* Write the mask value in the Character Mapping Data Mask register (CMDMASK)

« Write the CMDATA register with the user character data

« Wait for character mapping write to complete. Then the user can check the status by the Character

18t 14-segment character

Mapping Write Busy bit in the Status register (STATUS.CMWRBUSY).

Note:

Atmel

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

COoM3

com2

comMm1

CcomMo

CoM3

com2

comMi
COmMO

Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION

Any write access to the display memory through CMDATA/SDATA/ISDATA will be ignored when
STATUS.CMWRBUSY is high. Therefore, the user must not write to CMDATA while
STATUS.CMWRBUSY is asserted.

6.3.2. Example Configuration Used in this Application

The following sequence is a basic example to make the corresponding segments ON for the character ‘A
in Segment LCD1 Xplained Pro LCD glass.

« Disable SLCD, disable all the previous running modes, and clear the SLCD screen:

xpro_lcd clear all();

» Write the configuration for the Character mapping mode:

/* DEC=0, NSEG=3 */
slcd character map set (0,3);

* Write the CMDATA register with the user character data:

/* CMINDEX.CINDEX = 0, CMINDEX.SINDEX = 4 */
/* CMDATA = 0x07E4 (‘A’), CMDMASK = O0xFF4002 */
slcd character write data(0,4,0x07E4,0xFF4002) ;

« Wait for character mapping write complete:

/* wait for the character mapping write complete */
while (slcd get char writing status()) { };

6.3.3. Example Application Usage

After programming the application code we will get the user menu in the terminal window. Choose option
2 to check the "Character mapping feature".

Figure 6-3 Output on Terminal Window

Display UART user input string in SLCD
Character mapping feature

Auto Character mapping feature
Blinking feature

Auto Bit mapping feature

Clear the SLCD screen
To change the user scrolling string input

>>2: Character mapping feature.

Running...

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 20
NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

6.4.

6.4.1.
6.4.1.1.

Figure 6-4 Output on SLCD

Automated Character Mapping

This feature is used to write the display memory with the sequence of segment values for the predefined
strings automatically by using the Direct Memory Access (DMA). This Automated Character Mapping
(ACM) has the following modes: “Sequential Characters String Display” and “Scrolling of Characters
String”. This application briefs about ACM Scrolling of Characters String.

To use this mode we need to configure any of the frame counters among the three independent frame
counters FCO, FC1, and FC2 to create a time base.

Note:
In ACM, compared to manual character mapping, there is one restriction; The first character is always
mapped to the COMO line.

Initialization

Automated Character Mode Initialization
To enable the automated character mapping the following configurations are necessary.

« Configure the NSEG and DEC values in Character Mapping Configuration register (CMCFG) and
the mask value in the CMDMASK register as shown in Figure 6-2 Example Character Mapping for
Segment LCD1 Xplained Pro on page 19

* ACMCFG.NDROW defines number of digits per row
« ACMCFG.STSEG defines the index of the first SEG line of the first digit
* ACMCFG.NDIG defines the number of characters in the whole string

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 21

NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

Note:
Each row should contain NDROW digits except the last row.

Digits of the next row should be aligned with the digits of the previous row (same SEG lines).

6.4.1.2. ACM Scrolling Mode Initialization
The following configuration parameters in addition to section Automated Character Mode Initialization on
page 21 will initialize the ACM scrolling mode.

* Write the number of scrolling steps to the Steps bits (ACMCFG.STEPS). The number of steps is
equal to the string length - NDIG + 1.

* Write a'1' to the Mode bit in order to select the ACM mode (ACMCFG.MODE)

» Configure a frame counter to set the display period (period between two steps) and select the

frame counter for the ACM scrolling mode by writing the frame counter index to the Frame Counter
Selection bits (ACMCFG.FCS)

6.4.1.3. ACM Scrolling Mode DMA Initialization
DMA transfers the segment value for each character present in the String buffer to the CMDATA register
upon the DMA peripheral trigger “Automated Character Mapping Data Ready (ACMDRDY)” occurs.

* For the ACM character mapping scrolling mode DMAC is configured to trigger a data transfer to the
destination address configured when Automated Character Mapping Data Ready (ACMDRDY)
occurs (peripheral trigger source)

» The trigger actions configured to generate a request for a beat transfer

* The destination address configured here is CMDATA register address and the source is DMA
transfer buffer (dma_source_buf[])

« DMA source address configured as increments for each beat transfer and the destination address
is static in this case

* Beat size defines the data transfer size for the each beat (WORD, HWORD, BYTE). In this case it
is configured as WORD (32bit).

