

TRAINING MANUAL

SAM D21 XPRO USB Host MSC Bootloader

AN-8185

Prerequisites

• Hardware Prerequisites
– Atmel® | SMART SAM D21 Xplained Pro Evaluation kit
– Atmel OLED1 Xplained Pro Extension board
– Micro-USB standard OTG cable
– Micro-USB standard device cable
– An empty USB storage device, for example a thumb-drive

• Software Prerequisites

– Atmel Studio 6.2 (Beta or higher)
– Atmel Software Framework (ASF) (3.19.0)

• Estimated completion time: 90min.

Introduction

Products with microcontrollers embedded will typically be shipped to the market
with the firmware loaded into the part.

Whenever a new feature is implemented or a bug is fixed, the firmware on the
product needs to be updated in the field for the updates to take effect. Lately this
has often been done by either connecting an external programmer or a PC with
special update software running on it. The process of updating the firmware
becomes a lot easier if the product has the capability of updating its firmware by
itself.

With USB host mode and self programming flash supported on the device it will be
possible to do this by simply connect a USB disk with new firmware stored in it to
the application and the MCU can upgrade its own firmware directly.

In this hands-on training we will develop a USB Host bootloader project for SAM
D21 device. We are going to develop a bootloader that can detect a mass storage
device (for example a USB thumb-drive) when connected to the USB-port. If this
device contains an updated firmware image, the bootloader can update the flash of
the device with new firmware.

The OLED display on the OLED1 Xplained Pro is used to give status of the
firmware update process.

Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

2

Table of Contents

Icon Key Identifiers ... 3
1 Training Module Architecture ... 4

1.1 Atmel Studio Extension (.vsix) ... 4
1.2 Atmel Training Executable (.exe) .. 4

2 Assignment 1: Develop a Basic Application ... 5
2.1 Hardware Setup .. 5
2.2 Basic Initialization .. 6
2.3 Clock Configuration ... 11
2.4 Adding OLED Display Drivers ... 14
2.5 OLED Initialization and Displaying Text .. 16

3 Assignment 2: Adding USB and File System Services ... 18
3.1 Adding USB Driver .. 18
3.2 Accessing Files ... 21
3.3 Displaying the Contents of a File ... 23

4 Assignment 3: Adding the Bootloader ... 27
4.1 Updating the Flash .. 27
4.2 To Enter Bootloader or Application Mode on Starting ... 31
4.3 Creating Application Binary File .. 35

5 Conclusion ... 40
6 Revision History .. 41

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

3

Icon Key Identif iers

 Delivers contextual information about a specific topic.

 Highlights useful tips and techniques.

 Highlights objectives to be completed.

 Highlights the expected result of an assignment step.

 Indicates important information.

 Highlights actions to be executed out of the target when necessary.

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

4

1 Training Module Architecture
This training material can be retrieved through different Atmel deliveries:

• As an Atmel Studio Extension (.vsix file) usually found on the Atmel Gallery web site
(http://gallery.atmel.com/) or using the Atmel Studio Extension manager

• As an Atmel Training Executable (.exe file) usually provided during Atmel Training sessions

Depending on the delivery type, the different resources used in this training material (hands-on documentation,
datasheets, application notes, software, and tools) will be found on different locations.

1.1 Atmel Studio Extension (.vsix)
Once the extension installed, you can open and create the different projects using “New Example Project
from ASF..." in Atmel Studio.

 The projects installed from an extension are usually under “Atmel Training > Atmel
Corp. Extension Name”.

There are different projects which can be available depending on the extension:
• Hands-on Documentation: contains the documentation as required resources
• Hands-on Assignment: contains the initial project that may be required to start
• Hands-on Solution: contains the final application which is a solution for this hands-on

 Each time a reference is made to some resources in the following pages, the user must
refer to the Hands-on Documentation project folder.

1.2 Atmel Training Executable (.exe)
Depending where the executable has been installed, you will find the following architecture which is composed
by two main folders:
• AN-XXXX_Hands-on: contains the initial project that may be required to start and a solution
• Resources: contains required resources (datasheets, software, and tools…)

 Unless a specific location is specified, each time a reference is made to some resources
in the following pages, the user must refer to this Resources folder.

http://gallery.atmel.com/

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

5

2 Assignment 1: Develop a Basic Application
In this chapter we will have a brief introduction about hardware set up we are going to use and steps for
developing a basic application with this hardware. This will be a simple application that displays a string on the
OLED display.

The overview of this chapter is as follows:

• Hardware Setup
• Basic Initialization
• Clock Configuration
• Adding OLED Display drivers
• OLED Initialization and Displaying Text

2.1 Hardware Setup
SAM D21 Xplained Pro evaluation kit will be used in this training session. This is an evaluation kit that allows
connecting multiple extension boards. Extension board will normally contain components that can be used for
evaluation purpose. An extension board can be connected to any Xplained Pro evaluation kit through any of the
external connector present in the board. The SAM D21 Xplained Pro has three external connectors, marked
EXT1, EXT2, and EXT3.

Figure 2-1. SAM D21 Xplained Pro

In this training we will use one extension board called OLED1 Xplained Pro. When the extension is to be
connected, it will be introduced in the relevant chapter in the training.

