Altmel

Atmel SHART

APPLICATION NOTE

AT6490: Using LIN on SAMC Microcontroller

SMART ARM-Based Microcontroller

Introduction

The Local Interconnect Network (LIN) Bus was developed to create a standard
for low-cost, low-end multiplexed communication in automotive networks.

Implement LIN relatively inexpensively using the standard serial universal
asynchronous receiver/transmitter (UART) embedded into most modern low-cost
microcontrollers.

This application note will cover the firmware required to initialize and start the
SAM C21 SERCOM unit as a LIN Bus master or slave controller and
send/receive messages.

Firmware within this document was created using Atmel® Software Framework
(ASF), which is an extension to Atmel Studio.

Features

e SAM C21 @ +5V Operation

e Up to six Serial Communications Modules (SERCOM) can be configured for
use as a LIN master or slave

e Auto-baud and break character detection

Atmel-42470A-Using-LIN-on-SAMC-Microcontroller_ApplicationNote_AT6490_062015

1 LIN Hardware

1.1 Connecting the SAM C21 to the LIN BUS

In LIN, physical signal transmission requires only one conductor (single wire). To maintain radiated electrical
emissions within limits, the transmission rate is limited to 20kbit/sec for LIN. Another restriction is the maximum
recommended number of 16 nodes. In order to connect the SAM C21 SERCOM’s TX and RX pins to the LIN
Bus, a LIN Bus transceiver is required. Figure 1-1 shows a typical LIN interface between the SAM C21 and the
LIN Bus. This LIN interface is implemented on the Atmel SAM C21 Xplained Pro evaluation Kit.

Figure 1-1. LIN Interface Between the SAM C21 and the LIN Bus

[*LIN will work when the V'S power
input s at between SV - 40V [EVS
is powered below 4 5V or 50,
undervoltage protection will disable
amsmission, to avoid false bus
messages.

Alternate LIN power

VCC_TARGET P3V3_P5VD
1t SRR

Master Node Pull-up Enable

10uF/50V

3
- M
g -
o a2 gg[@ 1501
g = 8801 BE HMTSW-102-23-F-8-237
= g 23 0 15501 2 LB
Uso1 TPS500 g & T
Lo 5 | ATASSS2ILFAQW — H SNT_100BK.G D300 [
[LIN_RX — 3 RD INH 3 &
L e TN BB WG ey pymlef LI Cg—— L %
\ | 3 5 2 = 5
™D GRD BAVS9 v NP ERDS RS
=
Z
=
g

(=] G G

LIN Bus transceivers are readily available from a number of semiconductor manufacturers. The Atmel
ATA663211 LIN Bus transceiver is preferred.

2 LIN BUS General

2.1 Protocol

The LIN Bus contains one master device and multiple slave devices. The master controls all communications
over the bus and is responsible for maintaining regular communications with each slave device. Slave devices
listen for and respond to messages from the master. Each slave device is assigned a unique message
identifier (ID). When a slave receives a message from the master containing its unique ID, the slave will
respond to the host with a message consisting of one to eight bytes of data and an 8-bit checksum.

Messages sent by the master to a slave consist of three fields: break, sync, and message ID. Once received by
the slave device, it may take internal action or respond to the master. Decisions as to what action a slave will
take to a particular message identifier are determined during development of the system.

2.2 LIN Message Frame

MESSAGE HEADER | MESSAGE RESPONSE

| BREAK | SYNC(0x55) | IDENTIFIER | DATA | CHECKSUM |

221 BREAK

Every LIN frame begins with a break, which serves as a start-of-frame notice to all nodes on the bus.

2 AT6490: Using LIN on SAMC Microcontroller [APPLICATION NOTE] Atmel

Atmel-42470A-Using-LIN-on-SAMC-Microcontroller_ApplicationNote_ AT6490_062015

2.2.2

2.2.3

224

2.2.5

2.3

SYNC

The sync field allows slave devices that perform automatic baud rate detection to measure the period of the
baud rate and adjust their internal data rates to synchronize with the bus.

IDENTIFIER (ID)

The ID field consists of a 6-bit message ID and a 2-bit parity field. The ID denotes a specific message address
but not the destination.

DATA

Upon receipt and identification of the ID, one slave will respond with one to eight bytes of data and an 8-bit
checksum.

CHECKSUM

The checksum is calculated and sent as the last byte of the response. There are two checksum algorithms
defined by the LIN Bus specification: Classic and enhanced.

The classic checksum is calculated by summing the data bytes alone and the enhanced checksum is
calculated by summing and data bytes along with the protected ID.

SAM C21 LIN Master
LIN master is available with the following configuration:
e LIN master format (CTRLA.FORM = 0x02)
e Asynchronous Mode (CTRLA.CMODE = 0)
o 16x sample rate using fractional baud rate generation (CTRLA.SAMPR =1)

Using the LIN command field (CTRLB.LINCMD), the complete header can be automatically transmitted, or
software can control transmission of the various header components.

