AVR1327. Two Wire Interface (TWI) Slave
Bootloader for Atmel AVR XMEGA

Features

« Atmel® AVR® XMEGA® family devices

« Bootloader protocol for any ATxmega over two wire interface

* Host can read ATXmega parameters such as flash page size and number of pages
for easy driver development

e Host can write new XMEGA code to XMEGA flash program and EEPROM memory

1. Introduction

This document discusses a general purpose ATxmega Bootloader that is first
programmed into the ATxmega device. Next, the ATxmega Bootloader code is set
in a mode to communicate with the TWI Master via Two Wire Interface shown in
Figure 1-1. The Host Computer can issue TWI commands to the ATxmega and
write to the ATxmega flash program memory. Finally, the ATxmega will execute
this newly written code from its flash memory.

Figure 1-1. TWI Master-to-ATxmega block diagram.

Vcc
R R
SCL
TWI Master SDA
AMEGA

Gnd

Resistor values of R may be 1K-10K depending on selected TWI bus speed.

ATMEL

AIMEL

I ®

8-bit Atmel
Microcontrollers

Application Note

Rev. 8435A-AVR-09/11

2. Prerequisites

3.

4.

5.

Limitations

ATMEL

The Bootloader application discussed in this document requires basic familiarity with
following:

e C programming language for embedded systems

« For the software project included with this app note, compiling C projects with IAR™
C/C++ Compiler for AVR 5.51 compiler.

e General familiarity with Bootloader as related to embedded systems and
microcontrollers.

e A method to debug and test the compiled application, or download the application
hex files into the targeted ATxmega device, such as the Atmel JTAGICE mkll or
JTACICES.

e A general familiarity with TWI protocol and electrical connection requirements

e [For security reasons, specifically to protect IP code from unauthorized copying, the
Bootloader code does not implement a method to read any program or other type
of the ATxmega memory. The Bootloader can only write to these memories.
However, the code could be expanded and modified to execute memory reads.

e A CRC command is implemented to allow detection of errors in application code
after download into the ATxmega application flash memory.

e The software solution with this application note was compiled with the IAR C
compiler.

Memory Protection

Number System

AVR1327

While the Bootloader code has no mechanism to read ATxmega memories, the
ATxmega memories and associated IP can still be read by Atmel tools or third party
programmers. To insure that this does not occur, the ATxmega has four levels related
to Bootloader code protection: Nolock, Writelock, Readlock and Read and Writelock.
This protection is set via fuses or the Nonvolatile Memory Lock Bit Register. For
more information, refer to the ATxmega data sheet Boot Lock Bits for the Boot
Loader Section.

Additionally, the flash program memory allocated to the Application has identical levels
of protection Nolock, Writelock, Readlock and Read and Writelock. This protection is
also set via fuses or the Nonvolatile Memory Lock Bit Register. For more
information on protection related to the Application Section, refer to the ATxmega
data sheet Boot Lock Bit Application Section.

The Bootloader uses little endian byte ordering. As an example 0x1234 will be sent as
0x34 — 0x12 on the TWI.

8435A-AVR-09/11

6. Abbreviations

AVR1327

e <SLA+W>: Used to indicate slave address and that the following transaction is
a TWI write operation. The slave address has been specified in the conf-twi.h
file as follows:

#define TWI_ADDRESS(0x30)//User may select a different address

e <SLA+R>: Used to indicate slave address and that the following transaction is
a TWI read operation.

e <s>: Stop condition.

e <rs>: Repeated start condition, usage is optional and can be omitted here.

e N: Number of bytes in one flash page, defined below

7. ATXmegatarget device resource requirements

Table 7-1 and 7-2 describe typical Peripheral requirements and Memory requirements.

Other versions of the ATmega have variations on the peripherals available. An
example is the ATxmega32A4 which has two TWI modules: TWIC and TWIE.

Table 7-1. Peripheral requirements.

Peripheral

Pin(s)

Configurable?

