
 AN3007
 Getting Started with FreeRTOS on megaAVR® 0-series

Features
• Configuration and Basic Features of FreeRTOS™

• Debugging and Typical Errors
• Atmel | START Example Code

Introduction

Author: Eira Mørch-Thoresen, Microchip Technology Inc.

FreeRTOS is a real-time operating system kernel for embedded devices. It is designed to be small and simple, and
thus, does only consist of a few files written mostly in C.

Microcontrollers are often used for real-time embedded applications, meaning that the embedded system must be
able to respond to certain events within a strictly defined amount of time. To ensure that the system meets these
deadlines, the RTOS has a scheduler that decides which task to run at any instance of time.

The FreeRTOS provides features for tasks, task communication, and scheduling, and has become the de facto
standard real-time operating system (RTOS) for microcontrollers. The primary design goals of FreeRTOS are
robustness, ease of use and a small footprint.

This document starts by describing how FreeRTOS can be configured and then goes on to explain blocking
functions, inter-task communication schemes, and scheduling. A section about debugging is included as well, before
the section about the demo code. The application note also provides UML diagrams for each of the tasks in the
demo.

© 2019 Microchip Technology Inc. Application Note DS00003007B-page 1

Table of Contents

Features... 1

Introduction...1

1. Relevant Devices.. 3

1.1. megaAVR® 0-series... 3

2. Starting from Atmel | START... 4

3. Configuring FreeRTOS..5

3.1. Configure Clock and Tick Rate...5
3.2. Configuring Memory...5

4. Thinking Like an RTOS Developer..7

4.1. Tasks.. 9
4.2. Blocking Versus Non-Blocking Functions...9
4.3. Task Communication..10
4.4. Scheduling..11

5. Debugging in FreeRTOS...13

5.1. Heap Debugging.. 13
5.2. Checking for Stack Overflow..13
5.3. Trace.. 13

6. Demo...14

6.1. Required Hardware.. 14
6.2. Partitioning Into Tasks.. 15
6.3. Shared Resources..16
6.4. Implementation...16

7. Get Source Code from Atmel | START..25

8. Revision History.. 26

The Microchip Website...27

Product Change Notification Service..27

Customer Support.. 27

Microchip Devices Code Protection Feature.. 27

Legal Notice... 27

Trademarks.. 28

Quality Management System... 28

Worldwide Sales and Service...29

 AN3007

© 2019 Microchip Technology Inc. Application Note DS00003007B-page 2

1. Relevant Devices
This chapter lists the relevant devices for this document.

1.1 megaAVR® 0-series
The figure below shows the megaAVR® 0-series devices, laying out pin count variants and memory sizes:

• Vertical migration is possible without code modification, as these devices are fully pin and feature compatible.
• Horizontal migration to the left reduces the pin count and, therefore, the available features.

Figure 1-1. megaAVR® 0-series Overview

48 KB

32 KB

16 KB

8 KB

28
Pins

Flash

ATmega3208

ATmega4808

ATmega3209

ATmega808

ATmega1608 ATmega1609

ATmega809

ATmega4809

40 4832

Devices with different Flash memory sizes typically also have different SRAM and EEPROM.

 AN3007
Relevant Devices

© 2019 Microchip Technology Inc. Application Note DS00003007B-page 3

2. Starting from Atmel | START
The easiest way to create a FreeRTOS application is to download an example from Atmel | START and work from
there. This ensures that all FreeRTOS files will be included and working correctly. The demo code can then be
removed, and the application development can begin.

In this application note, the following Atmel | START example project is used: ATmega4809 FreeRTOS Example.

 AN3007
Starting from Atmel | START

© 2019 Microchip Technology Inc. Application Note DS00003007B-page 4

http://start.atmel.com/#examples/ATmega4809/FreeRTOS

3. Configuring FreeRTOS
FreeRTOS uses a configuration file called “FreeRTOSConfig.h”. By altering this, the FreeRTOS application can be
customized to behave in the desired manner. The configuration file must be included in the pre-processor path.

Typical configurations to alter are the memory size, stack options, as well as clock and tick rates. Additionally,
priorities and preemption of tasks can be configured. The configuration file contains a lot of options, and this
application note does only cover a subset of the available options. For a full overview, refer to https://
www.freertos.org/a00110.html.

3.1 Configure Clock and Tick Rate
A real-time operating system (RTOS) uses a system tick which is the time unit the timers are based on. FreeRTOS
uses the microcontroller's TCB0 timer to generate its own tick interrupt. The FreeRTOS kernel measures the time
using the tick, and every time a tick occurs, the scheduler checks if a task should be woken up or unblocked.