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

6

A key feature of all Atmel Xplained Pro evaluation kits is the embedded debugger (EDBG). This is a debugger
that is populated on the board, making it possible to debug code on the target device without any external
hardware. The only connection needed to get started with the any Xplained Pro kit is a Micro-USB cable
connected between board and PC. In our case, a Micro-USB cable is connected to the DEBUG USB port on the
SAM D21 Xplained pro on one end and a computer running Atmel Studio 6.2 on the other end. The embedded
debugger uses a standard interface, CMSIS-DAP (an open debugging interface made by ARM®). This allows not
only Atmel, but also third parties to provide debug support for the kit.

To further allow for rapid development on the SAM D21 Xplained Pro it includes both a USB CDC (Virtual COM
port) connected to a USART on the target MCU, as well as a data interface for higher speed data communication.
This allows for getting data easily out of the target MCU for additional processing or verification on the debugging
platform. Examples of this usage can be ADC sample plotting, logging debug data, or simulating external
systems during debugging.

2.2 Basic Initialization
In Atmel Studio 6.2, we need to create a new project for the SAM D21 Xplained Pro kit. With this as base, we can
add drivers/services from ASF Wizard as well as the application code itself to make a complete application.

Following steps will guide in creating a new project for SAM D21 Xplained PRO kit.

 Create a new project for the SAM D21 Xplained Pro in Atmel Studio 6.2.

• To create a new project, Launch Atmel Studio and go to File > New > Project... menu. This is shown
in Figure 2-2 and Figure 2-3:

Figure 2-2. New Project

• Select GCC C ASF Board Project

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

7

Figure 2-3. ASF Board

Give the project a name, for example "USB_HOST_Bootloader" and press “OK”.

 We can select the location of the project by selecting a specific Folder in “Location” Tab. It is
always recommended to have short path for project location.

• On the next screen, select the correct device and board with which we are going to work as shown in
Figure 2-4

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

8

Figure 2-4. Device and Board Selection

Select “Select By Device”, (limit search to SAMD in device family) and select ATSAMD21J18A device. Select
“SAM D21 Xplained Pro” in the Board types given below. Finally click on OK to create the new project.

The new project by default has a minimal application that will turn on or off the LED in SAM D21 Xplained Pro
based on the state of the SW0 button. Pressing the SW0 button will turn the LED on, and releasing the button will
turn the LED off. To verify that the SAM D21 Xplained Pro is connected correctly we will run this application and
check that it produces the expected output.

 Connect the SAM D21 Xplained Pro to your computer using the provided Micro-USB cable.
The cable should be connected to the DEBUG USB port on the SAM D21 Xplained Pro kit.

 Make sure the USB-cable from the computer is connected to the DEBUG USB port. Refer
Figure 2-1 SAM D21 Xplained Pro on page 5.

The drivers for the embedded debugger on the SAM D21 Xplained Pro will be installed automatically when
connecting the board.

 Ensure that the drivers for this EDBG are installed successfully before running the appli-
cation. On successful installation of drivers, SAM D21 Xplained Pro page will be opened in
Atmel Studio by default.

 Configure the Tool and Interface in the Project properties.

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

9

Select the Project in solution explorer -> Right click and select "Properties" -> Click on the Tool Tab and select
the correct the Debugger and Interface. EDBG will be listed in the drop-down here and SWD is the interface
should be selected. Figure 2-5 shows this configuration.

Figure 2-5. Select Tool

 Run the application.

To program and execute the application, we have two options; either we can start a debug session on the board,
where we will be able to break and follow the application flow, or we can simply program the compiled code to the
controller and execute the application. In this case we will simply program the code with no debugging, so we
select the green arrow for "Start Without Debugging”.

Figure 2-6. Start Without Debugging

Figure 2-7. Start Debugging and Break

In case if we clicked “Start Without Debugging” option without configuring Tool and Interface for a project, Atmel
Studio will throw an error saying that user does not configure the correct Tool and interface. Then user has to set
the Tool and Interface as we said in the previous step in Figure 2-5 Select Tool.

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

10

 If the firmware of embedded debugger is out of date, Atmel Studio will prompt to update
the firmware. Press the "Upgrade" button to upgrade the embedded debugger firmware to
the latest version. Programming/Debugging may not work properly if the firmware version
is not up to date. So it is always recommended to upgrade the firmware whenever Atmel
Studio prompts.
After the device is programmed using the "Start without Debugging" option, we have to
press the Reset button to start the application.

Figure 2-8. Firmware Upgrade Prompt

 Upgrade operation may take a few minutes; wait for the operation to complete.

Figure 2-9. Firmware Upgrade Timeout

 After pressing reset button, Application code will be started. If the kit is programmed cor-
rectly the LED0 will turn on whenever the SW0 button on the SAM D21 Xplained Pro is
pressed.

By default, following is what the main code looks like.

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

11

Figure 2-10. Default main() Function

The function system_init() initializes any board specific hardware (such as buttons and LEDs) and sets up the
clock system according to the configuration file conf_clocks.h. By default the CPU will be running at 8MHz from
the internal RC oscillator after system_init() has been executed. Inside the while(1) loop, Button0 (SW0) status is
checked and LED0 is turned on if SW0 is pressed and turned off if LED0 is not pressed.

