

8-bit
Microcontrollers

Application Note

Rev. 2527B-AVR-07/08

AVR223: Digital Filters with AVR

Features
• Implementation of Digital Filters
• Coefficient and Data scaling
• Fast Implementation of 4th Order FIR Filter
• Fast Implementation of 2nd Order IIR Filter
• Methods for Optimization

1 Introduction
Applications involving processing of signals from external analog sources/sensors
usually require some kind of digital filtering. For extremely high filter performance,
Digital Signal Processors (DSP) are usually chosen, but in many cases these are
too expensive to use. In these cases, 8- and 16-bit Microcontrollers (MCU) come
into the picture. They are inexpensive, efficient, and have all the required I/O
features and communication modules that DSP seldom have.

The Atmel AVR microcontrollers are excellent for signal processing applications
due to their powerful architecture, strong instruction set and built-in multi-channel
10-bit Analog to Digital Converter (ADC). The megaAVR® series further have a
hardware multiplier, which is important in signal processing applications.

This document focuses on the use of the AVR hardware multiplier, the use of the
general purpose registers for accumulator functionality, how to scale coefficients
when implementing algorithms on fixed point architectures, and possible ways to
optimize a filter implementation. Two example implementations are included.

Although digital filter theory is not the focus of this application note, some basics
are covered. A list of suggested, more in-depth literature on digital filter theory is
enclosed last in this document.

2 AVR223
2527B-AVR-07/08

[] []∑∑ −⋅=−⋅
NM

jnxbinya

[] [] () []∑∑
==

−⋅−+−⋅=
M

i
i

N

j
j inyajnxbny

10

[] []

j
N

j
j

i
M

i
i

N

j
j

M

i
i

zbzXzazY

jnxbinyaZ

−

=

−

=

==

⋅⋅=⋅⋅

=
⎭
⎬
⎫

⎩
⎨
⎧

−⋅=−⋅

∑∑

∑∑

00

00

)()(

2 General Digital Filters
All digital, linear, time-invariant (LTI) filters can be described by a difference equation
on the form shown in Equation 1. The output signal is denoted by y[n] and the input
signal by x[n].

Equation 1: General Difference Equation for Digital Filters.

== j
j

i
i

00

A filter is uniquely defined by its order and coefficients, ai and bj.. The order of a filter
is defined as the largest of M and N, denoting the longest delay used in the
calculations. Note that the coefficients are usually scaled so that a0 equals 1. The
output of the filter may then be calculated as shown in Equation 2.

Equation 2: Difference Equation for Filter Output.

If x[n] is an impulse (1 for n = 0 and 0 for n ≠ 0), the output is called the filter’s impulse
response: h[n].

A filter may be classified as one of two types from the value of M:

• Finite Impulse Response (FIR), for M = 0
• Infinite Impulse Reponse (IIR), for M ≠ 0
The difference between these two types of filters is the feedback: For IIR filters the
output samples are calculated recursively, i.e., from previous output in addition to the
input samples. The term Finite/Infinite then describes the length of the filter’s impulse
response (disregarding quantization effects in a real implementation). Note that an IIR
filter with N = 0 is a special case of filters, called “all-pole”. For further information on
these two classes of filters, refer to the suggested literature list at the end of this
document.

Often, digital filters are described in the Z-domain, a complex frequency domain. The
Z-transform of Equation 1 is shown in Equation 3.

Equation 3: Z-transform of the General Digital Filter.

The transfer function, H(z), for a filter is usually supplied as it tends to give a compact
representation and allows for easy frequency analysis. The transfer function is

 AVR223

defined as the ratio between output and input of a filter in the Z-domain, as shown in
Equation 4. Note that the transfer function is the Z-transform of the filter’s impulse
response, h[n].

Equation 4: Transfer Function of General Digital Filter.

∑∑
=

−

=

− ⋅+⋅
M

i

i
i

M

i

i
i zazazX

10
1)(

∑∑
=

−

=

− ⋅
=

⋅
==

N

j

j
j

N

j

j
j zbzb

zYzH 00)()(

As can be seen, the numerator describes the feed-forward part and the denominator
describes the feedback part of the filter function. For more information on the Z-
domain, refer to the suggested literature at the end of this document.