The configCPU_CLOCK_HZ define must be configured for the FreeRTOS timings to be correct. The frequency of the
TCB0 clock should be entered here. The TCB0 will by default operate at the same clock frequency as the CPU for
the devices listed in the “Relevant Devices” section.

The configTICK_RATE_HZ is used to determine the frequency of the RTOS tick interrupt. The tick rate should not
be set too high compared to the CPU frequency as there will be some CPU overhead every time the tick occurs.

If more than one task has the same priority, the RTOS scheduler will switch between these tasks at every tick if
configUSE_TIME_SLICING is set to 1. Using a higher tick rate will, therefore, cause the CPU time for each task to
be smaller. For example, if a tick rate of 1000 Hz is used, the time slice for each task will be T=1/f=1/1000 Hz, which
is 1 ms.

3.2 Configuring Memory
FreeRTOS has two memory allocation schemes: Static and dynamic allocation. Static memory allocation requires the
application itself to allocate and deallocate memory. This can be more difficult to implement but provides more
control. When using the dynamic allocation scheme, the memory allocation occurs automatically within the API
functions. The application only has to call the create and delete functions. To use dynamic allocation, set the
configSUPPORT_DYNAMIC_ALLOCATION define in the configuration file to 1.

With dynamic allocation, FreeRTOS needs to have a portion of RAM allocated for an area called the heap.
FreeRTOS functions ending with “Create” allocates memory on the heap. When creating a task by calling
xTaskCreate(), the memory will be allocated on the heap for that particular task consisting of a stack and a task
control block (TCB). The task stack size is defined when creating the task. Queues, mutexes, and semaphores will
also allocate heap memory when created. For tips on defining the right stack size, see the “Debugging in FreeRTOS”
section. Refer to the figure below for an illustration of how the FreeRTOS memory works.

When the dynamic allocation is used, configTOTAL_HEAP_SIZE needs to be sufficiently large. In other words, it
must be large enough to fit all the task stacks and other allocated memory. In the demo example, the heap size is set
to 0x800 (2048 bytes). To optimize the heap size, xPortGetFreeHeapSize() can be used. This function returns
the amount of unallocated heap. See the “Debugging in FreeRTOS” section for tips on how to find the correct heap
size.

There are five different heap implementations, named heap 1-5, available in FreeRTOS. To choose which heap
allocation to use, change the USE_HEAP define in the heap.c file found in the freeRTOS/portable/MemMang
folder.

The Atmel | START example uses the heap 1 implementation. Heap 1 is similar to static allocation in the way that
once the memory is taken, it cannot be freed or reallocated. Heap 1 is easy to debug but requires that tasks and
other FreeRTOS objects such as queues, semaphores, and mutexes are kept on the heap throughout the life of the
application, as creating and destroying these objects will make the application run out of memory.

 AN3007
Configuring FreeRTOS

© 2019 Microchip Technology Inc. Application Note DS00003007B-page 5

https://www.freertos.org/a00110.html
https://www.freertos.org/a00110.html

The heap 2 scheme does, unlike heap 1, allow memory to be freed, but should be used with care if the memory
allocated is of random size because it may cause the available free memory to become fragmented, which can result
in allocation failures.

Heap 3, 4 and 5 are more advanced schemes. For more information, refer to https://www.freertos.org/a00111.html.

Figure 3-1. FreeRTOS Memory

Free space

configTOTAL_HEAP_SIZE
Queue

TCB task1

Stack task1

TCB task2

Stack task2

3.2.1 Configuring the Stack
In FreeRTOS, each task has its own, separate stack. The task stacks are allocated on the heap when using dynamic
memory allocation. Except for the idle task, the stacks are allocated when calling xTaskCreate(), where one of the
input parameters is the stack size for the task.

The idle task is created when calling vTaskStartScheduler() to ensure that there is always at least one task that
is able to run. The idle task's stack size is given by configMINIMAL_STACK_SIZE in the configuration file.

It is important that the sum of allocated stack memory, as well as allocated memory from queues, semaphores, etc.,
does not exceed the heap size defined in configTOTAL_HEAP_SIZE.

 AN3007
Configuring FreeRTOS

© 2019 Microchip Technology Inc. Application Note DS00003007B-page 6

https://www.freertos.org/a00111.html

4. Thinking Like an RTOS Developer
Real-time programming and its strict time constraints change the way a developer thinks. Instead of using the typical
state machine implementation, the application is partitioned into multiple tasks. One task satisfies a portion of the
application, whereas another task has other responsibilities. For instance, in the Atmel | START example, there is one
task that blinks the LEDs, one task that writes the time to an OLED screen, and several other tasks with different
responsibilities. In a real-time system, these tasks run concurrently, and a portion of their code will be executed every
time the scheduler allows them to. This is different from the typical linear application code where everything is
evaluated sequentially and always in the same order.

