

APPLICATION NOTE

AT6486: Using DIVAS on SAMC Microcontroller

SMART ARM-Based Microcontroller

Introduction

DIVAS stands for Division and Square Root Accelerator. DIVAS is a brand new

peripheral introduced in SAMC family of microcontrollers. SAMC family is mainly

targeted towards home appliance and industrial applications market. Such

applications mostly require more involved mathematical operations for algorithms

and automation calculations.

In most languages, including C, division is performed using intrinsic operators.

Quotient and division modulus are represented by ‘/’ and ‘%’ operators

respectively. For controllers without hardware divider (like Cortex® M0+),

compiler replaces these operators with library code. This library code adds

hundreds of bytes and consumes anywhere from 50 to 400 clock cycles

depending on the size of operands. For square root, an additional library has to

be included in the project (math.h). DIVAS addresses these issues by providing

square root and division support in hardware and requires minimal code and

clock cycles (2-16 cycles).

This application note discusses the APIs (application programming interfaces)

available in Atmel Studio Framework (ASF) that make DIVAS easy to use. It also

explains how compiler division operators (‘%’ and ‘/’) can be overloaded to use

DIVAS as backend for calculations.

Features

 Division and square root accelerator for Cortex M0+ systems

 Signed and unsigned division

 Unsigned 32-bit square root

 Result includes quotient/square root and remainder

Atmel-42465A-Using-DIVAS-on-SAMC-Microcontroller_ApplicationNote_062015

AT6486: Using DIVAS on SAMC Microcontroller [APPLICATION NOTE]
Atmel-42465A-Using-DIVAS-on-SAMC-Microcontroller_ApplicationNote_062015
2

2

Table of Contents

1 Overview .. 3

1.1 Description ... 3

1.2 Register Interface ... 3

2 Functional Description .. 4

2.1 Basic Operation .. 4

2.1.1 Initialization .. 4

2.1.2 Clocks .. 4

2.1.3 Performing Division ... 4

2.1.4 Signed Division .. 4

2.1.5 Divide by Zero ... 4

2.1.6 Leading Zero Optimization ... 5

2.1.7 Unsigned Square Root .. 5

2.2 Usage Summary... 5

3 Firmware Implementation .. 5

3.1 Peripheral APIs .. 5

3.2 Compiler Operator Overloading ... 6

3.3 DIVAS Example.. 6

3.3.1 Requirements .. 6

3.3.2 Description ... 6

4 Revision History ... 7

AT6486: Using DIVAS on SAMC Microcontroller [APPLICATION NOTE]
Atmel-42465A-Using-DIVAS-on-SAMC-Microcontroller_ApplicationNote_062015

3

3

1 Overview

1.1 Description

The Divide and Square Root Accelerator (DIVAS) is a programmable 32-bit signed or unsigned hardware

divider and a 32-bit unsigned square root hardware engine. The DIVAS is connected to the high-speed bus

matrix and may also be accessed using the low-latency CPU local bus (IOBUS; ARM® single-cycle I/O port).

The DIVAS takes dividend and divisor values and returns the quotient and remainder when it is used as

divider. The DIVAS takes unsigned input value and returns its square root and remainder when it is used as

square root function.

Figure 1-1. DIVAS Block Diagram

1.2 Register Interface

DIVAS peripheral has seven registers. These registers are:

 CTRLA

– Control register to disable leading zero optimization and enable signed division

 STATUS

– Status register to detect divide by zero error and busy bit

– When BUSY bit is set, CTRLA, DIVIDEND, DIVISOR, and SQRNUM registers are write protected

 DIVIDEND

– Holds the 32-bit dividend for the divide operation

– If CTRLA.SIGNED bit is set, DIVIDEND is signed 2's complement

 DIVISOR

– Holds the 32-bit divisor for the divide operation

– If CTRLA.SIGNED bit is set, DIVISOR is signed 2's complement

– Writing DIVISOR register starts the divide function

 RESULT

– Holds the 32-bit result. For division it is the quotient, for square root operation, it is the square root

– In case of division, if CTRLA.SIGNED bit is set, quotient is signed 2's complement

 REMAINDER

– Holds the 32-bit remainder for divide or square root operation

– In case of division, if CTRLA.SIGNED bit is set, remainder is signed 2's complement

