

AN1586

USB3503 Low Power Configurations

Author: Andrew Rogers,

Microchip Technology Inc.

INTRODUCTION

The USB3503 is the industry's first HSIC-based USB 2.0 hub controller designed specifically for portable consumer electronics products such as smartphones, tablets and e-readers. The USB3503 features one HSIC upstream port, 3 downstream USB 2.0 ports, and is designed to deliver the low-power and ultra-small footprint that portable product designers demand.

Minimizing power consumption, thus extending portable device battery life, is crucial for maintaining a competitive edge in the portable device market. This document contains information for portable product designers looking to minimize suspended state power consumption in designs containing the USB3503.

This document includes the following topics:

- · Low Power Modes Overview
- · Standard Suspend Mode
- · Reset Suspend Mode
- · Suspend Mode with Clock Power-Down

Audience

This document is written for developers who are familiar with USB/HSIC protocol and the various features of the USB3503 hub. The goal of this application note is to familiarize the reader with low power options for the USB3503 and to assist the developer with choosing the most appropriate configuration for their design.

LOW POWER MODES OVERVIEW

The USB3503 is designed to handle USB communication within a personal device, such as a mobile phone or tablet device. The low power configurations detailed in this application note are presented as if the hub was designed into a personal device, where battery consumption is a primary concern. In a typical application, the HSIC upstream connection will interface with the personal device's microprocessor/controller. A downstream port may be connected to a device such as a modem which may be used to send and receive calls. To conserve power consumption while there is no modem activity, it is desirable to place the USB hub into low-power, suspended state. It may also be desirable that hub be able to rapidly exit the suspended state when data is ready to be sent to the hub from the downstream port. This document presents three different options for minimizing hub power consumption while the hub is not in use:

- 1. Standard Suspend Mode
- 2. Reset Suspend Mode
- 3. Suspend Mode with Clock Power-Down

Table 1 describes the primary trade-offs associated with these configuration options.

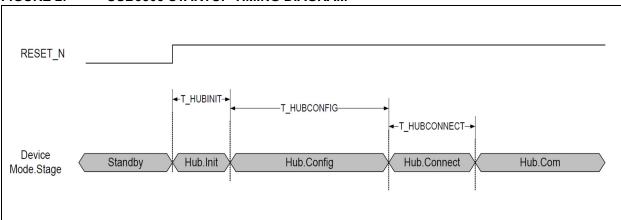
TABLE 1: LOW POWER CONSUMPTION MODES QUICK COMPARISON

Mode	Pros	Cons
Standard Suspend Mode	Fastest resume/wakeup Simplest implementation	Highest power consumption
Reset Suspend	Lowest power consumption	Slow resume/wakeup due to re- enumeration
Suspend Mode with Clock Power-Down	Fast resume/wakeup Reduced power consumption over standard suspend mode due to suspension of clock	Non-default hub configuration and additional chip-to-chip signaling required

STANDARD SUSPEND MODE

For standard suspend configuration, the hub may be left in its default configuration. While the hub is in a suspended state, the downstream USB 2.0 D+ line is kept high and the D- line is kept low. When a downstream device attempts to wake up the hub from suspend to prepare upstream devices for data transmission, the downstream D+ line is switched low and D- line is switched high. This signaling is interpreted by the hub and passed upstream via the HSIC lines to signal the upstream device to prepare for data transmission. A screen capture of a standard wakeup event on the USB3503 is shown in Figure 1.

While this method is fast, the hub must be kept in a low power suspended state while there is no USB activity. The clock signal is not interrupted when switching between states and thus continuously consumes power during the suspended state.


FIGURE 1: STANDARD WAKE-UP EVENT

RESET SUSPEND MODE

The second option to minimize hub power consumption is to completely power down the hub when there is no activity by asserting the RESET_N pin. This configuration offers the lowest amount of power consumption, but is significantly slower to resume to active hub operation. Additionally, a microcontroller must be used in this case to determine when to de-assert RESET_N, as the hub will not automatically respond to communication from the downstream lines while in this state. The hub must then be fully configured (if needed) and enumerated every time the hub must switch to an active state.

