

Slope Compensator on PIC® Microcontrollers

Author: Namrata Dalvi

Microchip Technology Inc.

INTRODUCTION

This technical brief describes the internal Slope Compensator peripheral of the PIC® microcontroller. This document also describes how to configure the Slope Compensator along with other peripherals to be used in Current mode controlled DC-DC converters. Current mode controllers do have a few challenges such as loop instability at duty cycles of over 50%, subharmonic oscillations due to instability and gain peaking at half the switching frequency. Fortunately, slope compensation can typically alleviate all of these

problems. PIC microcontrollers also have some intelligent analog peripherals like DAC, op amp and fast comparators, which can be used in combination with the internal Slope Compensator. This is useful for Current mode controlled DC-DC converter application.

SLOPE COMPENSATOR ON THE PIC MICROCONTROLLER

The internal Slope Compensator on the PIC microcontroller is a decaying ramp generator. An artificial ramp is subtracted from the reference signal of the comparator. It pre-charges an output circuit to a set voltage from the selected input and linearly decays the output voltage using a programmable current sink through a capacitor, as shown in Figure 1.

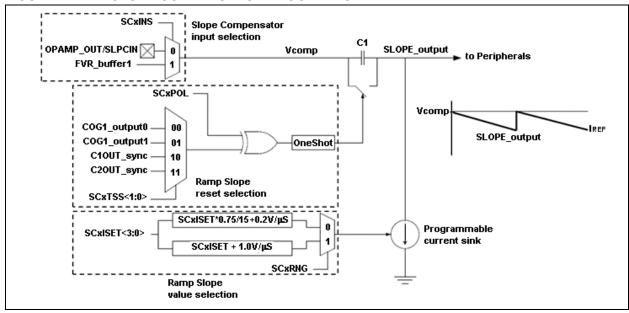


TABLE 1: REGISTERS ASSOCIATED WITH SLOPE COMPENSATOR MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SLPCCON0	SC1EN	_	_	SC1POL	SC1TSS1	SC1TSS0	_	SC1INS
SLPCCON1	_	_	_	SC1RNG	SC1ISET<3:0>			

TB3120

The input to the Slope Compensator can be selected from FVR output or op amp output (same I/O pin known as Slope Compensator input pin) using the SC1INS bit of the SLPCCON0 register. The output can be reset with the one-shot pulse. This one-shot pulse can be selected as COG1_output0, COG1_output1, Comparator 1 output or Comparator 2 output (see Figure 1) using the SC1TSS<1:0> bits of the SLPCCON0 register. The Slope Compensator can also be selected as an input to the comparator or the op amp. The amount of ramp to be subtracted from the reference signal can be set using the SCxRNG and

SCxISET bits in the SLPCCON1 register, as shown in Table 2. Refer to the specific device data sheet for the Ramp Slope Value selection.

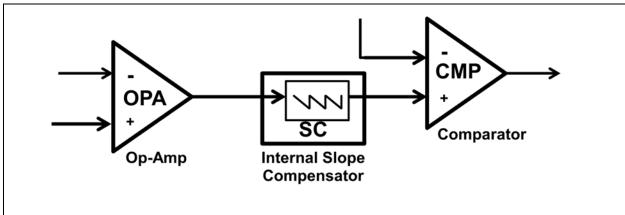
The slope of ramp signal is given by following Equation 1.

EQUATION 1: RAMP SLOPE VALUE

If SC1RNG bit = 1: Ramp slope = SC1ISET + $1.0V/\mu s$. If SC1RNG bit = 0: Ramp slope = SC1ISET * $0.75/15 + 0.2V/\mu s$

TABLE 2: RAMP SLOPE VALUE SELECTION USING SC1RNG AND SC1ISET

SC1RNG:SC1ISET Value	Slope Value (V/us)	SC1RNG:SC1ISET Value	Slope Value (V/us)
0h	0.2	10h	1.0
1h	0.25	11h	1.1
2h	0.3	12h	1.2
3h	0.35	13h	1.3
4h	0.4	14h	1.4
5h	0.45	15h	1.5
6h	0.5	16h	1.6
7h	0.55	17h	1.7
8h	0.6	18h	1.8
9h	0.65	19h	1.9
Ah	0.7	1Ah	2.0
Bh	0.75	1Bh	2.1
Ch	0.8	1Ch	2.2
Dh	0.85	1Dh	2.3
Eh	0.9	1Eh	2.4
Fh	0.95	1Fh	2.5


Some PIC microcontrollers have a Programmable Ramp Generator peripheral. This can be configured as a Slope Compensator (decaying ramp) or as a Ramp Generator (incrementing a saw-tooth ramp). Older PIC microcontrollers may not have this option. The Ramp Generator can be used either in Voltage mode controlled or Current mode controlled DC-DC converters.