2.3 Clock Configuration
In this project, we are going to use the USB module. To meet the USB standard, a very accurate clock source is
needed for the USB module. We will use the external 32kHz crystal oscillator as the reference clock source for
the DFLL which in turn will be used as the clock source for both the CPU and the USB clock domains. We will
configure the DFLL to output a 48MHz clock signal to support the USB module. The DFLL is configured in closed-
loop mode to ensure maximum frequency stability and accuracy. The external 32kHz crystal oscillator present on
the SAM D21 Xplained pro kit is used as reference clock source.

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

12

 Configure the DFLL to output 48MHz and make this as the main clock by modifying existing
clock settings in conf_clocks.h.

• In Solution explorer, configuration files can be found in folder src/config. The conf_clocks.h file holds the
includes and defines for all the clock configuration settings of the application.

Figure 2-11. Conf_clocks.h Location in ASF Tree

Modify the existing settings in conf_clocks.h file to match the below: Configuring clocks is easy by stating
true/false in the enable define and configuring simple MUL values is enough.

• Enable the 32k oscillator and set it to output a 32kHz clock: CONF_CLOCK_XOSC32K_ENABLE should
be defined true

• Configure GCLK generator 1 to use the external 32k oscillator as input: ONF_CLOCK_GCLK_1_ENABLE
should be defined true CONF_CLOCK_GCLK_1_CLOCK_SOURCE should be defined to
SYSTEM_CLOCK_SOURCE_XOSC32K

/* Configure GCLK generator 1 */
define CONF_CLOCK_GCLK_1_ENABLE true
define CONF_CLOCK_GCLK_1_RUN_IN_STANDBY false
define CONF_CLOCK_GCLK_1_CLOCK_SOURCE SYSTEM_CLOCK_SOURCE_XOSC32K
define CONF_CLOCK_GCLK_1_PRESCALER 1
define CONF_CLOCK_GCLK_1_OUTPUT_ENABLE false

/* SYSTEM_CLOCK_SOURCE_XOSC32K configuration - External 32KHz crystal/clock oscillator */
define CONF_CLOCK_XOSC32K_ENABLE true
define CONF_CLOCK_XOSC32K_EXTERNAL_CRYSTAL SYSTEM_CLOCK_EXTERNAL_CRYSTAL
define CONF_CLOCK_XOSC32K_STARTUP_TIME SYSTEM_XOSC32K_STARTUP_65536
define CONF_CLOCK_XOSC32K_AUTO_AMPLITUDE_CONTROL false
define CONF_CLOCK_XOSC32K_ENABLE_1KHZ_OUPUT false
define CONF_CLOCK_XOSC32K_ENABLE_32KHZ_OUTPUT true
define CONF_CLOCK_XOSC32K_ON_DEMAND true
define CONF_CLOCK_XOSC32K_RUN_IN_STANDBY false

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

13

 To know the define values and to find alternate options, select a define and press (ALT
+ G). This short- cut will help us to know the value of defines.

We are going to multiply the clock from the external 32kHz oscillator with 48000000/32768 to achieve a 48MHz
clock.

• Configure the DFLL to use the output from GCLK generator 1 as input and output a 48MHz clock:
CONF_CLOCK_DFLL_SOURCE_GCLK_GENERATOR should be defined to GCLK_GENERATOR_1
CONF_CLOCK_DFLL_MULTIPLY_FACTOR should be defined to (48000000/32768).

• Enable the DFLL and set it to operate in closed loop mode: CONF_CLOCK_DFLL_ENABLE should be
defined true CONF_CLOCK_DFLL_LOOP_MODE should be defined to
SYSTEM_CLOCK_DFLL_LOOP_MODE_CLOSED.

• Configure GCLK generator 0 (the main clock) to use the DFLL as input:
CONF_CLOCK_GCLK_0_ENABLE should be defined true CONF_CLOCK_GCLK_0_CLOCK_SOURCE
should be defined to SYSTEM_CLOCK_SOURCE_DFLL.

• Set the CPU to use 1 wait state while reading from flash since we are using the 48MHz clock. NVM
Characteristics in device datasheet has this Wait states values for various CPU clock speed.
CONF_CLOCK_FLASH_WAIT_STATES should be defined to 1.

/* System clock bus configuration */
define CONF_CLOCK_CPU_CLOCK_FAILURE_DETECT false
define CONF_CLOCK_FLASH_WAIT_STATES 1
define CONF_CLOCK_CPU_DIVIDER SYSTEM_MAIN_CLOCK_DIV_1
define CONF_CLOCK_A PBA_DIVIDER SYSTEM_MAIN_CLOCK_DIV_1
define CONF_CLOCK_APBB_DIVIDER SYSTEM_MAIN_CLOCK_DIV_1

/* Configure GCLK generator 0 (Main Clock)
define CONF_CLOCK_GCLK_0_ENABLE true
define CONF_CLOCK_GCLK_0_RUN_IN_STANDBY false
define CONF_CLOCK_GCLK_0_CLOCK_SOURCE SYSTEM_CLOCK_SOURCE_DFLL
define CONF_CLOCK_GCLK_0_PRESCALER 1
define CONF_CLOCK_GCLK_0_OUTPUT_ENABLE false