For the purposes of implementing a filter from a given transfer function, it is sufficient
to know that z in the Z-domain represents a delay element, and that the exponent
defines the delay length in units of samples. Figure 2-1 illustrates this with a general
digital filter in Direct Form 1 representation.

 3

2527B-AVR-07/08

4 AVR223

Figure 2-1: Direct Form I Representation of a General Digital Filter.

3 Filter Implementation Considerations
When implementing a filter on a given MCU architecture, several issues must be
considered. For example:

• The resolution (number of bits) of input and output will affect the maximum
allowable filter gain and throughput.

• The resolution of filter coefficients will affect the frequency response and
throughput.

• The filter order will affect the throughput.
• Fractional filter coefficients require some thought when used with an integer

multiplier.
These and other implementation issues are discussed in this section.

In addition, a quick description of the AVR hardware multiplier and virtual accumulator
is in order, since knowledge about these is important for understanding the filtering
code.

2527B-AVR-07/08

 AVR223

 5

2527B-AVR-07/08

3.1 The AVR Hardware Multiplier
Since the AVR is an 8-bit architecture, the hardware multiplier is an 8-bit by 8-bit =
16-bit multiplier. The multiplier is in this application note invoked using three different
instructions: MUL, MULS and MULSU. These instructions are unsigned, signed and
signed-times-unsigned multiplications, respectively.

The filter algorithm is a sum of products. The first product is calculated using a
“simple” multiplication (MUL) between two N-bit values, providing a 2N-bit result. The
multiplication is performed with one byte from each of the multiplicands at a time, and
the result is stored in the 2N-bit “accumulator”. The next products are calculated and
added to the accumulator, a so-called multiply-and-accumulate operation (MAC).

The example filters in this application note make use of two different multiplication
operations:

• muls16x16_24
• mac16x16_24
These are signed 16-bit by 16-bit operations with a 24-bit result. (The result is less
than 32-bit because the input samples and coefficients in the example
implementations do not use the entire 16-bit range.)

Note that the AVR also have instructions for fractional multiplications, but these are
not used in this application note. For more information about these and other
multiplication instructions, refer to the application note “AVR201: Using the AVR
Hardware Multiplier”.

3.2 The AVR Virtual Accumulator
The AVR does not have a dedicated accumulator – instead, the AVR allows any
number of the 32 8-bit General Purpose Input/Output (GPIO) registers to form a
“virtual accumulator”. Throughout this document the virtual accumulator will simply be
referred to as “accumulator”, although it is more flexible than ordinary accumulators
used in other architectures.

As an example, if a 24-bit accumulator is required by the AVR to MUL two 12-bit
values, three 8-bit GP Registers are combined into a 24-bit accumulator. If a MAC
requires a 40-bit accumulator, five 8-bit registers are combined to form the
accumulator. Using this flexibility of the accumulator ensures that no parts of the
result or sub-result need to be moved back and forth during the MAC operating, which
would have been required if the accumulator size was fixed to 32-bit or less.

The flexibility of the AVR accumulator is an important tool for avoiding overflow in
Fixed Point (FP) algorithms, which is discussed next.

3.3 Overflow of Fixed Point Values
Overflow may occur at two places in the filter algorithm; in the sub-results of the
algorithm and in the output of the filter.

3.3.1 Avoiding Overflow in Sub-Results

The reasons that overflow may occur in the sub-results of the filtering algorithm are:

• Multiplication of two values with resolution N1 and N2 can produce a (N1+N2)-bit
result.

6 AVR223

• Addition of two values can produce a sum that has 1 bit more than the operand
with the highest resolution.

2527B-AVR-07/08

[] []∑ ⋅=
4

j nxbny

34
32.33

1)5(log152
1)(log2

2

2

=
≈

++⋅=

Consider a fourth order FIR filter described by Equation 5.

Equation 5: Difference Equation for a 4th Order FIR Filter.