The hub startup stages are shown in Figure 2. Typical values for T_{HUBINIT}, T_{HUBCONFIG}, and T_{HUBCONNECT} are 3 ms, 95 ms, and 1 ms, respectively. After the hub startup sequence is complete, the hub must still be enumerated by the host before any data is transmitted, adding additional time delay until data may be transmitted upstream.

FIGURE 2: USB3503 STARTUP TIMING DIAGRAM

It is possible to cut down on the hub startup time by writing to register E7h, via SMBus address 8h, and forcing the hub to connect immediately instead of allowing the configuration timer to run out. Writing a "0" to bit [1] of this register will force the hub directly into the communication stage after asserted through a serial port write.

SUSPEND MODE WITH CLOCK POWER-DOWN

A third option to minimize hub power consumption modifies the role of the INT_N pin to signal the power-down and power-up of the reference clock when entering and exiting the suspended state. This option requires a specific configuration of the internal registers of the USB hub prior to enumeration. This configuration modifies the INT_N pin of the hub to behave in the following ways:

- INT_N asserted low: The hub is configured or not configured and is in USB suspend state.
- INT_N negated high: The hub is configured and is active.

Bit [6], named "IntSusp", of the internal register EEh must be changed to "1" through SMBus address 8h prior to USB attachment and enumeration. The default value of this register is 00h. Therefore, 40h should be written to the register to enable this mode. A constant clock signal to the hub must be maintained during configuration and enumeration. After hub attachment and enumeration, the INT_N signal can be utilized to signal the use of the clock. When the pin is asserted high, the clock must be on. When the pin is asserted low, the clock may be turned off. The hub can enter and exit the suspended state repeatedly as long as it is not powered down. If the hub is powered down, it must be reconfigured before enumeration.

The INT_N pin is open-drain, and can be pulled up to the voltage level that is required by the controller operating the clock. Excessive current draw must be addressed while the pin is pulled low with the placement of an appropriate resistor.

Figure 3 details how the INT_N signal behaves during an attempted wake-up with no clock signal present. Due to the absence of a clock signal, the wake-up signaling is never passed onto the HSIC lines and the hub will not exit its suspended state.

DATA

FIGURE 3: ATTEMPTED HUB WAKE-UP WITH NO CLOCK SIGNAL

Figure 4 details the occurrence when the INT_N signal triggers the startup of a clock signal. It takes approximately 1.2 ms to pass the wake-up signal from the downstream USB 2.0 lines to the upstream HSIC lines in the USB3503 hub.

FIGURE 4: HUB WAKE-UP SEQUENCE WITH INT_N TRIGGERED CLOCK SIGNAL

The clock signal must be triggered and reach a steady state within 10 ms of the INT_N signal assertion. Figure 5 details that even with a relatively long clock signal startup delay of just under 10 ms, the hub is still able to pass the wake-up signals to the upstream HSIC lines and resume its normal active state.

FIGURE 5: HUB WAKE-UP SEQUENCE WITH 10 MS DELAYED INT_N TRIGGERED CLOCK SIGNAL

NOTES:

APPENDIX A: REFERENCES

The following document should be referenced when using this application note. Contact your Microchip representative for availability.

• USB3503 Data Sheet

AN1586

APPENDIX B: REVISION HISTORY

Revision A (November 2013)

· Initial release of this document.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELoQ, KEELoQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

A more complete list of registered trademarks and common law trademarks owned by Standard Microsystems Corporation ("SMSC") is available at: www.smsc.com. The absence of a trademark (name, logo, etc.) from the list does not constitute a waiver of any intellectual property rights that SMSC has established in any of its trademarks.

All other trademarks mentioned herein are property of their respective companies.

© 2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-62077-512-7

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/

support
Web Address:

www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi. MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323

Fax: 317-773-5453

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong

Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830 Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102 Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39

Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

10/28/13