/* SYSTEM_CLOCK_SOURCE_DFLL configuration - Digital Frequency Locked Loop */
define CONF_CLOCK_DFLL_ENABLE true
define CONF_CLOCK_DFLL_LOOP_MODE SYSTEM_CLOCK_DFLL_LOOP_MODE_CLOSED
define CONF_CLOCK_DFLL_ON_DEMAND false

/* DFLL closed loop mode configuration */
define CONF_CLOCK_DFLL_SOURCE_GCLK_GENERATOR GCLK_GENERATOR_1
define CONF_CLOCK_DFLL_MULTIPLY_FACTOR (48000000 / 32768)
define CONF_CLOCK_DFLL_QUICK_LOCK true
define CONF_CLOCK_DFLL_TRACK_AFTER_FINE_LOCK true
define CONF_CLOCK_DFLL_KEEP_LOCK_ON_WAKEUP true
define CONF_CLOCK_DFLL_ENABLE_CHILL_CYCLE true
define CONF_CLOCK_DFLL_MAX_COARSE_STEP_SIZE (0x1f / 4)
define CONF_CLOCK_DFLL_MAX_FINE_STEP_SIZE (0xff / 4)

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

14

2.4 Adding OLED Display Drivers
In this section we are going to add an OLED driver with string support and print some message on OLED screen
on the OLED1 Xplained Pro expansion wing. This will be used later to display messages for user information
when the bootloader is running.

 Start by making sure that the OLED1 is connected to the EXT3 header on the Xplained PRO
as shown in Figure 2-12:

Figure 2-12. OLED1 Xplained Wing Connected to EXT13

 Add the GFX Monochrome - System Font service using the ASF Wizard and configure the
driver to connect to the display as shown in Figure 2-13, Figure 2-14, and Figure 2-15.

The following settings will set up the correct graphic controller driver and interface used to connect to the OLED.

Figure 2-13. ASF Wizard

http://www.atmel.com/tools/ATOLED1-XPRO.aspx?tab=overview

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

15

Figure 2-14. GFX Monochrome Service

Figure 2-15. GFX Monochrome Display Driver Configuration

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

16

Figure 2-16. Display Driver Configurations

Once the driver has been added using the ASF Wizard, three configuration files have been added to the project
under the folder src/config. The three files are named:

• conf_spi.h - Contains SPI enable and Timeout defines
• conf_ssd1306.h - Includes defines to set up the SPI interface with the screen correctly
• conf_sysfont.h - Contains bitmaps of the text font

 Quick start guide and comments in driver will help in getting started with OLED display.

Comments in driver file (gfx_mono_text.h) contain code snippets to display a simple string. A quick start guide is
also available on this which is really close to what we would like to do for our application. Quick Start Guide:
http://asf.atmel.com/docs/3.15.0/samd21/html/asfdoc_common2_gfx_mono_font_quickstart.html.

2.5 OLED Initialization and Displaying Text
From the comments as well as from the quick start guide we can see that it is fairly easy to start using the font
library for the display. The function system_init() is already included in our code, so the next logical step would be
to initialize the screen. As seen in the quick start guide, this is done by:

This will set up the SPI interface to communicate with the OLED screen and wipe anything currently shown.

Now that the screen is initialized, it's ready to receive a string. Again we turn to the quick start guide to find out
how this is done. One can see that what is needed in order to print "Insert USB Drive" on the screen is:

 After adding the above routines before the while(1), Save and Run the application.

If gfx_mono_init() and gfx_mono_draw_string() has been inserted before the while loop in the application, see
Figure 2-17 for when the device is programmed:

gfx_mono_draw_string("Insert USB drive", 0, 0, &sysfont);

gfx_mono_init();

http://asf.atmel.com/docs/3.15.0/samd21/html/asfdoc_common2_gfx_mono_font_quickstart.html

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

17

Figure 2-17. OLED1 Xplained

 Now the main function should look as shown in Figure 2-18. If required, solution project
(SAMD21_USB_BOOT_ASSIGN1) is available in Resources folder.

Figure 2-18. Main Function

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

18

3 Assignment 2: Adding USB and File System Services
In this section we are going to add a USB host service and FAT File system service. Then set up the program to
read contents from a file in a connected USB mass storage device and display the contents of the file on the
OLED display.

The overview of this chapter is:

• Adding USB driver
• Accessing files
• Displaying the contents of a file

3.1 Adding USB Driver

 In the ASF Wizard, add the USB Host service to the project with the settings displayed in
Figure 3-1.

Figure 3-1. USB Host (Service) – Mass Storage Class (MSC)

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

19

Figure 3-2. USB Host MSC (Service) – Configuration

Once the driver has been added using the ASF Wizard, some configuration files have been added to the project
under the folder src/config. These two are of main interest to us:

• conf_usb_host.h - Configures the USB and sets callbacks
• conf_access.h - Configures the abstraction layer for memory interfaces

To enable the USB Host LUN and its APIs, couple of defines needs to be added in symbols section in compiler
settings in project properties. Also we have to comment a line in USB LUNs Definitions in conf_access.h file to
avoid compiler errors. This is a bug and this line should be removed from original file to avoid the compilation
error in future.

 Add the symbols in compiler settings.

