AVR32825: Executing code from external
SDRAM

Features

Execute application binary from external SDRAM

Place and execute single function in external SDRAM

Place and execute ISR in external SDRAM

Place variables in external memory

Timing analysis for code execution in on-chip flash and external SDRAM

1 Introduction

Many embedded applications incorporate external random access memory (RAM)
for storing large amount of data, such as bitmap files. Similarly, many operating
system-based applications need to execute the code from RAM where on-chip
static random access memory (SRAM) may not be sufficient enough. Such
requirements demand code execution from external RAM. To execute code from
external memory, the microcontroller requires architectural support. Atmel®
AVR®32 UC3A and UC3C series devices provide this feature.

This application note provides a way to execute an application binary from external
synchronous dynamic random access memory (SDRAM) interfaced to UCS3
devices over the external bus interface (EBI). Also, it illustrates how a single
function or an interrupt service routine (ISR) can be placed and executed in
external SDRAM. The document explains how to generate the binary files and copy
them into external SDRAM, as well as make linker script modifications, and details
the execution time comparison.

ATMEL

AImEl

-
A=k

®

32-bit AVR

Microcontrollers

Application Note

Rev. 32160A-AVR-02/11

2 Main concepts

NOTE

ATMEL

Executing the application binary from external SDRAM requires:

e Configuring the SDRAM controller and the target SDRAM

e Generating an executable file (.bin) using AVR32 toolchain and IAR Embedded
Workbench®

0 Controlling the linker script (for the GNU linker) or linker command
file (for the IAR XLINK Linker) to generate the code linked to external
SDRAM addresses

e Copying the binary to SDRAM, either from an SD/MMC card or external on-board
Atmel DataFlash® memory

In the subsequent section, SDRAM would refer to external SDRAM, external to the
UC3 device, unless otherwise specified.

2.1 Configuring the SDRAM controller and the target SDRAM

Before any access to the SDRAM is performed, the SDRAM controller must be
configured according to the SDRAM it will be interfaced to. The SDRAM used on all
Atmel evaluation kits is the Micron MT48LC16M16A2TG-7E.

Please refer to [1] for an overview of how to configure and initialize the SDRAM
controller.

2.2 Generating an executable file

2.2.1 Linking process

2 AVR32825

Once the SDRAM controller is configured, the SDRAM can be accessed as a normal
memory-mapped device. This makes it possible for the CPU to access the
instructions in SDRAM as part of the AVR32 UC3 physical memory map.

To be able to execute the code from SDRAM, the binary (executable) needs to be
linked to SDRAM addresses. The linking addresses are controlled using the linker
script file, in the case of the GNU linker, or linker command file, for the IAR XLINK
Linker.

Before explaining how the linker can be used to control the memory map of the
execution binary, this section takes a brief overview of the linking process and linker
file concepts. Figure 2-1 shows the basic steps of compilation.

Figure 2-1. AVR GNU toolchain build steps.

@
T == :
Compile with
| avr32gec/ |, i b L] Linkwith | .
| Assemble with ——(OblectFiles y—1 0.5 = Executable
avr3z-as

Linker'écript

32160A-AVR-02/11

NOTE

AVR32825

Once the compiler generates the object files, they need to be correctly linked as per
the memory map of the corresponding target device. All the object files use relative
addressing, and final address mapping is performed at link time. The GNU and IAR
linkers make use of a linker script/‘command file to place different code and data
sections into appropriate memory.

A linker combines input files (object file format) into a single output file (executable).

Each object file has, among other things, a list of sections. We refer to a section in an
input file as an input section. Similarly, a section in the output file is an output section.

Each section in an object file has a name and a size.

Every output section has two addresses. The first is the virtual memory address
(VMA). This is the address the section will have when the output file is run.

The second is the load memory address (LMA). This is the address at which the
section will be loaded into memory. In most cases, the two addresses will be the
same.

An example of when the LMA and VMA might be different is when a data section is
loaded into read-only memory (ROM), and then copied into RAM when the program
starts up (this technique is often used to initialize global variables in a ROM-based
system). In this case, the ROM address would be the LMA, and the RAM address
would be the VMA.