INTERCONNECTION OF SLOPE COMPENSATION WITH OTHER PERIPHERALS

A typical interconnection diagram for the Slope Compensator on the PIC microcontroller is shown in Figure 2. It uses the on-chip peripherals, namely Slope Compensator, op amp and comparator. The desired voltage reference to the op amp is provided internally using DAC. The output of the op amp is internally connected to the Slope Compensator peripheral by setting the SC1INS bit of the SLPCCON0 register to '0'.

The Slope Compensator subtracts voltage ramp from the output of op amp. The amount of voltage ramp signal can be varied using different settings of the SCxRNG and SCxISET bits in the SLPCCON1 register, as shown in Table 2. The output of the Slope Compensator is then internally connected to the positive terminal of the analog comparator by setting the CxPCH<1:0> bits of the CMxCON1 register to 0b011. The analog comparator compares the output of the Slope Compensator with the signal provided on its negative input.

FIGURE 2: SLOPE COMPENSATOR INTERCONNECTION

CONFIGURATION OF THE SLOPE COMPENSATOR

Consider a case of the DC-DC boost converter with the following specifications:

TABLE 3: DC-DC BOOST CONVERTER SPECIFICATIONS

Parameter	Symbol	Specification	Unit
Nominal Input Voltage	V _{IN} (nom.)	12	VDC
Maximum Input Voltage	V _{IN} (max.)	20	VDC
Minimum Input Voltage	V _{IN} (min.)	9	VDC
Output Voltage	V _{OUT}	30	VDC
Maximum Output Current	I _{OUT} (max.)	1	Α
Minimum Output Current	I _{OUT} (min.)	0.1	Α
Inductor Ripple Current Ratio	I _{RIPPLE}	30	%
Maximum Output Voltage Ripple	V _{OUTRIPPLE}	300	mV
Switching Frequency	F _{SW}	250	kHz
Inductor selected	L	22	μH
Current Sense Resistor	R _{SENSE}	0.5	Ω

TB3120

The down-slope or the slope of the inductor current during the OFF time (T_{OFF}) of the switching cycle for boost converter is given by m_2 = (V_{OUT} - V_{IN})* R_{SENSE} /L V/sec.

By choosing the slope of the ramp signal to be subtracted $m=m_2$;

- m (for $V_{IN} 9V$)= $(V_{OUT} V_{IN})*R_{SENSE}/L = (30-9)*0.5/22\mu = 0.477V/\mu S$
- m (for V_{IN} 12V)= $(V_{OUT} V_{IN})^*R_{SENSE}/L = (30-12)^*0.5/22\mu = 0.409V/\mu S$
- m (for V_{IN} 20V)= $(V_{OUT} V_{IN})^*R_{SENSE}/L = (30-20)^*0.5/22\mu = 0.227V/\mu S$

After calculating the required ramp slope m, the nearest possible ramp slope can be set using the SCxRNG and SCxISET bits in the SLPCCON1 register, as shown in Table 2.

For the boost converter example described above with the 12V as $V_{\rm IN}$, the configuration of the SLPCCON0 and SLPCCON1 registers is as follows:

EXAMPLE 1: CODE SNIPPET FOR CONFIGURATION OF SLOPE COMPENSATOR

```
SLPCCON0bits.SC1EN = 1; //SC peripheral is enabled
SLPCCON0bits.SC1POL = 0; //SC input normal polarity (active-high)
SLPCCON0bits.SC1TSS = 0b00; //SC output is reset using COGOUT0
SLPCCON0bits.SC1INS = 0; //SC input from SLPC1IN/ OPA10UT pin
SLPCCON1 = 0x05; //Ramp slope = 0.45V/us nearest to 0.409V/µS
```

CONCLUSION

This technical brief covers the Slope Compensator peripheral on PIC microcontrollers. It also provides the calculations relevant to determining the optimum slope required to achieve the desired performance of a power converter operating in fixed-frequency Current mode control. The interconnection of the on-chip peripherals to realize a Current mode controlled power converter with slope compensation is detailed. A typical example of a boost converter is dealt with along with calculations of the slope for a given specification. The configuration of the Slope Compensator to calculate this ramp slope for the boost converter is also highlighted.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2014, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-63276-877-3

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/

support
Web Address:

www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong

Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

Fax: 91-80-3090-4123 India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857

Fax: 60-3-6201-9859 **Malaysia - Penang** Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Fax: 60-4-227-4068

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102 **Thailand - Bangkok**

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39

Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829
France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

03/25/14