An ATXmega TWI
module,

In this example, TWIC and
,PORTC pins0and 1

TWIC or TWIE In conf-twi.h file:
#define TWI_BASE (TWIC.SLAVE)

No interrupts, no

additional peripherals

In conf-twi.h file: #define
TWI_ADDRESS (0x30) User may
select a different slave address.

Table 7-2. Memory requirements),

Memory Typical size Maximum size
1382 Bytes if optimized for 1746 Bytes with zero

Program memory size optimization

Data memory 352 Bytes 352 Bytes

Internal EEPROM memory

EEPROM location 0x00 only. See Note 2.

Note: 1. Exact memory requirements depend on a variety of factors, such as compiler
version, optimization levels, and addition or removal of configurable functionality.

2. A single EEPROM is used as follows: If OXAA is written to this location, the
Bootloader code will begin execution after Reset. The Bootloader will write a
0x00 to this location which prevents re-entry, and thereby allows the execution of
the application code.

In main.c,

#define BOOTLOADER_WILDCARD (0xAA)

#define WILDCARD_ADDRESS

(0x00)

8435A-AVR-09/11

AIMEL

®

ATMEL

8. How to build and run the software

1. Create a new directory on your PC. From the website www.atmel.com, locate this app
note, avrl327 from this web page, locate and download the software to your local
directory.

2. Extract the files to your new directory.

3. Download and install the IAR EWAVR C compiler. To locate this C Compiler, refer
to this document, Section 13. References.

4. In this new directory, double click on the avr1327-bootloader-xmega.eww file (the
workspace file). The workspace will open, and the project’s files can be examined.

9. Modifying the TWI Slave Bootloader for other ATXmega Devices

9.1 How to establish the Bootloader starting address

9.1.1 Very Important: Since this is a Bootloader application, it must be compiled and
linked to run in the ATxmega’s Bootloader Section of flash memory.
Examples:

ATxmegal6Al or 16D4 devices: Bootloader starts at word address 0x2000.
ATxmega32A1 or 32D4 devices: Bootloader starts at word address 0x4000.

For more information on Flash Memory addresses, check the ATxmega A or
ATxmega D User’s Guide, search for Flash Program Memory

Different ATxmegas have their Bootloader memory space at different addresses. The
compiler will determine the starting address of the Bootloader from the .xcl files below.

Note: The following is the IAR Compiler-generated default .xcl file, which links the
code to start in low flash memory space, after the interrupt vector table.

$TOOLKIT_DIR$\src\template\cfgxm32d4.xcl

Figure 9.1.1 Compiler supplied .xcl file

Options for node "ATxmega32A4"

Category: Factom Settingz |
General Options
CJC++ Compiler IAR's default .xcl file
gzZ.E.:IELiId Output] Bxtra Output] Hdefine-| Diagnostics] List mce:ﬂﬂ
fions Linker command file
v Byariiadetak
AVR OEI:E! STOOLKIT_DIRS sz templatecf o 32a4 xcl J
CCR
r——— ™ wvemide defznil nenaram antne

4 AVR1327

8435A-AVR-09/11

http://www.atmel.com/�

AVR1327

Figure 9.1.2 How to use a custom .xcl file

Options for node "ATxmega16D4"

Categony: Factony 5ettings |

General Options
C/C++ Compiler
Assembler
Custom Build Output] Extra Qutput] Hdefine] Diagnostics | List Config l Proce: 4 | *

Build Actions Linker command file

T eommene e ;

Debugger
|SPROJ_DIRS\ink

bootloader_16K xcl

AVE. OME!
CCR
ICE200 [Ovenide default program entry

ITAGICE = |
TTARTCF mkTT i

N

9.1.2 Figure 9.1.1 shows the .xcl linker file that is created by the IAR Linker as the
project is built. Figure 9.1.2 shows the format for using a custom .xcl file.
Notice the $PROJ_DIRS$\ prefix to the .xcl file name.

9.1.3 In the Workspace directory, a custom link_bootloader32K.xcl is included and
may be modified with a different application start address. Search for the
following text and modify, if desired.

