Using Microchip Bridge Controllers with External Ethernet PHYs

Author: Andrew Rogers

Microchip Technology Inc.

1.0 INTRODUCTION

Microchip offers several USB and PCIe[®] to Ethernet bridge controllers that may connect to an external Ethernet PHY. This allows for flexibility to utilize different Ethernet standards, such as BASE-T1 for single twisted pair cabling or BASE-X for optical cables. Microchip offers several options for Ethernet PHYs, and PHYs from other vendors are also supported as long as they support standard MDIO and MII/RGMII/SGMII interfaces.

TABLE 1: MICROCHIP ETHERNET BRIDGE CONTROLLERS WITH EXTERNAL PHY SUPPORT

Product	Host Connection	Maximum Ethernet Speed	Ψ	RMII	GMII	RGMII	SGMII	SGMII+	Recommended Microchip PHY Options	PHY Notes
			Χ		_	_	_	_	KSZ8081MNX	10/100BASE-T Copper PHY
			Χ	I	_	-	_	l	LAN8740A	10/100BASE-T Copper PHY
LAN9500A	USB2.0	100 Mbit/s	Х			_	_	_	LAN8670/ LAN8672	10BASE-T1S Copper PHY
			Χ	_	_	_	_	_	LAN8770	100BASE-T1 Copper PHY
LAN89530	USB2.0	100 Mbit/s	Χ	_	_	_	_	_	KSZ8081MNL	10/100BASE-T Copper PHY
(Automotive)	USB2.0	100 MDN/S	Χ	_	_	_	_	_	LAN8770	100BASE-T1 Copper PHY
			Χ	_	_	_	_	_	KSZ8081MNX	10/100BASE-T Copper PHY
	HSIC	100 Mbit/s	Χ	_	_	_	_	_	LAN8740A	10/100BASE-T Copper PHY
LAN9730			Х	_	_	_	_	_	LAN8670/ LAN8672	10BASE-T1S Copper PHY
			Χ	_	_	_	_	_	LAN8770	100BASE-T1 Copper PHY
LAN89730	HSIC	100 Mbit/s	Χ		_	_	_	_	KSZ8081MNL	10/100BASE-T Copper PHY
(Automotive)	TISIC		Χ		_		—		LAN8770	100BASE-T1 Copper PHY
		1000 Mbit/s	_		_	Х	_	_	KSZ9131	10/100/1000BASE-T Copper PHY
LAN7801	USB3.0		_	_	_	Х	_	_	VSC8541	10/100/1000BASE-T Copper PHY
			_	_	_	Χ	_	_	LAN8770R	100BASE-T1 Copper PHY
		1000 Mbit/s	_	_	_	Х	_	_	KSZ9131	10/100/1000BASE-T Copper PHY
LAN7431	PCle [®] 3.1		_	_	_	Χ	_	_	VSC8541	10/100/1000BASE-T Copper PHY
			_	_	_	Χ	_	_	LAN8770R	100BASE-T1 Copper PHY

TABLE 1: MICROCHIP ETHERNET BRIDGE CONTROLLERS WITH EXTERNAL PHY SUPPORT

Product	Host Connection	Maximum Ethernet Speed	M	RMII	GMII	RGMII	SGMII	SGMII+	Recommended Microchip PHY Options	PHY Notes
	PCle [®] 3.1	2.5 Gbit/s	_	_	_	Х	_	_	KSZ9131	10/100/1000BASE-T Copper PHY
PCI11414			_	_	_	Х	_	_	VSC8541	10/100/1000BASE-T Copper PHY
			_	_	_	Χ	_	_	LAN8770R	100BASE-T1 Copper PHY
			Х	_	Х	Х	Х	_	VSC8211	10/100/1000BASE-T Copper PHY or 100BASE-X
	PCle [®] 3.1	2.5 Gbit/s	_	_	_	Х	_	_	KSZ9131	10/100/1000BASE-T Copper PHY
PCI11010			_	_	_	Х	_	_	VSC8541	10/100/1000BASE-T Copper PHY
			_	_	_	Χ	_	_	LAN8770R	100BASE-T1 Copper PHY
			Х		X	Х	Х	_	VSC8211	10/100/1000BASE-T Copper PHY or 100BASE-X

1.1 Sections

This document includes the following topics:

- Section 2.0, "Executive Summary"
- Section 3.0, "MII/RMII and GMII/RGMII"
- Section 4.0, "SGMII/SGMII+"
- Section 5.0, "MDIO"
- · Section 6.0, "PHY Drivers"
- Section 7.0, "Hardware Considerations"
- · Section 8.0, "Debugging and Development Tools"

1.2 References

The following documents should be referenced when using this application note. See your Microchip representative for availability.

- LAN9500A Data Sheet (www.microchip.com/DS00001875)
- · LAN89530 Data Sheet (www.microchip.com/DS60001347)
- LAN9730 Data Sheet (www.microchip.com/DS00001946)
- LAN89730 Data Sheet (www.microchip.com/DS60001348)
- LAN7801 Data Sheet (www.microchip.com/DS00002123)
- LAN7431 Data Sheet (www.microchip.com/DS00002631)
- IEEE 802.3 Ethernet Standards (a collection of numerous standards)

1.3 Terms and Abbreviations

- 10/100: Shorthand for an Ethernet interface that supports both 10 Mbit/s and 100 Mbit/s signal rate
- 10/100/1000: Shorthand for an Ethernet interface that supports 10 Mbit/s, 100 Mbit/s, and 1000 Mbit/s signal rate
- 10BASE-T: 10 Mbit/s standard defined in IEEE 802.3i-1990 (CL14), requires dual twisted pair Cat3 cable
- 10BASE-T1: 10 Mbit/s standard defined in IEEE 802.3cg-2019, requires single twisted pair Cat5 cable
- 100BASE-TX: 100 Mbit/s standard defined in IEEE 802.3u-1995, requires dual twisted pair Cat5 cable
- 100BASE-T1: 100 Mbit/s standard defined in IEEE 802.3bw-2015 (CL96), requires single twisted pair Cat5e cable
- 100BASE-X: A term used to describe a collection of various of standards for 100 Mbit/s over fiber optic cable
- 1000BASE-T: 1000 Mbit/s standard defined in IEEE 802.3ab-1999 (CL40), requires quad twisted pair Cat5 cable

- 1000BASE-T1: 1000 Mbit/s standard defined in IEEE 802.3bp-2016, requires single twisted pair Cat6A cable
- 1000BASE-X: A term used to describe a collection of various of standards for 1000 Mbit/s over fiber optic cable
- GigE: Shorthand for Gigabit Ethernet supporting 1000 Mbit/s signal rate
- GMII: Gigabit Media-Independent Interface
- HSIC: High-Speed Inter-Chip (USB)
- · MAC: Media Access Control
- MDIO: Management Data Input/Output
- MII: Media-Independent Interface
- PCIE 3.1: Peripheral Component Interconnect Express v3.1
- PHY: A shorthand term for Ethernet transceiver; may be a standalone, discrete device, or integrated directly into an Ethernet controller
- RMII: Reduced Media-Independent Interface
- RGMII: Reduced Gigabit Media-Independent Interface
- SGMII: Serial Gigabit Media-Independent Interface
- SGMII+: Serial Gigabit Media-Independent Interface plus for 2.5 Gbit/s support
- SFP: Small Form-Factor Pluggable
- USB2.0: Universal Serial Bus version 2.0
- USB3.0: Universal Serial Bus version 3.0

2.0 EXECUTIVE SUMMARY

When working with Microchip bridge controller products with external PHYs, the following points are essential:

- · Select a PHY that aligns with the end product speed and necessary feature set.
- If using special features of the PHY (PTP, MACsec, and so on), ensure that the PHY supplier provides and supports drivers for the target operating systems. If a driver is not available, it is usually possible to control a PHY using generic PHY drivers included in Linux[®] or Windows[®], but special features and configuration cannot be set through these drivers.
- Ensure that the PHY MII interface aligns with the available MII/RGMII/SGMII interface of the Microchip bridge controller. For example, an MII-capable MAC cannot connect to a PHY that only supports RMII.
- Whenever possible, connect the MDIO interface in your schematic—this interface allows for easy PHY control and configuration and is usually essential when using special PHY features.

Note 1: MDIO-less operation is possible in cases where MDIO simply cannot be used, but has numerous drawbacks and is not usually recommended.

