
Section 4. Program Memory
Program
 M

em
ory

4

HIGHLIGHTS
This section of the manual contains the following topics:

4.1 Program Memory Address Map ... 4-2
4.2 Control Register ... 4-4
4.3 Program Counter ... 4-6
4.4 Program Memory Access Using Table Instructions ... 4-7
4.5 Program Space Visibility from Data Space... 4-12
4.6 Program Memory Writes .. 4-16
4.7 Register Maps.. 4-17
4.8 Related Application Notes.. 4-18
4.9 Revision History ... 4-19
© 2010 Microchip Technology Inc. DS70203D-page 4-1

dsPIC33F/PIC24H Family Reference Manual
4.1 PROGRAM MEMORY ADDRESS MAP
Figure 4-1 illustrates that the dsPIC33F/PIC24H devices have a 4M x 24-bit program memory
address space. Three methods are available for accessing program space.

• Through the 23-bit (Program Counter) PC
• Through table read (TBLRD) and table write (TBLWT) instructions
• By mapping a 32-Kbyte segment of program memory into the data memory address space

The program memory map is divided into the user program space and the user configuration
space. The user program space contains the Reset vector, interrupt vector tables, and program
memory. The user configuration space contains nonvolatile configuration bits for setting device
options and the device ID locations.

Note: This family reference manual section is meant to serve as a complement to device
data sheets. Depending on the device variant, this manual section may not apply
to all dsPIC33F/PIC24H devices.

Please consult the note at the beginning of the “Program Memory” chapter in the
current device data sheet to check whether this document supports the device you
are using.

Device data sheets and family reference manual sections are available for
download from the Microchip Worldwide Web site at: http://www.microchip.com

Note: If the RETURN instruction is placed at the end of the program memory, an Illegal
Address Error Trap will be generated by the device during run-time, as a result of
the instruction prefetch operation which would try to preload the next instruction
from an unimplemented memory location. The solution is to leave 2 extra instruction
words available after the RETURN instruction so that the compiler can place NOP and
RESET instructions at the end of the program memory.
DS70203D-page 4-2 © 2010 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com

Section 4. Program Memory
Program

 M
em

ory

4

Figure 4-1: Example Program Memory Map

Reset Address
0x000000

0x0000FE

0x000002

0x000100

Device Configuration

User Program
Flash Memory

0x002000
0x001FFE

(4K instructions)

0x800000

0xF80000
Registers 0xF80017

0xF80018

DEVID (2)

0xFEFFFE
0xFF0000
0xFFFFFE

0xF7FFFE

Unimplemented

(Read ‘0’s)

GOTO Instruction

0x000004

Reserved

0x7FFFFE

Reserved

0x000200
0x0001FE
0x000104

Alternate Vector Table
Reserved

Interrupt Vector Table

C
on

fig
ur

at
io

n
M

em
or

y
Sp

ac
e

U
se

r M
em

or
y

Sp
ac

e

Note: The address boundaries for user Flash program memory will depend on the
dsPIC33F/PIC24H device variant selected. For further details, refer to the specific device
data sheet.
© 2010 Microchip Technology Inc. DS70203D-page 4-3

dsPIC33F/PIC24H Family Reference Manual
4.2 CONTROL REGISTER

Register 4-1: CORCON: Core Control Register

U-0 U-0 U-0 R/W-0 R/W-0 R-0 R-0 R-0
— — — US EDT DL<2:0>

bit 15 bit 8

R/W-0 R/W-0 R/W-1 R/W-0 R/C-0 R/W-0 R/W-0 R/W-0
SATA SATB SATDW ACCSAT IPL3 PSV RND IF

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-3 Not used by the Program Memory
For full description of the CORCON bits, refer to Section 2. “CPU” (DS70204).

bit 2 PSV: Program Space Visibility in Data Space Enable bit
1 = Program space visible in data space
0 = Program space not visible in data space

bit 1-0 Not used by the Program Memory
For full description of the CORCON bits, refer to Section 2. “CPU” (DS70204).

Register 4-2: PSVPAG: PSV Page Register

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
— — — — — — — —

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
PSV Address Page bits

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-8 Unimplemented: Read as ‘0’
bit 7-0 PSV Address Page bits

The 8-bit PSV Address Page bits are concatenated with the 15 Least Significant bits (LSbs) of the W
register, to form a 23-bit effective program memory address.
DS70203D-page 4-4 © 2010 Microchip Technology Inc.

