Altmel

Atmel SHART

SMART ARM-based Microcontrollers

AT03245: SAM D/R/L/IC Event System (EVENTS)
Driver

APPLICATION NOTE

Introduction

This driver for Atmel® | SMART ARM®-based microcontrollers provides an
interface for the configuration and management of the device's peripheral
event resources and users within the device, including enabling and
disabling of peripheral source selection and synchronization of clock
domains between various modules. The following API modes is covered by
this manual:

+ Polled API
* Interrupt hook API

The following peripheral is used by this module:
+ EVSYS (Event System Management)

The following devices can use this module:
* Atmel | SMART SAM D20/D21
* Atmel | SMART SAM R21
* Atmel | SMART SAM D09/D10/D11
* Atmel | SMART SAM L21/L22
* Atmel | SMART SAM DA1
* Atmel | SMART SAM C20/C21

The outline of this documentation is as follows:
* Prerequisites
* Module Overview
* Special Considerations
» Extra Information
« Examples
* API Overview

Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

Table of Contents

INEFOAUCTION.....ceee et e e e e e e e e e e e eeas 1
1. SOMWAIE LICEBNSE.......ccoeeeeeeeee et e et e e e e e e e e e e ee e e e eaeeeeeees 4
B o =T =0 UL (=T 5
3. MOAUIE OVEIVIEW.oiiiiiiiii ittt e e 6
3.1, EVENECNANNEIS. ... e e 6

3.2, EVENEUSEIS. ..ottt ettt 7

B TR T =T [=3 I =1 (= Tox (1] USSP UPPRRN 7

3.4, Path SEIECHON.ooiie e e e 7
3.4.1. ASYNChronNOUS Pathis........ooouiiiiiiiiiee et e e e e e e e 7

3.4.2. SyNchronous Paths..........ccoiiiiiiiiiii e e e 7

3.4.3. Re-synchronous Paths.............oooii e 8

3.5, PhySiCal CONMNECHON.eiiiiiiie et e e sb e e e e anre e 8

3.6, CONfIQUIING EVENTS.......uiiiiiii ettt e e ettt e e e e et e e e e e saeb e e e e e e sntaeeeeesnsraeeaeeanes 8
3.6.1. S0oUIrCe PErPhEral..........oviiiiiiieeiee e 8

3.6.2. EVENT SYSIEM..coiiiiiiiii e e enneas 8

3.6.3. Destination Peripheral.............cooiiiiiiii s 8

4. Special Considerations............ccooviiiiiiiiiii 9
5. EXtra INfOrmation..........ccuveiiiiiii e 10
8. EXAMIPIES. .. 11
T AP OVEIVIEW. ...ttt ettt e e 12
7.1. Variable and Type DefinitioNS.cocuiiiiiiiii e 12
7.1.1. Type events_interrupt_NOOK...........coiiiiiiiiiiii e 12

7.2, Structure DefiNitioNS..........cooiiiiiiii e e 12
47 T o =YY= < oo T SRS 12

7.2.2. Struct @VentS_NOOK.......cocuiiiiiiiie e 12

7.2.3. SHrUCE @VENES_TESOUICE. ... ueiiiiiiiiitii ettt 12

7.3, MaCro DefiNitiONS.cocuiiiiiiiee e 13
7.3.1. Macro EVSYS_ID_GEN_NONE........ccccioiiiiitiiiiiie et 13

7.4, FUNCHON DEfiNItIONS.coiiiiiiee e 13
7.4.1. Function events_ack_interrupt().........oocoveriiiiiiiiii e 13

7.4.2. Function events_add_hOOK()........c.cueiriiiieiiiieeiiie et 13

7.4.3. Function events_alloCate()........ceeiruereruieiiiiie ettt 14

7.4.4. Function events_attaCh_USEr()........ccceeiuiiiiiiiiiiie ittt 14

7.4.5. Function events_create_hOOK().........couueiiiiiiiiiiiieee e 15

7.4.6. Function events_del_NOOK().......ccuuiiiuiriiiii e 15

7.4.7. Function events_detach_USEr()........ccoureiiiiiiiiriiieee e 16

7.4.8. Function events_disable_interrupt_SOUrce()........cccccoruiererriienieneenieeeesee e 16

7.4.9. Function events_enable_interrupt_SOUrce().........cocuveriieeeiieiiniiie e 17

7.4.10. Function events_get_config_defaults().........cccceeriiiiriiiiie e 17

Atmel

Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE]
Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

2

7.4.11. Function events_get_free_channels()............ccceeiiiiiiiiiiiiiic e 17

7.4.12. FUuNncClion eVENtS_iS_DUSY()...uveieiiiiiiiiiieiiiiiiie et e e e e e nereea e 18

7.4.13. Function events_is_deteCted().......uueruereiiieriiiie e 18

7.4.14. Function events_is_interrupt_Set().......ccooeeriiriiiiiiiiee e 19

7.4.15. Function evVents_iS_OVEITUN().......couiiiririiiiiie ettt 19

7.4.16. Function events_iS_USErs_ready().......ccccuerieiiiiiiiiieeiiiiiiiee e e eiieee e e e seireee e e s e snraeea e e e nnees 20