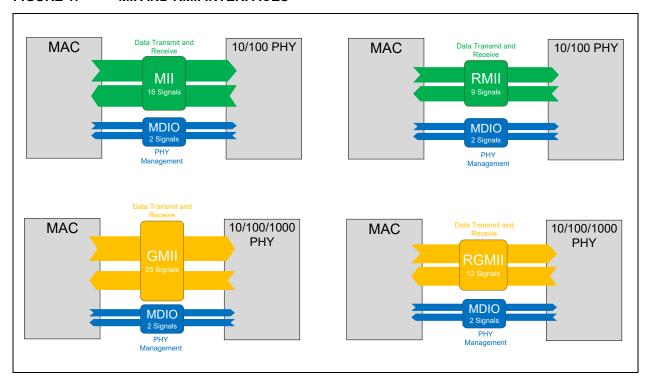
- Verify your schematic design and layout design against the provided design/routing/placement checklists of your specific Microchip bridge controller or PHY. See Section 7.2, "Additional Product-Specific Resources".
- The Ethernet bridge controller must be configured by the end system integrator. Check the selected Ethernet bridge controller product web page for product-specific configuration tools. Pay special attention to the following aspects:
 - *MAC Address*: For systems that connect to the Internet, every bridge controller must be programmed with a unique MAC address. MAC addresses should be procured from IEEE.
 - MII/RGMII TX and RX Clock Delay: Ensure that TX and RX clock delay is accounted for in the PCB design, MAC configuration, and/or PHY configuration.
- The selected PHY may also require its own configuration. This is achieved through various means depending on the PHY. Some may be configured solely from MDIO controlled by a generic PHY driver. Other PHYs have many hardware pin-strap options.
- The Ethernet bridge controller OTP or EEPROM must be programmed on the end-product production line. For Linux, this can be achieved using ethtool. For Windows, Microchip provides product-specific programming tools.
- Understand the basics of what Ethernet MAC and PHY actually do. Table 2 lists them down into simplest terms:

TABLE 2: ETHERNET MAC AND PHY FUNCTIONS

Ethernet MAC Functions	Ethernet PHY Function
Transmit: Encapsulate Data:	Physical Coding Sublayer (PCS):
Add Header Data (including addresses)	Transmit:
Add CRC	- Encode
Add Preamble (including start frame delimiter)	- Scramble
Ensure Inter-frame Gap	- Serialize data
Receive: Detect Invalid Frames:	Receive:
Incorrect CRC	- Deserialize data
Runt Frame	- Descramble
Giant Frame (if Jumbo frame support is not sup-	- Decode
ported)	- Carrier Sense
Misaligned Frame	- Collision Detection
No Address Match	Physical Media Attachment Sublayer (PMA):
	Transmit:
	- Data bit to data symbol conversion
	Receive:
	- Clock recovery
	- Data symbol to data bit conversion
	- Link Monitoring
	Physical Medium Dependent sublayer (PMD):
	Dependent on the standards supported by the PHY
	Line drivers/line receivers

3.0 MII/RMII AND GMII/RGMII

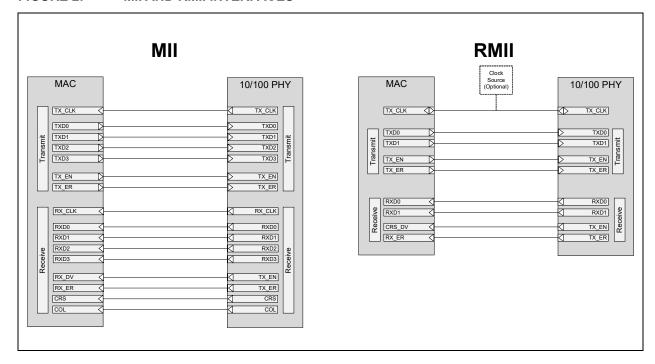
There are several Media-Independent Interface (MII) options available for connecting an Ethernet MAC to a PHY. Microchip's bridge controllers support either MII for 10/100 Ethernet connections, or Reduced Gigabit Media-Independent Interface (RGMII) for 10/100/1000 Ethernet connections. However, Microchip does offer PHYs and Ethernet switches that support all Reduced Media-Independent Interface (RMII) and Gigabit Media-Independent Interface (GMII).


The MII/RMII/GMII/RGMII interface can be used to control PHYs that operate under one of the various twisted pair or optical specifications. The primary differences are:

- · MII and RMII support up to 100 Mbit/s.
- · RMII is the reduced pin count version of MII.
- · GMII and RGMII support up to 1000 Mbit/s.
- · RGMII is the reduced pin count version of GMII.

Management Data Input/Output (MDIO) is a two-wire bus that allows the controller to configure the PHY as needed. This channel allows the host to interrogate and set important PHY parameters (such as enabling/disabling auto-negotiation, auto-MDIX, and so on). MDIO is technically optional, and it is possible to design systems without MDIO as long as both the MAC and PHY can be configured as-needed to operate with one another by other means.

Note: FP modules do not have MDIO interfaces, so they technically operate without MDIO. However, SFP modules do adhere to a separate management standard through an I²C channel.


FIGURE 1: MII AND RMII INTERFACES

3.1 MII/RMII

The MII was specifically designed as a standard connection for 100 Mbit/s Ethernet between the media access control (MAC) and a PHY. RMII was introduced later to offer a lower pin count option while maintaining full functionality of the MII interface.

FIGURE 2: MII AND RMII INTERFACES

3.1.1 MII SIGNAL DETAILS

The MII has the following fundamental properties:

- TX_CLK and RX_CLK are separate clocks relative to their respective directions (transmit and receive). Both are driven by the PHY.
- Clock frequency is 25 MHz in 100 Mbit/s mode and 2.5 MHz in 10 Mbit/s mode.
- Both transmit and receive have four signals for data (that is, 4-bits wide).
- · Data lines are sampled relative to the rising clock edge.

MII signals are described in Table 3.

TABLE 3: MII SIGNALS

Direction	Signal Name	Description
PHY→MAC	TX_CLK	Transmit Clock Free-running 2.5 MHz (in 10 Mbit/s mode) or 25 MHz clock (in 100 Mbit/s mode).
MAC→PHY	TXD[0:3]	Transmit data bit signals (four separate parallel signals)
MAC→PHY	TX_EN	Transmit Enable This signal is asserted during frame transmission.

TABLE 3: MII SIGNALS (CONTINUED)

Direction	Signal Name	Description
MAC→PHY	TX_ER	Transmit Error This signal may be asserted during frame transmission to instruct the PHY to intentionally corrupt the frame. This is done, so that the recipient of the frame will detect this packet as corrupted. This can be used as kind of 'frame abort' function in case a problem is detected in the midst of active frame transmission. This signal is optional per specification.
PHY→MAC	RX_CLK	Receive Clock Free-running 2.5 MHz (in 10 Mbit/s mode) or 25 MHz clock (in 100 Mbit/s mode)
PHY→MAC	RXD[0:3]	Transmit data bit signals (four separate parallel signals)
PHY→MAC	RX_DV	Receive Data Valid Asserts when received data is valid. Some preamble bits may be missed due to slight delay in assertion of the signal, but must be asserted sufficiently fast to ensure that the start of frame delimiter byte is received by the MAC.
PHY→MAC	RX_ER	Receive Error Asserts to indicate that the received data was not properly decoded.
PHY→MAC	CRS	Carrier Sense Signal is asserted when PHY is: Transmitting Receiving Otherwise considered "in-use" This signal is asynchronous to the RX_CLK.
PHY→MAC	COL	Collision Detect Signal is asserted when a collision is detected. This signal is asynchronous to the RX_CLK.

3.1.2 RMII SIGNAL DETAILS

RMII reduces the overall pin count of MII while maintaining the same capabilities. The changes include:

- TX_CLK and RX_CLK are combined into a single clock signal, REF_CLK. The clock source is flexible and may be sourced from MAC to PHY, PHY to MAC, or from an external source. This allows a single clock source to be supplied to multiple PHYs in multi-port systems.
- Clock frequency is doubled to 50 MHz in 100 Mbit/s mode.
- Data signals TXD and RXD are reduced from four to two.
- Receive Data Valid (RX_DV) and Carrier Sense (CRS) signals are combined into one signal, RX_DV.
- · Collision detection (COL) signal is removed.

Note: Microchip does not offer any bridge controllers that support RMII. The RMII details are shown in this document for completeness.

RMII signals are described in Table 4.

