

AVR1327: Two Wire Interface (TWI) Slave
Bootloader for Atmel AVR XMEGA

Features
• Atmel® AVR® XMEGA® family devices
• Bootloader protocol for any ATxmega over two wire interface
• Host can read ATXmega parameters such as flash page size and number of pages

for easy driver development
• Host can write new XMEGA code to XMEGA flash program and EEPROM memory

1. Introduction
This document discusses a general purpose ATxmega Bootloader that is first
programmed into the ATxmega device. Next, the ATxmega Bootloader code is set
in a mode to communicate with the TWI Master via Two Wire Interface shown in
Figure 1-1. The Host Computer can issue TWI commands to the ATxmega and
write to the ATxmega flash program memory. Finally, the ATxmega will execute
this newly written code from its flash memory.

Figure 1-1. TWI Master-to-ATxmega block diagram.

Resistor values of R may be 1K-10K depending on selected TWI bus speed.

8-bit Atmel
Microcontrollers

Application Note

Rev. 8435A-AVR-09/11

2 AVR1327
8435A-AVR-09/11

2. Prerequisites
The Bootloader application discussed in this document requires basic familiarity with
following:

• C programming language for embedded systems
• For the software project included with this app note, compiling C projects with IARTM

C/C++ Compiler for AVR 5.51 compiler.
• General familiarity with Bootloader as related to embedded systems and

microcontrollers.
• A method to debug and test the compiled application, or download the application

hex files into the targeted ATxmega device, such as the Atmel JTAGICE mkII or
JTACICE3.

• A general familiarity with TWI protocol and electrical connection requirements

3. Limitations
• For security reasons, specifically to protect IP code from unauthorized copying, the

Bootloader code does not implement a method to read any program or other type
of the ATxmega memory. The Bootloader can only write to these memories.
However, the code could be expanded and modified to execute memory reads.

• A CRC command is implemented to allow detection of errors in application code
after download into the ATxmega application flash memory.

• The software solution with this application note was compiled with the IAR C
compiler.

4. Memory Protection
While the Bootloader code has no mechanism to read ATxmega memories, the
ATxmega memories and associated IP can still be read by Atmel tools or third party
programmers. To insure that this does not occur, the ATxmega has four levels related
to Bootloader code protection: Nolock, Writelock, Readlock and Read and Writelock.
This protection is set via fuses or the Nonvolatile Memory Lock Bit Register. For
more information, refer to the ATxmega data sheet Boot Lock Bits for the Boot
Loader Section.

Additionally, the flash program memory allocated to the Application has identical levels
of protection Nolock, Writelock, Readlock and Read and Writelock. This protection is
also set via fuses or the Nonvolatile Memory Lock Bit Register. For more
information on protection related to the Application Section, refer to the ATxmega
data sheet Boot Lock Bit Application Section.

5. Number System
The Bootloader uses little endian byte ordering. As an example 0x1234 will be sent as
0x34 – 0x12 on the TWI.

 AVR1327

 3
8435A-AVR-09/11

6. Abbreviations
• <SLA+W>: Used to indicate slave address and that the following transaction is

a TWI write operation. The slave address has been specified in the conf-twi.h
file as follows:

 #define TWI_ADDRESS(0x30)//User may select a different address

• <SLA+R>: Used to indicate slave address and that the following transaction is
a TWI read operation.

• <s>: Stop condition.

• <rs>: Repeated start condition, usage is optional and can be omitted here.

• N: Number of bytes in one flash page, defined below

7. ATXmega target device resource requirements
Table 7-1 and 7-2 describe typical Peripheral requirements and Memory requirements.

Other versions of the ATmega have variations on the peripherals available. An
example is the ATxmega32A4 which has two TWI modules: TWIC and TWIE.

Table 7-1. Peripheral requirements.
Peripheral Pin(s) Configurable?