7.4.17. Function @VENtS_IrelEa@SE().. .. .oueeiiuiieeiiiie et 20

7.4.18. FUuNCtion @Vents_trgger().... .. uuueemrtiiieiie ittt 21

7.5. Enumeration DefiNtIONS.cooo i e e a e e e 21
7.5.1. Enumevents_edge _deteCt.........ccccoooiiiiiiiiiiiiiiie s 21

7.5.2. Enum events interrupt_SOUICE...........uuuiiiiiiiiiiiiieeee e e e e 21

7.5.3. Enum events_path_Selection............cocueiiiiiiiiiii e 22

8. Extra Information for EVENTS DriVer........cooeeiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeee e 23
< Tt R X7] 0) 4 2 TSR 23

L T B 1= o 1= o 1= g o =Y PR 23

S TR T = | - J SRR 23

S T /[o LU [1] (o] oSSR 23

9. Examples for EVENTS DIIVE........uuuviiiiiiiieiiieiiieeeieeee ettt eeeeeeeeeeeees 24
9.1. Quick Start Guide for EVENTS = BaSIC.......cceiiiiieiiiie e ciieesiee e eee et e e eeenee e e 24

SR O O = (U o J PSR 24

9.1.2. USE CaSB... ittt et 26

9.2. Quick Start Guide for EVENTS - Interrupt HOOKS..........ccceiiiiiiiiiiiieeee e 26
0.2, S BHUP . ettt e e 27

S I U - 07 1 YRR 31

10. Document Revision HiStOry..........cooiiiiiiiiiiiiiiii e 32

Atmel

Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE]
Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

3

1. Software License

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. The name of Atmel may not be used to endorse or promote products derived from this software without
specific prior written permission.

4. This software may only be redistributed and used in connection with an Atmel microcontroller product.

THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE EXPRESSLY AND SPECIFICALLY
DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

AtmeL Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE] 4

Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

2. Prerequisites

There are no prerequisites for this module.

Atmel Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE] 5
Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

3.1.

Module Overview

Peripherals within the SAM devices are capable of generating two types of actions in response to given
stimulus; set a register flag for later intervention by the CPU (using interrupt or polling methods), or
generate event signals, which can be internally routed directly to other peripherals within the device. The
use of events allows for direct actions to be performed in one peripheral in response to a stimulus in
another without CPU intervention. This can lower the overall power consumption of the system if the CPU
is able to remain in sleep modes for longer periods (SleepWalking), and lowers the latency of the system
response.

The event system is comprised of a number of freely configurable Event resources, plus a number of
fixed Event Users. Each Event resource can be configured to select the input peripheral that will generate
the events signal, as well as the synchronization path and edge detection mode. The fixed-function Event
Users, connected to peripherals within the device, can then subscribe to an Event resource in a one-to-
many relationship in order to receive events as they are generated. An overview of the event system
chain is shown in Figure 3-1 Module Overview on page 6.

Figure 3-1. Module Overview

Destination
Peripheral
(User)

Event
User X

Source
Peripheral
(Generator)

Event
Resource A

/

Destination
Peripheral
(User)

Event
UserY

There are many different events that can be routed in the device, which can then trigger many different
actions. For example, an Analog Comparator module could be configured to generate an event when the
input signal rises above the compare threshold, which then triggers a Timer Counter module to capture
the current count value for later use.

Event Channels

The Event module in each device consists of several channels, which can be freely linked to an event
generator (i.e. a peripheral within the device that is capable of generating events). Each channel can be
individually configured to select the generator peripheral, signal path, and edge detection applied to the
input event signal, before being passed to any event user(s).

Event channels can support multiple users within the device in a standardized manner. When an Event
User is linked to an Event Channel, the channel will automatically handshake with all attached users to
ensure that all modules correctly receive and acknowledge the event.

AtmeL Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE] 6

Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

3.2.

Event Users

Event Users are able to subscribe to an Event Channel, once it has been configured. Each Event User
consists of a fixed connection to one of the peripherals within the device (for example, an ADC module, or
Timer module) and is capable of being connected to a single Event Channel.

3.3. Edge Detection
For asynchronous events, edge detection on the event input is not possible, and the event signal must be
passed directly between the event generator and event user. For synchronous and re-synchronous
events, the input signal from the event generator must pass through an edge detection unit, so that only
the rising, falling, or both edges of the event signal triggers an action in the event user.
3.4. Path Selection
The event system in the SAM devices supports three signal path types from the event generator to Event
Users: asynchronous, synchronous, and re-synchronous events.
3.41. Asynchronous Paths
Asynchronous event paths allow for an asynchronous connection between the event generator and Event
Users, when the source and destination peripherals share the same Generic Clock channel. In this mode
the event is propagated between the source and destination directly to reduce the event latency, thus no
edge detection is possible. The asynchronous event chain is shown in Figure 3-2 Asynchronous Paths
on page 7.
Figure 3-2. Asynchronous Paths
EVSYS
Source b —— Destination
Peripheral \ Event Peripheral
1 Channel/User
Note: Identically shaped borders in the diagram indicate a shared generic clock channel.
3.4.2. Synchronous Paths
The Synchronous event path should be used when edge detection or interrupts from the event channel
are required, and the source event generator and the event channel shares the same Generic Clock
channel. The synchronous event chain is shown in Figure 3-3 Synchronous Paths on page 7.
Not all peripherals support Synchronous event paths; refer to the device datasheet.
Figure 3-3. Synchronous Paths
/,/;’“‘\\ | EVSYS ! 0
ource e estination
(\ Peripheral > Event Peripheral
\\\5_ - 1 Channel/User
Note: Identically shaped borders in the diagram indicate a shared generic clock channel.
AtmeL Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE] 7

Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

3.4.3.