~D_..X_APPLICATION_SECTION_START= 2000 //Word address

9.1.4 Based on your choice of ATxmega, place the number 2000 or 4000 in the file at
the above instruction’s location, where 2000 is shown above.

9.1.5 Compile the project.

9.2 Selecting a different ATXmega

9.2.1 You may change to a different ATxmega if desired. Under IAR project General
Options, select your ATxmega Refer to Figure 9.2:

Figure 9.2. Options for ATxmega device selection

Options for node "ATxmega16D4"

Categony:

C/C++ Compiler

Assembler

Custom Build Tanget lOutpl.rt] Library Corfiguration] Library Options] Heap Configu 4 | *

Build Actions

Linker

Debugger
AVR. ONE!
CCR
ICE200
JTAGICE

Frocessor configuration

—cpu=xm3Zad ATxmegaldZAd -

[Use &4-bit doubles I

AIMEL 5

®
8435A-AVR-09/11

ATMEL

9.3 ATXmega Fuse settings necessary for Bootloader operation

The ATXmega has a jump-to-Bootloader fuse that must be enabled, so that the AVR
will begin execution at the beginning of the Bootloader code. As described above, this
will be 0x2000, 0x4000 (word address). The ATxmega BOOTRST fuse should be set to
Boot Loader Reset:

JTAGICE mkll in PDI mode with ATxmegai2A4

Main || Program | Fuses | LockBits | Advanced | HW Settings | HW Info || Auto

Fuse Value e
USERID FF . .

WDWE 8 cycles (8ms @ 3.3V) Select this fuse SEmﬂQ -
WDP 8 cycles (Bms @ 3.3V) -
DVSDON |:|

BOOTRST

BODFPD

RSTDISBL

SHT

9.4 As code execution begins, two ways to enter the Bootloader code

Even after the Bootloader is correctly compiled and programmed into the ATxmega, the
Bootloader code will only be executed if one or both of the following conditions are met:

1. By asserting a low on a user defined IO port input pin, followed a reset release.
In this example this is PORTB pin 3. This pin is defined in main.c as follows:
#define BOOT_PORT (PORTB)

2. By writing a wildcard to a defined EEPROM address. In this example the
EEPROM address is 0x00 and the wildcard is OxAA. If this EEPROM location
contains 0x00, the ATxmega will begin execution of the Bootloader code, not
the application code.

Important: If a low level is asserted as in 1. above, that low level must be removed or
the Bootloader will be re-entered after every ATxmega Reset.

9.5 Debugging the code
You have the option of debugging this project using IAR, or Atmel AVR Studio® 4 or
Studio 5

5. Verify that your code address starts approximately 0x2000 or 0x4000 word
addresses, as described earlier in this app note.

10. Master Commands to Bootloader

AVR1327

10.1 Bootloader Register and Memory Map

The registers that control and allow data to be sent to/from the Bootloader are located
in the following memory map. Notice how the registers are sequential, followed by the
Page Buffer, N bytes long. Following the N-byte-long page buffer is the Command

Register.

Figure 10.1 describes the number of bytes per page divided by 256.
Table 10.1 defines N.

Figure 10.1 Bootloader Memory Map

Address

000

001

Table 10,1 _Number of Flash pages and N 008

ATxmeda Number of | Number 0x09

devicg bytes per of 0x0A
page pages N
ATxmegabd 256 256 1
ATxmegail2d 512 256 P
ATxmega2h 512 M2 2

N = (no. of bytes per page)/256

8435A-AVR-09/11

YhG)-1=0x109"

W 256=0x 104
Command Req add + 1
Command Reg add + 2

Command Reg addr + 0x0C

MemoryRegister function

Flash Page Size L 5B

Flash Page Size MSB

ReadMWrite Length LSB

ReadMrite Length MSB

Data Buffer,N*256 bytes long

{ M isflash page size such as

256 or 512 bytes)

“Far M =1, (0x0A+N"256)-1 =265 =0x109

ATMEL

11. Operation

ATMEL

The TWI Slave Bootloader control and data registers allow the TWI master to perform
actions such as Read Page Size, Erase Flash etc. In order for the TWI slave
Bootloader to perform an action, the TWI master must execute a TWI write cycle to a
specific register. Depending on the register address, the TWI master may need to write
additional values. Upon receiving this information, the TWI slave Bootloader performs
corresponding action. The TWI master can read the result of the operation by
performing a TWI read.