Section 4. Program Memory
Program

 M
em

ory

4

Register 4-3: TBLPAG: Table Page Register

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
— — — — — — — —

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
Table Address Page bits

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-8 Unimplemented: Read as ‘0’
bit 7-0 Table Address Page bits

The 8-bit Table Address Page bits are concatenated with the W register, to form a 23-bit effective
program memory address plus a byte select bit.
© 2010 Microchip Technology Inc. DS70203D-page 4-5

dsPIC33F/PIC24H Family Reference Manual
4.3 PROGRAM COUNTER
The Program Counter (PC) increments by two with the Least Significant bit (LSb) set to ‘0’ to
provide compatibility with data space addressing. Sequential instruction words are addressed in
the 4M program memory space by PC<22:1>. Each instruction word is 24 bits wide.

The LSb of the program memory address (PC<0>) is reserved as a byte select bit for program
memory accesses from data space that use Program Space Visibility or table instructions. For
instruction fetches via the PC, the byte select bit is not required. Therefore, PC<0> is always set
to ‘0’.

Figure 4-2 illustrates an instruction fetch example. Note that incrementing PC<22:1> by one is
equivalent to adding 2 to PC<22:0>.

Figure 4-2: Instruction Fetch Example

22 0

Program Counter 0

0x000000

0x7FFFFE

24 bits

In
st

ru
ct

io
n

Instruction
23

+1(1)
2423 User

Space

La
tc

h

Note 1: Increment of PC<22:1> is equivalent to PC<22:0>+2.
DS70203D-page 4-6 © 2010 Microchip Technology Inc.

Section 4. Program Memory
Program

 M
em

ory

4

4.4 PROGRAM MEMORY ACCESS USING TABLE INSTRUCTIONS
The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the least
significant word (lsw) of any address within program space without going through data space,
which is preferable for some applications. The TBLRDH and TBLWTH instructions are the only
method whereby the upper 8 bits of a program word can be accessed as data.

4.4.1 Table Instruction Summary
A set of table instructions is provided to move byte- or word-sized data between program space
and data space. The table read instructions are used to read from the program memory space
into data memory space. The table write instructions allow data memory to be written to the
program memory space.

The four available table instructions are:

• TBLRDL: Table Read Low
• TBLWTL: Table Write Low
• TBLRDH: Table Read High
• TBLWTH: Table Write High

For table instructions, program memory can be regarded as two 16-bit, word-wide address
spaces residing side by side, each with the same address range as illustrated in Figure 4-3. This
allows program space to be accessed as byte or aligned word addressable, 16-bit wide, 64-Kbyte
pages (i.e., same as data space).

TBLRDL and TBLWTL access the least significant data word of the program memory, and TBLRDH
and TBLWTH access the upper word. As program memory is only 24 bits wide, the upper byte
from this latter space does not exist, although it is addressable. It is, therefore, termed the
“phantom” byte.

Figure 4-3: High and Low Address Regions for Table Operations

Note: Detailed code examples using table instructions are found in Section 5. “Flash
Programming” (DS70191).

0816PC Address

0x000100
0x000102
0x000104
0x000106

23
00000000

00000000

00000000

00000000

Program Memory
‘Phantom’ Byte
(Read as ‘0’)

‘HIGH’ Table Address Range ‘LOW’ Table Address Range
© 2010 Microchip Technology Inc. DS70203D-page 4-7

dsPIC33F/PIC24H Family Reference Manual
4.4.2 Table Address Generation
Figure 4-4 illustrates how for all table instructions, a W register address value is concatenated
with the 8-bit Data Table Page register (TBLPAG), to form a 23-bit effective program space
address plus a byte select bit. As there are 15 bits of program space address provided from the
W register, the data table page size in program memory is, therefore, 32K words.

Figure 4-4: Address Generation for Table Operations

4.4.3 Program Memory Low Word Access
The TBLRDL and TBLWTL instructions are used to access the lower 16 bits of program memory
data. The LSb of the W register address is ignored for word-wide table accesses. For byte-wide
accesses, the LSb of the W register address determines which byte is read. Figure 4-5
demonstrates the program memory data regions accessed by the TBLRDL and TBLWTL
instructions.