• Right click the Project and select Properties -> Select Toolchain tab -> ARM/GNU C Compiler -> Symbols
-> Click the icon add item and add "USB_MASS_STORAGE_ENABLE=true"

• After adding this symbol, add one more symbol "ACCESS_MEM_TO_RAM_ENABLED=true"

 The symbols in compiler settings are now added with define for USB accesses. Figure 3-3 is
the reference.

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

20

Figure 3-3. Compiler Settings – Symbols

Figure 3-4. Symbols

 Comment the Lun_usb_unload defines in conf_access file.

• Comment the line "#define Lun_usb_unload - NULL" in USB LUNs Definitions in conf_access file to avoid
compilation errors. We can also remove this line if we wish so.

 The corresponding line is now commented conf_access file to avoid compilation errors.

Figure 3-5. Line Should be Commented

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

21

We want to add a callback to the Start of Frame Event. This event is called once every SOF is sent, and since an
SOF is sent every 1ms when a USB device is connected, this works as a simple timer. We are going to use this
later to measure the time used to update the firmware. A variable is updated inside this callback function and this
variable is used to measure time period taken for updating the firmware.

Callback function has to be mentioned in conf_usb_host.h file. This callback function name can be of our wish or
we can use the default one. Add the following line in conf_usb_host.h file.

We also have to add a prototype for the main_usb_sof_event() at the top of the conf_usb_host.h file, after the
#includes, add:

Then declare a variable in main.c file and increment this variable in callback function defined in main.c file
(outside of the main-function):

Initialize the global variable somewhere before the main-function and SOF function:

Implement the callback function after the main() function in main.c file. Increment the SOF counter variable in this
function.

3.2 Accessing Files
We will need FAT file system support in the application to be able access a file in the connected mass storage
memory on the USB stick. So we are going to add the FAT file system service through ASF wizard.

 Add the FatFS service through the wizard, and configure it as shown in Figure 3-6 and
Figure 3-7.

void main_usb_sof_event(void)
{
 main_usb_sof_counter++;
}

volatile static uint16_t main_usb_sof_counter = 0;

void main_usb_sof_event(void);

define UHC_SOF_EVENT() main_usb_sof_event()

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

22

Figure 3-6. FatFS File System (Service)

Figure 3-7. FatFS File System (Service) – Configuration

 After clicking "Apply", we have accepted the FatFS File system license agreement in
order to add FatFS drivers to the Project.
The asf help of USB Host Mass storage application for SAM D21 Xplained PRO board will
help us to start with MSC with FAT File system. Main.c file in following ASF help link would
help us better.
http://asf.atmel.com/docs/latest/common.services.usb.class.msc.host.example2.samd21
_xplained_pro/html/index.html

http://asf.atmel.com/docs/latest/common.services.usb.class.msc.host.example2.samd21_xplained_pro/html/index.html
http://asf.atmel.com/docs/latest/common.services.usb.class.msc.host.example2.samd21_xplained_pro/html/index.html

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

23

To be able to access files on a connected USB mass storage device, we have to add some variables and
definitions to the main file. We want to add this code at the top of the file after the #includes:

And add this to the main-function before the while(1) loop. This function is to start the USB Host communication:

3.3 Displaying the Contents of a File

 Replace the existing while(1) loop in your main function with this:

• Flow chart will help in understanding the code flow. Replace the existing while(1) loop with the snippet after
the flowchart.

Figure 3-8. Display Flowchart

uhc_start();

#include "string.h"
#define MAX_DRIVE _VOLUMES
#define FIRMWARE_FILE "firmware.txt"
const char firmware_filename[] = {FIRMWARE_FILE};
/* FATFS variables */
static FATFS fs;
static FIL file_object;

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

24

Code snippet:

When a USB device is connected main_usb_sof_counter is incremented once for each start of frame. The
software waits until a device has been connected for two seconds. Then it tries to read the file firmware.txt in the
root folder of the USB device, if found it first clears the display, and then displays the 16 first characters from this
file to the OLED display. After that it waits until the user presses SW0 button.

 while (true) {

 /* Wait 2 seconds before trying to access the USB drive */
 if (main_usb_sof_counter > 2000) {
 main_usb_sof_counter = 0;
 volatile uint8_t lun = LUN_ID_USB;

 /* Mount drive */
 memset(&fs, 0, sizeof(FATFS));

 FRESULT res = f_mount(lun, &fs);
 if (FR_INVALID_DRIVE == res) {
 gfx_mono_draw_string("Mount Failed!", 0, 0, &sysfont);
 continue;
 }

 res = f_open(&file_object,firmware_filename, FA_READ);
 if (res == FR_NOT_READY) {
 /* LUN not ready */
 gfx_mono_draw_string("File open failed!", 0, 0, &sysfont);

 f_close(&file_object);
 continue;
 }

 if (res != FR_OK) {
 /* LUN test error */
 f_close(&file_object);
 gfx_mono_draw_string("File open failed!", 0, 0, &sysfont);
 continue;
 }

 /* Get size of file */
 uint32_t fw_size = f_size(&file_object);

 uint8_t char_buffer[16];
 /* Read the first 16 bytes from USB stick into char_buffer*/
 f_read(&file_object, char_buffer, 16, NULL);
 /* Clear display and print content of file */
 gfx_mono_draw_string("", 0, 0, &sysfont);
 gfx_mono_draw_string(char_buffer, 0, 0, &sysfont);

 f_close(&file_object);

 /* Wait until push button is pressed and then reset the device */
 while (port_pin_get_input_level(BUTTON_0_PIN) != BUTTON_0_ACTIVE) {};
 NVIC_SystemReset();
 }
 }

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

25

 Find an empty Fat32 formatted USB thumb-drive. Create the file "firmware.txt" in the root
folder of this thumb-drive, and fill it with some text. Compile the project abd Run the ap-
plication and connect the thumb-drive when prompted.