Some of the commonly used sections are:

text: usually contains the program code, and is usually loaded to a nonvolatile
memory, such as the internal flash.

.data: initialized data; usually contains initialized variables.
.bss: usually contains non-initialized data.
Below is an example of how to add a section that will be placed in external SDRAM.

-text_sdram :

{

*(.text_sdram)
} >SDRAM :SDRAM_AT_FLASH

The ELF object file format uses program headers (PHDR), which are read by the
system loader and describe how the program should be loaded into memory. After
defining a section, it then has to be placed into the correct PHDR. The text_sdram
section definition above, for example, would be placed in the SDRAM_AT_FLASH
program header.

For detailed information about linker scripts and command files, check [2], [3] and [4].

2.3 Loading and executing a binary image

32160A-AVR-02/11

To execute code from SDRAM, the executable needs to be placed in external
memory. SDRAM is a volatile memory that can retain its contents only as long as
power is available. Due to the volatile nature of the SDRAM, the executable cannot
be stored in SDRAM, and has to be loaded on every power-on reset. It could be
loaded from either external DataFlash memory or an external SD/MMC card. Figure
2-2 shows a summary of the two different approaches.

ATMEL ;

2.3.1 External DataFlash

2.3.2 SD/MMC card

4 AVR32825

ATMEL

Figure 2-2. Block diagram of the system.

SPI/MCI

Bus Y
SD/MMC — UC3 Core —
Card

ﬁSPI Bus

DataFlash

SDRAM

An external DataFlash memory can be interfaced to the UC3 MCU over the SPI bus.
The executable has to be transferred to the onboard DataFlash memory (present on
the EVK1100, for example). This can be done using an external utility. Atmel AVR32
Studio® [13] provides a software framework with built-in drivers for UC3 devices, as
well as various examples. One such example is mass storage [5], which, when
executed, allows the onboard DataFlash memory to be seen as one of the file system
partitions on a host PC. This example can be run to copy the executable file onto this
partition and eventually onto the DataFlash memory. Once this is done, the user will
have to program the actual application/boot loader that will read the code from
DataFlash memory and copy it into the SDRAM for execution. The overhead is in
terms of a dependency on a USB mass storage device. Also, the boot loader needs
to embed the FAT file system so as to read the binary from the DataFlash memory.

User can store the executable image on an SD/MMC card from which the boot loader
will copy the executable to SDRAM using the mass storage example described in
above section. The boot loader will have all the code for the MCI/SPI driver and FAT
file system. The advantage is that the size of the executable can be as large as the
SDRAM.

32160A-AVR-02/11

AVR32825

3 Execution from SDRAM

3.1 AVR32 GNU toolchain

This section provides step-by-step details on how to execute a single function, an
ISR, or a complete application binary from SDRAM.

To be able to use the SDRAM in an application, it needs to be defined as a new
memory segment in the linker script file with the correct address and length. For
example,
MEMORY
{
SDRAM (wxai): ORIGIN = OxDO0O0O0000, LENGTH = 0x02000000

}

As mentioned in Section 2.2.1, a program header corresponding to new memory shall
be added.

PHDRS

{
SDRAM_AT_FLASH PT_LOAD;

}

3.1.1 Execute a function/ISR in SDRAM

Similarly, a new section should be defined in the linker script file as shown in Section
2.2.1. To place the particular function/ISR in this newly defined section, the GCC
compiler defines a preprocessor directive “section,” as follows:

__attribute__ ((__section__ (".-text_sdram'))) void testQ{.}

This will place the function definition test() in the .text_sdram section, which is part of
SDRAM memory. It is possible to define multiple functions with this attribute so as to
place them all in the SDRAM memory. When the code is compiled, the .text_sdram
section will have an LMA of flash memory and VMA of SDRAM memory. The crt0.S
file (startup code) will copy these functions from flash to SDRAM during system
initialization so that they will be executed from SDRAM when called.