If there are tasks that are more important than others and require faster response time, the RTOS can be configured
to allow higher priority tasks to interrupt lower priority ones. This is called preemption.

For the application to run correctly, it is important to make sure that the tasks do not interrupt each other at times
where it can cause harm. An example of this might be if a task reads the value of a shared resource before another
task is finished doing computations on it. Then the read value might be wrong, which again might cause other
problems. It is important to know how to use task communication to ensure mutual exclusion to prevent such errors.
This is discussed in the Task Communication section.

The figures below outlines a simple program sequence for homebrewing and what a transition from linear
programming to parallel or concurrent tasks would look like.

 AN3007
Thinking Like an RTOS Developer

© 2019 Microchip Technology Inc. Application Note DS00003007B-page 7

Figure 4-1. Linear Programming

Turn off
heater

End

Start

No

Yes

No

Yes

No

Yes

Wi-Fi®
ok?

Temp <
set_point?

Heater
enable
switch
on?

Measure
temperature

Send status
to server

Turn on heater

Turn off heater

LED on

LED off

Connect to
Wi-Fi®

 AN3007
Thinking Like an RTOS Developer

© 2019 Microchip Technology Inc. Application Note DS00003007B-page 8

Figure 4-2. Task Driven Code

No

Yes
Heater
enable
switch
on?

LED off

LED on No

Yes

Heater
enable
switch
on?

Turn off
heater

No

YesTemp <
set_point?

Turn off
heater

Turn on
heater

End

End

End
End

StartStartStartStart

Measure
temperature

Send status
to server

Connect to
Wi-Fi®

Heater taskTemperature taskUI taskWi-Fi® task

4.1 Tasks
A task is created by calling the function xTaskCreate(taskName, pcName, stackDepth, pvParameters,
priority, pxCreatedTask). Tasks are typically implemented as an infinite loop. See the example below on how
to implement a task.

xTaskCreate(exampleTask, "example", configMINIMAL_STACK_SIZE, NULL, 1, NULL);

void exampleTask(void *pvParams){
 while(1){
 //do task work
 }
}

4.2 Blocking Versus Non-Blocking Functions
A blocking function blocks a task from continued execution. When a task gets blocked, the RTOS will switch
execution to a different task. This optimizes the CPU utilization because there will never be cycles where the CPU is
doing nothing.

Typically tasks will block when they call a delay function, when they are waiting for communication or resources used
by other tasks, or when an interrupt (ISR) is called. When calling vTaskDelay(ticksToDelay), the task will block
for as many ticks as specified. The actual time the task will block depends on the tick rate which is specified in the
configuration file.

When tasks share resources, they must wait for each other to finish using the resource before they can start using it
themselves. Waiting for a resource like this is also called blocking. In order to create such behavior, semaphores and
mutexes can be used. A more thorough explanation of shared resources and synchronization is found in the next
section.

 AN3007
Thinking Like an RTOS Developer

© 2019 Microchip Technology Inc. Application Note DS00003007B-page 9

4.3 Task Communication
FreeRTOS offers five primary inter-task communication mechanisms: queues, semaphores, mutexes, stream buffers,
and message buffers. Common for all of these is that they can cause tasks to block if the resource or data is not
available. For example, if a task wants to insert an element into a full queue, it will end up waiting (blocking) for some
time, and then again check if there is any available space in the queue.

4.3.1 Queue
Queues offer inter-task communication of a user-definable fixed length. The developer specifies the message length
when creating the queue. This is done by calling QueueHandle_t queueName =
xQueueCreate(queueLength, elementSize). The input parameter queueLength specifies the number of
elements the queue can hold. elementSize specifies the size of each element in bytes. All elements in the queue
must be of equal size. When the queue is created, tasks can communicate with each other by sending and receiving
data through the queue. The queue is of FIFO structure (first in/first out) such that the receiver will always receive the
item that was first inserted.

The functions for sending to and receiving from a queue are:
xQueueSend(queueName, *itemToQueue, ticksToWait)
xQueueReceive(queueName, *buffer, ticksToWait)

The last argument, ticksToWait, specifies how long the sending task should block when waiting for available
space in a full queue. Similarly, it specifies how long a receiving task will block when waiting to receive any elements
from an empty queue. The define portMAX_DELAY can be used here. If INCLUDE_vTaskSuspend in the
configuration file is set to 1, then portMAX_DELAY will cause the task to block indefinitely (without a time-out). If set
to 0, the blocking time will be 0xFFFF.

If the send and receive functions are to be called form an ISR, xQueueSendFromISR() and
xQueueReceiveFromISR() must be used.