3.5.

3.6.

3.6.1.

3.6.2.

3.6.3.

Re-synchronous Paths

Re-synchronous event paths are a special form of synchronous events, where when edge detection or
interrupts from the event channel are required, but the event generator and the event channel use
different Generic Clock channels. The re-synchronous path allows the Event System to synchronize the
incoming event signal from the Event Generator to the clock of the Event System module to avoid missed
events, at the cost of a higher latency due to the re-synchronization process. The re-synchronous event
chain is shown in Figure 3-4 Re-synchronous Paths on page 8.

Not all peripherals support re-synchronous event paths; refer to the device datasheet.
Figure 3-4. Re-synchronous Paths

-S """ - | EVSYS 5

. ource . [T . estination

* Peripheral > Event Peripheral
- g I Channel/User

Note: Identically shaped borders in the diagram indicate a shared generic clock channel.

Physical Connection

Figure 3-5 Physical Connection on page 8 shows how this module is interconnected within the device.

Figure 3-5. Physical Connection

Source EVSYS Channel EVSYS

Event Channels % Event Users

Destination
Peripherals

Source
Peripherals

Configuring Events

For SAM devices, several steps are required to properly configure an event chain, so that hardware
peripherals can respond to events generated by each other, as listed below.

Source Peripheral

1. The source peripheral (that will generate events) must be configured and enabled.
2. The source peripheral (that will generate events) must have an output event enabled.

Event System

1. An event system channel must be allocated and configured with the correct source peripheral
selected as the channel's event generator.

2. The event system user must be configured and enabled, and attached to # event channel
previously allocated.

Destination Peripheral

1. The destination peripheral (that will receive events) must be configured and enabled.
2. The destination peripheral (that will receive events) must have an input event enabled.

AtmeL Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE] 8

Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

4. Special Considerations

There are no special considerations for this module.

Atmel Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE] 9
Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

5. Extra Information

For extra information, see Extra Information for EVENTS Driver. This includes:

Atmel

Acronyms
Dependencies
Errata

Module History

Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE]
Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

10

6. Examples

For a list of examples related to this driver, see Examples for EVENTS Driver.

AtmeL Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE] 1
Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

7. API Overview
71. Variable and Type Definitions
71.1. Type events_interrupt_hook
typedef void(* events interrupt hook) (struct events resource *resource)
7.2. Structure Definitions
7.21. Struct events_config
This event configuration struct is used to configure each of the channels.
Table 7-1. Members
Type [Name [Descripton
uint8_t clock_source Clock source for the event channel
enum events_edge detect edge_detect Select edge detection mode
uint8_t generator Set event generator for the channel
enum events path_selection path Select events channel path
7.2.2. Struct events_hook
Event hook structure.
Table 7-2. Members
Ty Name |Descripon
events_interrupt_hook hook_func Event hook function
struct events_hook * next Next event hook
struct events_resource * resource Event resource
7.2.3. Struct events_resource
Event resource structure.
Note: The fields in this structure should not be altered by the user application; they are reserved for
driver internals only.
AtmeL Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE] 12

Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

7.3. Macro Definitions

7.31. Macro EVSYS_ID_GEN_NONE
#define EVSYS ID GEN NONE

Use this to disable any peripheral event input to a channel. This can be useful if you only want to use a
channel for software generated events. Definition for no generator selection.

7.4. Function Definitions

7.41. Function events_ack_interrupt()
Acknowledge an interrupt source.

enum status_ code events ack interrupt (
struct events resource * resource,
enum events interrupt source source)

Acknowledge an interrupt source so the interrupt state is cleared in hardware.

Table 7-3. Parameters

[in] resource Pointer to an events resource struct instance
[in] source One of the members in the evenis interrupt source enumerator
Returns

Status of the interrupt source.

Table 7-4. Return Values

STATUS_OK Interrupt source was acknowledged successfully

7.4.2. Function events_add_hook()
Insert hook into the event drivers interrupt hook queue.

enum status code events add hook(
struct events resource * resource,
struct events hook * hook)

Inserts a hook into the event drivers interrupt hook queue.

Table 7-5. Parameters

[in] resource Pointer to an events_resource struct instance
[in] hook Pointer to an events_hook struct instance
AtmeL Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE] 13

Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

Returns
Status of the insertion procedure.

Table 7-6. Return Values

STATUS_OK Insertion of hook went successful

7.4.3. Function events_allocate()

Allocate an event channel and set configuration.

enum status code events allocate(
struct events resource * resource,
struct events config * config)

Allocates an event channel from the event channel pool and sets the channel configuration.

Table 7-7. Parameters

[out] resource Pointer to a events resource struct instance
[in] config Pointer to a evenis config struct
Returns

Status of the configuration procedure.