11.1 Bootloader Commands

This section describes the commands and data flow from/to Master and ATXmega
Slave.

Addresses of Bootloader control and data registers are described in Table 11.1.
These registers have the format:

e SLA+R, a TWI Master reads the Bootloader register, SLA+R, followed by two
8-bit addresses. The 4™ operation is reading the data.

e The registers are sequential. The Master may read or write the next register
with another Read command, SLA+R or ,SLA+W>, respectively.

e SLA+W, a TWI Master writes to the Bootloader register or SLA+W, followed by
two 8-bit addresses. Notice that some registers are read-only.

11.2 Auto-Increment of ATxmega Slave address

8 AVR1327

After the <SLA+W> or <SLA+R> operation is sent from the Master to the slave, the
next operation defines the destination register or buffer address. Additional operations
(other than <SLA+W> or <SLA+R>) will auto-increment the Slave register or buffer
address. See the section below titled Program Flash (0x04).

8435A-AVR-09/11

AVR1327

Table 11.1 Bootloader Control Registers

TWI Operation # Slave acknowledges each operation) Comments
1 2 | 3 4 5
16-hit_Address
Lwr & bits| Upr & bits
8-bit register Name
Fage Size LSB SLA+R | 0x00 0x00 flash pg size Bit[7:0]
Page Sze M3B SLA+R | 0x01 0x00 flash pg size Bit[15:8]
MNumber of Pages SLA+R | 0x02 000 Bit[7:0] of no. of flash pgs
Murnber of Pages SLA+R | 0x03 0x00 |Bit[15:8] of no_of flash pgs Used if over 128 flash pgs
ID0 and 1011 SLAFW| 0x04 0x00 write 100 write 101 Sequential register writes
ID0and 101 SLA+R | 0x04 0x00 read ID1 read ID0 Sequential register reads
DO SLAHW| 0x04 0x00 write [D0 Single register write
Do SLA+R | 0x04 0x00 read ID1 Single register read
D1 SLAHW| (0x05 0x00 write [D1 Single register write
D1 SLALR 0x05 0x00 read D0 Single register read
Address SLAHW %06 000 Address Bit[7:0]
Address SLA+R | 0x06 0x00 Address BR[7:0]
Address SLAHW 0x07 000 Address Bit[15:8]
Address SLA+R | 0x07 0x00 Address Bitf 15:8]
Write Lenagth LSB SLA+W| 0x08 0x00 Length Bit[7: 0]
Read Length LSB SLA+R 0x08 000 Length Bit[7: 0]
Write Length MSB SLAFW!| 0x09 000 Lenath Bit[15:8]
Read Length MSB SLA+R %09 000 Length Bit[15:8]
N hyte Data Buffer Continuous TWI writes to
SLAHW| 0x0A 0x00 000 memory, MN*256 times
Reset SLAFW | 0xDA 0x01* 001 Reset command
Exit bootloader, begin Exit Bootloader and run
application execution | SLAFW| 0x0A 0x00 0x02 application
Flash Erase SLAFW /| 0x0A 0x01* 003 Erase Flash
Program Flash SLAFW| 0xDA Ox01* 004 Program flash
Program EEPROM | SLAswW| 0x0A 0x01* 0x05 Prograrm EEPROM
Calc Flash CRC SLAFW| 0x0A 0x01* 006 Calc Flash CRC:TWI Write
Read Flash CRC__ | SLA+R [CRC[70]| CRC[15:8] followed by TWIRead
Calc EEPROM CRC [SLA+W| 0xDA 03c01* 007 Calc EEPROM CRCTWI Write
Read EEFROM CRC | SLA+R | CRC[7:0]| CRC[15:8] followed by TWI Read
EEPROM Length LSB | SLA+W| 0x0A 0301* 003 Length C
EEPROM Length L8B | SLA+R | 0x0A 0x01* 008 Length Bit[7:0]
EEPROM Length MSB | SLA+W| 0x0A 0x01* 009 Length Bit[15:8]
EEPROM Length MSB | 5L A+R | 0x0A 0301* 009 Length Bit[15:8]
CRCLSB SLATW| 0xDA 0x01* 0x0B CRC Bit[7 0]
CRCLSB SLA+R | 0x0A 0x01* 0x0B CRC Bit[7:0]
CRC MSH SLAHW| 0x0A 0301* 0x0C CRC Bit[15:8]
CRC M3B SLA+R | 0x0A 0x01* 0x0C CRC Bit[15:8]
*means 0x01 for N =1
*means 0x02 farN =2