4.3.2 Semaphore
Semaphores are used for synchronization and to control access to shared resources between tasks. A semaphore
can either be binary or counting and is essentially just a non-negative integer count.

A binary semaphore is initialized to 1 and can be used to guard a resource that can only be handled by one task at a
time. When a task takes the resource, the semaphore is decremented to 0. If another task then wants to use the
resource and sees that the semaphore is 0, it blocks. When the first task is finished using the resource, the
semaphore is incremented and is thus available to other tasks. A binary semaphore can be created with
SemaphoreHandle_t semaphoreName = xSemaphoreCreateBinary(void).

A counting semaphore works in the same manner, but for resources that can be used by multiple tasks at once. For
example, if you have a parking garage with room for 10 cars, you can allow 10 semaphore access. Every time a car
enters, the semaphore will be decremented by 1 until it reaches 0 and no one is allowed entrance before someone
leaves. A counting semaphore should be initialized to the number of tasks that can have concurrent access to the
resource and is created with SemaphoreHandle_t semaphoreName =
xSemaphoreCreateCounting(maxCount, initialCount).

When a task wants a resource protected by a semaphore, it calls the function xSemaphoreTake(semaphoreName,
ticksToWait). If the semaphore evaluates to 0, the task will block for the time specified in ticksToWait. When a
task is finished using the semaphore, the function xSemaphoreGive(semaphoreName) is called.

4.3.3 Mutex
A mutex is a lot like a binary semaphore, but in addition, it provides a priority inheritance mechanism. If a high priority
task gets blocked from accessing a resource that is already taken by a lower priority task, the lower priority task will
inherit the priority of the high priority task until it has released the mutex. This ensures that the blocking time of the
high priority task is minimized since the low priority task now cannot be preempted by other medium priority tasks.

A mutex is created by using the semaphoreHandle_t mutexName = xSemaphoreCreateMutex(void)
function.

 AN3007
Thinking Like an RTOS Developer

© 2019 Microchip Technology Inc. Application Note DS00003007B-page 10

Mutexes should not be used from an interrupt because the priority inheritance mechanism only makes sense for a
task, and not for an interrupt.

4.3.4 Stream Buffer
Stream buffers transfer data between two tasks, or from an ISR to a task. Unlike queues, the stream buffer assumes
that there is only one reader and only one writer. When creating a stream buffer, the maximum size of the buffer is
specified. As the name implies, a stream buffer allows a stream of bytes to be transferred between a writer and a
reader. The byte stream can be of an arbitrary length as long as it is within the size of the buffer.

A stream buffer is created using the function xStreamBufferCreate(BufferSizeBytes,
TriggerLevelBytes). The first input argument specifies the total number of bytes the buffer is able to hold. The
second argument, the trigger level, specifies the number of bytes that must be in the buffer before a blocked receiver
is moved out of the blocked state.

The sender may block if the buffer is full. How long the sender task should block while waiting for data is given by a
time-out that is set in the send function. Similarly, a receiver will block if the buffer is empty.

Unlike a queue, the sender is not required to have the complete message ready before putting it in the buffer.

The send and receive functions are shown below.
xStreamBufferSend(streamBuffer, *pvTxData, dataLengthBytes, ticksToWait);
xStreamBufferReceive(streamBuffer, *pvRxData, bufferLengthBytes, ticksToWait);

4.3.5 Message Buffer
Message buffers work a lot like stream buffers, but instead of having the receiver request a certain amount of data,
the first part of the message specifies the message length. Additionally, a message can only be read out as the
length specified, and not as individual bytes.

Message buffers are implemented using stream buffers, so the assumption of only one reader and one writer applies
here as well. The message buffer also works in the same way as the stream buffer such that a sender will block if the
buffer is full, and a receiver will block if the buffer is empty.

A message buffer is created with the function xMessageBufferCreate(bufferSizeBytes). The size specified
should equal the total number of bytes (not messages) the buffer should be able to contain.

Sending and receiving data is done by using the functions below.
xMessageBufferSend(messageBuffer, *pvTxData, xDataLengthBytes, ticksToWait);
xMessageBufferReceive(messageBuffer, *pvRxData, bufferLengthBytes, ticksToWait);

4.4 Scheduling
Scheduling is the software deciding which task to run at what time. FreeRTOS has two modes of operation when it
comes to handling task priorities: With and without preemption. Which mode to use can be set in the configuration
file. When using the mode without preemption, also called cooperative mode, it is up to the developer to make tasks
that yield the CPU through the use of blocking functions and the taskYIELD() function.