« Step size defines the source and destination address increment step. In this case the destination
address is static and the source address is configured to increment with the step size of beat size *
1.

« Block transfer count defines the number of beats to be transferred for the complete scrolling string,
and it is equal to the ACM scrolling string length if the beat size configured as same as the size of
the source buffer member

* Block action defines the action made by the DMA after block transfer. In this case it is configured as
sets transfer complete interrupt flag after block transfer and channel in normal operation.

+ DMA next descriptor defines that the transaction consist of either a single block transfer or several
block transfers. When a transaction consists of several block transfers it is called linked descriptors.
The Next descriptor configured to 0 if single transaction required.

« Create the call-back function, register the DMA call back, and enable the call-back

« DMA is configured to transfer the same string multiple times to destination address using DMA
linked descriptor. However, we have used this transfer complete flag to exit from this continuous
transfer by the help of implementing a break logic to exit from this ACM scrolling mode and DMA
transaction using a variable dma_break.

Note:
If the application requires the transfer complete, interrupt call back is required.

6.4.2. Configuration Steps to Enable and Scrolling the Characters in this Mode
» Disable SLCD and disable all the previous running modes as given in xpro lcd clear all()

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 22
NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

Configure the NSEG and DEC values in the Character Mapping Configuration register (CMCFG)
and the mask value in the CMDMASK register, as shown in Figure 6-2 Example Character
Mapping for Segment LCD1 Xplained Pro on page 19

Write the appropriate configuration for the ACM scrolling mode mentioned in the above section
(Automated Character Mapping on page 21 and Initialization on page 21), using the function
slcd automated char set config()

Disable the frame counter using the function slcd disable frame counter (FCx)

Write the configurations of the frame counter associated with this mode in FCx.OVF and FCx.PB by
using the function s1cd set frame counter (FCx,0,0x1), and enable it by using the function
slcd enable frame counter (FCx)

Enable the automated character mapping mode by writing the CTRLC. ACMEN bit using the
function slcd enable automated character ()

Configure the DMA resource parameters and allocate the resource using the function

configure dma resource (&example resource)

Configure the DMA descriptor parameters by using the function

setup transfer descriptor (&example resource)

Create the call-back function, register call-back, and enable the call-back if the application requires
Call the function dma_start transfer job (&example resource).When the ACM
peripheral trigger occurs, the DMA transfer will be initiated automatically.

Since DMA transaction has been configured as linked descriptor, the exit from the continuous
transaction, disabling the ACM scrolling mode and free the DMA channel used for this mode are
implemented in the function dma callback () by using the dma break variable

6.4.3. Example Configuration Used in this Application
The following sequence is a basic example to scroll the string “HELLO WORLD ” by using the ACM
scrolling mode in Segment LCD1 Xplained Pro LCD glass.

Buffers used :

/* DMA buffer length */

#define BUFFER LEN 30

/* DMA resource and descriptor */
struct dma resource example resource;

COMPILER ALIGNED (16)
DmacDescriptor example descriptor;

static char user scrolling str[BUFFER LEN] = {"HELLO WORLD W] g
static volatile uint32 t dma source buf [BUFFER LEN];

static volatile bool transfer is done = false;
static volatile uint32 t dma break = 0, dma block count = 0;
+ Disable SLCD:

Atmel

slcd disable();

Disable SLCD, disable all the previous running mode, and clear the SLCD screen:

xpro_lcd clear all();

Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 23
NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

. Load the user input string from user scrolling str[] to dma source buf[]
This step includes the conversion of the ASCII value of each character in the Scrolling string
user scrolling str[] into equivalent segment value from the lookup table array DIGI LUT[]
and find the block count. (Refer to Figure 6-2 Example Character Mapping for Segment LCD1
Xplained Pro on page 19 to find the segment values different characters.)