TABLE 4: RMII SIGNALS

Direction	Signal Name	Description
MAC→PHY, PHY→MAC, or externally sourced	TX_CLK	Transmit and Receive Clock Free-running 5 MHz (in 10 Mbit/s mode) or 50 MHz clock (in 100 Mbit/s mode)
MAC→PHY	TXD[0:1]	Transmit data bit signals (Two separate parallel signals)
MAC→PHY	TX_EN	Transmit Enable This signal is asserted during frame transmission.
MAC→PHY	TX_ER	Transmit Error This signal may be asserted during frame transmission to instruct the PHY to intentionally corrupt the frame. This is done so that the recipient of the frame will detect this packet as corrupted. This can be used as a kind of 'frame abort' function in the case that a problem is detected in the midst of active frame transmission. This signal is optional per specification.
PHY→MAC	RXD[0:1]	Receive data bit signals (Two separate parallel signals)
PHY→MAC	CRS_DV	Carrier Sense and Receive Data Valid 100 Mbit/s Mode: Carrier Sense (CRS) and RX_Data Valid (RX_DV) are multiplexed on alternate clock cycles. 10 Mbit/s mode: Carrier Sense (CRS) and RX_Data Valid (RX_DV) are multiplexed and alternate every 10 clock cycles. Carrier Sense Signal asserts when PHY is: • Transmitting • Receiving • Otherwise considered "in-use" Receive Data Valid Signal asserts when received data is valid. Some preamble bits may be missed due to a slight delay in assertion of the signal, but must be asserted sufficiently fast to ensure that the start of
PHY→MAC	RX_ER	frame delimiter byte is received by the MAC. Receive Error Asserts to indicate that the received data was not properly decoded.

3.2 GMII/RGMII

The GMII was introduced to enable increased speeds necessary to support 1000 Mbit/s Ethernet. RGMII was introduced later to offer a lower pin count option while maintaining full functionality of the GMII interface.

GMII RGMII MAC 10/100/1000 MAC 10/100/1000 PHY PHY GTXCLK GTXCLK TXCLK TXCLK TXD0 TXD0 TXD0 TXD0 TXD1 TXD1 TXD1 TXD1 TXD2 TXD2 TXD3 TXD3 TXD3 TXD3 TXD4 TXD4 TX_CTI TX_CTL TXD5 TXD6 TXD6 RXC TXD7 RXD0 RXD0 TX EN TX EN Receive RXD1 RXD1 TX_ER TX_ER RXD2 RXD2 RXD3 RXD3 RX CLK RX_CLK RX_CTI RX_CTL RXD0 RXD0 RXD1 RXD1 RXD2 RXD2 RXD3 RXD3 RXD4 RXD4 RXD5 RXD5 RXD6 RXD7 RXD7 TX_EN RX D\ RX_ER TX_ER CRS CRS

FIGURE 3: GMII AND RGMII INTERFACES

3.2.1 GMII SIGNAL DETAILS

GMII allows for up to 1000 Mbit/s Ethernet. The changes from MII/RMII include:

- · Dedicated clock for Gigabit transmission is added, GTX CLK.
- Clock frequency is 125 MHz in 1000 Mbit/s mode, 25 MHz in 100 Mbit/s mode, and 2.5 MHz in 10 Mbit/s mode.
- Both transmit and receive have eight signals for data (that is, 8-bits wide).

GMII signals are described in Table 5.

Note: Microchip does not offer any bridge controllers that support GMII. The GMII details are shown in this document for completeness.

TABLE 5: GMII SIGNALS

Direction	Signal Name	Description
MAC→PHY	GTX_CLK	Clock signal used for 1000 Mbit/s connections Always 125 MHz
MAC→PHY	TX_CLK	Clock signal used for 10/100 Mbit/s connections
MAC→PHY	TXD[7:0]	Transmit data bit signals (Eight separate parallel signals)
MAC→PHY	TX_EN	Transmit Enable This signal is asserted during frame transmission.
MAC→PHY	TX_ER	Transmit Error This signal may be asserted during frame transmission to instruct the PHY to intentionally corrupt the frame. This is done so that the recipient of the frame will detect this packet as corrupted. This can be used as kind of 'frame abort' function in the case that a problem is detected in the midst of active frame transmission. This signal is optional per specification.
PHY→MAC	RX_CLK	Received Signal Clock
PHY→MAC	RXD[7:0]	Receive data bit signals (eight separate parallel signals).
PHY→MAC	RX_DV	Receive Data Valid Asserts when received data is valid. Some preamble bits may be missed due to slight delay in assertion of the signal, but must be asserted sufficiently fast to ensure that the start of frame delimiter byte is received by the MAC.
PHY→MAC	RX_ER	Receive Error Asserts to indicate that the received data was not properly decoded.
PHY→MAC	COL	(Half-duplex connections only) Collision Detect Signal is asserted when a collision is detected.
PHY→MAC	CRS	(Half-duplex connections only) Carrier Sense Signal is asserted when PHY is: Transmitting Receiving Otherwise considered "in-use"

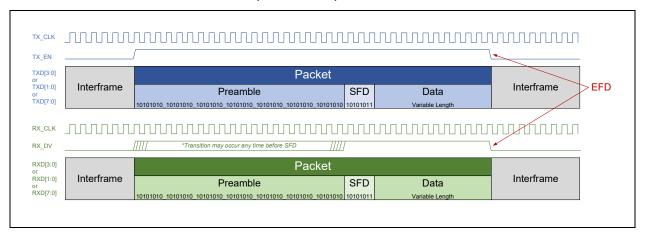
3.2.2 RGMII SIGNAL DETAILS

RGMII reduces the overall pin count of GMII while maintaining the same capabilities. The changes include:

- · GTX_CLK is eliminated.
- Clock frequency remains the same as in GMII, but data is sampled relative to both the rising edge and falling edge of the clock.
- Data signals TXD and RXD are reduced from eight to four.
- · Receive Data Valid (RX_DV) and Receive Error (RX_ER) signals are combined into one signal, RX_CTL.
- Collision detection signal (COL) and Carrier Sense (CRS) signals are removed.

RGMII signals are described in Table 6.

TABLE 6: RGMII SIGNALS


Direction	Signal Name	Description
MAC→PHY	TXC	Transmit Signal Clock
MAC→PHY	TXD[3:0]	Transmit data bit signals (Four separate parallel signals)
		Multiplexing Transmit Enable and Transmit Error
		Transmit Enable This signal is asserted during frame transmission.
MAC→PHY	TX_CTL	Transmit Error This signal may be asserted during frame transmission to instruct the PHY to intentionally corrupt the frame. This is done so that the recipient of the frame will detect this packet as corrupted. This can be used as kind of 'frame abort' function in case a problem is detected in the midst of active frame transmission.
		This signal is optional per specification.
PHY→MAC	RXC	Receive Signal Clock
PHY→MAC	RXD[3:0]	Receive data bit signals (Four separate parallel signals)
PHY→MAC	RX_CTL	Multiplexing of Receive Data Valid and Receive Error Receive Data Valid Asserts when received data is valid. Some preamble bits may be missed due to slight delay in assertion of the signal, but must be asserted sufficiently fast to ensure that the start of frame delimiter byte is received by the MAC. Receive Error Asserts to indicate that the received data was not properly decoded.

3.3 MII/RMII/GMII/RGMII Packet Format

MII/RMII/GMII differ on transmission frequency and pin count, but all generally follow the same packet transmission structure. Figure 4 shows an example of the basic components of an MII packet in a simplified format.

Note: The clock waveform is not to scale and many more clock oscillations occur during a packet transmission than what is shown in the figure.

FIGURE 4: MII PACKET FORMAT (SIMPLIFIED)

3.3.1 PREAMBLE

Every frame begins with a preamble of seven octets of alternating 1's and 0's. The preamble contains no usable data.

3.3.2 START OF FRAME DELIMITER

The Start of Frame Delimiter (SFD) follows the preamble. It is a single octet in length, beginning with six alternating 1's and 0's followed with two final 1's.

3.3.3 DATA

Data in a frame consists of N octets of data. The size of N depends on the underlying protocol being transmitted. Notice that MII does not explicitly contain any contextual or error checking components. That is handled by the controller/MAC.

3.3.4 END OF FRAME DELIMITER

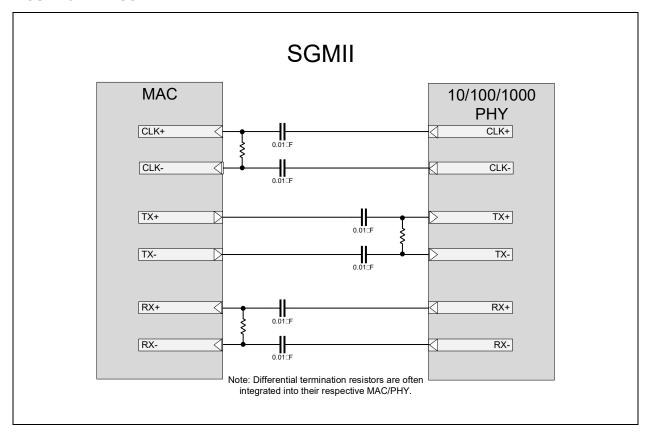
The End of Frame Delimiter is not a pattern of octets, but rather is signaled by deassertion of TX_EN (for transmit case) or RX_DV (for receive case).