3.1.2 Execute a binary from SDRAM

32160A-AVR-02/11

By default, the CODE/TEXT, RESET, and INTERRUPT/EXCEPTION sections in the
linker script file are mapped to on-chip flash memory. In order to execute the
application from SDRAM, these sections have to be remapped to SDRAM addresses.
As everything will be moved to SDRAM, no new section needs to be defined.
However, if the user wants to retain some of the code/variables in on-chip flash, the
above mentioned procedure should be followed for mapping the section to flash
instead of SDRAM.

On reset, the CPU jumps to address 0x80000000 in flash, and, hence, a boot loader
kind of application is required that executes in flash, copies the binary (from
DataFlash/SD) into SDRAM, and transfers the execution control to the start address
of SDRAM. The binary can be copied from external DataFlash memory connected
over the SPI bus or SD/MMC card connected over the SPI/MCI bus.

ATMEL 5

ATMEL

3.2 IAR EWAVR32 environment

The linker command file has to be modified to add the SDRAM memory segment with
its starting address and size.

Example
Start Stop Name Type
0xD0000000 0xD2000000 SDRAM External RAM

3.2.1 Execute a function/ISR in SDRAM

The IAR environment provides the following preprocessor directive that will place the
function in flash, but then get copied to RAM during initialization and also run from
RAM:

__ramfunc void test() {.}

The corresponding change in the linker command file is
-Z(CODE)RAMCODE32=0xD0000000-0xD1000000

3.2.2 Execute a binary from SDRAM

Similar to the GNU linker script file, the CODE/TEXT, RESET, and
INTERRUPT/EXCEPTION sections in the linker command file are mapped to
SDRAM. All the segments have to be mapped to addresses starting from
0xD0000000 instead of 0x80000000.

6 AVR32825

32160A-AVR-02/11

AVR32825

4 Basic application package

4.1 Requirements

A standalone package with source code for a basic C application illustrating the topics
addressed in this document is bundled with this application note. This section
describes the contents of this package.

The package is provided as a standalone zip file. To compile the example application

it contains, the user needs to have installed at least one of the following tools:

¢ AVR32 Studio and the AVR32 GNU toolchain

e |AR EWAVR32

To program and execute the application on the target device, the following tools are

required:

e PC with access to a serial port configured for 57600bps, 8 data bits, no parity,1
stop bit, and no flow control, or a PC with a USB port

¢ EVK1100, EVK1104, EVK1105, or UC3C_EK evaluation kit

e Atmel AVR JTAGICE mkll or AVR ONE!

For the UC3A0512 (EVK1100/EVK1105) device, only rev. K and higher revisions are
supported.

4.2 Description of the application

4.2.1 Setup

4.2.1.1 SDRAM boot loader code

32160A-AVR-02/11

The application goal is to illustrate the topics addressed in Chapter 3 of this
document.

The project is set up so that the user can select to either execute a specific function in
SDRAM or load an external binary into SDRAM based on macros.

This application note illustrates the following features:

e Interrupt execution in SDRAM
e Placing a variable in internal SRAM while the code is in SDRAM
e Placing a variable and code in SDRAM

e Calling a function in flash while the rest of the code is in SDRAM, allowing the
code to jump to flash and return control back to SDRAM

There are two sets of code.

This code executes in on-chip flash, and loads another binary from an external
DataFlash memory or SD/MMC card into SDRAM. The project is set up to use a
custom GCC linker script or a custom XLINK Linker command file.

The main file of the application is sdram_bootloader.c. The following software drivers
are also used:

e |INTC (to catch eventual exceptions, should an error occur)

e PM (to switch the main clock to 12MHz, and to switch the part into IDLE mode at
the end of the application)

ATMEL 7

4.2.1.2 SDRAM application code

4.2.2 Execution steps

ATMEL

e GPIO (for pin configuration of the SPI, MCI, and external SDRAM connections)
e SDRAMC (to configure the external SDRAM before access)

¢ FLASHC (flash controller)

e SPI (for interfacing DataFlash memory as well as an SD/MMC card)

e MCI (for interfacing an SD/MMC card)

In addition to this file system component, AT45BDX memory, SD_MMC_MCI, and
SD_MMC_SPI are also needed.