When using a preemptive scheduler, a task will automatically yield the CPU when a task of higher priority becomes
unblocked. However, there is one exception: When a higher priority task blocks from an ISR, the
taskYIELD_FROM_ISR() function has to be called at the end of the ISR for a task switch to occur.

If configUSE_TIME_SLICING is set to 1, the scheduler will also preempt tasks of equal priority at each time the tick
occurs. Time slicing is not available in cooperative mode.

In both modes, the scheduler will always switch to the highest priority unblocked task. If there are multiple tasks
unblocked with the same priority, the scheduler will choose to execute each task in turn. This is commonly referred to
as round robin scheduling.

In the preemptive mode, higher priority tasks are immediately switched to when they get unblocked. In the
cooperative mode, the release of a semaphore might unblock a higher priority task, but the actual task switch will only
happen when the currently executing task calls the taskYIELD() function or enters a blocking state.

 AN3007
Thinking Like an RTOS Developer

© 2019 Microchip Technology Inc. Application Note DS00003007B-page 11

For more information on scheduling, see the “Scheduling Algorithms” section in the Mastering the FreeRTOS Real
Time Kernel - a Hands On Tutorial Guide.

 AN3007
Thinking Like an RTOS Developer

© 2019 Microchip Technology Inc. Application Note DS00003007B-page 12

https://www.freertos.org/Documentation/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
https://www.freertos.org/Documentation/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf

5. Debugging in FreeRTOS
This section will cover some of the most common errors and provide some information on how to solve them.

5.1 Heap Debugging
Problems concerning the heap might occur due to the allocated heap memory size being too small, or the choice of
heap implementation doesn’t suit the application.

The function xPortGetFreeHeapSize() returns the total amount of heap space that remains unallocated when
called. If this is very small, increasing the heap size might be considered.

Choosing a heap implementation that is not suiting the application can also cause trouble. As mentioned in the
“Configuring Memory” section, there are five different heap implementations. Some of them do not free allocated
memory, while others have problems with allocating memory of random size. The heap requirements for the specific
application must be considered. See https://www.freertos.org/a00111.html for more information on each heap
implementation.

5.2 Checking for Stack Overflow
A stack overflow is a very common source of support requests, but FreeRTOS provides some features to help debug
such issues.

Stack overflow occurs when a task tries to push more elements on the stack than there is room for. The stack size is
specified when a task is created. To find out how close a task is to overflowing its stack, the
uxTaskGetStackHighWaterMark(TaskHandle_t xTask) function can be used. It returns the minimum of
unused stack in words. If an 8-bit MCU is used, a return value of 1 will mean 1 byte. For a 32-bit MCU, 1 word means
4 bytes. To use this function, the INCLUDE_uxTaskGetStackHighWaterMark must be set to 1 in the configuration
file.

It is also possible to check for stack overflow during run-time. By setting the configCHECK_FOR_STACK_OVERFLOW
to 1, the kernel checks that the stack pointer remains within the valid stack space. If not, the stack overflow hook
function is called. A hook function is a function that allows the application to react when something happens and
provide different behavior. For example, an LED can be turned on when a stack has overflowed. Another option might
be to print an error message and reboot the system. The vApplicationStackOverflowHook() function must be
provided by the application.

See https://www.freertos.org/Stacks-and-stack-overflow-checking.html for more information about FreeRTOS and
stack overflow.

5.3 Trace
Tracealyzer, previously known as FreeRTOS+Trace, is an analysis tool that collects data on how the embedded
application is behaving. This data is valuable when troubleshooting or optimizing the performance of the application.
Tracealyzer provides a graphic visualization of when which of the tasks get to run, and this can be helpful to find
problems such as starvation. Refer to the application note FreeRTOS™ Using Percepio® Trace on ATmega4809 for
an explanation of how to use Tracealyzer in Atmel Studio. For even more information, see https://www.freertos.org/
FreeRTOS-Plus/FreeRTOS_Plus_Trace/RTOS_Trace_Instructions.shtml.

 AN3007
Debugging in FreeRTOS

© 2019 Microchip Technology Inc. Application Note DS00003007B-page 13

https://www.freertos.org/a00111.html
https://www.freertos.org/Stacks-and-stack-overflow-checking.html
https://www.microchip.com/wwwAppNotes/AppNotes.aspx?appnote=en607259
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_Trace/RTOS_Trace_Instructions.shtml
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_Trace/RTOS_Trace_Instructions.shtml

6. Demo
The FreeRTOS example for the ATmega4809 in Atmel | START is available here: http://start.atmel.com/#examples/
ATmega4809/FreeRTOS. The required hardware is the ATmega4809 Xplained Pro, and an OLED1 Xplained Pro
connected via EXT3. The demo application blinks an LED while displaying the time on the OLED display. Pushing a
button will also light up the corresponding LED and simultaneously update the OLED display to reflect the last button
event.