 Make sure that you connect the USB memory stick to the TARGET USB-port on the SAM
D21 Xplained Pro and not to the DEBUG USB-port. Keep the Thumb-drive unconnected to
TARGET USB PORT and connect it only after the device prompts.

Figure 3-9. Complete Setup

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

26

 The first 16 characters of the file firmware.txt will be displayed on the OLED display. If re-
quired, solution project (SAMD21_USB_BOOT_ASSIGN2) is available in Resources folder.

Figure 3-10. Displaying the First 16 Characters

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

27

4 Assignment 3: Adding the Bootloader
Now we have to add the bootloader part to the program. The bootloader will run on startup from reset as it will be
placed at the start of the program memory. The bootloader code will first check if there is a valid firmware present
in the application part of the program memory and that the SW0 button is not pressed. If this is the case then the
bootloader will transfer control to the application firmware.

If either the button is pressed or no valid firmware is found in the application part of program memory then the
bootloader code will wait until an USB mass storage device is connected to the Target USB connector. When a
USB mass storage device is connected, the firmware will scan this device for a file with the correct name. The
content of any matching file will be loaded by into the MCU at a predefined position in the program memory after
the bootloader.

This way, bootloader and application space will not be overlapped (the size of the bootloader should be
monitored so that we could set the position inside the program memory where we want the main application to
start).

The overview of this chapter is as follows:

• Updating the flash
• To enter Bootloader or Application mode on starting

4.1 Updating the Flash
We have the basic framework to read a file from a connected USB mass storage device. What we are missing is
a way to write this file into the flash without writing over the bootloader, and a way to run the firmware if a valid
firmware is present or run the bootloader if either the user wishes to update it or if no valid firmware is present.

We will call our firmware-file "firmware.bin", so we should change the string in main.c accordingly: change the
“firmware.txt” to “firmware.bin”.

 Modify the firmware file name (In main.c file) correctly to read the bin file.

Then we need to define where our new firmware will be loaded, this must be somewhere after the bootloader
code ends. Hence we do not overwrite the bootloader part. Application firmware should be located at the start of
a flash- page, so we can concentrate on whole pages while writing the flash.

The Flash space we allotted for the bootloader section is 200 NVM Rows. This value will be configured in main
file in upcoming steps. The value of 200 has been chosen for this specific implementation on this specific chip
and should be adjusted if the size of the bootloader changes or a new chip with a different page-size is chosen.
We will also set up a page-buffer. Later we will read the firmware from the USB to the page-buffer and write it into
flash, one page at a time.

We need to add the Non-Volatile Memory driver in order to write to the flash of the chip. Go to the ASF wizard and
add the NVM driver. There should be no configuration required in order to get this driver to work.

 Add the NVM Driver through ASF Wizard.

#define FIRMWARE_FILE "firmware.bin"

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

28

Figure 4-1. Adding NVM Driver

 Add the following lines at the start of main.c (after the #include in the top).

We are going to write to the flash, so we should make sure that the non volatile memory controller is initialized
with the correct settings. Add initialization lines after "system_init()" in main.c.

We are now going to add the code that does the writing to the flash from the USB, replace the following snippet in
main.c.

with the following snippet (code flow is explained in the flowchart).

uint8_t char_buffer[16];
 /* Read the first 16 bytes from USB stick into char_buffer*/
 f_read(&file_object, char_buffer, 16, NULL);
 /* Clear display and print content of file */
 gfx_mono_draw_string("", 0, 0, &sysfont);
 gfx_mono_draw_string(char_buffer, 0, 0, &sysfont);

 struct nvm_config nvm_cfg;
 nvm_get_config_defaults(&nvm_cfg);
 nvm_set_config(&nvm_cfg);

#define APP_START_ADDRESS (NVMCTRL_ROW_SIZE * 200)
uint8_t page_buffer[NVMCTRL_PAGE_SIZE];

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

29

Figure 4-2. Bootloader Flowchart

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

30

Code snippet:

UINT bytes_read = 0;
 enum status_code error_code;
 char str[70];
 if (fw_size != 0) {
 uint32_t current_page = APP_START_ADDRESS /
 NVMCTRL_PAGE_SIZE;
 uint32_t curr_address = 0;

 /* Store start time to use in b/s calculation */
 uint32_t start_time = main_usb_sof_counter;

 /* Erase flash rows to fit new firmware */
 uint16_t rows_clear = fw_size / NVMCTRL_ROW_SIZE;
 uint16_t i;
 for (i = 0; i < rows_clear; i++) {
 do {
 error_code = nvm_erase_row(
 (APP_START_ADDRESS) +
 (NVMCTRL_ROW_SIZE * i));
 } while (error_code == STATUS_BUSY);
 }

 do {
 /* Read data from USB stick to the page buffer */
 f_read(&file_object,
 page_buffer,
 NVMCTRL_PAGE_SIZE,
 &bytes_read);
 curr_address += bytes_read;