« Create SLCD configuration structure, check whether ACM scrolling mode is selected using the flag
is scrolling, get the default configuration of ACM mode, and load the configuration structure
with the following configuration parameters for the ACM scrolling mode:

/*Structure for the ACM configurations */
struct slcd automated char config automated char config;

0 CMCFG.NSEG = 3 ACMCFG.NDROW = 5 ACMCFG.STSEG = 4
5 ACMCFG.STEPS = string length - NDIG + 1
1 =/

/** CMCFG.DEC
* ACMCFG.NDIG
* ACMCFG.MODE = 1 ACMCFG.FCS =

if (true == is_scrolling) {
/*configuration for Auto character mapping scrolling mode */
/* Get default config for the ACM mode */
slcd automated char get config default (&automated char config);

/* Segment mapping order (CMCFG.DEC bit) */
automated char config.order = 0;

/** select the number of segment used per digit

* it equal to number of SEG line - 1 (CMCFG.NSEG) */
automated char config.seg line num = 3;

/* Define the number of digit per row. (ACMCFG.NDROW) */
automated char config.row digit num = 5;

/** Define the index of the first segment terminal of the
* digit to display (ACMCFG.STSEG) */
automated char config.start seg line = 4;

/** Define the number of digit, it must be greater than 1.
* (ACMCFG.NDIG) */

automated char config.digit num = 5;

/* STEPS = string length - NDIG + 1 (ACMCFG.STEPS) */
automated char config.scrolling step = dma block count - 5 + 1;
/* Select the ACM mode (ACMCFG.MODE) */
automated char config.mode = SLCD AUTOMATED CHAR SCROLL;

/* Select the frame counter for the ACM mode (ACMCFG.FCS) */
automated char config.fc = SLCD FRAME COUNTER 1;

/*Configure the mask value in the CMDMASK register */
automated char config.data mask = 0x00FF4002;

* Write the above configuration for the ACM scrolling mode by using the following function:

/* write the SLCD ACM configurations in the respective registers */
slcd automated char set config(&automated char config);

« Write the above configuration for the ACM scrolling mode by using the following function:

/* write the SLCD ACM configurations in the respective registers */
slcd automated char set config(&automated char config);

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 24
NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

Write the frame counter configurations:

/* Set the frame counter configurations and enable it */
slcd set frame counter (automated char config.fc,0,0x1);
slcd enable frame counter (automated char config.fc);

Enable SLCD:
slcd enable();

Create the DMA resource configuration structure, get the default configuration of DMA resource
configuration, check whether ACM scrolling mode is selected using the flagis scrolling, and
load the configuration structure with the following configuration parameters for the ACM scrolling
mode:

/* Structure for the DMA resource configurations */
struct dma resource config config;

/* Get the default configuration */

dma get config defaults(&config);

if(true == is scrolling) {
/* Set the peripheral trigger source */
config.peripheral trigger = SLCD DMAC ID ACMDRDY;
/* Set the trigger action */
config.trigger action = DMA TRIGGER ACTON_ BEAT;

Write the above DMA resource configuration for the ACM scrolling mode by using the following
function:

configure dma resource (&example resource);

Create the DMA descriptor configuration structure, check whether ACM scrolling mode is selected
using the flag is_scrolling, get the default configuration of DMA resource configuration, and
load the configuration structure with the following configuration parameters for the ACM scrolling
mode:

/* Structure for the DMA descriptor configurations */
struct dma descriptor config descriptor config;

if(true == is scrolling) {
/* Get the default configuration */
dma descriptor get config defaults(&descriptor config);

descriptor config.beat size = DMA BEAT SIZE WORD;

descriptor config.src_increment enable = true;
descriptor config.dst increment enable = false;
descriptor config.step size = (DMA ADDRESS INCREMENT STEP SIZE 1);

descriptor config.step selection =_DMA_STEPSEL_SRC;
descriptor config.block action = DMA BLOCK ACTION_ INT;

/* Block count manipulated run time from the scrolling string */

descriptor config.block transfer count = dma block count;

descriptor config.source address = (uint32 t)dma source buf +
(dma block count *

sizeof (dma source buf[0]));

descriptor config.destination address = (uint32 t) (&SLCD-
>CMDATA.req) ;

descriptor config.next descriptor address =(uint32 t)descriptor;

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 25

NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

6.4.4.