The binary file generated after compiling this code will be loaded into SDRAM either
from DataFlash memory or an SD/MMC card using SDRAM boot loader code. The
project is set up to use a GCC custom linker script or a custom XLINK Linker
command.

The main file of the application is sdram_application.c. The following software drivers
are also used:
e INTC (to catch eventual exceptions, should an error occur)

e PM (to switch the main clock to 12MHz, and to switch the part into IDLE mode at
the end of the application)

e GPIO (for pin configuration of the USART)
e FLASHC (flash controller)
e USART (for interfacing DataFlash memory as well as an SD/MMC card)

4.2.2.1 SDRAM boot loader execution steps

8 AVR32825

The SDRAM boot loader code performs the following steps (only the most relevant
steps for this application note are mentioned):

e C startup sequence (driven by crt0.S) for GCC or by the IAR default startup code
e Clock configuration, SDRAM initialization, SDRAM verification

e DataFlash, SD/MMC MCI, or SD/MMC SPI initialization

The following macros are defined in the conf_sdram.h file:

To execute a single function or ISR in SDRAM, use the following values:
#define EXECUTE_FUNCTION_IN_SDRAM 1
#define EXECUTE_CODE_ IN_SDRAM 0

To load and execute the complete binary in SDRAM, use the following values:
#deFine EXECUTE_FUNCTION_IN_SDRAM 0
#deFine EXECUTE_CODE_ IN_SDRAM 1

32160A-AVR-02/11

32160A-AVR-02/11

AVR32825

When binary execution from SDRAM is enabled, to load the binary from DataFlash
memory or an SD/MMC card, select the appropriate BOOT_OPTION:

#define DATA_FLASH 1
#deFfine SD_MMC_CARD 2
#define BOOT_OPTION SD_MMC_CARD

Depending on the BOOT_OPTION (DataFlash or SD), the binary will be read and
copied to SDRAM, and control will be transferred to the start of SDRAM address,
0xD0000000.

The flowchart in Figure 4-1 shows how various conditions are handled in the SDRAM
boot loader code.

ATMEL :

10

ATMEL

Figure 4-1. SDRAM boot loader execution.

[Disable interrupts]

Initialize clock

[Initialize SDRAM]

Perform SDRAM
check

N (execute function)
Execute

binary?

N (BOOT_OPTION =
DATA_FLASH)

BOOT_OPTION
= SD/IMMC?

\ 4
DataFlash]

controller init

'S

¢ Resource init
[File system init] T‘
s A
¢ SD/MMC mem
check
Copy binary from DataFlash
to SDRAM
s A

File system init

|

Copy binary from SD/MMC
to SDRAM

Jump to SDRAM
;L start address

AVR32825

A

[Call function]

32160A-AVR-02/11

4.2.2.2 SDRAM application execution steps

32160A-AVR-02/11

AVR32825

The SDRAM application code performs the following steps (for this application note,

only the most relevant steps are mentioned):

e Configure clock, USART, and interrupts, and then go to sleep

o |f the user types any character on the serial terminal, the application will come out

of sleep and run an LED chaser sequence

e Based on the macro EXT_FLASH_FUNCTION value, the function can be

executed from flash or SDRAM

To place the LED chaser function in on-chip flash, use the following value:

#define EXT_FLASH_FUNCTION

A “flag” variable is set in the USART RX interrupt handler. This variable is placed in
SDRAM based on the use of the preprocessor directive “section.” If the attribute is not
used, the variable is placed in the internal SRAM of the UC3 device.

The flowchart in Figure 4-2 shows how SDRAM application code is executed.

Figure 4-2. SDRAM application execution.

Start

A
Initialize clock

A

==

A
Configure
USART

A

Configure interrupt and
register USART RX
interrupt handler

A

A
Go to sleep
mode

A

USART RX
interrupt?

[Execute the function]

ATMEL

11

4.3 Package contents

12

AVR32825

ATMEL

The zip package that accompanies this application note is named AVR32825.zip.
There are two folders: one for the SDRAM boot loader and another for the SDRAM
application. Each folder has five subfolders (for EVK1100, EVK1104 (UC3A3256 and
UC3A3256S), EVK1105, and UC3C_EK), each holding two projects:

o A makefile/config.mk project
e AnIAR project
Check Section 4.4 for step-by-step instructions on how to build each project.