 /* Write page buffer to flash */
 do {
 error_code = nvm_write_buffer(
 current_page *
 NVMCTRL_PAGE_SIZE,
 page_buffer,
 bytes_read);
 } while (error_code == STATUS_BUSY);
 current_page++;
 } while (curr_address < fw_size);

 /* Store end time of operation and calculate delta value */
 uint32_t done_time = main_usb_sof_counter;
 done_time -= start_time;

 /* Calculate bytes/s */
 start_time = (fw_size * 1000) / done_time;

 /* Clear display and print summary to display */
 gfx_mono_draw_string(" ", 0, 0, &sysfont);
 sprintf(str, "Written %u bytes\n%u Bytes/s!",
 (unsigned int)fw_size,
 (unsigned int)start_time);
 gfx_mono_draw_string(str, 0, 0, &sysfont);

}

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

31

This code reads one page at a time from the file firmware.bin on a connected USB mass storage device to the
buffer in memory. It then writes this buffer to flash, repeating until the whole file is written to flash.

 We now have the ability to detect if a USB mass storage device is connected, see if it
contains a firmware-file and to write the firmware without overwriting the code doing the
writing.

4.2 To Enter Bootloader or Application Mode on Starting
Now we are just missing the bootloader or application checking part at the start of main.

 Add the following function before main().

• Add the code snippet before main() (code flow is explained in flowchart)

Figure 4-3. Boot Condition Check Flowchart

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

32

Code snippet:

This function runs first when the chip is started, if either the button SW0 on the board is held down, or the first
byte of the application-portion of the flash is empty, indicating that no firmware is present, it returns to main(),
allowing the device to load a new firmware from a connected USB device.

If the button is not held down, and there is a firmware present, the code rebases the vector-table to point to the
vector table of the loaded firmware, sets the stack pointer to the stack pointer of the firmware and finally transfers
control to the firmware by running the reset handler of the firmware.

Add a call to this function as the very first function call in main():

check_boot_mode();

static void check_boot_mode(void)
{
 uint32_t app_check_address;
 uint32_t *app_check_address_ptr;

 /* Check if WDT is locked */
 if (!(WDT->CTRL.reg & WDT_CTRL_ALWAYSON)) {
 /* Disable the Watchdog module */
 WDT->CTRL.reg &= ~WDT_CTRL_ENABLE;
 }

 app_check_address = APP_START_ADDRESS;
 app_check_address_ptr = (uint32_t *)app_check_address;

 board_init();

 if (port_pin_get_input_level(BUTTON_0_PIN) == BUTTON_0_ACTIVE) {
 /* Button is pressed, run bootloader */
 return;
 }

 if (*app_check_address_ptr == 0xFFFFFFFF) {
 /* No application; run bootloader */
 return;
 }

 /* Pointer to the Application Section */
 void (*application_code_entry)(void);

 /* Rebase the Stack Pointer */
 __set_MSP(*(uint32_t *)APP_START_ADDRESS);

 /* Rebase the vector table base address TODO: use RAM */
 SCB->VTOR = ((uint32_t)APP_START_ADDRESS & SCB_VTOR_TBLOFF_Msk);

 /* Load the Reset Handler address of the application */
 application_code_entry = (void (*)(void))(unsigned *)(*(unsigned *)
 (APP_START_ADDRESS + 4));

 /* Jump to user Reset Handler in the application */
 application_code_entry();
}

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

33

 Finally, It’s good to ensure that “Use newlib-nano” check box is enabled in project properties. By
default this newlib-nano is enabled in project. Newlib nano is a cut-down version of the C
standard library, and using this library instead of the standard library will make the project take up
much less space in the flash. As a summary, this linker option will enable the project to use more
size optimized arm-gcc library

 Atmel Studio  Project  Properties  ARM/ GNU Linker  General

Now we are ready to run the program. To test it, we will compile and upload our bootloader the SAM D21. Then
we can copy a valid firmware called firmware.bin to a USB thumb drive and if you connect this thumb drive to the
SAM D21 Xplained Pro, it should automatically program the firmware into the flash. If you then press the reset-
button on the SAM D21 Xplained Pro, it should run the new firmware.

 Copy the file firmware.bin (available in Resources folder) to a USB thumb-drive. Run the
program and connect the thumb-drive. Press reset when the firmware has been updated.

The new firmware will run after the chip has been reset.

 Application binary file named “firmware.bin” in Resources folder is precompiled binary file. It
is being used to make this bootloader checking procedure easier. If required Section 4.3 will
explain the steps to create an application binary file. Section 4.3 is not mandatory section.

If required, Solution project (SAMD21_USB_BOOT_ASSIGN3) is available in Resources folder.

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

34

Figure 4-4. Application Updated

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

35

Figure 4-5. Application Running

4.3 Creating Application Binary File
This section explains the change that’s needs to be done while creating application binary file that works with this
bootloader. Only one change in device’s linker script is required to make this binary as bootloader compatible
binary.

Flash address and size in linker script of this device has to be modified in order to make this as bootloader
compatible binary file.

Following steps will guide in creating an ASF example project (GFX Monochrome System Font Example – SAM
D21 Xplained PRO) and use this project’s binary image as an application binary image. Explanation for this
change is given after the procedure.