/* Create a DMA descriptor */
dma_descriptor create (descriptor, &descriptor config);

Write the above DMA descriptor configuration for the ACM scrolling mode by using the following
function:

configure dma descriptor (&example resource);

Create the call back function, register call back, and enable:

dma register callback (&example resource,
dma_ callback,DMA CALLBACK TRANSFER DONE) ;
dma enable callback (&example resource, DMA CALLBACK TRANSFER DONE) ;

Start the DMA transfer:

/** Start DMA transfer once DMA gets the peripheral
* trigger form the ACM then the data transfer starts */
dma_ start transfer job (&example resource);

Enable the ACM mode:

/* Enable ACM mode */
slcd enable automated character();

Example Application Usage

After programming the application code we will get the user menu in the terminal window. Choose option
3 to check this feature.

Figure 6-5 Output on Terminal Window

Select the option

-
-

Display UART user input string in SLCD
Character mapping feature

Auto Character mapping feature
Blinking feature

Auto Bit mapping feature

B WNE= 2

Clear the SLCD screen
To change the user scrolling string input

>>3: Auto Character mapping feature.
Text scrolling...

to exit scrolling and clear display.
Otherwise it will exit automatically

Exits from scrolling mode.

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION

NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

26

6.5.

Figure 6-6 Output on SLCD

Automated Bit Mapping

This feature is used to write the display memory with the sequence of segment values for the predefined
symbols automatically by using the Direct Memory Access (DMA). In this Automated Bit Mapping (ABM)
mode several segments on the LCD panel can be gathered to make a symbol, which can be animated
(i.e., have several states).

Data corresponding to each state of the animation can be stored in the system memory and is transferred
periodically to the display memory by using the DMA controller.

To use this mode we need to configure any one of the frame counters among the three independent
frame counters FCO, FC1, and FC2 to create a time base.

To make an automated animation of N states with M contiguous segment values in the display memory,
the DMA controller must be configured to transfer N x M/8 words (eight contiguous segments are updated
per write access).

Here N defines the number of states or frames consist of M contiguous segment values in each state.

M is the number of maximum number segment (24). In a single write the DMA can write eight segments
so to write all the segments in the SLCD (for example 24) M/8 DMA writes are required.

In this case for the Segment LCD1 Xplained Pro LCD glass to write all the 24 segments 3 (24 segments/8
segments per write) DMA writes are needed to update all the segment values.

In a single DMA write, the maximum eight bits (for eight segments) can be updated in the display memory
by IN-Direct access mode using the ISDATA register. The ISDATA register is 32 bit (one word) wide. It
has the following fields.

Format: [00, offset, data mask, data]

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 27

NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

Format: [0x00, offset:[21-16], data mask:[15-8], data:[7-0]]

Each DMA write needs 32-bit value in the above mentioned format with the 8-bit segment data.

To write more than eight bits the DMA controller must be configured to transfer multiple words. This

number of words must be written to the Size bits in the Automated Bit Mapping Configuration register

(ABMCFG.SIZE). It defines the number of DMA writes to the display memory to form an animation frame.

Figure 6-7 Example Display Memory Mapping in ABM Mode for Segment LCD1 Xplained Pro

offset
COM7 ' . - v - .
1 ADm - A4 | A w 1 o5 63
COMé6
COMS
offset CoM4
18] SEGI43:0] T COM3
3
121 SEG[43:0) 4 COM2 .
6] SEG[43:0) 1 COM1 . ComO
CQ 2277777\ "
; PRIV PV R P PEN PU PUR T
2 | | 'SEG[43:0]] como 1 A are | m | mean | aig are | 2 | A
1
o1 TTT1 o [sog|awe | B M0 ® & @ | &
76543210 ’ 6 5 N 3 2 1 0
Duty = 1/4 Duty = 1/4

COMO

N defines the number of states or frames consist of M contiguous segment values in each state.

Indirect addressing format:

Format: [00, offset, data mask, data]

Format: [0x00, offset:[21-16], data mask:[15-8], data:[7-0]]

Frame /state 0[0][4] = { 0x00000040, 0x00020040, 0x00060040, 0x00010040}
Frame /state 1[1][4] = { 0x00000000, 0x00020000, 0x00060000, 0x00010000}
Frame /state 2[2][4] = { 0x00000010, 0x00020010, 0x00060020, 0x00010020}
Frame /state 3[3][4] = { 0x00000040, 0x00020040, 0x00060040, 0x00010040}

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION

NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

28

6.5.1.

6.5.1.1.

6.5.1.2.