=0j

The output is a sum of five products. Assuming that the input samples and
coefficients both are 16-bit and signed, the algorithm will at most require a 34-bit
accumulator, as calculated in Equation 6.

Equation 6: Required Accumulator Resolution for 4th Order FIR Filter.
+⋅≥ +

N

MKN

N is the number of bits needed, K is the bit resolution (excluding sign bit) of the input
samples and coefficients, and M is the number of additions. The single bit that is
added is the sign bit. The accumulator would in this case require five GPIO registers
(40 bits) to hold the largest absolute value that may occur due to these operations.

Keep in mind that in IIR filters, the output samples are used in the filtering algorithm. If
the output has a higher resolution than the input, the accumulator needs to be scaled
according to the output’s resolution.

3.3.2 Avoiding Overflow in Output

To avoid overflow in the output stage, the filter gain must be limited so that it is
possible to represent the result with the resolution available in the output stage. The
limit on the gain will, of course, depend on the spectrum and resolution (relative to
output) of the input signal.

The most conservative criterion for avoiding overflow in the output states that the
absolute sum of the filter’s impulse response multiplied with the maximum absolute
value of the input cannot exceed the maximum absolute value of the output. Equation
7 shows this criterion.

Equation 7: Conservative Criteria for Avoiding Overflows in Filter Output.

[]

[]
MAX

MAX

n

MAX
n

MAX

X
Y

nh

YnhX

≤

≤⋅

∑

∑
∞

=

∞

=

0

0

If the impulse response does not fulfill this criterion, it simply needs to be multiplied
with a factor that reduces the absolute sum sufficiently.

 AVR223

Keep in mind that for signed integers, the maximum value of the positive range is 1
smaller than the absolute maximum value of the negative range. Assuming the input
is M-bit and the output is N-bit, Equation 8 shows the criterion for the worst-case
scenario.

Equation 8: "Worst-Case" Conservative Criterion for Signed Integers.

 7

2527B-AVR-07/08

[]∑ −

− −
≤ 1

1

2
12

M

N

nh

Although fulfillment of this criterion guarantees that no overflow will ever occur, the
drawback is a substantial reduction of the filter gain. The characteristics of the input
signal may be so that this criterion is overly pessimistic.

Another common criterion, which is better for narrowband signals (such as a sine),
states that the absolute maximum gain of the filter multiplied with the absolute
maximum value of the input cannot exceed the absolute maximum value of the
output. Equation 9 shows this criterion.

Equation 9: Criterion for Avoiding Overflow with Narrowband Signals.

MAX

MAX

H

MAXMAXH

X
Y

H

YHX

≤

≤⋅

)(max

)(max

)(

)(

ω

ω

ω

ω

This is the criterion used for the filter implementations in this application note: With
the same resolution in input and output, the filters should not exceed unity (0 dB)
gain.

Note that the limit on the gain depends on the characteristics of the input signal, so
some experimentation may be necessary to find an optimal limit.

3.4 Scaling of Coefficients
Another important issue is the representation of the filter coefficients on Fixed Point
(FP) architectures. FP representation does not necessarily mean that the values must
be integers: As mentioned, fractional FP multiplication is also available. However, in
this application note only integer multiplications are used, and thus the focus is on
integer representations.

Naturally, to most accurately represent a number, one should use as many bits as
possible. For the purpose of using fractional filter coefficients in integer
multiplications, this issue boils down to scaling all the coefficients by the largest
common factor that does not cause any overflows in their representation. This scaling
also applies to the a0 coefficient, so a downscaling of the output is necessary to get
the correct value (especially for IIR filters). Division is not implemented in hardware,
so the scaling factor should be on the form 2k since division and multiplication by
factors of 2 may easily be done with bitshifts. The principle of coefficient scaling and
subsequent downscaling of the result is shown in Equation 10.

8 AVR223
2527B-AVR-07/08

[] []

[] () [] () [] kinyajnxbny

jnxbinya

M

i
i

k
N

j
j

k

N

j
j

k
M

i
i

k

>>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅⋅−+−⋅⋅=

−⋅=−⋅

∑∑

∑∑

==

==

10

00

22

22

Equation 10: Scaling of Filter Coefficients and Downscaling of Result.