3.3.5 INTERFRAME – TRANSMIT

During a normal interframe period, the TX_CLK continues to run, but TX_EN and TX_ER are both deasserted. The data signals become 'don't cares' and can be all 0's, all 1's, or any other mix of 1 and 0.

3.3.6 INTERFRAME – RECEIVE

During a normal interframe period, the RX_CLK continues to run, but RX_DV and RX_ER are both deasserted. The data signals become 'don't cares' and can be all 0's, all 1's, or any other mix of 1 and 0.


If RX_ER = 1 while RX_DV = 0, then either 'Assert LPI' or 'False Carrier Indication' can be encoded on the data lines.

4.0 SGMII/SGMII+

The Serial Gigabit Media-Independent Interface (SGMII) was introduced to reduce pin count. This works by integrating SerDes into the MAC and PHY to serialize the data to transmit and receive differential pairs. (See Figure 5.) An external PHY to MAC reference clock differential pair is also commonly required for receive data recovery.

SGMII+ is a signal rate increase that allows for up to 2.5 Gbit/s Ethernet support. The signals are unchanged.

FIGURE 5: SGMII INTERFACE

4.1 SGMII Signal Details

MII signals are described in Table 7.

TABLE 7: SGMII SIGNALS

Direction	Signal Name	Description			
PHY→MAC	CLKP	The clock frequency is 625 MHz, but it is a DDR interface with a final			
PHY→MAC	CLKM	data rate of 1.25 Gbit/s. External Reference Clock Differential Pair Must be capacitively decoupled using 0.0 µF capacitors. Differential termination resistors are also required, but are typically integrated within the respective MAC or PHY. Connection may be omitted if the MAC can perform clock recovery from the RXP/RXM data lines.			
MAC→PHY	TXP	MAC to PHY Transmit Differential Pair			
MAC→PHY	TXM	Must be capacitively decoupled using 0.01 μ F capacitors. Differential termination resistors are also required, but are typically integrated with the respective MAC or PHY.			

TABLE 7: SGMII SIGNALS (CONTINUED)

Direction	Signal Name	Description
PHY→MAC	RXP	PHY to MAC Receive Differential Pair
PHY→MAC	RXM	Must be capacitively decoupled using 0.01 □F capacitors. Differential termination resistors are also required but are typically integrated within the respective MAC or PHY.

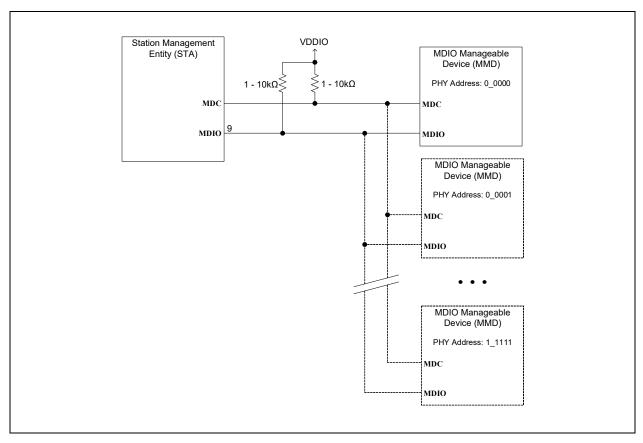
5.0 MDIO

MDIO is a two-wire serial bus that is electrically very similar to I²C/SMBus. MDIO is used to manage PHYs through a sideband channel that operates asynchronously and entirely separate from MII/RMII/GMII/RGMII. Management of PHYs is performed through reading or writing of a standard set of registers. MDIO is used as the sideband channel for MII, RMII, GMII, and RGMII, and SGMII.

5.1 Electrical Interface

The MDIO bus has two signals:

- · Management Data Clock or MDC
- · Management Data Input/Output or MDIO


The controller of the MDIO bus is referred to as the Station Management Entity (STA). There can only be one STA on a bus. The STA initiates all communication and controls the clock (MDC signal).

The targets are referred to as MDIO Manageable Devices (MMD), of which there can be up to 32 devices on each bus. Each MMD must have its own unique 5-bit address.

MDIO is an open-drain electrical interface (similar to I²C/SMBus), which requires external pull-up resistors to the supported I/O voltage. The value of the pull-up resistors must be selected to ensure signal timing while taking into account the total number of devices on the bus, their inherent pin leakage, and the PCB layout (trace length and impedance).

The MDC frequency can be up to 2.5 MHz (or a minimum period of 400 ns), although modern STAs and MMDs may have increased supported speeds.

FIGURE 6: MDIO ELECTRICAL/SCHEMATIC

5.2 Clause 22 Protocol

MDIO was first defined in Clause 22 of IEEE 802.3 Specification. The MDIO interface can access up to 32 PHY devices on a single bus. Each PHY device may have 32 registers for control and configuration, such as:

- · Link Connection Status
- Supported Speeds (10/100/1000 and Full-Duplex/Half-Duplex)
- · Selection of Speed
- · Auto-negotiation Enable/Disable and Advertisement Configuration
- · Low Power Support
- Full-/Half-Duplex Mode
- · Fault Indication
- · PHY Soft Reset
- · Test Modes such as Loopback/Collision Test
- PHY Identification (Organizationally Unique Identifier (OUI), Model number, Revision Number)

Clause 22 protocol follows a rigid packet format that is always 64 bits long (32 bit preamble + 32 bits of packet content). Details on a Clause 22 packet are described in Table 8.

TABLE 8: CLAUSE 22 FRAME FORMAT

Symbol	Name	Width (bits)	Notes		
PRE_32	Preamble 32		MDIO stays a '1b' for entire duration. MDC oscillates continuously for entire duration.		
ST	Start of Frame	2	Always '01b' for Clause 22 and Clause 45		
OP	Opcode	2	'01b' Write '10b' Read		
PHYADR5	ADR5 PHY Address		Target PHY Address value All possible values from 0_0000b to 1_1111b are supported.		
REGADR5	SMI Register Address	5	See Section 5.5, "Standard SMI Registers"		
TA	Turnaround	2	Turnaround time if bus ownership changes from STA to MM during read		
DATA	DATA Data Payload 16 • MDC drive Read: • MDIO drive		MDIO driven by STA MDC driven by STA Read: MDIO driven by MMD		

Signal levels may be 5V or 3.3V.

Setup Time/Hold time when MDIO driven by STA:

Setup: 10 nsHold: 10 ns

Setup Time/Hold time when MDIO driven by MMD:

Setup: 0 nsHold: 300 ns

The PHY Address, SMI Register Address, and Data Payload are always sent with the most-significant bits (msb) first.

FIGURE 7: MDIO CLAUSE 22 PACKET (WRITE AND READ)

5.3 Clause 45 Protocol

The IEEE 802.3ae specification introduced Clause 45 register access to allow for significant register expansion being demanded by 10 Gigabit PHYs and beyond. The main Clause 45 features include:

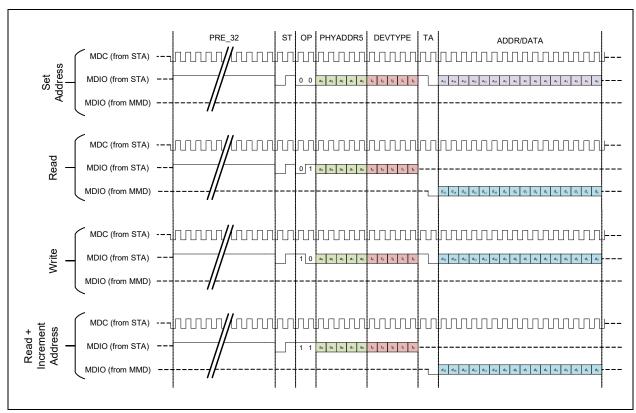
- · Up to 32 devices (same as Clause 22)
- Up to 32 different device IDs (allows MDIO to access other devices beyond PHYs)
- Up to 65,536 registers on each PHY/device (32-bit register addresses)
- Support for 1.2V I/O on MDIO
- · Fault Signaling
- Additional Loopback Functionality

Clause 45 adds two new opcodes and changes the method by which registers are addressed. Register Read/Write access is now minimally a two-step process. This allows Clause 45 to also remain backward compatible with Clause 22.