Figure 6-8 Example DMA Writes and State Formation in ABM Mode for Segment LCD1 Xplained Pro

N(number of state/frame) = 4 L One DMA Transaction One DMA write
ABMCFG.SIZE = 4

Initialization
To enable the automated bit mapping the following configurations are necessary.

Automated Bit Mapping Mode Initialization
The following configuration parameters will initialize the ABM mode.

* Write the number of words per DMA write as the Size bits in the Automated Bit Mapping
Configuration register (ABMCFG.SIZE)

Note: Size is a user defined configuration based on their animation pattern and must be greater than 1.

+ Configure a frame counter to set the display period (period between two steps) and select the
frame counter for the ACM scrolling mode by writing the frame counter index to the Frame Counter
Selection bits (ABMCFG.FCS)

ABM Mode DMA Initialization

The DMA transfers the sequence of segment values for each predefined symbol present in the user
buffer to the ISDATA register upon the DMA peripheral trigger “Automated Bit Mapping Data Ready
(ABMDRDY)” occurs.

* For the ABM mode DMAC is configured to trigger a data transfer to the destination address
configured when Automated Bit Mapping Data Ready (ABMDRDY) occurs (peripheral trigger
source)

« The trigger actions configured to generate a request for a beat transfer

* The destination address configured here is the ISDATA register address and the source is the DMA
transfer buffer (dma_source_buf[])

+ DMA source address configured as increments for each beat transfer and the destination address
is static in this case

+ Beat size defines the data transfer size for the each beat (WORD, HWORD, BYTE). In this case it
is configured as WORD (32-bit).

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 29

NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

6.5.2.

6.5.3.

Note:

Step size defines the source and destination address increment step. In this case the destination is
static. However, the source address is configured to increment with the step size of beat size * 1.
Block transfer count defines the number of beats to be transferred for all the animation states and it
is equal to the ABM animation pattern length if the beat size is configured as the size of the source
buffer member

Block action defines the action done by the DMA after block transfer. In this case it is configured as
sets transfer complete interrupt flag after block transfer and channel in normal operation.

DMA next descriptor defines that the transaction consist of either a single block transfer or several
block transfers. When a transaction consist of several block transfers it is called linked descriptors.
The Next descriptor configured to 0 if single transaction is required.

Create the call back function, Register the DMA call back, and enable the callback

DMA is configured to transfer the same animation pattern in multiple times to destination address
using DMA linked descriptor to repeat the animation pattern. However, we have used this transfer
complete flag to exit from this continuous transfer by the help of implementing a break logic to exit
from this ABM mode and continuous DMA transaction using a variable dma_break.

If the application requires the transfer complete interrupt call back is required.

Configuration Steps to Enable ABM mode

Disable SLCD and disable all the previous running modes as given in xpro lcd clear all()
Write the appropriate configuration for the ABM mode mentioned in the above section (Automated
Bit Mapping Mode Initialization on page 29) using the function slcd set automated bit ()
Disable the frame counter by using the function slcd disable frame counter (FCx)

Write the configurations of the frame counter associated with this mode in FCx.OVF and FCx . PB
by using the function slcd set frame counter (FCx,0,0x1) and enable it by using the
function slcd enable frame counter (FCx)

Enable the automated character mapping mode by writing the CTRLC. ABMEN bit using the
function slcd enable automated bit ()

Configure DMA resource parameters and allocate resource using the function
configure dma resource (&example resource)

Configure the DMA descriptor parameters using the function

setup transfer descriptor (&example resource)

Create the call back function, Register call back, and enable the callback if the application requires
Call the function dma start transfer job (&example resource). After that upon the ABM
peripheral trigger occurs the DMA transfer will be initiated automatically.

Since DMA transaction has configured as linked descriptor, the exit from the continuous transaction
is implemented in the function dma callback () by using dma break variable. This step includes
disabling the ABM mode and freeing the DMA channel used for ABM mode.

Example Configuration Used in this Application

The following sequence is a basic example to animate the user style1 using ABM mode in Segment
LCD1 Xplained Pro LCD glass.