An ATXmega TWI
module, In this example, TWIC and

,PORTC pins 0 and 1

TWIC or TWIE In conf-twi.h file:
#define TWI_BASE (TWIC.SLAVE)

No interrupts, no
additional peripherals

In conf-twi.h file: #define
TWI_ADDRESS (0x30) User may
select a different slave address.

Table 7-2. Memory requirements (1).
Memory Typical size Maximum size

Program memory
1382 Bytes if optimized for
size

1746 Bytes with zero
optimization

Data memory 352 Bytes 352 Bytes

Internal EEPROM memory EEPROM location 0x00 only. See Note 2.

Note: 1. Exact memory requirements depend on a variety of factors, such as compiler
version, optimization levels, and addition or removal of configurable functionality.

 2. A single EEPROM is used as follows: If 0xAA is written to this location, the
Bootloader code will begin execution after Reset. The Bootloader will write a
0x00 to this location which prevents re-entry, and thereby allows the execution of
the application code.

In main.c,
 #define BOOTLOADER_WILDCARD (0xAA)
 #define WILDCARD_ADDRESS (0x00)

4 AVR1327
8435A-AVR-09/11

8. How to build and run the software
1. Create a new directory on your PC. From the website www.atmel.com, locate this app

note, avr1327 from this web page, locate and download the software to your local
directory.

2. Extract the files to your new directory.
3. Download and install the IAR EWAVR C compiler. To locate this C Compiler, refer

to this document, Section 13. References.
4. In this new directory, double click on the avr1327-bootloader-xmega.eww file (the

workspace file). The workspace will open, and the project’s files can be examined.

9. Modifying the TWI Slave Bootloader for other ATXmega Devices

9.1 How to establish the Bootloader starting address

9.1.1 Very Important: Since this is a Bootloader application, it must be compiled and
linked to run in the ATxmega’s Bootloader Section of flash memory.
Examples:

ATxmega16A1 or 16D4 devices: Bootloader starts at word address 0x2000.
ATxmega32A1 or 32D4 devices: Bootloader starts at word address 0x4000.

For more information on Flash Memory addresses, check the ATxmega A or
ATxmega D User’s Guide, search for Flash Program Memory

Different ATxmegas have their Bootloader memory space at different addresses. The
compiler will determine the starting address of the Bootloader from the .xcl files below.
Note: The following is the IAR Compiler-generated default .xcl file, which links the

code to start in low flash memory space, after the interrupt vector table.
$TOOLKIT_DIR$\src\template\cfgxm32d4.xcl

Figure 9.1.1 Compiler supplied .xcl file

http://www.atmel.com/�

 AVR1327

 5
8435A-AVR-09/11

Figure 9.1.2 How to use a custom .xcl file

9.1.2 Figure 9.1.1 shows the .xcl linker file that is created by the IAR Linker as the
project is built. Figure 9.1.2 shows the format for using a custom .xcl file.
Notice the $PROJ_DIR$\ prefix to the .xcl file name.

9.1.3 In the Workspace directory, a custom link_bootloader32K.xcl is included and
may be modified with a different application start address. Search for the
following text and modify, if desired.

-D_..X_APPLICATION_SECTION_START= 2000 //Word address

9.1.4 Based on your choice of ATxmega, place the number 2000 or 4000 in the file at
the above instruction’s location, where 2000 is shown above.