Figure 4-5: Program Data Table Access (lsw)

TBLPAG

8 bits from TBLPAG

EA

EA<0> Selects Byte

24-bit EA

TBLPAG<7> Selects
User/Configuration
Space

01507

16 bits from Wn

0816PC Address

0x000100
0x000102
0x000104
0x000106

23
00000000

00000000

00000000

00000000

Program Memory
‘Phantom’ Byte
(Read as ‘0’)

TBLRDL.W

TBLRDL.B (Wn<0> = 1)

TBLRDL.B (Wn<0> = 0)
DS70203D-page 4-8 © 2010 Microchip Technology Inc.

Section 4. Program Memory
Program

 M
em

ory

4

4.4.4 Program Memory High Word Access
The TBLRDH and TBLWTH instructions are used to access the upper 8 bits of the program
memory data. Figure 4-6 illustrates how these instructions also support Word or Byte Access
modes for orthogonality, but the high byte of the program memory data will always return ‘0’.

Figure 4-6: Program Data Table Access (MS Byte)

4.4.5 Data Storage in Program Memory
It is assumed that for most applications, the high byte (PC<23:16>) is not used for data, making
the program memory appear 16 bits wide for data storage. It is recommended that the upper byte
of program data be programmed either as a NOP instruction, or as an illegal opcode value, to
protect the device from accidental execution of stored data. The TBLRDH and TBLWTH
instructions are primarily provided for array program/verification purposes and for applications
that require compressed data storage.

4.4.6 Program Memory Access Using Table Instructions Example
Example 4-1 uses table instructions to erase the program memory page starting at the address
0x12000, and programs the values 0x123456 and 0x789ABC into addresses 0x12000 and
0x12002, respectively.

0816PC Address

0x000100
0x000102
0x000104
0x000106

23
00000000

00000000

00000000

00000000

Program Memory
Phantom Byte
(Read as ‘0’)

TBLRDH.W

TBLRDH.B (Wn<0> = 1)

TBLRDH.B (Wn<0> = 0)

Note: For more information on the unlocking sequence, refer to Section 5. “Flash
Programming” (DS70191).
© 2010 Microchip Technology Inc. DS70203D-page 4-9

dsPIC33F/PIC24H Family Reference Manual
Example 4-1: Using Table Instructions to Access Program Memory
#define PM_ROW_ERASE 0x4042
#define PM_ROW_WRITE 0x4001
#define CONFIG_WORD_WRITE0X4000

unsigned long Data;

/* Erase 512 instructions starting at address 0x12000 */
MemWriteLatch(0x1, 0x2000,0x0,0x0);
MemCommand(PM_ROW_ERASE);

/* Write 0x12345 into program address 0x12000 */
MemWriteLatch(0x1, 0x2000,0x0012,0x3456);
MemCommand(PM_ROW_WRITE);

/* Write 0x789ABC into program address 0x12002 */
MemWriteLatch(0x1, 0x2002,0x0078,0x9ABC);
MemCommand(PM_ROW_WRITE);

/* Read program addresses 0x12000 and 0x12002 */
Data = MemReadLatch(0x1, 0x2000);
Data = MemReadLatch(0x1, 0x2002);

;***
;_MemWriteLatch:
;
;W0 = TBLPAG
;W1 = Wn
;W2 = WordHi
;W3 = WordLo
;no return values

_MemWriteLatch:
mov W0, TBLPAG
tblwtl W3, [W1]
tblwth W2, [W1]

return

;***
; _MemReadLatch:
;
;W0 = TBLPAG
;W1 = Wn
;return: data in W1:W0

_MemReadLatch:
mov W0,TBLPAG
tblrdl [W1],W0
tblrdh [W1],W1

return

;**
; _MemCommand:
;
;W0 = NVMCON
;no return values

_WriteCommand:
mov W0,NVMCON
mov #0x55,W0;Unlock sequence
mov W0,NVMKEY
mov #0xAA,W0
mov W0,NVMKEY
bset NVMCON,#WR
nop ;Required
nop

Loop:btsc NVMCON,#WR;Wait for write end
bra Loop

return
DS70203D-page 4-10 © 2010 Microchip Technology Inc.

Section 4. Program Memory
Program

 M
em

ory

4

Example 4-2 uses the space(prog) attribute to allocate the buffer in program memory. The
MPLAB® C30 built-in functions, such as builtin_tblpage and builtin_tbloffset, can
be used to access the buffer.