Note that the sign bit must be preserved when downscaling. This is easily done with
the ASR instruction (arithmetic shift right).

As an example, consider the filter coefficients bj = {0.9001, -0.6500, 0.3000}. If 16-bit
signed integer representation is to be used, the scaled coefficients must have values
in the range [-215…215-1] = [-32768…32767]. Naturally, the coefficient with the largest
absolute value will be the one limiting the maximum scaling factor. In this case, the
largest possible scaling factor without any overflow is 215. Rounding of the scaled
coefficients results in the values {29494, -21299, 9830} and the approximate
(downscaled) absolute rounding errors {1.5·10-5, 6.1·10-6, 1.2·10-5}.

Optimization of the downscaling is possible if the factor k is above a multiple of 8. If
this is the case, the program may simply “ignore” bytes of the result. An example is
illustrated in Figure 3-1, where a 32-bit result should be downscaled by 218. This is
accomplished by bit shifting the 16 Most Significant Bits (MSB) two times.

Figure 3-1: Optimized Downscaling (Grey Blocks are Unused Bits).

16-bit
6 bits 10 bits

8 bits8 bits

28 bits4 bits

x·218

32-bit

Filter input

6 bits 10 bits

Filter output

Accumulator

ACC >> 2

16-bit

3.4.1 Effect of Downscaling

One may wonder why one adds bits to avoid overflow in the sub-results, then
basically “throws them away” to fit the result into a specified resolution. The
explanation is that the bits are needed for precision during calculations, the filter has
unity gain, and the output should be interpreted as an integer.

For filters with unity gain, the coefficients will be fractional, i.e., less than one, and
thus the multiplications will add bits that actually represent fractional values. The
summations will, however, add bits that represent higher significance. But due to the
unity gain of the filter, these bits will never be used in the result: The output of the
filter will not get an absolute value higher than that of the input, thus allowing the
output to be represented with the same integer range as the input.

 AVR223

 9

2527B-AVR-07/08

The downscaling simply removes the fractional part of the result, leaving just the
integer part in the wanted resolution. Clearly, this also means that the precision is
reduced. This is of consequence to IIR filters, since they have feedback. If the effect
of this precision loss is a problem, it may be reduced in two ways:

• Maximize filter gain, so the output uses the entire, available range.
• Increase both the resolution of the output and the filter gain.
Of the two, only the latter can affect code size and throughput since a larger
accumulator may be required.

3.4.2 Reduced Resolution for Increased Throughput

To speed up the filtering algorithm, it may be desirable to reduce the resolution of the
coefficients and/or input samples so that the size of the accumulator can be reduced.
A smaller accumulator means that the algorithm requires fewer operations per
multiplication of filter coefficient and sample. However, two issues need to be taken
into consideration before doing this:

• Reduction of input sample resolution means that noise is introduced in the system,
which is generally undesirable.

• Reduction of filter coefficient resolution means that the desired filter response may
become harder to achieve.

For other ways to increase throughput, see “Optimization of Filter Implementations”
on page 16.

4 Filter Implementations
The example filters in this application note were developed and compiled using the
IAR EWAVR compiler version 5.03A.

The filter coefficients were calculated using software made for this purpose. There is
a plethora of software that can do this, ranging from costly mathematical programs
such as Matlab™, to freely available Java applets on the web. A list of web sites that
deal with the topic of calculating filter coefficients are provided in the literature list
enclosed last in this application note. An alternative is to calculate the coefficients the
“hard” way: By hand. Methods for calculating the filter coefficients (and investigating
stability of these filters) are described in [1] and [2].

Two filters are implemented; A fourth order High Pass (HP) FIR filter, and a second
order Band Pass (BP) IIR filter. For both implementations, 10-bit signed input
samples are used. The FIR filter uses 13-bit signed coefficients, while the IIR filter
uses 12-bit signed coefficients. This is ensures that a maximum accumulator size of
24 bits is needed.