The new 'Address' opcode sets the 32-bit address pointer, and a subsequent Read or Write command is required that is targeted to the address pointer that was set.

The new 'Read-Increment-Address" opcode automatically increments the address pointer by one, so that a subsequent Read command can retrieve the data from the next address.

The Clause 22 Address field is replaced with a Device Type field, which allows the MDIO to access and control multiple kinds of devices beyond Ethernet PHYs.


Clause 45 protocol follows the same fixed length frame format as Clause 22, which is always 64 bits long (32-bit preamble plus 32 bits of packet content). Details on a Clause 45 packet are described in Table 9.

	•				
TARIF 9		AUSE 4	5 FR/	ΔM⊢	FORMAT

Symbol	Name	Width (bits)	Notes
PRE_32	Preamble	32	MDIO stays a '1b' for entire duration. MDC oscillates continuously for entire duration.
ST	Start of Frame	2	Always '01b' for Clause 22 and Clause 45
OP	Opcode	2	'00b' Address '01b' Write '10b' Read '11b' Read-Increment-Address
PHYADR5	PHY Address	5	Target PHY Address value. All possible values from 0_0000b to 1_1111b are supported.

TABLE 9: CLAUSE 45 FRAME FORMAT (CONTINUED)

Symbol	Name	Width (bits)	Notes
DEVTYPE	Device Type	5	Device Type/Device Address Allows other devices other than PHYs to be accessed on the MDIO bus. Up to 32 different device addresses can be supported.
TA	Turnaround	2	Turnaround time if bus ownership changes from STA to MMD during read
DATA	Data Payload	16	See Section 5.5, "Standard SMI Registers" For Opcode = '00b', this field contains the target Register Address. For Opcodes ='10b' - '11b', the field contains a data payload. Address: MDIO driven by STA MDIO driven by STA MIDIO driven by STA MDIO driven by STA MDIO driven by STA Read: MDIO driven by MMD MDC driven by STA Read-Increment-Address: MDIO driven by MMD MDC driven by MMD MDC driven by MMD

FIGURE 8: MDIO CLAUSE 45 PACKET (WRITE AND READ)

5.4 Clause 22 Access to Clause 45 Registers

Standard Clause 22 SMI registers 13 and 14 allow for access into the extended Clause 45 register space if the MAC does not directly support Clause 45, but the PHY does support Clause 45 registers. These registers are:

- · MMD Access Control
- · MMD Access Address Data

5.4.1 CLAUSE 22 WRITE TO CLAUSE 45 REGISTER

The following steps allow Clause 22 write access to Clause 45 registers:

- 1. Register 13: Set 'Function' to 00b (address) and 'DEVAD' field to the selected device address.
- 2. Register 14: Set the 'Address Data' to the target Clause 45 register address.
- 3. Register 13: Set 'Function' to 01b (data, no post increment) and 'DEVAD' field to the selected device address (as in step 1.)
- 4. Register 14: Set the 'Address Data' to the desired write value for the target Clause 45 register

5.4.2 CLAUSE 22 READ FROM CLAUSE 45 REGISTER

The following steps allow Clause 22 read access from Clause 45 registers:

- Register 13: Set 'Function' to 00b (address) and 'DEVAD' field to the device address value for the desired Clause 45 register address.
- 2. Register 14: Set the 'Address Data' to the target Clause 45 register address.
- 3. Register 13: Set 'Function' to 01b (data, no post increment) and 'DEVAD' field to the selected device address (as in step 1.)
- 4. Register 14: Read the content of the MMD's selected Clause 45 register.

5.5 Standard SMI Registers

Note:

Only a few of the most basic or commonly used SMI registers are shown in this section to help explain the mechanisms behind the MDIO protocol trace example in MDIO Configuration Example – LAN7801 and KSZ9131. Refer to the IEEE 802.3 specifications for full register details as well as PHY-specific data sheets for vendor-defined register use.

MDIO communication is typically limited to access of just a few crucial registers. There are many other extended registers and vendor-defined registers that may be used for development, test, and debug purposes. The most basic registers are displayed here in this document to provide some context for their use. Refer to the relevant specifications and vendor-supplied data sheets for full definitions.

- · Basic: Required for all MII/RMII/RMII/RGMII PHYs
- Extended: Required for all GMII/RGMII/SGMII PHYs
- Vendor-Specific: Allows special vendor-defined features/capabilities/test modes

TABLE 10: MICROCHIP ETHERNET BRIDGE CONTROLLERS WITH EXTERNAL PHY SUPPORT

Index	Register Name	Туре	Link
00h	Basic Mode Control	Basic	Basic Control Register
01h	Basic Mode Status	Basic	Basic Status Register
02h	PHY Identifier 1	Extended	PHY Identifier 1
03h	PHY Identifier 2	Extended	PHY Identifier 2
04h	Auto-Negotiation Advertisement	Extended	Auto-Negotiation Advertisement
05h	Auto-Negotiation Link Partner Base Page Ability	Extended	Auto-Negotiation Link Partner Ability
06h	Auto-Negotiation Expansion	Extended	See the IEEE 802.3 and/or product-specific PHY data sheet.
07h	Auto-Negotiation Next Page TX	Extended	See the IEEE 802.3 and/or product-specific PHY data sheet.
08h	Auto-Negotiation Link Partner Received Next Page	Extended	See the IEEE 802.3 and/or product-specific PHY data sheet.
09h	Controller-Target Control	Extended	See the IEEE 802.3 and/or product-specific PHY data sheet.
0Ah	Controller-Target Status	Extended	See the IEEE 802.3 and/or product-specific PHY data sheet.
0Bh	PSE Control	Extended	See the IEEE 802.3 and/or product-specific PHY data sheet.
0Ch	PSE Status	Extended	See the IEEE 802.3 and/or product-specific PHY data sheet.
0Dh	MMD Access Control	Extended	MMD Access Control
0Eh	MMD Address Data	Extended	MMD Access Address Data
0Fh	Extended Status	Extended	Unused/Reserved for MII/RMII PHYs Extended Status
10h-1Fh	Vendor Specific	Extended	See the product-specific PHY data sheet.
001Fh- FFFFh	Clause 45 MMD Register Space	Clause 45	See the IEEE 802.3 and/or product-specific PHY data sheet.

TABLE 11: BASIC CONTROL REGISTER

SMI Basic Mode Control Register Address: 00h		Description
Bit	Name	
15	PHY Soft Reset	When set, resets PHY and all registers to default state (self clearing).
14	Loopback	0b = Loopback Mode Disabled 1b = Loopback Mode Enabled
13	Speed Select[0]	Together with Speed Select[1], Selects Speed. Ignored if autonegotiation is enabled. 00b = 10 Mbps 01b = 100 Mbps 10b = 1000 Mbps 11b = Reserved
12	Auto-Negotiation Enable	0b = Auto-negotiation Disabled 1b = Auto-negotiation Enabled
11	Power Down	0b = Normal Operation 1b = General Power Down Mode
10	Isolate	0b = Normal Operation 1b = PHY Isolated from MII interface
9	Restart Auto Negotiation	When set, restarts Auto-negotiation (self clearing).
8	Duplex Mode	0b = Half duplex 1b = Full duplex
7	Collision Test Mode	0b = Collision Test mode disabled 1b = Collision Test mode enabled
6	Speed Select[1]	Together with Speed Select[0], Selects Speed. Ignored if autonegotiation is enabled.
5:0	Reserved	Reserved

TABLE 12: BASIC STATUS REGISTER

SMI Basic Mode Status Register Address: 01h		Description
Bit	Name	
15	100BASE-T4	0b = PHY is not capable of 100BASE-T4. 1b = PHY is capable of 100BASE-T4.
14	100BASE-X Full Duplex	0b = PHY is not capable of 100BASE-X Full Duplex. 1b = PHY is capable of 100BASE-X Full Duplex.
13	100BASE-X Half Duplex	0b = PHY is not capable of 100BASE-X Half Duplex. 1b = PHY is capable of 100BASE-X Half Duplex.
12	10BASE-T Full Duplex	0b = PHY is not capable of 10BASE-T Full Duplex. 1b = PHY is capable of 10BASE-T Full Duplex.
11	10BASE-T Half Duplex	0b = PHY is not capable of 10BASE-T Half Duplex. 1b = PHY is capable of 10BASE-T Half Duplex.
10	100BASE-T2 Full Duplex	0b = PHY is not capable of 100BASE-T2 Full Duplex. 1b = PHY is capable of 100BASE-T2 Full Duplex.
9	100BASE-T2 Half Duplex	0b = PHY is not capable of 100BASE-T2 Half Duplex. 1b = PHY is capable of 100BASE-T2 Half Duplex.
8	Extended Status	0b = No extended status info. 1b = Extended status information available in Register 15.