Example 4-2: Using MPLAB® C30 Built-in Functions to Access Program Memory
#include <p33fxxxx.h>

unsigned prog_data[10] __attribute__ ((space(prog))) = {0x0000, 0x1111, 0x2222,
0x3333, 0x4444, 0x5555, 0x6666, 0x7777, 0x8888, 0x9999};

unsigned lowWord, tbloffset;

int main(void)
{

TBLPAG = __builtin_tblpage(&prog_data);
tbloffset = __builtin_tbloffset(&prog_data);
lowWord = __builtin_tblrdl(tbloffset + 6);// Load 0x3333 into lowWord

for(;;);
return 0;

}

© 2010 Microchip Technology Inc. DS70203D-page 4-11

dsPIC33F/PIC24H Family Reference Manual
4.5 PROGRAM SPACE VISIBILITY FROM DATA SPACE
The upper 32 Kbytes of the dsPIC33F/PIC24H data memory address space can optionally be
mapped into any 16K word program space page. This mode of operation, called Program Space
Visibility (PSV), provides transparent access of stored constant data from X data space without
the need to use special instructions (i.e., TBLRD, TBLWT instructions).

4.5.1 PSV Configuration
Program Space Visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>).
A description of the CORCON register is found in Section 2. “CPU” (DS70204).

When PSV is enabled, each data space address in the upper half of the data memory map will
map directly into a program address (see Figure 4-7). The PSV window allows access to the
lower 16 bits of the 24-bit program word. The upper 8 bits of the program memory data should
be programmed to force an illegal instruction, or a NOP instruction, to maintain machine
robustness. Table instructions provide the only method of reading the upper 8 bits of each
program memory word.

Figure 4-8 illustrates how the PSV address is generated. The 15 LSb of the PSV address are
provided by the W register that contains the effective address. The Most Significant bit (MSb) of
the W register is not used to form the address. Instead, the MSb specifies whether to perform a
PSV access from program space or a normal access from data memory space. If a W register
effective address of 0x8000 or greater is used, the data access will occur from program memory
space when PSV is enabled. All data access occurs from data memory when the W register
effective address is less than 0x8000.

Figure 4-8 illustrates how the remaining address bits are provided by the Program Space Visibil-
ity Page Address register (PSVPAG<7:0>). The PSVPAG bits are concatenated with the 15 LSb
of the W register, holding the effective address to form a 23-bit program memory address. PSV
can only be used to access values in program memory space. Table instructions must be used
to access values in the user configuration space.

The LSb of the W register value is used as a byte select bit, which allows instructions using PSV
to operate in Byte or Word mode.

4.5.2 PSV Mapping with X and Y Data Spaces
The Y data space is located outside of the upper half of data space for most dsPIC33F/PIC24H
variants, such that the PSV area will map into X data space. The X and Y mapping affect the way
PSV is used in algorithms.

For example, the PSV mapping can be used to store coefficient data for Finite Impulse Response
(FIR) filter algorithms. The FIR filter multiplies each value of a data buffer containing historical
filter input data with elements of a data buffer that contains constant filter coefficients. The FIR
algorithm is executed using the MAC instruction within a REPEAT loop. Each iteration of the MAC
instruction prefetches one historical input value and one coefficient value to be multiplied in the
next iteration. One of the prefetched values must be located in X data memory space and the
other must be located in Y data memory space.

To satisfy the PSV mapping requirements for the FIR filter algorithm, the user application must
locate the historical input data in the Y memory space, and the filter coefficients in X memory
space.
DS70203D-page 4-12 © 2010 Microchip Technology Inc.

Section 4. Program Memory
Program

 M
em

ory

4

Figure 4-7: Program Space Visibility Operation

Figure 4-8: Program Space Visibility Address Generation

23 15 0

PSVPAG

EA<15> = 1

Data Space

Program Space

8

15 23

0x0000

0x8000

0xFFFF

0x01

0x008000

Data Read

Upper 8 bits of Program
Memory Data cannot be
read using Program Space
Visibility.

0x000100

0x017FFF

23 bits

1

PSVPAG Reg

8 bits

Wn

15 bits

Select

23-bit EA

 Wn<0> is Byte Select
© 2010 Microchip Technology Inc. DS70203D-page 4-13

dsPIC33F/PIC24H Family Reference Manual
4.5.3 PSV Timing
Instructions that use PSV require two extra instruction cycles to complete execution, except for
the following instructions that require only one extra cycle to complete execution:

• The MAC class of instructions with data prefetch operands
• All MOV instructions including the MOV.D instruction

The additional instruction cycles are used to fetch the PSV data on the program memory bus.