The makefile/config.mk projects are stored under their respective device/board
category in the GCC folder, while the IAR projects are stored under their respective
device/board category in the IAR folder, as shown

= 1) AYRIZEZS
= I} External _SDRAM_Demo
= 1T) awraz
= |} applications
| sdram_applicakion
= I7) sdram_bootloader
SR] ot SEuc3a051 2 _evkd 100
E [5) doc
12D gec
I iar
|) ak32uc3alsl?_evkl10s
| | at32uc3a32ss
| [T} at32uc3a3zons
| D) at3zuc3c
I3 conf
) boards
[#) components
[+) drivers
[[[T) services

1) ukils

l‘: :li-.'

H E

I+

The main files related to this application note are:

o AVR32825/External SDRAM_DEMO/sdram_bootloader.c:
holds the main() function and the peripheral initialization functions for SPI, MCI,
and SDRAM

o AVR32825/External_SDRAM_DEMO/startup_uc3.S:
startup file used for system initialization and copying code to SDRAM

o AVR32825/External_ SDRAM_DEMO/sdram_application.c:
holds the main() function, USART initialization, and interrupt configuration

o linker script file (.Ids) [for GCC only]:
the GCC linker script, stored under respective device/board category in GCC
folder

e linker command file(.xcl) [for IAR only]:
the IAR XLINK Linker command file, stored under respective device/board
category in IAR folder

32160A-AVR-02/11

AVR32825

The boards/ folder holds the abstraction layer for different boards.

The components/ folder holds the abstraction layer for the SDRAM, SD/MMC, and
DataFlash.

The services/ folder holds the abstraction layer for the file system.

The drivers/ folder holds the software drivers for the EBI/SDRAMC, GPIO, INTC, PM,
and USART modules.

4.4 Building and running the example on the target device

Before running the SDRAM application, connect the EVK1104 USB VPC to a PC
serial port configured for 57600bps, 8 data bits, no parity, 1 stop bit and no flow
control. The test results performed by the application are displayed via the USART
(cf. the description of the application in Section 4.2.2). For the EVK1100, use the
USART1 communication port.

In order to execute the binary from SDRAM, the binary has to be generated first. The
SDRAM application needs to be built.

4.4.1 With the bare AVR32 GNU toolchain only

4.4.2 With IAR EWAVR32

32160A-AVR-02/11

(The Atmel AT32UC3A3256 and EVK1104 taken as an example.)

e Connect a programmer to the EVK1104
e Turn the EVK1104 on

e For the sdram_application, open a shell go to the AVR32825/
External SDRAM_DEMO/sdram_application/at32uc3a3256/gcc directory, and
type: make rebuild

For GCC, the final executable is in the ELF format, which can be converted to binary

using the following command:

avr32-objcopy -lelf32-avr32 “elf file name” — Obinary “binary Tfile
name”’

(The AT32UC3A3256 and EVK1104 taken as an example.)

e Connect a programmer to the EVK1104
e Turn the EVK1104 on
e Open IAR, and load the associated IAR project

e Update the IAR header files (default location is under C:/Program Files/IAR
Systems/Embedded Workbench x.x/avr32/inc/) with the content of avr32-
headers.zip (located under src/SOFTWARE_FRAMEWORK/UTILS/
AVR32_HEADER_FILES/). This is not required for IAR EWAVR32 version 3.31.0
and higher

e Select Project->Rebuild All

For IAR, the final executable is in hex format, which can be converted to binary using

the following command:

avr32-objcopy —lihex “hex file name” —Obinary “binary file name”

ATMEL 1

ATMEL

4.4.3 Copying the binary to SD/MMC or external DataFlash

14

AVR32825

The following procedure is used to copy the SDRAM application binary to an
SD/MMC card or external DataFlash memory:

Rename the binary generated above to external_sdram_binary.bin

In AVR32 Studio, open the USB mass storage example for the corresponding
device/board. (AVR32 Studio -> File -> New -> AVR Example Project)

Compile and run the mass storage example with an SD/MMC card inserted

In My Computer on the host PC there will be two additional partitions for the
DataFlash memory and SD/MMC card

Copy the external_sdram_binary.bin file to DataFlash or SD/MMC, whichever is
required

Now the SDRAM boot loader can be executed. For sdram_bootloader, open a shell,
go to the AVR32825/External_ SDRAM_DEMO/sdram_bootloader/at32uc3a3256/gcc
directory, and type: make rebuild program reset run (this command builds the
application, programs it to the target, and then executes the code).