11.3 The Command Register

In the above Table 11.1, notice the Command Register. This register is located in the
ATxmega SRAM memory map, just following the Data Buffer (which is typically 256 or
512 bytes in length).

The address of this Command Register is 0x09 + 256*N, where N is defined in Table
10.1. 0x09 is necessary since it is the number of registers at the beginning of the
memory map.

For this above table, Table 11.1, N = 1, and N*256 = 256 = 0x100. . So, the Command
register address is formed as follows: 0x0A+0x100 = Ox10A.

e The lower 8 address bits are 0x09.

AIMEL 9

8435A-AVR-09/11

ATMEL

e The upper 8 address bits are 0x01.

11.3.1 Bootloader identification (test if Bootloader is in target ATxmega)

The Master may want to confirm that this particular ATxmega contains a functioning
Bootloader. The Bootloader is identified by the Master, by setting the Command Index
to four, then write two random bytes, followed by setting the address pointer to four and
read two bytes. The two bytes that were written should be read back in reverse order.
This operation will confirm that the Master is indeed communicating with TWI Slave
Bootloader,

<SLA+W>0x04 0x00 OxAA 0Ox55<s>
<SLA+R>0x04 0x00<rs>0x55 OxAA<s>

11.3.2 Reset (0x01)

To perform a reset operation, write 0x01 to the command register. In the below
example the address is formed as follows:

N =1, and N*256 = 256 = 0x100. . So, the Command register address is formed as
follows: 0x09+0x100 +1= 0x10A

e The lower 8 address bits are Ox0A

e The upper 8 address bits are 0x01.

<SLA+W>0x0A 0x01 Ox0l<s>

The reset operation will immediately perform a reset, followed by code execution from
the beginning of the Bootloader code, if the entry conditions are met as described in
Section 9.5.

11.3.3 Application Execution (0x02)

If the input pin described in Section 9.5 is not shorted to ground, then this command
will

1. Write 0x00 into the EEPROM location 0x00, which prevents re-entry into the he
Bootloader.

2. Jump to the beginning of the application code.

<SLA+W>0x0A 0x01 0x02<s> Note that the 0x01 is actually the value of N,
which will change if the number of bytes per page changes.

11.3.4 Erase Flash (0x03)

AVR1327

This command will erase the whole flash except for the Bootloader. Again this example
uses N = 1, as described in the above examples.

<SLA+W>0x0A 0x01 0x03<s>

8435A-AVR-09/11

AVR1327

11.3.5 Program Flash (0x04)

In the following example, notice that the auto-increment feature is utilized, this allows
Slave registers to be accessed sequentially.