4.5.3.1 USING PSV IN A REPEAT LOOP

Instructions that use PSV within a REPEAT loop eliminate the extra instruction cycle(s) required
for the data access from program memory, therefore incurring no overhead in execution time.
However, the following iterations of the REPEAT loop incur an overhead of two instruction cycles
to complete execution:

• The first iteration
• The last iteration
• Instruction execution prior to exiting the loop due to an interrupt
• Instruction execution upon re-entering the loop after an interrupt is serviced

4.5.3.2 PSV AND INSTRUCTION STALLS

For more information about instruction stalls using PSV, refer to Section 2. “CPU” (DS70204).

4.5.4 PSV Code Examples
Example 4-3 illustrates how to create a buffer and access the buffer in the compiler managed,
PSV section. The auto_psv space is the compiler managed PSV section. If the size of this
section exceeds 32K, the linker will give an error. The tool chain will arrange for the PSVPAG to
be correctly set at program start-up. By default, the compiler places all ‘const’ qualified variables
into the auto_psv space.

Example 4-3: Compiler Managed PSV Access
#include “p33fxxxx.h”

int m[5] __attribute__((space(auto_psv))) = {1, 2, 3, 4, 5};
int x[5] = {10, 20, 30, 40, 50};
int sum;

main()
{
// Compiler Managed PSV

sum=vectordot(m,x);
}

int vectordot(int *m, int *x)
{

int i,sum=0;

for(i=0;i<5;i++)
sum+=*m++ * *x++;

 return(sum);
}

DS70203D-page 4-14 © 2010 Microchip Technology Inc.

Section 4. Program Memory
Program

 M
em

ory

4

Example 4-4 illustrates buffer placement and access in the user managed PSV section. The psv
space is the user managed PSV section.

Example 4-4: User Managed PSV Access

Example 4-5 illustrates constant data placement in program memory and performs accessing of
this data through the PSV data window using an assembly program.

Example 4-5: PSV Code Example in Assembly

#include “p33fxxxx.h”

const int m[5] = {1, 2, 3, 4, 5};
int m1[5] __attribute__((space(psv))) = {1, 2, 3, 4, 5};
int m2[5] __attribute__((space(psv),address(0xA000))) = {1, 2, 3, 4, 5};
int x[5] = {10, 20, 30, 40, 50};
int sum, sum1, sum2;

main()
{
int temp;

// User Managed PSV
temp=PSVPAG; // Save auto_psv page

PSVPAG = __builtin_psvpage(&m1);
CORCONbits.PSV = 1;
sum1=vectordot(m1,x);

PSVPAG = __builtin_psvpage(&m2);
sum2=vectordot(m2,x);

PSVPAG=temp; // Restore auto_psv page

// Compiler Managed PSV
sum=vectordot(m,x);

}

int vectordot(int *m, int *x)
{

int i,sum=0;

for(i=0;i<5;i++)
sum+=*m++ * *x++;

 return(sum);
}

.include “p33fxxxx.inc”

.section .const,psv
fib_data:

.word 0, 1, 2, 3, 5, 8, 13

;Start of Code section
.text

.global __reset
__reset:

; Enable Program Space Visibility
bset.b CORCONL, #PSV

; Set PSVPAG to the page that contains the fib_data array
mov #psvpag(fib_data), w0
mov w0, __PSVPAG

; Make a pointer to fib_data in the PSV data window
mov #psvoffset(fib_data), w0

; Load the first data value
mov [w0++], w1
© 2010 Microchip Technology Inc. DS70203D-page 4-15

dsPIC33F/PIC24H Family Reference Manual
4.6 PROGRAM MEMORY WRITES
The dsPIC33F/PIC24H family of devices contains internal program Flash memory for executing
user code. There are two methods by which the user application can program this memory:

• Run-Time Self-Programming (RTSP)
• In-Circuit Serial Programming™ (ICSP™)

RTSP is accomplished using TBLWT instructions. ICSP is accomplished using the SPI interface
and integral bootloader software. For further details about RTSP, refer to Section 5. “Flash
Programming” (DS70191). ICSP specifications can be downloaded from the Microchip
Technology web site (www.microchip.com).
DS70203D-page 4-16 © 2010 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com

©
 2010 M

icrochip Technology Inc.
D

S
70203D

-page 4-17

Section 4. Program
 M

em
ory

4.