32160A-AVR-02/11

5 Timing analysis

32160A-AVR-02/11

AVR32825

The UC3 devices mentioned in this application note support interfacing external
SDRAM over EBI. Data transfers are performed through a 16-bit data bus and an
address bus of up to 24 bits, compared to the 32-bit internal data bus used to access
the on-chip flash memory. Due to the reduced data bus width as well as the additional
cycles required to access SDRAM, the execution time of code in SDRAM decreases
by more than 50% as compared to on-chip flash.

In the case of an interrupt service routine, the ISR latency is increased as well due to
the additional cycles required to access SDRAM. The actual ISR execution time
would depend upon the length of the ISR.

ATMEL s

ATMEL

6 References

[1] AVR32102: Using the AVR32 SDRAM controller:
http://www.atmel.com/dyn/resources/prod documents/doc32013.pdf

[2] AVR32795: Using the GNU Linker Scripts on AVR UC3 Devices:
http://www.atmel.com/dyn/resources/prod _documents/doc32158.pdf

[3] The GNU linker Id online documentation:
http://sourceware.org/binutils/docs-2.18/ld

[4] The IAR XLINK Linker and compiler reference documentation: the
EWAVR32_CompilerReference.pdf document under the IAR installation
directory/IAR Systems/Embedded Workbench 5.6/avr32/doc/

[5] USB Mass Storage Class example:
http://asf.atmel.no/selector/show.php?device=uc3&store=serv

[6] The UC3A datasheet:
http://www.atmel.com/dyn/resources/prod documents/doc32058.pdf

[7] The ATEVK1100 AVR32 UC3A0512 evaluation Kit:
http://www.atmel.com/dyn/products/tools card.asp?tool id=4114

[8] The ATEVK1105 AVR32 UC3A0512 evaluation Kit:
http://www.atmel.com/dyn/products/tools card.asp?tool id=4428

[9] The ATEVK1104 AVR32 UC3A3256 evaluation Kit:
http://www.atmel.com/dyn/products/tools card.asp?tool id=4427

[10] The UC3C-EK AVR32 UC3C0512 evaluation kit:
http://www.atmel.com/dyn/products/tools card.asp?tool id=4822

[11]The IAR Embedded Workbench for AVR32:
http://www.iar.com/website1/1.0.1.0/124/1/index.php

[12] The AVR32 GNU toolchain:
http://www.atmel.com/dyn/products/tools card.asp?tool id=4118

[13]AVR32 Studio:
http://www.atmel.com/dyn/products/tools card.asp?tool id=4116

16 AVR32825

32160A-AVR-02/11

AVR32825

7 Table of contents

AU S e 1
LINtrOdUCTION .. e e e aanens 1
2 MaAIN CONCEPLS coviiiiiii e e e e e e et e e e e e e e eeaanens 2
2.1 Configuring the SDRAM controller and the target SDRAM...........ccccceeeeeviiinnnen, 2
2.2 Generating an executable file..........ccccce i 2
2.2.1 LINKING PrOCESSeettiiiieieei ittt eee e ettt e e e e e ettt e e e e e st bbbt e e e e e s asbb b et e e e e e e e annereeeeaens 2

2.3 Loading and executing a binary iMagecccceeeeeeiiiiiiiiiieee e e 3
2.3. 1 External DataFIashooo i 4
2.3.2 SDIMMEC CAIU....ceueieieieieeeieieeeseeesesesasesesssasesesssaresesaserasesesssesasaseseseressesserarsrrrrrnssnnrnnnnnes 4