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

36

 Launch Atmel Studio and open the example project (GFX Monochrome System Font Ex-
ample – SAM D21 Xplained Pro) and compile the project.

• Launch Atmel Studio -> File -> New -> Example Project from ASF -> search with SAMD21 and select the
project (GFX Monochrome System Font Example – SAM D21 Xplained Pro)

Figure 4-6. New Example Project

 Project name and location can be optionally changed if needed (see Figure 4-9).

Figure 4-7. GFX Monochrome Example Project for SAM D21 Xplained Pro

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

37

Once the project is created, compile the project and ensure that the compilation is successful. After ensuring,
changes in the linker script can be made and re-compiled again.

 Compile the project and ensure the successful compilation.

• Atmel Studio -> Build -> Build Solution or use shortcut (F7).

Figure 4-8. Build Solution

 Compilation successful in Console window should be confirmed. See Figure 4-11.

Figure 4-9. Compilation Successful

 Change the linker script as mentioned and re-compile again.

• Find the linker script (samd21j18a_flash.ld) in the solution explorer and check the default value

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

38

Figure 4-10. Linker Script Location

 Memory spaces definition in linker script has to be changed as follows.

• Default configuration is “rom (rx) : ORIGIN = 0x00000000, LENGTH = 0x00040000”
• This should be changed to “rom (rx) : ORIGIN = 0x0000C800, LENGTH = 0x00033800”

The linker script now looks like Figure 4-13.

Figure 4-11. Linker Script After Change

 Re-Compile the project and ensure the successful compilation as did before. Take the bi-
nary and rename it as “firmware.bin” in order to work with the bootloader.

• Atmel Studio -> Build -> Rebuild Solution or use shortcut (Ctrl + Alt + F7)
• Debug folder in the Project path will contain the binary image by default. Go to the debug folder path of the

project and copy the binary. Paste it in the thumb drive and rename it as “firmware.bin”.
Example location is shown in Figure 4-14.

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

39

Figure 4-12. Binary Location

 Path for debug folder can be found by selecting the src folder in the Project in solution ex-
plorer -> Right click -> select “Open Folder” and this takes us to path where src folder re-
sides. Navigating one folder-up will take us to Debug folder location.

Explanation for the change:

Application start address in this bootloader is the next address after bootloader section ends. 200 NVM Rows is
the size we reserved for this bootloader in Flash memory space. So the next address (after 200 NVM Rows) has
to be the first flash address for application binary.

NVM chapter in SAM D21 device datasheet can be referred for NVM memory organization.

In SAMD21J18A device, each NVM Row has four pages and each page has 64 bytes of memory. Therefore, 200
NVM Rows will contribute to (200 * 4 * 64) bytes = 51200 (0xC800) bytes of memory. Application section starts
after 51200 bytes of flash memory.

The Partition of Flash space:

Bootloader section:

 Size: 50Kbytes (51200 bytes).

 Range: From Flash address 0x00000000 to 0x0000C7FF

Application section:

 Size: 206Kbytes (256KB – 50KB).

 Range: From flash address 0x0000C800 to 0x0003FFFF

By default, linker script contains:

 Flash start address: 0x00000000

 Flash size: 0x00040000

Linker script of Application binary should contain:

 Flash start address: 0x0000C800 (starting address after 50KB)

 Flash size: 0x00033800 (equivalent value of 206KB)

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

40

5 Conclusion
Here is the summary what we did.

• Checked the default project template available in Atmel Studio 6.2 for SAM D21 Xplained Pro Board
• Changed the clock configurations of the device, added drivers for OLED display and displayed a simple

string
• Added USB Host, FatFS file system drivers and made a simple application to read the content of a file in a
• USB device when it is attached
• Added NVM driver and modified the main() to program the flash (Application part) with the contents of the

file in the attached USB Device

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

41

6 Revision History
Doc Rev. Date Comments

42352A 02/2015 Initial document release.

SAM D21 XPRO USB Host MSC Bootloader [TRAINING MANUAL]
Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015

42

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 │ www.atmel.com

© 2015 Atmel Corporation. / Rev.:Atmel-42352A-SAM-D21-XPRO-USB-Host-MSC-Bootloader_Training-Manual_022015.

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected® logo, and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be trademarks
of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL
WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND
PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves
the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless
specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written consent.
Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products
are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor
intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.

http://www.atmel.com/
https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel

	Prerequisites
	Introduction
	Table of Contents
	Icon Key Identifiers
	1 Training Module Architecture
	1.1 Atmel Studio Extension (.vsix)
	1.2 Atmel Training Executable (.exe)

	2 Assignment 1: Develop a Basic Application
	2.1 Hardware Setup
	2.2 Basic Initialization
	2.3 Clock Configuration
	2.4 Adding OLED Display Drivers
	2.5 OLED Initialization and Displaying Text

	3 Assignment 2: Adding USB and File System Services
	3.1 Adding USB Driver
	3.2 Accessing Files
	3.3 Displaying the Contents of a File

	4 Assignment 3: Adding the Bootloader
	4.1 Updating the Flash
	4.2 To Enter Bootloader or Application Mode on Starting
	4.3 Creating Application Binary File

	5 Conclusion
	6 Revision History