The filters are implemented in assembly for efficiency reasons. The implementations
are made in such a way that the filter function can be called from C. Prior to calling
the filter functions, it is required that the filter nodes (memory of the delay elements)
are initialized – otherwise the startup conditions of the filters are unknown. For both
filters, a C code example that initializes and calls the filter function is provided.

All parameters required for filtering are passed at run time, so the filter function may
be reused to implement more than one filter without the need for additional code
space. This may be utilized for cascade coupling of filters: Often, multiple second
order filters are used to form higher order filters by feeding the output of one filter into
the input of the next filter in the cascade. However, since the output from each filter in

10 AVR223

the cascade is downscaled before being fed into the next filter, the final output might
not be as expected. This is because precision is lost in between filters. Naturally, the
effect of this becomes more pronounced with increased cascade lengths.

The implementations focus on fast execution of the filters, since a high throughput in
the filters is of great importance. See “Optimization of Filter” on page 16 for
suggestions on ways to reduce code size, increase throughput further, and reduce
memory usage.

4.1 Fourth Order FIR Filter
For the purpose of demonstrating the cascading technique, this filter is implemented
by using two second order HP filters. Both filters were made with the windowing
technique, described in [1], using a Hamming window. The filter parameters are
shown in Table 4-1. Figure 4-1 shows the magnitude response of both filters
separately, and in cascade.

Table 4-1: Second Order FIR Filter Parameters.

Filter Order Cutoff Coefficients (b0, b1, b2) Scaling
Scaled Coefficients
(b0, b1, b2)

No. 1 2 0.4 -0.0373, 0.9253, -0.0373 212 -153, 3790, -153

No. 2 2 0.6 -0.0540, 0.8920, -0.0540 212 -222, 3653, -222

Figure 4-1: Magnitude Response of FIR Filters.

The filter routines are implemented in assembly to make them efficient. However, the
filter parameters and the filter nodes need to be initialized prior to calling the filtering
function. The initialization is done in C. A struct containing the filter coefficients and
the filter nodes are defined for each of the filters. The structs are defined as follows:

2527B-AVR-07/08

 AVR223

 11

2527B-AVR-07/08

struct FIR_filter{

int filterNodes [FILTER_ORDER]; //Filter nodes memory

//Filter coefficients memory

int filterCoefficients[FILTER_ORDER+1];

} filter04 = {0,0, B10, B11, B12}, //Init filter No. 1

 filter06 = {0,0, B20, B21, B22}; //Init filter No. 2

The filterNodes array is used as a FIFO buffer, holding previous input samples.
The filterCoefficients array is used for the feedforward coefficients of the filter.
Once the filter is initialized the filter function can be called. The filter function is
defined as follows:

int FIR2(struct FIR_filter *myFilter, int newSample);

First, the function copies the pointer to the filter struct into the Z-register, since this
may be used for indirect addressing of data, i.e., for pointer operations. Then the core
of the algorithm is ready to be run. The samples (nodes) are loaded and multiplied
(MUL) with the corresponding coefficients. The products are added in the 24-bit wide
accumulator. When all samples and coefficients are multiplied-and-accumulated
(MAC), the result is downscaled and returned. This can be seen from the flow chart in
Figure 4-2, which is a general description of the flow in a FIR filter algorithm.

Note that although the flow chart in Figure 4-2 shows the algorithm as if it was
implemented using loops, the algorithm is actually implemented as straight-line code.
The loop is used simply to improve readability.

12 AVR223

Figure 4-2: Generic FIR Filter Algorithm.

2527B-AVR-07/08

k == N?

Load node
x[n-k].

Load node
x[n-k].

Load
coefficient

bk.

Load
coefficient

bk.

MUL.
Store node

x[n-k] in
x[n-k-1]

MAC.

k = k - 1

k < 0?

Downscale
result.

k = N

YES NO

YES

NO

Return
output.

As mentioned, the two filters are used in cascade. In the C file, this is simply done by
first passing filter No. 1 and the input sample as arguments to the filtering function,

 AVR223

 13

2527B-AVR-07/08

then passing filter No. 2 and the output of the first filter as arguments to the same
function.