9.1.5 Compile the project.

9.2 Selecting a different ATXmega

9.2.1 You may change to a different ATxmega if desired. Under IAR project General
Options, select your ATxmega Refer to Figure 9.2:

Figure 9.2. Options for ATxmega device selection

6 AVR1327
8435A-AVR-09/11

9.3 ATXmega Fuse settings necessary for Bootloader operation
The ATXmega has a jump-to-Bootloader fuse that must be enabled, so that the AVR
will begin execution at the beginning of the Bootloader code. As described above, this
will be 0x2000, 0x4000 (word address). The ATxmega BOOTRST fuse should be set to
Boot Loader Reset:

9.4 As code execution begins, two ways to enter the Bootloader code

Even after the Bootloader is correctly compiled and programmed into the ATxmega, the
Bootloader code will only be executed if one or both of the following conditions are met:

1. By asserting a low on a user defined IO port input pin, followed a reset release.
In this example this is PORTB pin 3. This pin is defined in main.c as follows:
 #define BOOT_PORT (PORTB)

2. By writing a wildcard to a defined EEPROM address. In this example the
EEPROM address is 0x00 and the wildcard is 0xAA. If this EEPROM location
contains 0x00, the ATxmega will begin execution of the Bootloader code, not
the application code.

Important: If a low level is asserted as in 1. above, that low level must be removed or
the Bootloader will be re-entered after every ATxmega Reset.

9.5 Debugging the code
You have the option of debugging this project using IAR, or Atmel AVR Studio® 4 or
Studio 5
5. Verify that your code address starts approximately 0x2000 or 0x4000 word

addresses, as described earlier in this app note.

 AVR1327

 7
8435A-AVR-09/11

6.

10. Master Commands to Bootloader

10.1 Bootloader Register and Memory Map
The registers that control and allow data to be sent to/from the Bootloader are located
in the following memory map. Notice how the registers are sequential, followed by the
Page Buffer, N bytes long. Following the N-byte-long page buffer is the Command
Register.

Figure 10.1 describes the number of bytes per page divided by 256.

Table 10.1 defines N.

 Figure 10.1 Bootloader Memory Map

8 AVR1327
8435A-AVR-09/11

11. Operation
The TWI Slave Bootloader control and data registers allow the TWI master to perform
actions such as Read Page Size, Erase Flash etc. In order for the TWI slave
Bootloader to perform an action, the TWI master must execute a TWI write cycle to a
specific register. Depending on the register address, the TWI master may need to write
additional values. Upon receiving this information, the TWI slave Bootloader performs
corresponding action. The TWI master can read the result of the operation by
performing a TWI read.

11.1 Bootloader Commands
This section describes the commands and data flow from/to Master and ATXmega
Slave.

 Addresses of Bootloader control and data registers are described in Table 11.1.
These registers have the format:

• SLA+R, a TWI Master reads the Bootloader register, SLA+R, followed by two
8-bit addresses. The 4th operation is reading the data.

• The registers are sequential. The Master may read or write the next register
with another Read command, SLA+R or ,SLA+W>, respectively.

• SLA+W, a TWI Master writes to the Bootloader register or SLA+W, followed by
two 8-bit addresses. Notice that some registers are read-only.

11.2 Auto-Increment of ATxmega Slave address

After the <SLA+W> or <SLA+R> operation is sent from the Master to the slave, the
next operation defines the destination register or buffer address. Additional operations
(other than <SLA+W> or <SLA+R>) will auto-increment the Slave register or buffer
address. See the section below titled Program Flash (0x04).

 AVR1327

 9
8435A-AVR-09/11

 Table 11.1 Bootloader Control Registers

11.3 The Command Register
In the above Table 11.1, notice the Command Register. This register is located in the
ATxmega SRAM memory map, just following the Data Buffer (which is typically 256 or
512 bytes in length).

 The address of this Command Register is 0x09 + 256*N, where N is defined in Table
10.1. 0x09 is necessary since it is the number of registers at the beginning of the
memory map.

For this above table, Table 11.1, N = 1, and N*256 = 256 = 0x100. . So, the Command
register address is formed as follows: 0x0A+0x100 = 0x10A.

• The lower 8 address bits are 0x09.

10 AVR1327
8435A-AVR-09/11

• The upper 8 address bits are 0x01.