Table 7-8. Return Values

STATUS_OK Allocation and configuration went successful

STATUS_ERR_NOT_FOUND No free event channel found

7.4.4. Function events_attach_user()

Attach user to the event channel.

enum status code events attach user(
struct events resource * resource,
uint8 t user id)

Attach a user peripheral to the event channel to receive events.

Table 7-9. Parameters

[in] resource Pointer to an events_resource struct instance
in user_id A number identifying the user peripheral found in the device header
g
file
AtmeL Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE] 14

Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

Returns
Status of the user attach procedure.

Table 7-10. Return Values

STATUS_OK No errors detected when attaching the event user
7.4.5. Function events_create_hook()
Initializes an interrupt hook for insertion in the event interrupt hook queue.
enum status code events create hook(
struct events hook * hook,
events interrupt hook hook func)
Initializes a hook structure so it is ready for insertion in the interrupt hook queue.
Table 7-11. Parameters
[out] hook Pointer to an events hook struct instance
[in] hook_func Pointer to a function containing the interrupt hook code
Returns
Status of the hook creation procedure.
Table 7-12. Return Values
STATUS_OK Creation and initialization of interrupt hook went successful
7.4.6. Function events_del_hook()
Remove hook from the event drivers interrupt hook queue.
enum status code events del hook(
struct events resource * resource,
struct events hook * hook)
Removes a hook from the event drivers interrupt hook queue.
Table 7-13. Parameters
[in] resource Pointer to an events_resource struct instance
[in] hook Pointer to an evenis_hook struct instance
Returns
Status of the removal procedure.
AtmeL Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE] 15

Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

7.4.7.

7.4.8.

Table 7-14. Return Values

STATUS_OK Removal of hook went successful

STATUS ERR_NO_MEMORY There are no hooks instances in the event driver interrupt hook list

STATUS _ERR_NOT_FOUND Interrupt hook not found in the event drivers interrupt hook list

Function events_detach_user()
Detach a user peripheral from the event channel.

enum status code events detach user(
struct events resource * resource,
uint8 t user id)

Deattach a user peripheral from the event channels so it does not receive any more events.

Table 7-15. Parameters

[in] resource Pointer to an event_resource struct instance
[in] user_id A number identifying the user peripheral found in the device header

file

Returns
Status of the user detach procedure.

Table 7-16. Return Values

STATUS_OK No errors detected when detaching the event user

Function events_disable_interrupt_source()
Disable interrupt source.

enum status code events disable interrupt source (
struct events_resource * resource,
enum events interrupt source source)

Disable an interrupt source so can trigger execution of an interrupt hook.

Table 7-17. Parameters

[in] resource Pointer to an events_resource struct instance

[in] source One of the members in the events interrupt source enumerator

Returns
Status of the interrupt source enable procedure.

AtmeL Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE] 16

Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

Table 7-18. Return Values

STATUS_OK Enabling of the interrupt source went successful
STATUS_ERR_INVALID_ARG Interrupt source does not exist
7.4.9. Function events_enable_interrupt_source()
Enable interrupt source.
enum status code events enable interrupt source (
struct events resource * resource,
enum events interrupt source source)
Enable an interrupt source so can trigger execution of an interrupt hook.
Table 7-19. Parameters
[in] resource Pointer to an events_resource struct instance
[in] source One of the members in the events interrupt source enumerator
Returns
Status of the interrupt source enable procedure.
Table 7-20. Return Values
STATUS_OK Enabling of the interrupt source was successful
STATUS_ERR_INVALID_ARG Interrupt source does not exist
7.4.10. Function events_get_config_defaults()
Initializes an event configurations struct to defaults.
void events get config defaults(
struct events config * config)
Initailizes an event configuration struct to predefined safe default settings.
Table 7-21. Parameters
[in] config Pointer to an instance of struct events config
7.4.11. Function events_get_free_channels()
Get the number of free channels.
uint8 t events get free channels(void)
Get the number of allocatable channels in the events system resource pool.
AtmeL Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE] 17

Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

Returns
The number of free channels in the event system.

7.412. Function events_is_busy()
Check if a channel is busy.
bool events is busy(
struct events resource * resource)
Check if a channel is busy, a channel stays busy until all users connected to the channel has handled an
event.
Table 7-22. Parameters
[in] resource Pointer to a events resource struct instance
Returns
Status of the channels busy state.
Table 7-23. Return Values
true One or more users connected to the channel has not handled the last event
false All users are ready to handle new events
7.4.13. Function events_is_detected()
Check if an event is detected on the event channel.
bool events is detected (
struct events resource * resource)
Check if an event has been detected on the channel.
Note: This function will clear the event detected interrupt flag.
Table 7-24. Parameters
[in] resource Pointer to an events_resource struct
Returns
Status of the event detection interrupt flag.
Table 7-25. Return Values
true Event has been detected
false Event has not been detected
AtmeL Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE] 18

Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

7.4.14.

7.415.

Function events_is_interrupt_set()

Check if interrupt source is set.

bool events is interrupt set(
struct events resource * resource,
enum events interrupt source source)

Check if an interrupt source is set and should be processed.

Table 7-26. Parameters

[in] resource Pointer to an events_resource struct instance

[in] source One of the members in the events interrupt source enumerator

Returns
Status of the interrupt source.