4.1.1 Filter Algorithm Performance

Table 4-2 shows the performance of a single second order FIR filter. The count for
filtering is for the core of the filtering algorithm (MUL and MAC operations, updating
nodes), and the count for overhead is for the rest of the filtering function (including
downscaling). Function call and corresponding return are not included.

Table 4-2: Second Order FIR Filter Performance.
Instructions
(filtering + overhead)

Execution cycles
(filtering + overhead)

Filter efficiency
(filtering cycles per order)

50 + 10 76 + 10 38

Note that a change in filter order may necessitate a change in accumulator size,
which in turn will change the number of filtering instructions/cycles per order.

4.2 Second Order IIR Filter
For this implementation, a band pass (BP) Butterworth filter was designed. The filter
parameters are shown in Table 4-3, and the magnitude response in Figure 4-3.

Table 4-3: Second Order IIR Filter Parameters.

Order Cutoff
Coefficients
(b0, b1, b2; a0, a1, a2) Scaling

Scaled Coefficients
(b0, b1, b2; a0, a1, a2)

2
0.45 -
0.55

0.1367, 0.0000, -0.1367;
1.0000, 0.0000, 0.7265 211

280, 0, -280;
2048, 0, 1488

Since the a0 coefficient is the factor by which the filter output must be downscaled it is
not defined in the C code, but is implicitly defined in the assembly code for the
downscaling.

Figure 4-3: Magnitude Response of Fourth Order IIR Filter.

A struct containing the filter coefficients and the filter nodes are defined for the filter.
The filter should be initialized before the filter function is called. The struct is defined
as follows:

struct IIR_filter{

int filterNodesX[FILTER_ORDER]; //filter nodes, stores x(n-k)

int filterNodesY[FILTER_ORDER]; //filter nodes, stores y(n-k)

//filter feedforward coefficients

int filterCoefficientsB[FILTER_ORDER+1];

//filter feedback coefficients

int filterCoefficientsA[FILTER_ORDER];

} filter04_06 = {0,0,0,0, B0, B1, B2, A1, A2}; //Init filter

The filterNodesX and filterNodesY arrays are used as FIFO buffers, holding
previous input and output samples respectively. The filterCoefficientsB and
filterCoefficientsA arrays are used for the feed-forward and feedback
coefficients of the filter respectively. Once the filter is initialized the filter function can
be called. The filter function is defined as follows:

int IIR2(struct IIR_filter *myFilter, int newSample);

The function first copies the pointer to the filter struct into the Z-register, since this can
be used for indirect addressing of data, i.e., for pointer operations. Then the core of
the algorithm is ready to be run. The samples (data) are loaded and multiplied with
the matching coefficients. The products are added in the 24-bit wide accumulator.

14 AVR223
2527B-AVR-07/08

 AVR223

When all data and coefficients are Multiplied-and-Accumulated (MAC) and the filter
node FIFO buffers are updated, the result is finally scaled down and returned. Note
that the result in the accumulator is downscaled before it is stored in the y[n-1] FIFO
buffer element. A data flow chart is shown in Figure 4-4.

Figure 4-4: Generic IIR Filter Algorithm.

k == N?

Load node
x[n-k].

Load node
x[n-k].

Load
coefficient

bk.

Load
coefficient

bk.

MUL.
Store node

x[n-k] in
x[n-k-1]

MAC.

k = k - 1

k < 0?

YES NO

YES

NO

k = N

k = N

Load node
y[n-k].

Load
coefficient

ak.

MAC.

k = k - 1

k < 1?

Downscale
result.

Store node
y[n] in
y[n-1].

Return
output.

YES

Store node
y[n-k] in
y[n-k-1].

NO

 15

2527B-AVR-07/08

16 AVR223
2527B-AVR-07/08

The flow chart in Figure 4-4 shows the algorithm as if it was implemented using loops,
this is only to increase the readability of the flow chart. The algorithm is implemented
using straight-line code.