3 Execution from SDRAM.......ccoii i 5
3.1 AVR32 GNU t0O0ICNAIN.tiiii ittt snreee e 5
3.1.1 Execute a function/ISR iN SDRAMooiiiiiiiiiiiie et 5
3.1.2 Execute a binary from SDRAM ...t 5

3.2 IAR EWAVR32 €NVIFONMENTviiieiiiiiiie e iiiiee e siieee e sttt ee e siieee e sntaeeessnaeeesssnneeee e 6
3.2.1 Execute a function/ISR iN SDRAMooiiiiiiiiiiie e 6
3.2.2 Execute a binary from SDRAM ...t 6

4 Basic application packagecccccoeeeiiiiiiiiiic 7
= =T D11 =T 41T) SRR 7
4.2 Description of the appliCationcocciiiiieiie e 7
2.0 SEUUD ettt 7
4.2.2 EXECULION STEPS ...ttt ettt ettt ettt e e e e et e e e e e e et e e e e e e e e e nebeeeas 8

TR I o= Tod 1Yo [T ot 0] 01 (=] | £ S 12
4.4 Building and running the example on the target device.........ccccccceeiviiiiiinnnnn..n. 13
4.4.1 With the bare AVR32 GNU toolchain onlycooiiiiiiiiiiieieeee e 13
4.4.2 With JAR EWAVRS32uiiiuiiiiiiiiiiiiii s ssnsasasssssssnsssnsnsnsnsnsnsnsnnnen 13
4.4.3 Copying the binary to SD/MMC or external DataFlash...........c..cccoociiieiiiiiiiiinnnn. 14
5TIimMING @nalySiS ...cooeeiiiiieie et 15
B REIBIBNCES. ... 16
7 Table Of CONtENTS ... e, 17

ATMEL 1

32160A-AVR-02/11

AIMEL

Y ©

Atmel Corporation Atmel Asia Limited Atmel Munich GmbH Atmel Japan

2325 Orchard Parkway Unit 01-5 & 16, 19F Business Campus 9F, Tonetsu Shinkawa Bldg.
San Jose, CA 95131 BEA Tower, Milennium City 5 Parkring 4 1-24-8 Shinkawa

USA 418 Kwun Tong Road D-85748 Garching b. Munich Chou-ku, Tokyo 104-0033
Tel: (+1)(408) 441-0311 Kwun Tong, Kowloon GERMANY JAPAN

Fax: (+1)(408) 487-2600 HONG KONG Tel: (+49) 89-31970-0 Tel: (+81) 3523-3551
www.atmel.com Tel: (+852) 2245-6100 Fax: (+49) 89-3194621 Fax: (+81) 3523-7581

Fax: (+852) 2722-1369

© 2011 Atmel Corporation. All rights reserved. / Rev.: CORPOXXXX

Atmel®, Atmel logo and combinations thereof, AVR®, AVR® logo, DataFlash® and others are registered trademarks of Atmel Corporation
or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS
ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION,
DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO
USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or
warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and
product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically
provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or
warranted for use as components in applications intended to support or sustain life.

32160A-AVR-02/11

	1 Introduction
	2 Main concepts
	2.1 Configuring the SDRAM controller and the target SDRAM
	2.2 Generating an executable file
	2.2.1 Linking process

	2.3 Loading and executing a binary image
	2.3.1 External DataFlash
	2.3.2 SD/MMC card

	3 Execution from SDRAM
	3.1 AVR32 GNU toolchain
	3.1.1 Execute a function/ISR in SDRAM
	3.1.2 Execute a binary from SDRAM

	3.2 IAR EWAVR32 environment
	3.2.1 Execute a function/ISR in SDRAM
	3.2.2 Execute a binary from SDRAM

	4 Basic application package
	4.1 Requirements
	4.2 Description of the application
	4.2.1 Setup
	4.2.2 Execution steps

	4.3 Package contents
	4.4 Building and running the example on the target device
	4.4.1 With the bare AVR32 GNU toolchain only
	4.4.2 With IAR EWAVR32
	4.4.3 Copying the binary to SD/MMC or external DataFlash

	5 Timing analysis
	6 References
	7 Table of contents