This command will take the flash page, previously loaded into the data buffer, and program
it into the ATxmega application memory which is specified in the address register. In
the example below, at ATxmega flash address 0x0001,

The command consists of the following TWI operations:

1. <SLA+W=>0x06 0x00 TWI master sends Address command

2. 0x01 0x00 Write Flash 16-bit address: LSB, then MSB

3. 0x01 0x00 Write Flash Write length, 16-bit addr: LSB then
MSB

4. <SLA+W> Ox0A 0x04<s> TWI sends the Program Flash command

The TWI sequence is as follows:

<SLA+W>0x06 0x00 [Offset] 0x01 0x00 [Address] 0x00 0x01 [Length] <SLA+W>
0x0A 0x01 0x04 [Program Flash Command]<s>

The TWI Master may also send the above operations individually:

1. <SLA+W>0x06 0x00<s> TWI master sends Address register command
2. <SLA+W>0x01 0x00<s> Write Flash 16-bit address: LSB, then MSB
3. <SLA+W>0x01 0x00<s> Write Flash length, 16-bit as a 16-bit value:

LSB then MSB
4. <SLA+W> 0x0A 0x01 0x04<s> TWI sends the Program Flash command

11.3.6 Program EEPROM (0x05)

This command is very similar to the Program Flash command, above. Program
EEPROM will take the EEPROM data page, previously loaded into the data buffer, and
program it into the ATxmega EEPROM memory at the location given in the address
register and the number of bytes given in the length register.

In the example that follows, three bytes are programmed three to EEPROM address
0x0005.

The command consists of the following TWI operations:

1. <SLA+W>0x06 0x00 TWI master sends Address register command

2. 0x05 0x00 Write EEPROM as a 16-bit address: LSB, then MSB

3. 0x03 0x00 Write EEPROM Write length, as 16-bit value: LSB then
MSB

4., <SLA+W> 0x0A 0c01 0x05<s> TWI sends the Program EEPROM command

The TWI sequence is as follows:

ATMEL 1

8435A-AVR-09/11

ATMEL

<SLA+W>0x06 0x00 [Offset] 0x05 0x00 [Address] 0x03 0x00 [Length] [s>
<SLA+W>0x0A 0x01 0x04<s>

The TWI Master may also send the above operations individually:
1. <SLA+W>0x06 0x00<s> TWI master sends Address register command
2. <SLA+W>0x05 0x00<s> Write EEPROM address
3. <SLA+W>0x03 0x00<s> Write EEPROM length
4. <SLA+W> 0x0A 0x01 0x04<s> TWI sends the Program EEPROM command

11.3.7 Calculate CRC for Flash (0x06)

This command will cause the cyclic redundancy check to be calculated for the flash up
to and including the last page written.

In the below example it is assumed that the flash page is 256 bytes.

<SLA+W>0x0A 0x01 0x06<s>
<SLA+R>[2 Bytes read]<s>

Below is the routine implemented in C for calculating the CRC.

static uintl6_t crc_ccitt_update(uintl6_t crc, uint8_t data)

{
data = crc & OxFF;

data "= data << 4;

return (((uintl6_t)data << 8) | ((crc & OxFFO0) >> 8)) ™~ \
(uint8_t)(data >> 4) ~ \
((uintl6é_t)data << 3));
}

11.3.8 Calculate CRC for EEPROM (0x07)

This command will cause the cyclic redundancy check to be calculated for the
EEPROM from the byte address in the address register and then over the next N bytes
— where N is set in the length register. In this example, it is assumed that the flash
page is 256 bytes.

<SLA+W>0x0A 0x01 0x07<s>
<SLA+R>[2 Bytes read]<s>

The routine for calculating the CRC is the same as the one outlined for the flash
memory.

12 AVR1327

8435A-AVR-09/11

AVR1327

12. Recommended Master-to-Slave transactions to Write ATxmega Flash

Figure 12.1 describes the sequence for the Master to issue a complete sequence for
writing a page of bytes to the ATxmega'’s slave application code space. Notice in step
12 that this command writes a 0x00 into EEPROM. When the ATxmega is reset,
exeution will commence from the Reset Vector at 0x0000, not the Bootloader starting

address, which could be 0x2000, 0x4000 or other value.