Ta

Bit 2 Bit 1 Bit 0 All
Resets

TB r Register 0000

PS ress Pointer Register 0000

CO PSV RND IF 0000

Le
Program Memory 4

7 REGISTER MAPS
A summary of the registers associated with Program Memory is provided in Table 4-1.

ble 4-1: Program Memory Registers

SFR Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3

LPAG — — — — — — — — Table Page Address Pointe
VPAG — — — — — — — — Program Memory Visibility Page Add
RCON — — — US EDT DL<2:0> SATA SATB SATDW ACCSAT IPL3
gend: — = unimplemented, read as ‘0’. Shaded bits are not used in the operation of Program Memory.

dsPIC33F/PIC24H Family Reference Manual
4.8 RELATED APPLICATION NOTES
This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the dsPIC33F/PIC24H device family, but the
concepts are pertinent and could be used with modification and possible limitations. The current
application notes related to the Program Memory module are:

Title Application Note #
No related application notes at this time.

Note: For additional Application Notes and code examples for the dsPIC33F/PIC24H
family of devices, visit the Microchip web site (www.microchip.com).
DS70203D-page 4-18 © 2010 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com

Section 4. Program Memory
Program

 M
em

ory

4

4.9 REVISION HISTORY

Revision A (March 2007)
This is the initial released version of this document.

Revision B (April 2007)
Minor updates made to document.

Revision C (July 2008)
This revision incorporates the following updates:

• Rearranged the following sections: (see 4.2 “Control Register”), (see 4.6 “Program
Memory Writes”)

• Registers:
- PSVPAG: PSV Page Register (see Register 4-2)
- TBLPAG: Table Page Register (see Register 4-3)

• Examples:
- Using MPLAB C30 Built-in Functions to Access Program Memory (see Example 4-2)
- Compiler Manager PSV Access (see Example 4-3)
- User Manager PSV Access (see Example 4-4)
- PSV Code Example in Assembly (see Example 4-5)

• Added Register Maps section (see Example 4-5: “PSV Code Example in Assembly”)
• Additional minor corrections such as language and formatting updates are incorporated in

the entire document

Revision D (July 2010)
This revision includes the following updates:

• Updated the code in Example 4-1 and Example 4-2
• Additional minor updates to text and formatting have been incorporated throughout the

document
© 2010 Microchip Technology Inc. DS70203D-page 4-19

dsPIC33F/PIC24H Family Reference Manual
NOTES:
DS70203D-page 4-20 © 2010 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
© 2010 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
PIC32 logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,
TSHARC, UniWinDriver, WiperLock and ZENA are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2010, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

ISBN: 978-1-60932-367-7
DS70203D-page 21

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS70203D-page 22 © 2010 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

Worldwide Sales and Service

01/05/10

	Section 4. Program Memory
	4.1 Program Memory Address Map
	Figure 4-1: Example Program Memory Map

	4.2 Control Register
	Register 4-1: CORCON: Core Control Register
	Register 4-2: PSVPAG: PSV Page Register
	Register 4-3: TBLPAG: Table Page Register

	4.3 Program Counter
	Figure 4-2: Instruction Fetch Example

	4.4 Program Memory Access Using Table Instructions
	4.4.1 Table Instruction Summary
	Figure 4-3: High and Low Address Regions for Table Operations
	4.4.2 Table Address Generation
	Figure 4-4: Address Generation for Table Operations
	4.4.3 Program Memory Low Word Access
	Figure 4-5: Program Data Table Access (lsw)
	4.4.4 Program Memory High Word Access
	Figure 4-6: Program Data Table Access (MS Byte)
	4.4.5 Data Storage in Program Memory
	4.4.6 Program Memory Access Using Table Instructions Example
	Example 4-1: Using Table Instructions to Access Program Memory
	Example 4-2: Using MPLAB® C30 Built-in Functions to Access Program Memory

	4.5 Program Space Visibility from Data Space
	4.5.1 PSV Configuration
	4.5.2 PSV Mapping with X and Y Data Spaces
	Figure 4-7: Program Space Visibility Operation
	Figure 4-8: Program Space Visibility Address Generation
	4.5.3 PSV Timing
	4.5.4 PSV Code Examples
	Example 4-3: Compiler Managed PSV Access
	Example 4-4: User Managed PSV Access
	Example 4-5: PSV Code Example in Assembly

	4.6 Program Memory Writes
	4.7 Register Maps
	Table 4-1: Program Memory Registers

	4.8 Related Application Notes
	4.9 Revision History
	Worldwide Sales and Service