When CTRLB.LINCMD = 0x01, software controls transmission of the LIN header. In this case, software uses
the following sequence:

e CTRLB.LINCMD is written with 0x01

e Data register is written to 0x00 — this triggers transmission of the break field by hardware
Note: Writing the data register with any other value will also result in the transmission of the break field by

hardware.
o Data register is written with 0x55 — the 0x55 sync value is transmitted
o Data register is written with the identifier — the identifier is transmitted

When CTRLB.LINCMD is written with 0x02, hardware controls the transmission of the LIN header. In this case,
software uses the following sequence:

e CTRLB.LINCMD is written with 0x02

e Data register is written with the identifier — this triggers transmission of the complete header by
hardware. First the break field is transmitted. Next the sync field is transmitted, and finally the identifier is
transmitted.

In LIN master mode, the length of the break field is programmable using the break length field
(CTRLC.BRKLEN). When the LIN header command is used (CTRLB.LINCMD = 0x02), the delay between
break and sync fields, in addition the delay between sync and ID fields are configurable using the header delay
field (CTRLC.HDRDLY). When manual transmission is used (CTRLB.LINCMD = 0x01), software controls the
delay between break and sync.

Atmel AT6490: Using LIN on SAMC Microcontroller [APPLICATION NOTE] 3

Atmel-42470A-Using-LIN-on-SAMC-Microcontroller_ApplicationNote_AT6490_062015

3.1

4

Firmware

LIN SERCOM Configuration

In order to connect the SAM C21 controller TX and RX pins to the LIN Bus transceiver the pin Mux and correct
I/O pins need to be set. In addition, an 1/O port must be configured as an output to drive the LIN transceiver’s
enable input.

static void configure_usart_lin(void)

struct port_config pin_conf;
port_get_config_defaults(&pin_conf);
pin_conf.direction = PORT_PIN_DIR_OUTPUT;
port_pin_set_config(LIN_EN_PIN, &pin_conf);

/* Enable LIN Transceiver */
port_pin_set _output_level(LIN_EN_PIN, 1);

struct usart_config config_lin;
usart_get_config_defaults(&config_lin);

/* LIN frame format*/
config_lin.lin_node = CONF_LIN_NODE_TYPE;

config_lin.transfer_mode = USART_TRANSFER_ASYNCHRONOUSLY;
config_lin.sample_rate = USART_SAMPLE_RATE_16X_FRACTIONAL;

config_lin.baudrate = 115200;

config_lin.mux_setting = LIN_USART_SERCOM_MUX_SETTING,;

config_lin.pinmux_padO = LIN_USART_SERCOM_PINMUX_PADQO;
config_lin.pinmux_padl = LIN_USART_SERCOM_PINMUX_PAD1,;
config_lin.pinmux_pad2 = LIN_USART_SERCOM_PINMUX_PAD2;
config_lin.pinmux_pad3 = LIN_USART_SERCOM_PINMUX_PAD3;

/* Disable receiver and transmitter */
config_lin.receiver_enable =false;
config_lin.transmitter_enable = false;

AT6490: Using LIN on SAMC Microcontroller [APPLICATION NOTE]

Atmel-42470A-Using-LIN-on-SAMC-Microcontroller_ApplicationNote_ AT6490_062015

The following function configures the transceiver enable pin, baud rate and SERCOM TX/RX pins, LIN Bus
mode (slave/master) and also sets up the callback functions for transmission, reception, and error handling:

Atmel

if (CONF_LIN_NODE_TYPE == LIN_SLAVE_NODE) {

config_lin.lin_slave_enable = true;

while (usart_init(&lin_instance,
LIN_USART_MODULE, &config_lin) I= STATUS_OK) {

usart_enable(&lin_instance);

usart_register_callback(&lin_instance,
lin_read_callback, USART_CALLBACK BUFFER_RECEIVED);
usart_enable_callback(&lin_instance, USART_CALLBACK_BUFFER_RECEIVED);
usart_register_callback(&lin_instance, lin_read_error_callback, USART_CALLBACK_ERROR);
usart_enable_callback(&lin_instance, USART_CALLBACK_ERROR);

system_interrupt_enable_global();

}

LIN Message Reception

The following code enables the reading of messages in both master and slave modes:

if (CONF_LIN_NODE_TYPE == LIN_MASTER_NODE) {
/¥ LIN in Master Mode */
if (lin_master_transmission_status(&lin_instance)) {
usart_enable_transceiver(&lin_instance,USART_TRANSCEIVER_TX);
lin_master_send_cmd(&lin_instance,LIN_MASTER_AUTO_TRANSMIT_CMD);
usart_write_wait(&lin_instance,LIN_ID_FIELD_VALUE);
usart_enable_transceiver(&lin_instance,USART_TRANSCEIVER_RX);
while(1) {
usart_read_buffer_job(&lin_instance,
(uint8_t *)rx_buffer, 5);