TABLE 12: BASIC STATUS REGISTER (CONTINUED)

SMI	Basic Mode Status Register Address: 01h	Description
Bit	Name	
7	Unidirectional Ability	0b = Transmit only when valid link is up. 1b = Can transmit even without valid link
6	MF Preamble Suppression	0b = Preamble suppressed frames not accepted 1b = Preamble suppressed frames accepted
5	Auto-Negotiation Complete	0b = Auto-negotiation not complete 1b = Auto-negotiation complete
4	Remote Fault	0b = No remote Fault detected 1b = Remote Fault detected
3	Auto-Negotiation Ability	0b = PHY not capable of auto-negotiation 1b = PHY capable of auto-negotiation
2	Link Status	0b = Link down 1b = Link up
1	Jabber Detect	0b = No jabber detected 1b = Jabber detected
0	Extended Capability	0b = Basic register capability only (reg 00h and 01h) 1b = Extended register set capability

TABLE 13: PHY IDENTIFIER 1

SMI PHY Identifier Register #1 Address: 02h		Description
Bit	Name	
15:0	PHY ID Number [3:18]	Bits 3-18 of the Organizationally Unique Identifier (OUI)

TABLE 14: PHY IDENTIFIER 2

SMII	PHY Identifier Register #2 Address: 03h	Description
Bit	Name	
15:10	PHY ID Number [19:24]	Bits 19-24 of the Organizationally Unique Identifier (OUI)
9:4	Model Number	Model number assigned by PHY manufacturer
3:0	Revision Number	Revision number assigned by PHY manufacturer

TABLE 15: AUTO-NEGOTIATION ADVERTISEMENT

SMI Auto-Negotiation Advertisement Register Address: 04h		Description
Bit	Name	
15	Next Page	0 = No next page ability 1 = Next page capable
14	Reserved	Reserved
13	Remote Fault	0 = Remote Fault indication not advertised 1 = Remote Fault indication advertised
12	Extended Next Page	0 = No extended next page ability 1 = Extended next page capable

TABLE 15: AUTO-NEGOTIATION ADVERTISEMENT (CONTINUED)

	SMI Auto-Negotiation Advertisement Register Address: 04h	Description
Bit	Name	
11	Asymmetric Pause	0 = No Asymmetric Pause toward link partner advertised 1 = Asymmetric Pause toward link partner advertised
10	Symmetric Pause	0 = No Symmetric Pause toward link partner advertised 1 = Symmetric Pause toward link partner advertised
9	100BASE-T4	0 = Not Supported/Advertised 1 = Supported/Advertised
8	100BASE-X Full Duplex	0 = Not Supported/Advertised 1 = Supported/Advertised
7	100BASE-X Half Duplex	0 = Not Supported/Advertised 1 = Supported/Advertised
6	10BASE-T Full Duplex	0 = Not Supported/Advertised 1 = Supported/Advertised
5	10BASE-T Half Duplex	0 = Not Supported/Advertised 1 = Supported/Advertised
4:0	Selector Field	Identifies the type of message being sent 00001b = IEEE 802.3

TABLE 16: AUTO-NEGOTIATION LINK PARTNER ABILITY

SMI Auto-Negotiation Link Partner Ability Register Address: 05h		Description
Bit	Name	
15	Next Page	0 = Link partner does not advertise next page ability. 1 = Link partner is next page capable.
14	Reserved	Reserved
13	Remote Fault	0 = Link partner does not advertise remote fault indication capability.1 = Link partner is capable of remote fault indication.
12	Extended Next Page	0 = Link partner does not advertise extended next page capability. 1 = Link partner is extended next page capable.
11	Asymmetric Pause	0 = Link partner does not advertise Asymmetric Pause capability. 1 = Link partner is Asymmetric Pause capable.
10	Symmetric Pause	0 = Link partner does not advertise Symmetric Pause capability. 1 = Link partner is Symmetric Pause capable.
9	100BASE-T4	0 = Link partner does not advertise this capability. 1 = Link partner supports this capability.
8	100BASE-X Full Duplex	0 = Link partner does not advertise this capability. 1 = Link partner supports this capability.
7	100BASE-X Half Duplex	0 = Link partner does not advertise this capability. 1 = Link partner supports this capability.
6	10BASE-T Full Duplex	0 = Link partner does not advertise this capability. 1 = Link partner supports this capability.
5	10BASE-T Half Duplex	0 = Link partner does not advertise this capability. 1 = Link partner supports this capability.
4:0	Selector Field	Identifies the type of message being sent 00001b = IEEE 802.3

TABLE 17: MMD ACCESS CONTROL

SMI MMD Access Address Data Register Address: 0Dh		Description
Bit Name		
15:14	Function	00b = Address 01b = Data, no post increment 10b = Data, post increment on reads and writes 11b = Data, post increment on writes only
13:5	Reserved	Always 0
4:0	DEVAD	Device Address

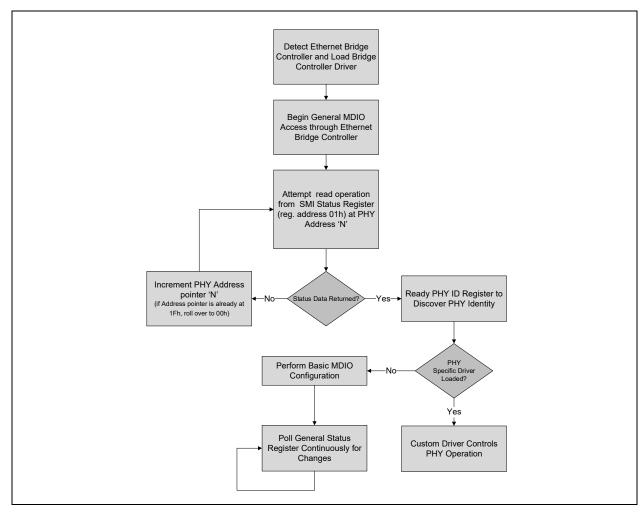
TABLE 18: MMD ACCESS ADDRESS DATA

SMI MMD Access Address Data Register Address: 0Eh		Description	
Bit	Name		
15:0	Address Data	Contains either a register address value or data value, depending on the Function value in the SMI MMD Access Address Data Control Register.	

TABLE 19: EXTENDED STATUS

SMIE	xtended Status Register Address: 0Fh	Description				
Bit	Name					
15	1000BASE-X Full Duplex	0b = PHY is not capable of 1000BASE-X Full Duplex. 1b = PHY is capable of 1000BASE-X Full Duplex.				
14	100BASE-X Half Duplex	0b = PHY is not capable of 1000BASE-X Half Duplex. 1b = PHY is capable of 1000BASE-X Half Duplex.				
13	1000BASE-T Full Duplex	0b = PHY is not capable of 1000BASE-T Full Duplex. 1b = PHY is capable of 1000BASE-T Full Duplex.				
12	1000BASE-T Half Duplex	0b = PHY is not capable of 1000BASE-T Half Duplex. 1b = PHY is capable of 1000BASE-T Half Duplex.				
11:0	Reserved	Reserved				

6.0 PHY DRIVERS


Operating systems include generic PHY drivers that access general MDIO registers for configuration. The generic PHY drivers generally perform the following tasks:

1. Obtain the PHY driver ID.

Note: If the ID matches an installed PHY-specific/custom driver, then that driver may be loaded and used to control the PHY. Special features, such as 1588 and MACsec, may not be usable if using generic PHY drivers.

- Check for basic capabilities of the PHY (speed support, Full-duplex/Half-duplex support, auto-negotiation advertisement, and so on).
- 3. Configure auto-negotiation advertisement based on PHY capabilities.
- 4. Enable and restart auto-negotiation.
- 5. Poll link status periodically to monitor for Link UP/Link Down status, auto-negotiation result.

FIGURE 9: MDIO PHY DETECTION AND CONFIGURATION GENERALIZED FLOW

6.1 MDIO Configuration Example – LAN7801 and KSZ9131

The following is a real-world example of a PC interrogating and configuring an Ethernet PHY through MDIO.