6.1 Required Hardware
Required hardware for the Atmel | START example project is described below.

6.1.1 ATmega4809 Xplained Pro Evaluation Kit
The ATmega4809 Xplained Pro evaluation kit is a hardware platform for evaluating the ATmega4809 AVR®

microcontroller (MCU).

Figure 6-1. ATmega4809 Xplained Pro

Webpage: https://www.microchip.com/developmenttools/ProductDetails/atmega4809-xpro.

6.1.2 OLED1 Xplained Pro Extension Kit
OLED1 Xplained Pro is an extension kit with a 128x32 OLED display, three LEDs and three push buttons. It connects
to the extension headers of any Xplained Pro evaluation kit.

 AN3007
Demo

© 2019 Microchip Technology Inc. Application Note DS00003007B-page 14

http://start.atmel.com/#examples/Atmega4809/FreeRTOS
http://start.atmel.com/#examples/Atmega4809/FreeRTOS
https://www.microchip.com/developmenttools/ProductDetails/atmega4809-xpro

Figure 6-2. OLED1 Xplained Pro

Webpage: https://www.microchip.com/developmenttools/ProductDetails/ATOLED1-XPRO.

6.2 Partitioning Into Tasks
The overall goal of the example application is to blink an LED, handle button pushes and display the time on an
OLED screen. Revisit the way of thinking described in section “Thinking like an RTOS developer”. Accordingly, the
different jobs are partitioned into individual tasks.

When thinking about what the application should do, it seems useful to have one task that is responsible for the LED
blinking every 250 ms. The handling of the buttons pushed should also be an individual task. There is also a need for
some sort of clock handling and a way to write to the OLED without causing any conflict because of simultaneous
writing.

The example uses seven tasks, two queues, a mutex, a stream buffer and a message buffer. The section
“Implementation” will go into detail on how these tasks are implemented. Below is a short description of each task
and the communication methods they use.

Status LED Task

Blinks the LED0 on the ATmega4809 Xplained Pro every 250 ms. Uses no communication.

Keyboard Task

Detects if the state of one of the keys (buttons) changes, that is, if a button is pushed or released. Sends the updated
key state to a queue called key_queue.

Main Task

Receives the updated key states through the key_queue, and creates a string to be printed on the OLED screen.
Before writing, the task asks for a mutex protecting the screen called oled_semaphore. The task also sends info
about pushed buttons to led_queue.

LED Task

Receives information about the latest button events through led_queue and sets the state of the LEDs accordingly.

Clock Task

Increments the time every second and writes to the OLED screen after taking the oled_semaphore. Can also set a
new time if requested.

 AN3007
Demo

© 2019 Microchip Technology Inc. Application Note DS00003007B-page 15

https://www.microchip.com/developmenttools/ProductDetails/ATOLED1-XPRO

Terminal Transmit Task

Receives information on a message buffer called terminal_tx_buffer, and then puts this to the USART TX
buffer.

Terminal Receive Task

Receives information through a stream buffer called terminal_rx_buffer and can, based on the received
message, request the clock task to set a new time.

6.3 Shared Resources
A shared resource in this application is the OLED screen. Both the main task and the clock task want to write to the
display, but only one can do so at a time. If two tasks try to write to the screen simultaneously, the program might
crash, or we could get some unpredictable behavior. The process of writing to the OLED is, therefore, protected by a
mutex.

6.4 Implementation
This section provides a short explanation of the implementation of each task. UML diagrams are also provided for
each task. UML stands for Unified Modeling Language and provides a standard way to visualize the design of a
system. For the diagrams used in this document, parts that have to do with FreeRTOS are colored gray.

The initialization of drivers and FreeRTOS, as well as the creation of the tasks, is done in main, as shown in the
figure below.

Figure 6-3. Initialization of Tasks and Drivers

main()

Initialize drivers
and FreeRTOS

tsk_LED

tsk_status_LED

tsk_clk

tsk_term_rx

tsk_term_tx

tsk_keyboard

tsk_main

 AN3007
Demo

© 2019 Microchip Technology Inc. Application Note DS00003007B-page 16

6.4.1 Status LED Task
This is perhaps the simplest task of the application. It does only consist of an LED toggling function and a delay of
250 ms. The delay function takes the number of ticks as an input parameter. To convert ms into ticks, the function
pdMS_TO_TICKS(250) is used. The UML diagram is shown in the figure below.