Buffers used :

/* DMA buffer length */
#define BUFFER LEN 30

/* DMA resource and descriptor */

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 30

NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

struct dma resource example resource;

COMPILER ALIGNED(16)
DmacDescriptor example descriptor;

static char user scrolling str[BUFFER LEN] = {"HELLO WORLD "l
static volatile uint32 t dma source buf[BUFFER LEN];

static volatile bool transfer is done = false;
static volatile uint32 t dma break = 0, dma block count = 0;

/** prints Atmel in user stylel */

user style buf[1][30] = {

0x00000040, 000070000, 0x000D0060, 000140002, //
0x000600e0, 0x000D0060, 0x00130008,0x00020004, //
0x000C0070,0x00130008,0x00020004,0x0008000a, //
0x00120000, 0x00010005,0x0008002a, 0x000E0003, //
0x00010085, 0x00070070, 0x000E0023, 000140022, //
0x0000FF00, 0x0000FF00, 0x0000FF00, 0x0000FFO0O //
}

R HEE<A3n

Disable SLCD:
slcd disable();

+ Disable SLCD and disable all the previous running mode and clears SLCD screen:

xpro lcd clear all();

* Clear the previous values present in the dma_source buf by using the below function:

clear buffer();

* Loads the user animation pattern/style (consist of a list of frames) from user style buf[1][30]
to dma_source buf[] and counts the block count.

* ABM mode configuration parameters:

/* ABMCFG.SIZE = 3 ABMCFG.FCS = 1 */
config size = 3;

config fc value = 0xO0F;

config fc = SLCD FRAME COUNTER 1;

« Write the above configuration for the ABM mode by using the following function:

/* write the SLCD ABM configurations in the respective registers */
slcd set automated bit (config size, config fc);

* Write the frame counter configurations:

/* Set the frame counter configurations and enable it */
slcd set frame counter (config fc,0,0x0F);
slcd enable frame counter (config fc);

. Enable SLCD:
slcd enable();

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 31
NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

« Create DMA resource configuration structure, get the default configuration of DMA resource
configuration, check whether ABM mode is selected using the flag is bitmapping, and load the
configuration structure with the following configuration parameters for the ABM mode:

/* Structure for the DMA resource configurations */
struct dma resource config config;

/* Get the default configuration */

dma get config defaults(&config);

if(true == is bitmapping) {
/* Set the peripheral trigger source */
config.peripheral trigger = SLCD DMAC ID ABMDRDY;
/* Set the trigger action */
config.trigger action = DMA TRIGGER ACTON_ BEAT;

* Write the above DMA resource configuration for the ABM mode by using the following function:

configure dma resource (&example resource);

« Create DMA descriptor configuration structure, check whether ABM mode is selected using the flag
is bitmapping, get the default configuration of DMA resource configuration, and load the
configuration structure with the following configuration parameters for the ABM mode:

/* Structure for the DMA descriptor configurations */
struct dma descriptor config descriptor config;

if(true == is scrolling) {
/* Get the default configuration */
dma_descriptor get config defaults (&descriptor config);

descriptor config.beat size = DMA BEAT SIZE WORD;

descriptor config.src_increment enable = true;
descriptor config.dst increment enable = false;
descriptor config.step size = (DMA ADDRESS INCREMENT STEP SIZE 1);

descriptor config.step selection = DMA STEPSEL SRC;
descriptor config.block action = DMA BLOCK ACTION_ INT;

/* Block count manipulated run time from the scrolling string */
descriptor config.block transfer count = dma block count;
descriptor config.source address = (uint32 t)dma source buf +
(dma block count *
sizeof (dma source buf[0]));

descriptor config.destination address = (uint32 t) (&SLCD-
>ISDATA.req) ;
descriptor config.next descriptor address =(uint32 t)descriptor;

/* Create a DMA descriptor */
dma_ descriptor create (descriptor, &descriptor config);

* Write the above DMA descriptor configuration for the ABM mode by using the following function:

configure dma descriptor (&example resource);

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 32
NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

« Create the call back function, Register call back and enable:

dma register callback(&example resource,
dma callback,DMA CALLBACK TRANSFER DONE) ;
dma enable callback (&example resource, DMA CALLBACK TRANSFER DONE) ;

. Start DMA transfer:

/** Start DMA transfer once DMA gets the peripheral
* trigger from the ABM then the data transfer starts */
dma_ start transfer job (&example resource);

. Enable ABM mode:

/* Enable ABM mode */
slcd enable automated bit();

6.5.4. Example Application Usage

After programming the application code we will get the user menu in the terminal window. Choose option
5 and then choose the options as listed below to check this feature.