· Operating System: Windows

· PHY Driver: Generic Windows PHY Driver

· Ethernet bridge controller: LAN7801

Ethernet PHY: KSZ913Ethernet PHY Address: 03h

TABLE 20: CLAUSE 22

N	Ор	PHY Addr	Reg Addr	Data	Description	
1	R	1Fh	01h	FFFFh	No Response, No PHY At Address 1Fh	
2	R	1Fh	01h	FFFFh	Second Attempt at PHY Address 1Fh	
3	R	1Eh	01h	FFFFh	No Response, No PHY At Address 1Eh	
4	R	1Eh	01h	FFFFh	Second Attempt at PHY Address 1Eh	
			•			
53	R	05h	01h	FFFFh	No Response, No PHY At Address 05h	
54	R	05h	01h	FFFFh	Second Attempt at PHY Address 05h	
55	R	04h	01h	FFFFh	No Response, No PHY At Address 04h	
56	R	04h	01h	FFFFh	Second Attempt at PHY Address 04h	
57	R	03h	01h	7949h	Read: Basic Status Register Raw Binary: 0111_1001_0100_1001b This response indicates the follow STATUS: • Link Status is DOWN. • Auto-Negotiation is NOT COMPLETE. • No Fault or Jabber Detected	
58	R	03h	01h	7949h	Read: Basic Status Register (Second Time) No change to this register since first read-back.	
59	R	03h	02h	0022h	Read: Auto-Negotiation Advertisement Raw Binary: 0001h_0110h_0100_0010b Organizationally Unique Identifier (bits 3-18): 0000_0000_0010_0010b	
60	R	03h	03h	1642h	Read: PHY Identifier 1 Raw Binary: 0001h_0110h_0100_0010b	
61	R	03h	04h	05E1h	10BASE-X Full-duplex and Half-duplex Symmetric PAUSE Auto-Negotiation Type: IEEE 802.3	
62	W	03h	04h	05E1h	Write: Auto-Negotiation Advertisement This command is writing the same value that was read back to the PHY. It can be considered unnecessary.	

Note 1: This register can also be used to enable transmitter test modes.

2: This command is utilizing special Clause 22 registers to access Clause 45 register space. See Section 5.4, "Clause 22 Access to Clause 45 Registers" for more information.

TABLE 20: CLAUSE 22 (CONTINUED)

PHY		Reg Data				
N	Ор	Addr	Addr	Data	Description	
63	R	03h	09h	0200h	Read: Controller-Target Control Register Raw Binary: 0000_0010_0000_0000b This response also indicates that the PHY is capable of 1000BASE-T Full-duplex operation, and 1000BASE-T Half-duplex is unsupported. See Note 1.	
64	W	03h	09h	0200h	Write: Controller-Target Control Register This command is writing the same value that was read back to the PHY. It can be considered unnecessary.	
65	W	03h	0Dh	0007h	Write: MMD Access Control Raw Binary: 0000_0000_0000_0111b See Note 2. This command is selecting: • MMD Function - Register Address • MMD Device Address (DEVAD) - 7h	
66	W	03h	0Eh	003Ch	Write: MMD Access Address Data Raw Binary: 0000_0000_0011_1100b See Note 2. This command is selecting:	
67	W	03h	0Dh	4007h	Write: MMD Access Control Raw Binary: 0100_0000_0000_0111b See Note 2. This command is selecting: • MMD Function - Data, No Post Increment • MMD Device Address (DEVAD) - 7h	
68	W	03h	0Eh	0006h	Write: MMD Access Address Data Raw Binary: 0000_0000_0000_0110b See Note 2. This command is selecting: • MMD Register Data - 0006h	
69	W	03h	00h	1200h	Write: Basic Control Register Raw Binary: 0001_0010_0000_0000b Enable Auto-Negotiation (set bit 12) Restart Auto-Negotiation (set bit 9)	
70	R	03h	01h	7949h	Read: PHY Status Register This response indicates that no change to the PHY status has occurred.	

Note 1: This register can also be used to enable transmitter test modes.

^{2:} This command is utilizing special Clause 22 registers to access Clause 45 register space. See Section 5.4, "Clause 22 Access to Clause 45 Registers" for more information.

TABLE 20: CLAUSE 22 (CONTINUED)

N	Ор	PHY Addr	Reg Addr	Data	Description		
71	R	03h	01h	7949h	Read: PHY Status Register This response indicates that no change to the PHY status has occurred.		
72	R	03h	01h	7949h	Read: PHY Status Register This response indicates that no change to the PHY status has occurred.		
90	R	03h	01h	Read: PHY Status Register Raw Binary: 0111_1001_0110_1001b Bit 5 has changed 0b→1b This means that auto-negotiation has completed/			
91	R	03h	01h	Read: PHY Status Register Raw Binary: 0111_1001_0110_1101b Bit 2 has changed 0b→1b This means that the link is now up.			

Note 1: This register can also be used to enable transmitter test modes.

^{2:} This command is utilizing special Clause 22 registers to access Clause 45 register space. See Section 5.4, "Clause 22 Access to Clause 45 Registers" for more information.

Note:

7.0 HARDWARE CONSIDERATIONS

It is important to ensure that general design rules are followed for MDIO and MII/RGMII interconnections between Microchip bridge controllers and external PHYs.

GMII and RMII information are not included in this section as Microchip bridge controllers do not support

those variations of interconnect.

7.1 MII/RGMII Trace Properties

TABLE 21: MICROCHIP ETHERNET BRIDGE CONTROLLERS WITH EXTERNAL PHY SUPPORT

Parameter	Design Recommendation			
Trace Impedance	50Ω to 68Ω			
Trace Spacing	Route Transmit Signals (TX0:3) Together and Receive Signals Together Isolate RX CLK and TX CLK from other RGMII signals			
Trace Length Matching	±10 mm (±400 mils)			
Total Trace Length	For FR4 equivalent material and no layer transitions or connectors, 150 mm (6 inches) is the recommended maximum. If the design can stay within these guidelines, there is usually no need to simulate or verify signal quality in the lab. It is still very much possible to implement a system with longer than 150 mm in trace length, but careful PCB design becomes paramount. It is strongly recommended to take rise/fall measurements to ensure RGMII signal compliance is being met. PCB simulation may also help to ensure the design can meet signal requirements before manufacturing (though measurement in the lab is still required). Keep in mind the following factors: PCB material: High-speed PCB materials can extend maximum possible signal length. Layer transitions through vias: Each board layer transition will degrade signal integrity and decrease the maximum signal length. Board-to-board connectors: Board-to-board connectors should be designed for high-speed signals. Each board-to-board connector will degrade signal quality and decrease the maximum possible signal length.			
Clock Delay	See Section 7.1.1, "RGMII TXC and RXC Delay"			
Other	The use of vias should be kept to a minimum on the RGMII interface, and switching layers on the PCB is not recommended. RGMII signals considered critical should be routed on the top layer next to a contiguous, digital ground plane. Slower RGMII signals can be routed on the bottom layer of the PCB.			

7.1.1 RGMII TXC AND RXC DELAY

Due to the high speeds associated with the RGMII interface, it is recommended to introduce clock delay to the TXC and RXC signals. This ensures that the edges of the clocks are intentionally skewed so that sampling on the data lines is always accurate. There are generally three options for managing this delay:

- Option A: A delay of 1.5 ns to 2 ns can be added to the TX and RX CLK signals by routing them through a long PCB "serpentine" trace delay.
- Option B: A delay can be enabled on the TX and RX CLK transmitter side in the MAC settings of the Microchip Ethernet bridge controller. This may be referred to as RGMII-ID (ID = Internal Delay) in some products.
- Option C: A delay can be enabled on the TX and RX CLK receiver side in the PHY settings of the PHY. Verify that
 the option exists through the PHY documentation for the selected PHY. This delay would not be observable while
 probing the system using an oscilloscope. This may be referred to as RGMII-ID (ID = Internal Delay) in some
 products.

Note: It is also possible to combine the various clock delay methodologies if desired (that is, enable only the internal TXC delay of the MAC and only the internal RXC delay of the PHY, or vice versa).