 SQRNUM

– Holds the 32-bit unsinged input for the square root operation

– Writing SQRNUM register starts the square root operation

AT6486: Using DIVAS on SAMC Microcontroller [APPLICATION NOTE]
Atmel-42465A-Using-DIVAS-on-SAMC-Microcontroller_ApplicationNote_062015
4

4

2 Functional Description

The Divide and Square Root Accelerator (DIVAS) supports signed or unsigned hardware division of 32-bit

values and unsigned square root of 32-bit value. It is accessible from the CPU via both the AHB bus and

IOBUS. When the dividend and divide registers are programmed, the division starts and the result will be

stored in the Result and Remainder registers. The Busy and Divide-by-zero status can be read from STATUS

register.

2.1 Basic Operation

2.1.1 Initialization

THE DIVAS configuration cannot be modified while a divide operation is ongoing. The following bits must be

written prior to starting a division.

 Sign selection bit in Control A register

Sign bit enables the signed division. Signed division is explained in Section 2.1.4 Signed Division.

 Disable leading zero optimization bit in Control A

Leading zero optimization is explained in Section 2.1.6 Leading Zero Optimization.

2.1.2 Clocks

The DIVAS bus clock (CLK_DIVAS_AHB) can be enabled or disabled in the power manager. This clock has to

be enabled before using DIVAS.

2.1.3 Performing Division

First write the dividend to DIVIDEND register. Writing the divisor to DIVISOR register starts the division and

sets the busy bit in the Status register (STATUS.BUSY). When the division has completed, the STATUS.BUSY

bit is cleared and the result will be stored in RESULT and REMAINDER registers.

The RESULT and REMAINDER registers can be read directly via the high-speed bus without checking first

STATUS.BUSY. Wait states will be inserted on the high-speed bus until the operation is complete. The IOBUS

does not support wait states. For accesses via the IOBUS, the STATUS.BUSY bit must be polled before

reading the result from the RESULT and REMAINDER registers.

2.1.4 Signed Division

When CTRLA.SIGNED is one, both the input and the result will be in 2’s complement format. The results of

signed division are such that the remainder and dividend have the same sign and the quotient is negative if the

dividend and divisor have opposite signs. 16-bit results are sign extended to 32-bits.

Note: When the maximum negative number is divided by the minimum negative number, the resulting

quotient overflows the signed integer range and will return the maximum negative number with no

indication of the overflow. This occurs for 0x80000000 / 0xFFFFFFFF in 32-bit operation and 0x8000 /

0xFFFF in 16-bit operation.

2.1.5 Divide by Zero

A divide by zero fault occurs if the DIVISOR is programmed to zero. QUOTIENT will be zero and the

REMAINDER is equal to DIVIDEND. Divide by zero sets the Divide-by-zero bit in the Status register

(STATUS.DBZ) to one. STATUS.DBZ must be cleared by writing a one to it.

AT6486: Using DIVAS on SAMC Microcontroller [APPLICATION NOTE]
Atmel-42465A-Using-DIVAS-on-SAMC-Microcontroller_ApplicationNote_062015

5

5

2.1.6 Leading Zero Optimization

Leading zero optimization can reduce the time it takes to complete a division by skipping leading zeros in the

DIVIDEND (or leading ones in signed mode). Leading zero optimization is enabled by default and can be

disabled by the Disable Leading Zero bit in the Control A register (CTRLA.DLZ). When CTRLA.DLZ is zero, 16-

bit division completes in 2-8 cycles and 32-bit division completes in 2-16 cycles, depending on the dividend

value. If deterministic timing is required, setting CTRLA.DLZ to one forces 16-bit division to always take eight

cycles and 32-bit division to always take 16 cycles.

2.1.7 Unsigned Square Root

When the square root input register (SQRNUM) is programmed, the square root function starts and the result

will be stored in the Result and Remainder registers. The Busy status can be read from STATUS register.

2.2 Usage Summary

For division:

 Set sign bit in CTRLA register

 Set leading zero mode bit in CTRLA register

 Write to dividend register

 Write to divisor register (start division)

 Wait for STATUS.BUSY bit to be cleared

 Read the RESULT and REMAINDER registers through AHB or IOBUS

For square root:

 Write to SQRNUM register

 Wait for STATUS.BUSY bit to be cleared

 Read the RESULT and REMAINDER registers through AHB or IOBUS

3 Firmware Implementation

DIVAS drivers are a part of Atmel Studio Framework. Easy to use APIs have been provided to use DIVAS.