Figure 6-9 Output on Terminal Window

>>5: Auto Bit mapping feature.

Select the user style
A for StyleB
1 for Stylel
ress 2 for Style2
ress 3 for Style3

Style2 selected.

’

ress ’‘c’ to exit Auto bhit mapping and clear display.
Otherwise it will exit automatically

Exits from Bit mapping mode.

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 33
NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

Figure 6-10 Output on SLCD

6.6. Blink Mode and Frequency Configuration
SLCD can be configured to blink all or selected LCD segments. Segments will alternate between ON and
OFF state at the frequency given by the selected frame counter.

The blinking feature is configured in the Blink Configuration register (BCFG):

« Blink all the segments
Writing ‘0’ to the Blinking Mode bit (BCFG.MODE) will blink all the segments.

* In Blink selected segments mode up to sixteen segments can be enabled individually to blink,
which are connected to SEG0, SEG1, and COM[0..7]
Write ‘1’ to the Blinking Mode bit (BCFG.MODE).

Write ‘1’ to the “Blink Segment Selection 0” bits (BCFG.BSS0) enables to blink the respective
segments in segment 0 (SEGO0), connected to COMO up to COM7.

Write ‘1’ to the “Blink Segment Selection 1” bits (BCFG.BSS1) enables to blink the respective
segments in segment 1 (SEG1), connected to COMO up to COM7.

Note:
A segment will blink only if it is already ON - otherwise it will remain OFF.

In this case for the Segment LCD1 Xplained Pro LCD glass maximum we have four COM lines. Segment
0 and segment 1 are both connected to COMO to COM3. Maximum eight segments can be configured to
blink individually.

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 34
NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

Note:

The blink frequency is defined by the frame counter. We can associate any one of the frame
counters to the blink feature by writing the corresponding frame counter x index to the Frame
Counter Selection bits in the BCFG register (BCFG.FCS).

Once the desired blink configuration is written to the BCFG register, blinking is enabled by writing a
'1" to Blink bit in Control C register (CTRLC.BLINK). Blinking is disabled by writing a '0' to
CTRLC.BLINK.

The BCFG register cannot be written when blink is enabled. The blink frequency can be modified. Before
updating the new blink frequency the selected frame counter has been disabled.

6.6.1. Configuration Steps to Enable the Blink Mode

Note:

Disable SLCD and disable all the previous running modes as given in xpro lcd clear all()
First make the segments ON which needs to be blinking by using the
xpro_lcd blink icon start () orxpro lcd show text () function

Disable the blink mode by writing a '0' to the Blink bit in Control C register (CTRLC.BLINK)

Write the blink mode by Blinking Mode bit (BCFG.MODE)

Write the required “Blink Segment Selection x” bits (BCFG.BSSx) if blink selected mode is
configured

Write the frame counter x index to the Frame Counter Selection bits in the BCFG register
(BCFG.FCS)

Write the appropriate configuration for the Blink mode mentioned in the above parameters by using
the function s1cd blink set config () to blink all the segments, or slcd_set_blink_pixel() to
blink the selected segments only

Disable the frame counter using the function slcd disable frame counter (FCx). (Optional,
not needed if already configured.)

Write the configurations of the frame counter associated with this mode in FCx.OVF and FCx . PB
by using the function slcd set frame counter (FCx,0,0x1) and enable it by using the
function slcd enable frame counter (FCx). (Optional, not needed if already configured.)

Enable the blink mode by writing a '1' to the Blink bit in Control C register (CTRLC.BLINK)

The BCFG register cannot be written when blink is enabled. The blink frequency can be modified, before
that the selected frame counter has been disabled.

6.6.2. Example Configuration Used in this Application

The following sequence is a basic example to blink the “BLINK” string in blink all segments mode in
Segment LCD1 Xplained Pro LCD glass.