4.2.1 Filter Algorithm Performance

Table 4-4 shows the performance of the second order IIR filter. The count for filtering
is for the core of the filtering algorithm (MUL and MAC operations, updating nodes),
and the count for overhead is for the rest of the filtering function (including
downscaling). Function call and corresponding return are not included.

Table 4-4: Fourth Order IIR Filter Performance.
Instructions
(filtering + overhead)

Execution Cycles
(filtering + overhead)

Filter Efficiency
(filtering cycles per order)

86 + 8 132 + 8 66

Note that a change in filter order may necessitate a change in accumulator size,
which in turn will change the number of filtering instructions/cycles per order.

5 Optimization of Filter Implementations
The filters implemented in this application note were made efficient, but still easy to
adapt to different filters. Because of this, they are sub-optimal. Below are suggested
ways to optimize filters with regards to code size and/or throughput.

5.1 Improving Both Code Size and Throughput
One way to improve both code size and throughput is to ensure that only meaningful
calculations are performed. The assembly code for the filters implemented in this
application note is made so that it will work with any set of filter coefficients. However,
the second order IIR example filter has two zero-coefficients. Multiplication and
subsequent accumulation with zero-coefficients may, of course, be omitted as it will
not contribute to the output. This way, the code size is reduced and throughput
increased.

5.2 Reducing Code Size
A reduction of code size may be achieved by implementing the MAC operation as a
function call, instead of as a macro. However, this will impact the throughput since
each function call and corresponding return will consume additional cycles.

Another way to reduce the code size is to implement high-order filters as cascades of
lower order filters, as demonstrated in the fourth order FIR example filter. Though, as
mentioned earlier, this will reduce the precision of the filter due to the downscaling in
between each filter in the cascade. Also, optimizing by omitting MAC operations with
zero-coefficients may not be possible in such implementations.

5.3 Reducing Memory Usage
The filter coefficients have in both example implementations simply been put in
SRAM. A simple way to reduce memory usage is to put the coefficients in FLASH and
fetch when needed. This will potentially almost halve the memory usage for the filter
parameters, since there are almost as many coefficients as there are filter nodes
(previous input/output samples).

 AVR223

 17

2527B-AVR-07/08

6 References
[1] “Discrete-Time signal processing”, A. V. Oppenheimer & R. W. Schafer. Prentice-
Hall International Inc. 1989. ISBN 0-13-216771-9

[2] “Introduction to Signal Processing”, S. J. Orfanidis, Prentice Hall International Inc.,
1996. ISBN 0-13-240334-X

[3] FIR filter design, http://www.iowegian.com/scopefir.htm

[4] FIR filter design,
http://www.dsptutor.freeuk.com/FIRFilterDesign/FIRFiltDes102.html

[5] FIR filter design,
http://www.dsptutor.freeuk.com/KaiserFilterDesign/KaiserFilterDesign.html

[6] IIR filter design, http://www.apogeeddx.com/BQD_Appnote.PDF

[7] IIR filter design, http://moshier.ne.mediaone.net/ellfdoc.html

[8] FIR and IIR filter design, http://www-users.cs.york.ac.uk/~fisher/mkfilter/

[9] FIR and IIR filter design, http://www.nauticom.net/www/jdtaft/papers.htm

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others, are the registered trademarks or
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

2527B-AVR-07/08

	1 Introduction
	2 General Digital Filters
	3 Filter Implementation Considerations
	3.1 The AVR Hardware Multiplier
	3.2 The AVR Virtual Accumulator
	3.3 Overflow of Fixed Point Values
	3.3.1 Avoiding Overflow in Sub-Results
	3.3.2 Avoiding Overflow in Output

	3.4 Scaling of Coefficients
	3.4.1 Effect of Downscaling
	3.4.2 Reduced Resolution for Increased Throughput

	4 Filter Implementations
	4.1 Fourth Order FIR Filter
	4.1.1 19BFilter Algorithm Performance

	4.2 Second Order IIR Filter
	4.2.1 Filter Algorithm Performance

	5 Optimization of Filter Implementations
	5.1 Improving Both Code Size and Throughput
	5.2 Reducing Code Size
	5.3 Reducing Memory Usage

	6 References