Table 7-27. Return Values

true Interrupt source is set

false Interrupt source is not set

Function events_is_overrun()

Check if there has been an overrun situation on this channel.

bool events is overrun (
struct events resource * resource)

Note: This function will clear the event overrun detected interrupt flag.

Table 7-28. Parameters

[in] resource Pointer to an events_resource struct

Returns
Status of the event overrun interrupt flag.

Table 7-29. Return Values

true Event overrun has been detected

false Event overrun has not been detected

AtmeL Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE] 19

Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

7.4.16. Function events_is_users_ready()
Check if all users connected to the channel are ready.
bool events is users ready(
struct events resource * resource)
Check if all users connected to the channel are ready to handle incoming events.
Table 7-30. Parameters
[in] resource Pointer to an events_resource struct
Returns
The ready status of users connected to an event channel.
Table 7-31. Return Values
true All the users connected to the event channel are ready to handle incoming events
false One or more users connected to the event channel are not ready to handle incoming
events
7.4.17. Function events_release()
Release allocated channel back the the resource pool.
enum status code events release(
struct events resource * resource)
Release an allocated channel back to the resource pool to make it available for other purposes.
Table 7-32. Parameters
[in] resource Pointer to an events resource struct
Returns
Status of the channel release procedure.
Table 7-33. Return Values
STATUS_OK No error was detected when the channel was released
STATUS BUSY One or more event users have not processed the last event
STATUS_ERR_NOT _INITIALIZED Channel not allocated, and can therefore not be released
AtmeL Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE] 20

Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

7.4.18.

7.5.

7.5.1.

7.5.2.

Function events_trigger()

Trigger software event.

enum status code events trigger (
struct events resource * resource)

Trigger an event by software.

Note: Software event works on either a synchronous path or resynchronized path, and edge detection
must be configured to rising-edge detection.

Table 7-34. Parameters

[in] resource Pointer to an events resource struct

Returns
Status of the event software procedure.

Table 7-35. Return Values

STATUS_OK No error was detected when the software tigger signal was
issued

STATUS_ERR_UNSUPPORTED_DEV If the channel path is asynchronous and/or the edge detection
is not set to RISING

Enumeration Definitions

Enum events_edge_detect

Event channel edge detect setting.

Table 7-36. Members

Enum value Description

EVENTS_EDGE_DETECT_NONE No event output
EVENTS _EDGE_DETECT_RISING Event on rising edge
EVENTS_EDGE_DETECT_FALLING Event on falling edge

EVENTS_EDGE_DETECT BOTH Event on both edges

Enum events_interrupt_source

Interrupt source selector definitions.

AtmeL Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE] 21

Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

Table 7-37. Members

Enum value Description

EVENTS_INTERRUPT_OVERRUN Overrun in event channel detected interrupt

EVENTS_INTERRUPT _DETECT Event signal propagation in event channel detected interrupt

7.5.3. Enum events_path_selection
Event channel path selection.
Table 7-38. Members
EVENTS_PATH_SYNCHRONOUS Select the synchronous path for this event channel
EVENTS_PATH_RESYNCHRONIZED Select the resynchronizer path for this event channel
EVENTS_ PATH_ASYNCHRONOUS Select the asynchronous path for this event channel
AtmeL Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE] 22

Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

8. Extra Information for EVENTS Driver
8.1. Acronyms
Below is a table listing the acronyms used in this module, along with their intended meanings.
CPU Central Processing Unit
MUX Multiplexer
8.2. Dependencies
This driver has the following dependencies:
« System Clock Driver
8.3. Errata
There are no errata related to this driver.
8.4. Module History
An overview of the module history is presented in the table below, with details on the enhancements and
fixes made to the module since its first release. The current version of this corresponds to the newest
version in the table.
Changelog
Fix a bug in internal function events find bit position ()
Rewrite of events driver
Initial Release
AtmeL Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE] 23

Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

9. Examples for EVENTS Driver

This is a list of the available Quick Start guides (QSGs) and example applications for SAM Event System
(EVENTS) Driver. QSGs are simple examples with step-by-step instructions to configure and use this
driver in a selection of use cases. Note that a QSG can be compiled as a standalone application or be

added to the user application.

. Quick Start Guide for EVENTS - Basic

* Quick Start Guide for EVENTS - Interrupt Hooks

9.1. Quick Start Guide for EVENTS - Basic

In this use case, the EVENT module is configured for:
* Synchronous event path with rising edge detection on the input
* One user attached to the configured event channel
* No hardware event generator attached to the channel

This use case allocates an event channel. This channel is not connected to any hardware event
generator, events are software triggered. One user is connected to the allocated and configured event

channel.

9.1.1. Setup

9.1.1.1. Prerequisites

There are no special setup requirements for this use-case.