Figure 6-4. Status LED Task

tsk_status_LED

FreeRTOSDelay 250 ms

Toggle LED

6.4.2 The Keyboard Task
The keyboard task tsk_keyboard() is the task that handles the button pushes. If the state of one of the buttons is
changed, the new state is put into the key_queue. The receiver of the key_queue is the main task which is
described in the next section. Refer to the figure below for the UML diagram.

 AN3007
Demo

© 2019 Microchip Technology Inc. Application Note DS00003007B-page 17

Figure 6-5. Keyboard Task

No

Yes

Key
update?

tsk_keyboard

n++
if n == max : n = 0

FreeRTOS
Send new

key state on
key_queue

check_key(n)

6.4.3 The Main Task
The tsk_main() task receives what is put on the key_queue by the keyboard task. Based on the received info it
creates a string that reflects the last button event. The string is then written to the OLED. Examples of such strings
are “Button 2 Released” and “Button 1 Pushed”.

The main task also sends the info about the pushed buttons to the led_queue such that the corresponding LED will
be lit. See the figure below for the UML diagram of the main task.

 AN3007
Demo

© 2019 Microchip Technology Inc. Application Note DS00003007B-page 18

Figure 6-6. Main Task

No

Yes Key zero?

tsk_main

FreeRTOS

FreeRTOS

Give OLED semaphore

Ask for OLED
semaphore, set

time-out

Write string to OLED

Create string

FreeRTOSSend
message to LED

queue

FreeRTOS
Receive

message from key
queue, wait
indefinitely

Time-out

Semaphore received

6.4.4 The LED Task
The responsibility of the LED task is to light up the LEDs that belong to the pushed buttons and to turn off the LEDs
of the buttons that are not pushed. The LED will be lit for as long as the button is held down. The information about

 AN3007
Demo

© 2019 Microchip Technology Inc. Application Note DS00003007B-page 19

the recent button events is received through the led_queue. As mentioned in the previous section, it is the main
task that sends to this queue. Refer to the figure below for the UML diagram.

Figure 6-7. LED Task

No

Yes

Valid
message?

tsk_LED

set_led_state

FreeRTOS
Receive

message from LED
queue, wait
indefinitely

6.4.5 The Clock Task
The clock task is responsible for writing the time to the OLED every second. This is done by taking the
oled_semaphore when writing. The clock task is also responsible for incrementing the time every second. See the
figure below for the UML diagram.

 AN3007
Demo

© 2019 Microchip Technology Inc. Application Note DS00003007B-page 20

Figure 6-8. Clock Task

No

Update
time?

tsk_clk

FreeRTOS

FreeRTOS

FreeRTOS

Yes

Give OLED semaphore

Ask for OLED
semaphore, set

time-out

Delay 1s from
last delay

Write string to OLED

Construct string

Set new timeAdd one second

xTaskGetTickCount()

Time-out

Semaphore received

6.4.6 The Terminal Transmit Task
The terminal transmit task is responsible for sending what it receives on a message buffer called
terminal_tx_buffer via the USART, as shown in the figure below.

 AN3007
Demo

© 2019 Microchip Technology Inc. Application Note DS00003007B-page 21

Figure 6-9. Terminal Transmit Task

FreeRTOS

uart_put_string()

Receive string from
TX message buffer,

wait indefinitely

uart_init()

tsk_term_tx

6.4.7 The Terminal Receive Task
The ISR puts the received USART data on a stream buffer called terminal_rx_buffer. The terminal receive task
is then taking the received data on the terminal_rx_buffer, and based on the received message, calls an
update time function unless a time-out has occurred. The terminal receive task reports back to the terminal transmit
task via the terminal_tx_buffer about the latest event, whether the time was set or if the request timed out.
Refer to the figure below for the UML diagram.

 AN3007
Demo

© 2019 Microchip Technology Inc. Application Note DS00003007B-page 22

Figure 6-10. Terminal Receive Task

Switch

FreeRTOS

Write
"time set" to TX
message buffer

Raise flag to update
time with new_time

Receive bytes and
update new_time

Receive bytes and
update new_time

tsk_term_rx

FreeRTOS

Write
"Unknown command"

to TX message
buffer

Receive bytes and
update new_time

FreeRTOSReceive one
byte from RX
stream buffer,

wait indefinitely

?

'e'

's'

'm'

'h'

The figure below shows a more in-depth description of the “receive bytes and update new_time” block.

 AN3007
Demo

© 2019 Microchip Technology Inc. Application Note DS00003007B-page 23

Figure 6-11. Receive Bytes and Update Time

Receive and update time
FreeRTOS

FreeRTOS

Report time-out via
TX message buffer

Receive two
bytes from RX stream

buffer, set time-out

Update new_time

Time-out

The communication between the two terminal tasks as well as the USART communication is described in the figure
below.