Figure 12.1 Master-to-Salve transactions for a flash page write

Step # Transaction Description Comment
y Determine f Bootloader is present <SLAHW=0x04 0x00 DxAA Oxb5<s> Bytes read are reverse order of
P «SLA+R =004 000 <rs=0x55 OxAl<s> bytes writtten
2a . . <SLAHR> 0x00 0x00=<s= Page size command
Determine the page size - .
2b1 =3LA+R=[2 Bytes read]=<s= a 16 bit value Typically 256 or 512
3a) <SLAHR> 0x02 0x00 <5>= Mo of Pages command
Determine the number of pages
3b =SLA+R=[2 Bytes read]=<s= a 16 bit value
4 Erase the Application flash <SLAFW=0x0A n 0x03<s>= Erase the "th{Eaﬁi:'ﬁ hex value) 1
5a Send destination address in <SLA+W= 006 000 Address command
5h XMEGA flash Bits[7 0], Bits[15.8] 2 bytes sent to Slave
A Write length d
Send write length in XMEGA flash <SLAHW=> 0X08 0X00 rife eng™h comman
B Bits[7..0]. Bits[15..8] 2 bytes sent to Slave
Fill the page buffer with application . . «<3LAHW= UKDQ 0x00 up to 256 continuous byte writes
7 code write s fill page_buffer auto increment[0. 255]
8 Execute Program Flash command <SLAHW = 0x0A N 0x04 <= Writes 256 bytes to XMEGA flash
g Repeat Step 4-8 above until all See above commands Erase each page before
flash pages are programmed programiming
10 Execute Caleulate Flash CRC <SLA+W>0x0A N 0x06<s> XMEGA Slave calculates CRC
command
1 Execute Read Flash CRC =SLAFR=0x0A N 0x0F<s= Read CRC Command
command and read value CRC[7_0] CRC[5._8] 2 bytes used by Host
Writes a 000 into EEPROM
Jump to Application <SLAHW=0x0A N 0x02<g> location 0:00 and begins execution
12 of application code

8435A-AVR-09/11

Mote: N is from Table 101

AIMEL

13

ATMEL

13. Conclusion

The Atmel AVR XMEGA family devices contain a Bootloader Section, either 4Kbytes or
8 Kbytes. This Application Note refers to an IAR C-based project which is an ATxmega
Bootloader. This code may be modified by a user, or compiled as is and programmed
into an ATxmega device via an Atmel or 3" party programmer

Under control of the TWI Master, the Bootloader is able to erase and program that flash
memory. EEPROM can also be erased and programmed.

As an IP protection feature, no method has been included in this code to read out the
contents of flash or EEPROM memories

14. References

1. IAR EVAVR C compiler, version 5.51, the 4K or Eval versions.

14 AVR1327

8435A-AVR-09/11

AIMEL

Y ©

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA

Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

Atmel Asia Limited

Unit 01-5 & 16, 19F

BEA Tower, Milennium City 5
418 Kwun Tong Road

Kwun Tong, Kowloon

HONG KONG

Tel: (+852) 2245-6100

Fax: (+852) 2722-1369

© 2011 Atmel Corporation. All rights reserved.

Atmel Munich GmbH
Business Campus

Parkring 4

D-85748 Garching b. Munich
GERMANY

Tel: (+49) 89-31970-0

Fax: (+49) 89-3194621

Atmel Japan

9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa

Chou-ku, Tokyo 104-0033
JAPAN

Tel: (+81) 3523-3551

Fax: (+81) 3523-7581

Atmel®, Atmel logo and combinations thereof, AVR®, AVR® logo, AVR studio®, XMEGA?®, and others are registered trademarks or
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS
ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION,
DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO
USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or
warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and
product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically
provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or
warranted for use as components in applications intended to support or sustain life.

8435A-AVR-09/11

www.atmel.com�

	1. Introduction
	2. Prerequisites
	3. Limitations
	4. Memory Protection
	5. Number System
	6. Abbreviations
	7. ATXmega target device resource requirements
	9.5 Debugging the code

	10. Master Commands to Bootloader
	10.1 Bootloader Register and Memory Map

	11. Operation
	11.3 The Command Register

	12. Recommended Master-to-Slave transactions to Write ATxmega Flash
	13. Conclusion
	14. References