9.1.1.2. Code

Add to the main application source file, before any functions, according to the kit used:

*+ SAM D20 Xplained Pro:

#define CONF_ EVENT GENERATOR
#define CONF_ EVENT USER

* SAM D21 Xplained Pro:

#define CONF_EVENT GENERATOR
#define CONF_EVENT USER

« SAM R21 Xplained Pro:

#define CONF_EVENT GENERATOR
#define CONF_EVENT USER

*« SAM D11 Xplained Pro:

#define CONF_ EVENT GENERATOR
#define CONF _EVENT USER

+ SAM L21 Xplained Pro:

#define CONF_EVENT GENERATOR
#define CONF_EVENT USER

« SAM L22 Xplained Pro:

#define CONF_EVENT GENERATOR
#define CONF_EVENT USER

Atmel

EVSYS_ID GEN_TC4 MCX 0
EVSYS_ID USER_TC3 EVU

EVSYS_ID GEN_TC4 MCX 0
EVSYS_ID USER TC3 EVU

EVSYS ID GEN_TC4 MCX 0
EVSYS ID USER _TC3 EVU

EVSYS_ID GEN_TC2 MCX 0
EVSYS_ID USER_TC1 EVU

EVSYS_ID GEN_NONE
EVSYS_ID USER PORT EV 0

EVSYS ID GEN NONE
EVSYS_ID USER PORT EV 0

Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE] 24
Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

SAM DA1 Xplained Pro:

#define CONF EVENT GENERATOR
#define CONF EVENT USER

« SAM C21 Xplained Pro:

#define CONF_EVENT GENERATOR
#define CONF_EVENT USER

EVSYS ID GEN_TC4 MCX 0
EVSYS_ID USER_TC3 EVU

EVSYS_ID GEN_NONE
EVSYS_ID USER_PORT EV 0

Copy-paste the following setup code to your user application:

static void configure event channel (struct events resource *resource)

{

struct events config config;

events get config defaults (&config);

config.generator = CONF_EVENT GENERATOR;
config.edge detect = EVENTS EDGE DETECT RISING;
config.path = EVENTS PATH SYNCHRONOUS;
config.clock source = GCLK GENERATOR O;

events

_allocate (resource, &config);

}

static void configure event user (struct events resource *resource)

{
events attach user(resource, CONF EVENT USER);

}

Create an event resource struct and add to user application (typically the start of main ()):

struct events resource example event;

Add to user application initialization (typically the start of main ()):
configure event channel (&éexample event);

configure event user (&example event);

9.1.1.3. Workflow
1. Create an event channel configuration struct, which can be filled out to adjust the configuration of a
single event channel.

struct events config config;

2. Initialize the event channel configuration struct with the module's default values.

events get config defaults (&config);

Note: This should always be performed before using the configuration struct to ensure that all
values are initialized to known default settings.

3. Adjust the configuration struct to request that the channel is to be attached to the specified event
generator, that rising edges of the event signal is to be detected on the channel, and that the
synchronous event path is to be used.

config.generator
config.edge detect

= CONF_EVENT GENERATOR;
EVENTS EDGE_DETECT RISING;

Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE]
Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

25

Atmel

config.path
config.clock source

EVENTS PATH SYNCHRONOUS;
GCLK GENERATOR 0;

4. Allocate and configure the channel using the configuration structure.

events allocate (resource, &config);

Note: The existing configuration struct may be re-used, as long as any values that have been
altered from the default settings are taken into account by the user application.

5. Attach a user to the channel.

events attach user (resource, CONF EVENT USER) ;

9.1.2. Use Case

9.1.2.1. Code

Copy-paste the following code to your user application:

while (events is busy(&example event)) {
/* Wait for channel */

}i
events trigger (&example event);

while (true) {
/* Nothing to do */
}

9.1.2.2. Workflow

1. Wait for the event channel to become ready to accept a new event trigger.

while (events is busy(&example event)) {
/* Wait for channel */

}i
2. Perform a software event trigger on the configured event channel.

events trigger (&example event);

9.2. Quick Start Guide for EVENTS - Interrupt Hooks

In this use case, the EVENT module is configured for:
« Synchronous event path with rising edge detection
* TC4 as event generator on the allocated event channel (TCO is used for SAM L22)
* One event channel user attached
* An eventinterrupt hook is used to execute some code when an event is detected

In this use case TC is used as event generator, generating events on overflow. One user attached,
counting events on the channel. To be able to execute some code when an event is detected, an interrupt
hook is used. The interrupt hook will also count the number of events detected and toggle a LED on the
board each time an event is detected.

Note: Because this example is showing how to set up an interrupt hook there is no user attached to the
user.

AtmeL Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE] 26

Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

9.21. Setup

9.2.1.1. Prerequisites
There are no special setup requirements for this use case.
9.21.2. Code

Add to the main application source file, before any functions, according to the kit used:
SAM D20 Xplained Pro:

#define CONF_EVENT GENERATOR EVSYS_ID GEN_TC4 OVF
#define CONF_EVENT USER EVSYS_ID USER_TCO EVU
#define CONF TC MODULE TC4

« SAM D21 Xplained Pro:
#define CONF EVENT GENERATOR EVSYS ID GEN TC4 OVF

#define CONF EVENT USER EVSYS ID USER DMAC CH 0
#define CONF_TC MODULE TC4

* SAM R21 Xplained Pro:
#define CONF EVENT GENERATOR EVSYS ID GEN TC4 OVF

#define CONF_EVENT USER EVSYS_ID USER DMAC CH 0
#define CONF_TC MODULE TC4

*« SAM D11 Xplained Pro:
#define CONF EVENT GENERATOR EVSYS ID GEN TC2 OVF

#define CONF_EVENT USER EVSYS_ID USER DMAC CH 0
#define CONF_TC MODULE TC2

« SAM L21 Xplained Pro:
#define CONF EVENT GENERATOR EVSYS ID GEN TC4 OVF

#define CONF EVENT USER EVSYS ID USER DMAC CH 0
#define CONF_TC MODULE TC4

*« SAM L22 Xplained Pro:

#define CONF_EVENT GENERATOR EVSYS_ID GEN_TCO OVF
#define CONF_EVENT USER EVSYS_ID USER DMAC CH 0

#define CONF_TC MODULE TCO

* SAM DA1 Xplained Pro:

#define CONF_EVENT GENERATOR EVSYS_ID GEN_TC4 OVF
#define CONF_EVENT USER EVSYS_ID USER DMAC CH 0

#define CONF_TC MODULE TC4

AtmeL Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE] 27
Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

Atmel

SAM C21 Xplained Pro:

#define CONF_EVENT GENERATOR EVSYS_ID GEN_TC4 OVF
#define CONF_EVENT USER EVSYS_ID USER DMAC CH 0

#define CONF_TC MODULE TC4

Copy-paste the following setup code to your user application:

static volatile uint32 t event count = 0;

void event counter (struct events resource *resource);

static void configure event channel (struct events resource *resource)
{

struct events config config;

events get config defaults (&config);

config.generator = CONF_ EVENT GENERATOR;
config.edge detect = EVENTS EDGE DETECT RISING;
config.path = EVENTS PATH SYNCHRONOUS;

config.clock source GCLK_GENERATOR 0;

events allocate (resource, &config);

}

static void configure event user (struct events resource *resource)

{
events attach user (resource, CONF EVENT USER) ;

}

static void configure tc(struct tc_module *tc instance)

{
struct tc_config config tc;
struct tc_events config events;

tc _get config defaults(&config tc);

config tc.counter size TC COUNTER SIZE 8BIT;

config tc.wave generation = TC WAVE GENERATION NORMAL FREQ;
config tc.clock source GCLK_GENERATOR 1;

config tc.clock prescaler = TC CLOCK PRESCALER DIV64;

tc _init (tc_instance, CONF TC MODULE, &config tc);

config events.generate event on overflow = true;
tc_enable events(tc _instance, &config events);

tc_enable (tc_instance);

}

static void configure event interrupt (struct events resource *resource,
struct events hook *hook)

{

events create hook (hook, event counter);

events add hook (resource, hook);
events enable interrupt source (resource, EVENTS INTERRUPT DETECT) ;

Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE] 28
Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

void event counter (struct events resource *resource)

{

if (events is interrupt set (resource, EVENTS INTERRUPT DETECT)) {
port pin toggle output level (LED 0 PIN);

event count++;
events ack interrupt (resource, EVENTS INTERRUPT DETECT) ;

Add to user application initialization (typically the start of main ()):

struct tc_module tc_instance;
struct events resource example event;
struct events hook hook;

system init();
system interrupt enable global();

configure event channel (&éexample event);
configure event user (&example event);

configure event interrupt (éexample event, &hook);
configure tc(&tc instance);

9.2.1.3. Workflow
1. Create an event channel configuration structure instance which will contain the configuration for the
event.
struct events config config;
2. Initialize the event channel configuration struct with safe default values.

Note: This shall always be performed before using the configuration struct to ensure that all
members are initialized to known default values.

events get config defaults (&config);

3. Adjust the configuration structure:
« Use EXAMPLE_EVENT_GENRATOR as event generator
* Detect events on rising edge
* Use the synchronous event path
* Use GCLK Generator 0 as event channel clock source

config.generator = CONF_ EVENT GENERATOR;
config.edge detect = EVENTS EDGE DETECT RISING;
config.path = EVENTS PATH SYNCHRONOUS;

config.clock source GCLK_GENERATOR 0;

4. Allocate and configure the channel using the configuration structure.

events allocate (resource, &config);

5. Make sure there is no user attached. To attach a user, change the value of
EXAMPLE_EVENT_USER to the correct peripheral ID.

events attach user (resource, CONF EVENT USER) ;

AtmeL Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE] 29
Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

Create config_tc and config_events configuration structure instances.

struct tc_config config tc;
struct tc_events config events;

Initialize the TC module configuration structure with safe default values.
Note: This function shall always be called on new configuration structure instances to make sure
that all structure members are initialized.

tc_get config defaults(&config tc);

Adjust the config_tc structure:
» Set counter size to 8-bit
» Set wave generation mode to normal frequency generation
* Use GCLK generator 1 to as TC module clock source
* Prescale the input clock with 64

config tc.counter size = TC COUNTER SIZE 8BIT;
Config_tc.wave_generation TC_WAVE GENERATION NORMAL FREQ;
config tc.clock source GCLK GENERATOR 1;

config tc.clock prescaler = TC CLOCK PRESCALER DIV64;

Initialize, configure, and assosiate the tc_instance handle with the TC hardware pointed to by
TC_MODULE.

tc_init (tc_instance, CONF_TC MODULE, &config tc);