Figure 6-12. Communication Between the Terminal Transmit Task and the Terminal Receive Task

uart_put_s(tx_buf)

Terminal

Clock
functions

Message
buffer

tsk_term_tx

tsk_term_rx ISR
RX

TX
USART

uart_get_c()Stream buffer

 AN3007
Demo

© 2019 Microchip Technology Inc. Application Note DS00003007B-page 24

7. Get Source Code from Atmel | START
The example code is available through Atmel | START, which is a web-based tool that enables configuration of
application code through a Graphical User Interface (GUI). The code can be downloaded for both Atmel Studio and
IAR Embedded Workbench® via the direct example code-link below or the Browse examples button on the Atmel |
START front page.

The Atmel | START webpage: http://start.atmel.com/

Example Code

ATmega4809 FreeRTOS Example
Click User guide in Atmel | START for details and information about example projects. The User guide button can be
found in the example browser, and by clicking the project name in the dashboard view within the Atmel | START
project configurator.

Atmel Studio

Download the code as an .atzip file for Atmel Studio from the example browser in Atmel | START by clicking
Download selected example. To download the file from within Atmel | START, click Export project followed by
Download pack.

Double click the downloaded .atzip file, and the project will be imported to Atmel Studio 7.0.

IAR Embedded Workbench

For information on how to import the project in IAR Embedded Workbench, open the Atmel | START User Guide,
select Using Atmel Start Output in External Tools, and IAR Embedded Workbench. A link to the Atmel | START User
Guide can be found by clicking Help from the Atmel | START front page or Help And Support within the project
configurator, both located in the upper right corner of the page.

 AN3007
Get Source Code from Atmel | START

© 2019 Microchip Technology Inc. Application Note DS00003007B-page 25

http://start.atmel.com/
http://start.atmel.com/#examples/ATmega4809/FreeRTOS
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-START-User-Guide-DS50002793A.pdf

8. Revision History
Doc. Rev. Date Comments

B 12/2019 Removed tiny0 and 1 from Relevant Devices section. Updated flow charts in Thinking Like an
RTOS Developer section.

A 04/2018 Initial document release.

 AN3007
Revision History

© 2019 Microchip Technology Inc. Application Note DS00003007B-page 26

The Microchip Website
Microchip provides online support via our website at http://www.microchip.com/. This website is used to make files
and information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service
Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to http://www.microchip.com/pcn and follow the registration instructions.

Customer Support
Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: http://www.microchip.com/support

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is one of the most secure families of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these

methods, to our knowledge, require using the Microchip products in a manner outside the operating
specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of
intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code

protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection
features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital
Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you
may have a right to sue for relief under that Act.

Legal Notice
Information contained in this publication regarding device applications and the like is provided only for your
convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with

 AN3007

© 2019 Microchip Technology Inc. Application Note DS00003007B-page 27

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER
EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such
use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless
otherwise stated.

Trademarks
The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control,
HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus,
ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider,
Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP,
INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad
I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense,
ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2019, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-5219-5

Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit http://www.microchip.com/quality.

 AN3007

© 2019 Microchip Technology Inc. Application Note DS00003007B-page 28

http://www.microchip.com/quality

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
http://www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2019 Microchip Technology Inc. Application Note DS00003007B-page 29

http://www.microchip.com/support
http://www.microchip.com

	Features
	Introduction
	Table of Contents
	1. Relevant Devices
	1.1. megaAVR® 0-series

	2. Starting from Atmel | START
	3. Configuring FreeRTOS
	3.1. Configure Clock and Tick Rate
	3.2. Configuring Memory
	3.2.1. Configuring the Stack

	4. Thinking Like an RTOS Developer
	4.1. Tasks
	4.2. Blocking Versus Non-Blocking Functions
	4.3. Task Communication
	4.3.1. Queue
	4.3.2. Semaphore
	4.3.3. Mutex
	4.3.4. Stream Buffer
	4.3.5. Message Buffer

	4.4. Scheduling

	5. Debugging in FreeRTOS
	5.1. Heap Debugging
	5.2. Checking for Stack Overflow
	5.3. Trace

	6. Demo
	6.1. Required Hardware
	6.1.1. ATmega4809 Xplained Pro Evaluation Kit
	6.1.2. OLED1 Xplained Pro Extension Kit

	6.2. Partitioning Into Tasks
	6.3. Shared Resources
	6.4. Implementation
	6.4.1. Status LED Task
	6.4.2. The Keyboard Task
	6.4.3. The Main Task
	6.4.4. The LED Task
	6.4.5. The Clock Task
	6.4.6. The Terminal Transmit Task
	6.4.7. The Terminal Receive Task

	7. Get Source Code from Atmel | START
	8. Revision History
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