}else {
/* LIN in Slave Mode */
usart_enable_transceiver(&lin_instance,USART_TRANSCEIVER_RX);
while(1) {
usart_read_buffer_job(&lin_instance,
(uint8_t *)rx_buffer, 1);

Atmel AT6490: Using LIN on SAMC Microcontroller [APPLICATION NOTE] 5

Atmel-42470A-Using-LIN-on-SAMC-Microcontroller_ApplicationNote_AT6490_062015

}

In the ASF project’s “conf-lin.h” file the following define is used to configure the firmware as a master or slave
device:
#define CONF LIN NODE TYPE LIN MASTER NODE

The project’s default is LIN. MASTER_MODE. This should be changed to LIN_SLAVE_MODE to build the
project for a slave device.

3.3 LIN Message Transmission

The following code handles the reception of a self-generated LIN message by the master, and sets up the
response if running on a LIN slave:

static void lin_read_callback(const struct usart_module *const usart_module)

{
uint8_ti=0;
if (CONF_LIN_NODE_TYPE == LIN_MASTER_NODE) {
for(i=0; i < LIN_DATA_LEN; i++){
if(rx_buffer[i] != tx_bufferfi]) {
/* data error — perform error processing */
break;
}
}
} else if (CONF_LIN_NODE_TYPE == LIN_SLAVE_NODE) {
if(rx_buffer[0] == LIN_ID_FIELD_VALUE) {
usart_enable_transceiver(&lin_instance,USART_TRANSCEIVER_TX);
printf("Receive ID field from mater: OK \r\n");
usart_write_buffer_job(&lin_instance,
(uint8_t *)tx_buffer, LIN_DATA_LEN);
}
}
}
6 AT6490: Using LIN on SAMC Microcontroller [APPLICATION NOTE] Atmel

Atmel-42470A-Using-LIN-on-SAMC-Microcontroller_ApplicationNote_ AT6490_062015

ASF LIN Bus Project

In order to test the project, two SAM C21 Xplained Pro boards will need to be connected together using the LIN
Bus header. Shunts for both the Master Mode Pull-up and LIN VCC Power should be installed on the Xplained
Pro boards.

Two projects will have to be built; one configured as master mode and the other configured as slave mode. To
build the master project, make sure the #define CONF_LIN_NODE_TYPE is set to LIN_MASTER_MODE in
“conf_lin.h”. Similarly, set the #define CONF_LIN_NODE_TYPE as LIN_SLAVE_MODE for the slave. Once the
projects have been built, program one SAM C21 Xplained Pro with the master mode project, and the other with
the slave mode project.

Plug both boards in to the computer's USB port. Using a terminal program such as TeraTerm, create two
terminal windows and set the serial port for eight data bit, one stop bit, no parity, and with a baud rate of
115200. Once connected to the terminal, each board should be reset using the reset pushbutton. The master
terminal window will display “LIN Works in Master Mode”, and the slave terminal window will display “LIN
Works in Slave Mode”. Pressing the reset pushbutton on the master board results in a display of “Slave
response: OK” on the master mode terminal window, and the slave terminal window displaying “Receive ID
field from master: OK”. The ASF based code is now ready, and it is possible to start developing LIN master and
slave applications.

Summary

The firmware used in this application note is taken from the LIN Bus Example application provided by Atmel
Studio’s ASF extension. For more information on LIN Bus refer to the latest LIN Bus specification.

Atmel AT6490: Using LIN on SAMC Microcontroller [APPLICATION NOTE] 7

Atmel-42470A-Using-LIN-on-SAMC-Microcontroller_ApplicationNote_AT6490_062015

6 Revision History

| 42470A | 06/2015 ||nitia| document release. |

8 AT6490: Using LIN on SAMC Microcontroller [APPLICATION NOTE] Atmel

Atmel-42470A-Using-LIN-on-SAMC-Microcontroller_ApplicationNote_ AT6490_062015

Atmel | enabling Unlimited Possibilities §lvflin NG
Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2015 Atmel Corporation. / Rev.: Atmel-42470A-Using-LIN-on-SAMC-Microcontroller_ApplicationNote_ AT6490_062015.

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected® logo, and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be
trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,
authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written consent.
Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel
products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military -grade. Atmel products are not
designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.

http://www.atmel.com/
https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel

	Introduction
	Features
	1 LIN Hardware
	1.1 Connecting the SAM C21 to the LIN BUS

	2 LIN BUS General
	2.1 Protocol
	2.2 LIN Message Frame
	2.2.1 BREAK
	2.2.2 SYNC
	2.2.3 IDENTIFIER (ID)
	2.2.4 DATA
	2.2.5 CHECKSUM

	2.3 SAM C21 LIN Master

	3 Firmware
	3.1 LIN SERCOM Configuration
	3.2 LIN Message Reception
	3.3 LIN Message Transmission

	4 ASF LIN Bus Project
	5 Summary
	6 Revision History