. Adjust the config_events structure to enable event generation on overflow in the timer and then

enable the event configuration.

config events.generate event on overflow = true;
tc_enable events(tc_instance, &config events);

Enable the timer/counter module.

tc_enable (tc_instance);

. Create a new interrupt hook and use the function event_counter as hook code.

events create hook (hook, event counter);

. Add the newly created hook to the interrupt hook queue and enable the event detected interrupt.

events add hook (resource, hook);
events enable interrupt source (resource, EVENTS INTERRUPT DETECT) ;

. Example interrupt hook code. If the hook was triggered by an event detected interrupt on the event

channel this code will toggle the LED on the Xplained PRO board and increase the value of the
event_count variable. The interrupt is then acknowledged.

void event counter (struct events resource *resource)

{

Atmel

if (events is interrupt set (resource, EVENTS INTERRUPT DETECT)) {
port pin toggle output level (LED 0 PIN);

event count++;
events ack interrupt (resource, EVENTS INTERRUPT DETECT) ;

Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE] 30

Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

9.2.2. Use Case

9.2.21. Code

Copy-paste the following code to your user application:

(events is busy(&example event)) {
/* Wait for channel */

while

1

tc_start counter (&tc_instance);

while

(true)

{

/* Nothing to do */

}

9.2.2.2. Workflow
1. Wait for the event channel to become ready.

while

(events is busy (&example event)) {

/* Wait for channel */

}i

2. Start the timer/counter.

tc_start counter(&tc_instance);

Atmel

Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE]
Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

31

10. Document Revision History

oo o

42108G

42108F

42108E

42108D

42108C

42108B

42108A

Atmel

12/2015
08/2015

12/2014

01/2014

11/2013

06/2013

06/2013

Added support for SAM D09 and SAM L22
Added support for SAM L21, SAM DA1, and SAM C20/C21

Added support for interrupt hook mode. Added support for SAM R21 and SAM
D10/D11.

Update to support SAM D21 and corrected documentation typos

Fixed incorrect documentation for the event signal paths. Added configuration
steps overview to the documentation.

Corrected documentation typos

Initial release

Atmel AT03245: SAM D/R/L/C Event System (EVENTS) Driver [APPLICATION NOTE] 32
Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

Atmel | Enabiing Unlimited Possibilities’ fl¥lin]3[o]w
Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2015 Atmel Corporation. / Rev.: Atmel-42108G-SAM-Events-System-EVENTS-Driver_AT03245_Application Note-12/2015

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected® logo, and others are registered trademarks of ARM Ltd. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Table of Contents
	1. Software License
	2. Prerequisites
	3. Module Overview
	3.1. Event Channels
	3.2. Event Users
	3.3. Edge Detection
	3.4. Path Selection
	3.4.1. Asynchronous Paths
	3.4.2. Synchronous Paths
	3.4.3. Re-synchronous Paths

	3.5. Physical Connection
	3.6. Configuring Events
	3.6.1. Source Peripheral
	3.6.2. Event System
	3.6.3. Destination Peripheral

	4. Special Considerations
	5. Extra Information
	6. Examples
	7. API Overview
	7.1. Variable and Type Definitions
	7.1.1. Type events_interrupt_hook

	7.2. Structure Definitions
	7.2.1. Struct events_config
	7.2.2. Struct events_hook
	7.2.3. Struct events_resource

	7.3. Macro Definitions
	7.3.1. Macro EVSYS_ID_GEN_NONE

	7.4. Function Definitions
	7.4.1. Function events_ack_interrupt()
	7.4.2. Function events_add_hook()
	7.4.3. Function events_allocate()
	7.4.4. Function events_attach_user()
	7.4.5. Function events_create_hook()
	7.4.6. Function events_del_hook()
	7.4.7. Function events_detach_user()
	7.4.8. Function events_disable_interrupt_source()
	7.4.9. Function events_enable_interrupt_source()
	7.4.10. Function events_get_config_defaults()
	7.4.11. Function events_get_free_channels()
	7.4.12. Function events_is_busy()
	7.4.13. Function events_is_detected()
	7.4.14. Function events_is_interrupt_set()
	7.4.15. Function events_is_overrun()
	7.4.16. Function events_is_users_ready()
	7.4.17. Function events_release()
	7.4.18. Function events_trigger()

	7.5. Enumeration Definitions
	7.5.1. Enum events_edge_detect
	7.5.2. Enum events_interrupt_source
	7.5.3. Enum events_path_selection

	8. Extra Information for EVENTS Driver
	8.1. Acronyms
	8.2. Dependencies
	8.3. Errata
	8.4. Module History

	9. Examples for EVENTS Driver
	9.1. Quick Start Guide for EVENTS - Basic
	9.1.1. Setup
	9.1.1.1. Prerequisites
	9.1.1.2. Code
	9.1.1.3. Workflow

	9.1.2. Use Case
	9.1.2.1. Code
	9.1.2.2. Workflow

	9.2. Quick Start Guide for EVENTS - Interrupt Hooks
	9.2.1. Setup
	9.2.1.1. Prerequisites
	9.2.1.2. Code
	9.2.1.3. Workflow

	9.2.2. Use Case
	9.2.2.1. Code
	9.2.2.2. Workflow

	10. Document Revision History