Atmel

Disable SLCD:
slcd disable();

Disable SLCD and disable all the previous running modes and clears SLCD screen:

xpro_lcd clear all();

Enable the segments to blink:

/* Printing "BLINK" string on SLCD(used Character Mapping mode) */
xpro_lcd show text ((const uint8 t *)"BLINK");

Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 35
NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

Blink mode configuration parameters to blink all the segments:

/* BCFG.MODE = 0 BCFG.FCS = 1 */

slcd blink get config defaults(&blink config);
blink config.blink all seg = true;

blink config.fc = CONF_XPRO LCD BLINK TIMER;

Write the above configuration for the blink mode by using the below function:

/* write the SLCD Blink configurations in the respective registers */
slcd blink set config(&blink config);

Write the frame counter configurations:

/* Set the frame counter configurations and enable it */
slcd set frame counter (blink config.fc,0,0x1);
slcd enable frame counter (blink config.fc);

Enable SLCD:
slcd enable();

Enable Blink mode:

/* Enable Blink mode */
slcd enable blink();

Example Application Usage
After programming the application code we will get the user menu in the terminal window. Choose option
4 to check this feature.

Figure 6-11 Output on Terminal Window
>>4: Blinking feature.

Blink screen...

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 36

NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

Figure 6-12 Output on SLCD

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 37
NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

7. References
SAM L22 Device Datasheet

Web page: http://www.atmel.com/products/microcontrollers/arm/sam-l.aspx?tab=documents

Document: Atmel SAM L22 Datasheet.pdf

SAM L22 Xplained Pro User Guide and Schematics

Web Page: http://www.atmel.com/tools/ATSAML22-XPRO.aspx?tab=documents

Atmel Segment LCD1 Xplained Pro User Guide

Web link: http://www.atmel.com/Images/Atmel-42076-Segment-LCD1-Xplained-Pro_User-Guide.pdf

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 38
NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

8. Revision History

Doc Rev. |Date Comments

42499A 08/2015 Initial document release.

AtmeL Atmel AT09192: SAM L22 Segment Liquid Crystal Display (SLCD) Controller [APPLICATION 39
NOTE]

Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

[connecTen |
Altmel | enabling Uniimited Possibilities’ [fl¥]in] 3 o]
Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

©2015 Atmel Corporation. / Rev.: Atmel-42499A-SAM-L22-Segment-Liquid-Crystal-Display-SLCD-Controller-AT09192_Application Note-08/2015

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected® logo, and others are the registered trademarks or trademarks of ARM Ltd. Windows® is a the registered trademark of
Microsoft Corporation in U.S. and or other countries Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Features
	Table of Contents
	1. Glossary
	2. Pre-requisites
	3. Setup
	3.1. Hardware Setup
	3.1.1. SAM L22 Xplained Pro
	3.1.2. Segment LCD1 Xplained Pro Board

	3.2. Software Setup

	4. Segment Liquid Crystal Display (SLCD) Controller
	4.1. Overview
	4.2. Block Diagram
	4.3. Functional Description
	4.3.1. Basic Operation
	4.3.2. DUTY and BIAS
	4.3.3. Different Waveform Modes
	4.3.4. LCD Frame Frequency
	4.3.5. LCD Pins Selection
	4.3.6. Display Memory Mapping
	4.3.7. Frame Counters

	5. Overview of Peripherals Used
	5.1. DMAC
	5.2. SERCOM – USART

	6. SLCD Example Implementation in SAM L22 MCUs
	6.1. Main Clock
	6.2. Basic Configuration
	6.2.1. System and Board Initialization
	6.2.2. EDBG USART Initialization
	6.2.3. SLCD Initialization

	6.3. Character Mapping
	6.3.1. Configuration Steps to Enable and Print the Character in this Mode
	6.3.2. Example Configuration Used in this Application
	6.3.3. Example Application Usage

	6.4. Automated Character Mapping
	6.4.1. Initialization
	6.4.1.1. Automated Character Mode Initialization
	6.4.1.2. ACM Scrolling Mode Initialization
	6.4.1.3. ACM Scrolling Mode DMA Initialization

	6.4.2. Configuration Steps to Enable and Scrolling the Characters in this Mode
	6.4.3. Example Configuration Used in this Application
	6.4.4. Example Application Usage

	6.5. Automated Bit Mapping
	6.5.1. Initialization
	6.5.1.1. Automated Bit Mapping Mode Initialization
	6.5.1.2. ABM Mode DMA Initialization

	6.5.2. Configuration Steps to Enable ABM mode
	6.5.3. Example Configuration Used in this Application
	6.5.4. Example Application Usage

	6.6. Blink Mode and Frequency Configuration
	6.6.1. Configuration Steps to Enable the Blink Mode
	6.6.2. Example Configuration Used in this Application
	6.6.3. Example Application Usage

	7. References
	8. Revision History