There are two ways to use DIVAS in firmware; Peripheral APIs and operator overloading. Both these

implementations are demonstrated in the application example accompanying this application note.

3.1 Peripheral APIs

DIVAS can be accessed by application program interfaces like any other peripheral. The ASF drivers provide

APIs to set/reset each bit. The list of APIs provided by the driver are:

 int32_t divas_idiv(int32_t numerator, int32_t denominator);

 uint32_t divas_uidiv(uint32_t numerator, uint32_t denominator);

 int32_t divas_idivmod(int32_t numerator, int32_t denominator);

 uint32_t divas_uidivmod(uint32_t numerator, uint32_t denominator);

 uint32_t divas_sqrt(uint32_t radicand);

 static inline void divas_enable_dlz(void);

 static inline void divas_disable_dlz(void);

 void _system_divas_init(void);

AT6486: Using DIVAS on SAMC Microcontroller [APPLICATION NOTE]
Atmel-42465A-Using-DIVAS-on-SAMC-Microcontroller_ApplicationNote_062015
6

6

3.2 Compiler Operator Overloading

A simpler way of using DIVAS is making it invisible to the programmer. This can be achieved by replacing the

backend for compiler intrinsic operators ‘/’ and ‘%’. When compiler compiles the statements containing these

operators, it uses DIVAS APIs instead of library generated code automatically. Unfortunately, it is not possible

for square root because square root does not have a C intrinsic operator.

DIVAS driver provided with ASF provides code for overloading division operators for both Atmel Studio and

IAR™. The ASF example provided with this application note can be compiled to use overloaded operators by

setting the following #define to true in project symbols. It is explained in Section 3.3.2 Description.

#define USE_OVERLOAD_OPERATORS true

3.3 DIVAS Example

This application note comes with an application example firmware. This application has been developed using

Atmel Studio but the code is compatible with IAR as well.

3.3.1 Requirements

 Atmel Studio with SAM C21 support

 SAM C21 Xplained Pro board

3.3.2 Description

The application should build without any errors on Atmel Studio. The application has test vectors in the form of

arrays. If the firmware passes the tests, the LED will turn on. If the tests fail, the LED will start blinking. The

application, by default is set to use DIVAS APIs. Overloaded operators can be enabled by defining

USE_OVERLOAD_OPERATORS as true in the project symbols as shown in Figure 3-1. By default, it is set to

false.

Figure 3-1. Project Properties

AT6486: Using DIVAS on SAMC Microcontroller [APPLICATION NOTE]
Atmel-42465A-Using-DIVAS-on-SAMC-Microcontroller_ApplicationNote_062015

7

7

4 Revision History

Doc Rev. Date Comments

42465A 06/2015 Initial document release.

AT6486: Using DIVAS on SAMC Microcontroller [APPLICATION NOTE]
Atmel-42465A-Using-DIVAS-on-SAMC-Microcontroller_ApplicationNote_062015
8

8

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 │ www.atmel.com

© 2015 Atmel Corporation. / Rev.:Atmel-42465A-Using-DIVAS-on-SAMC-Microcontroller_ApplicationNote_062015.

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected® logo, Cortex®, and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be
trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual prop erty right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LI MITATION, DAMAGES
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accurac y or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does n ot make any commitment to update the information
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,

authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety -Critical Applications”) without an Atmel officer's specific written consent.
Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation o f nuclear facilities and weapons systems. Atmel
products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military -grade. Atmel products are not

designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.

http://www.atmel.com/
https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel

	Introduction
	Features
	Table of Contents
	1 Overview
	1.1 Description
	1.2 Register Interface

	2 Functional Description
	2.1 Basic Operation
	2.1.1 Initialization
	2.1.2 Clocks
	2.1.3 Performing Division
	2.1.4 Signed Division
	2.1.5 Divide by Zero
	2.1.6 Leading Zero Optimization
	2.1.7 Unsigned Square Root

	2.2 Usage Summary

	3 Firmware Implementation
	3.1 Peripheral APIs
	3.2 Compiler Operator Overloading
	3.3 DIVAS Example
	3.3.1 Requirements
	3.3.2 Description

	4 Revision History