11.3.1 Bootloader identification (test if Bootloader is in target ATxmega)

The Master may want to confirm that this particular ATxmega contains a functioning
Bootloader. The Bootloader is identified by the Master, by setting the Command Index
to four, then write two random bytes, followed by setting the address pointer to four and
read two bytes. The two bytes that were written should be read back in reverse order.
This operation will confirm that the Master is indeed communicating with TWI Slave
Bootloader,

<SLA+W>0x04 0x00 0xAA 0x55<s>

<SLA+R>0x04 0x00<rs>0x55 0xAA<s>

11.3.2 Reset (0x01)

To perform a reset operation, write 0x01 to the command register. In the below
example the address is formed as follows:

N = 1, and N*256 = 256 = 0x100. . So, the Command register address is formed as
follows: 0x09+0x100 +1= 0x10A

• The lower 8 address bits are 0x0A

• The upper 8 address bits are 0x01.

<SLA+W>0x0A 0x01 0x01<s>

The reset operation will immediately perform a reset, followed by code execution from
the beginning of the Bootloader code, if the entry conditions are met as described in
Section 9.5.

11.3.3 Application Execution (0x02)

If the input pin described in Section 9.5 is not shorted to ground, then this command
will

1. Write 0x00 into the EEPROM location 0x00, which prevents re-entry into the he
Bootloader.

2. Jump to the beginning of the application code.

<SLA+W>0x0A 0x01 0x02<s> Note that the 0x01 is actually the value of N,
which will change if the number of bytes per page changes.

11.3.4 Erase Flash (0x03)

This command will erase the whole flash except for the Bootloader. Again this example
uses N = 1, as described in the above examples.

<SLA+W>0x0A 0x01 0x03<s>

 AVR1327

 11
8435A-AVR-09/11

11.3.5 Program Flash (0x04)

In the following example, notice that the auto-increment feature is utilized, this allows
Slave registers to be accessed sequentially.

This command will take the flash page, previously loaded into the data buffer, and program
it into the ATxmega application memory which is specified in the address register. In
the example below, at ATxmega flash address 0x0001,

The command consists of the following TWI operations:

1. <SLA+W>0x06 0x00 TWI master sends Address command

2. 0x01 0x00 Write Flash 16-bit address: LSB, then MSB

3. 0x01 0x00 Write Flash Write length, 16-bit addr: LSB then
MSB

4. <SLA+W> 0x0A 0x04<s> TWI sends the Program Flash command

The TWI sequence is as follows:

<SLA+W>0x06 0x00 [Offset] 0x01 0x00 [Address] 0x00 0x01 [Length] <SLA+W>
0x0A 0x01 0x04 [Program Flash Command]<s>

The TWI Master may also send the above operations individually:

1. <SLA+W>0x06 0x00<s> TWI master sends Address register command

2. <SLA+W>0x01 0x00<s> Write Flash 16-bit address: LSB, then MSB

3. <SLA+W>0x01 0x00<s> Write Flash length, 16-bit as a 16-bit value:

 LSB then MSB

4. <SLA+W> 0x0A 0x01 0x04<s> TWI sends the Program Flash command

11.3.6 Program EEPROM (0x05)

This command is very similar to the Program Flash command, above. Program
EEPROM will take the EEPROM data page, previously loaded into the data buffer, and
program it into the ATxmega EEPROM memory at the location given in the address
register and the number of bytes given in the length register.

In the example that follows, three bytes are programmed three to EEPROM address
0x0005.