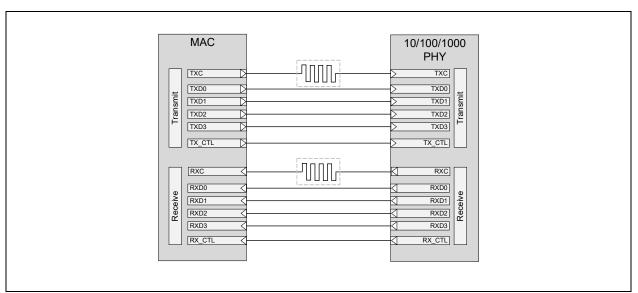
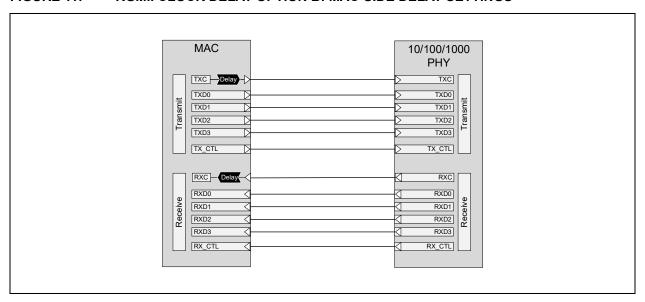



FIGURE 10: RGMII CLOCK DELAY OPTION A: PCB TRACE DELAY

FIGURE 11: RGMII CLOCK DELAY OPTION B: MAC-SIDE DELAY SETTINGS

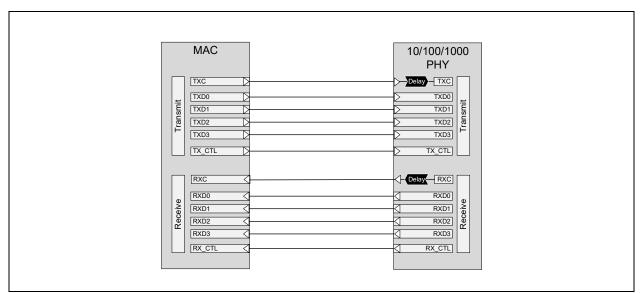


FIGURE 12: RGMII CLOCK DELAY OPTION C: PHY-SIDE DELAY SETTINGS

7.2 Additional Product-Specific Resources

For guidance on general hardware design with Microchip Ethernet bridge controllers, refer to the following links:

TABLE 22: MICROCHIP ETHERNET BRIDGE CONTROLLERS WITH EXTERNAL PHY SUPPORT

Product	Resource	Link	
	AN18.0 - LAN9500/LAN9500i/LAN9500A/ LAN9500Ai Layout Guidelines	https://www.microchip.com/en-us/product/	
LAN9500A	LAN9500AI QFN Rev B Schematic Checklist	LAN9500A	
	LAN9500A 56-pin QFN Package Routing Checklist		
	LAN89530 56-pin QFN Package Routing Checklist		
LAN89530	LAN89530 QFN Rev B Schematic Checklist	https://www.microchip.com/en-us/product/	
27 (1403000	LAN89530 56-pin QFN Package Component Placement Checklist	LAN89530	
	LAN9730 56-pin QFN Package Component Placement Checklist	https://www.microchip.com/en-us/product/ LAN9730 https://www.microchip.com/en-us/product/	
LAN9730	LAN9730 56-pin QFN Package Routing Checklist		
	LAN9730 QFN Rev B Schematic Checklist		
1.45100700	LAN89730 56-pin QFN Package Component Placement Checklist		
LAN89730	LAN89730 56-pin QFN Package Routing Checklist	LAN89730	
	LAN89730 QFN Rev A Schematic Checklist		
	LAN7801 Placement Checklist		
LAN7801	LAN7801 Routing Checklist	https://www.microchip.com/en-us/product/ LAN7801	
	LAN7801 Schematic Checklist		
LAN7431	LAN7431 Hardware Design Checklist	https://www.microchip.com/en-us/product/ LAN7431	

8.0 DEBUGGING AND DEVELOPMENT TOOLS

8.1 Microchip Configuration and Programming Tools

TABLE 23: MICROCHIP ETHERNET BRIDGE CONTROLLERS WITH EXTERNAL PHY SUPPORT

Product	Operation System	Туре	Tool	Notes
	DOS	Programming and Test	LAN95XXDo- sUtility	The LAN95XX DOS Utility Suite provides support for programming the EEPROM and testing basic LAN9500/LAN9500A/LAN9512/LAN9513/LAN9514 functionality in a production environment.
LAN9500A, LAN89530, LAN9730, LAN89730 (Automotive)	Windows [®]	Programming and Test	LAN95xxUtility GUI	The LAN95xx Utility application provides a graphical user interface to program the EEPROM of LAN95xx USB to Ethernet and USB Hub with Integrated Ethernet devices as well as perform tests on the device.
		Programming	9500eepApp	The LAN9500 Command Line Utility runs in a Windows® Command prompt providing support for programming the EEPROM and testing basic LAN95xx functionality.
	Linux [®]	Programming	ethtool	Included in most Linux® distributions
	Windows [®]	Configuration	MPLAB [®] Connect GUI	Simplified menu-based tool for selecting configuration options
LAN7801 and LAN7431		Programming	MPLAB [®] Connect GUI	Programming Tab allows for easy programming during prototyping and development
LAN/431		Programming	MPLAB [®] Connect CLI	Command Line Interface with mass-production programming option
	Linux [®]	Programming	ethtool	Included in most Linux® distributions
		Configuration	MPLAB [®] Connect GUI	Simplified menu-based tool for selecting configuration options
PCI11414 and PCI11010	Windows [®]	Programming	MPLAB [®] Connect GUI	Programming Tab allows for easy programming during prototyping and development
PCITIUIU		Programming	MPLAB [®] Connect CLI	Command Line Interface with mass-production programming option
	Linux [®]	Programming	ethtool	Included in most Linux® distributions

8.2 MDIO Exercisers/Analyzers

MDIO analyzers are available in a few different form factors:

- Dedicated Hardware: Requires specialized equipment, but usually is capable of storing across long time scales, have good triggering capabilities, and supported software that fully decodes traffic and can even detect protocol errors.
- Logic Analyzer Plug-ins: Logic Analyzer plug-ins are a good option that allow general logic analyzer hardware to decode MDIO traffic.
- Oscilloscope Plug-ins: Allow you to do basic analysis using an oscilloscope. Oscilloscopes may sometimes be
 necessary when examining MDIO timing and waveforms for abnormalities that dedicated hardware tools and logic
 analyzers cannot detect. However, oscilloscopes are memory intensive and can usually only store a very short
 window of time.

TABLE 24: MDIO EXERCISER/ANALYZERS

Туре	Product	Notes
Dedicated Applyzor	Total Phase Beagle Analyzer	Good low-cost option with quality software support. The tool also supports I ² C and SPI analysis. https://www.totalphase.com/products/beagle-i2cspi/
Dedicated Analyzer Hardware	Prodigy Technovations PGY-MDIO-EX-PD	High-end option with MDIO traffic generation capability and other advanced capabilities. https://prodigytechno.com/device/mdio-protocol-exerciser-and-analyzer/
Logic Analyzer Plug-in	Saleae Logic	Adds support for MDIO analysis on Saleae Logic branded logic analyzers. https://github.com/saleae/mdio-analyzer
Oscilloscope Plug-in	Teledyne LeCroy MDIO Decode	Decodes waveforms and translates to an interactive decode table. Clause 22 and Clause 45 support. Provides bit rate measurements. Available for many flagship Teledyne LeCroy oscilloscopes. https://teledynelecroy.com/options/productseries.aspx?mseries=544&groupid=88

8.3 MDIO Register Access Tools

The phytool for Linux provides read/write access to MDIO registers. More information can be found from: https://github.com/wkz/phytool.

8.4 MII/RMII/GMII/RGMII/SGMII Analyzers

MII/RMII/GMII/RGMII/SGMII analyzers are available from some major test equipment vendors. These are specialized and costly pieces of equipment, with limited availability and/or long lead times. It is recommended to reach out to your preferred equipment sales representative to discuss availability and options directly.

APPENDIX A: APPLICATION NOTE REVISION HISTORY

TABLE A-1: REVISION HISTORY

Revision Level & Date	Section/Figure/Entry	Correction
DS00004826B (12-12-23)	Section 4.0, "SGMII/SGMII+"	Added a new section and SGMII details throughout the document.
	Table 1	Added PCI11010 and PCI11414 product details.
	All	Made minor text and formatting changes.
DS00004754A (09-29-22)	Initial release	

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- · Field Application Engineer (FAE)
- · Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

Note the following details of the code protection feature on Microchip products:

- · Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https://www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI- RECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, TimeCesium, TimeHub, TimePictra, TimeProvider, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, EyeOpen, GridTime, IdealBridge, IGaT, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, MarginLink, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mSiC, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, Power MOS IV, Power MOS 7, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, Turing, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies. © 2023, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-3626-7

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/

support Web Address:

www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Tel: 281-894-598 Indianapolis Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai

Tel: 86-21-3326-8000 China - Shenyang

Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen

Tel: 86-592-2388138 **China - Zhuhai** Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu

Tel: 82-53-744-4301 **Korea - Seoul** Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4485-5910 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820