The command consists of the following TWI operations:

1. <SLA+W>0x06 0x00 TWI master sends Address register command

2. 0x05 0x00 Write EEPROM as a 16-bit address: LSB, then MSB

3. 0x03 0x00 Write EEPROM Write length, as 16-bit value: LSB then

 MSB

4. <SLA+W> 0x0A 0c01 0x05<s> TWI sends the Program EEPROM command

The TWI sequence is as follows:

12 AVR1327
8435A-AVR-09/11

<SLA+W>0x06 0x00 [Offset] 0x05 0x00 [Address] 0x03 0x00 [Length] [s>

<SLA+W>0x0A 0x01 0x04<s>

The TWI Master may also send the above operations individually:

1. <SLA+W>0x06 0x00<s> TWI master sends Address register command

2. <SLA+W>0x05 0x00<s> Write EEPROM address

3. <SLA+W>0x03 0x00<s> Write EEPROM length

4. <SLA+W> 0x0A 0x01 0x04<s> TWI sends the Program EEPROM command

11.3.7 Calculate CRC for Flash (0x06)

This command will cause the cyclic redundancy check to be calculated for the flash up
to and including the last page written.

In the below example it is assumed that the flash page is 256 bytes.

<SLA+W>0x0A 0x01 0x06<s>

<SLA+R>[2 Bytes read]<s>

Below is the routine implemented in C for calculating the CRC.

static uint16_t crc_ccitt_update(uint16_t crc, uint8_t data)

{

 data ^= crc & 0xFF;

 data ^= data << 4;

 return ((((uint16_t)data << 8) | ((crc & 0xFF00) >> 8)) ^ \

 (uint8_t)(data >> 4) ^ \

 ((uint16_t)data << 3));

}

11.3.8 Calculate CRC for EEPROM (0x07)

This command will cause the cyclic redundancy check to be calculated for the
EEPROM from the byte address in the address register and then over the next N bytes
– where N is set in the length register. In this example, it is assumed that the flash
page is 256 bytes.

<SLA+W>0x0A 0x01 0x07<s>

<SLA+R>[2 Bytes read]<s>

The routine for calculating the CRC is the same as the one outlined for the flash
memory.

 AVR1327

 13
8435A-AVR-09/11

12. Recommended Master-to-Slave transactions to Write ATxmega Flash
Figure 12.1 describes the sequence for the Master to issue a complete sequence for
writing a page of bytes to the ATxmega’s slave application code space. Notice in step
12 that this command writes a 0x00 into EEPROM. When the ATxmega is reset,
exeution will commence from the Reset Vector at 0x0000, not the Bootloader starting
address, which could be 0x2000, 0x4000 or other value.

Figure 12.1 Master-to-Salve transactions for a flash page write

14 AVR1327
8435A-AVR-09/11

13. Conclusion

The Atmel AVR XMEGA family devices contain a Bootloader Section, either 4Kbytes or
8 Kbytes. This Application Note refers to an IAR C-based project which is an ATxmega
Bootloader. This code may be modified by a user, or compiled as is and programmed
into an ATxmega device via an Atmel or 3rd party programmer

Under control of the TWI Master, the Bootloader is able to erase and program that flash
memory. EEPROM can also be erased and programmed.

As an IP protection feature, no method has been included in this code to read out the
contents of flash or EEPROM memories

14. References

1. IAR EVAVR C compiler, version 5.51, the 4K or Eval versions.

8435A-AVR-09/11

 Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

 Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Milennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

 Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

 Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chou-ku, Tokyo 104-0033
JAPAN
Tel: (+81) 3523-3551
Fax: (+81) 3523-7581

 © 2011 Atmel Corporation. All rights reserved.

Atmel®, Atmel logo and combinations thereof, AVR®, AVR® logo, AVR studio®, XMEGA®, and others are registered trademarks or
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS
ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION,
DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO
USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or
warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and
product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically
provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or
warranted for use as components in applications intended to support or sustain life.

www.atmel.com�

	1. Introduction
	2. Prerequisites
	3. Limitations
	4. Memory Protection
	5. Number System
	6. Abbreviations
	7. ATXmega target device resource requirements
	9.5 Debugging the code

	10. Master Commands to Bootloader
	10.1 Bootloader Register and Memory Map

	11. Operation
	11.3 The Command Register

	12. Recommended Master-to-Slave transactions to Write ATxmega Flash
	13. Conclusion
	14. References

