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Preliminary
AVR140: ATmega48/88/168 family run-time 
calibration of the Internal RC oscillator

for LIN applications

Features
• Calibration of internal RC oscillator via UART
• LIN 2.0 compatible synchronization/calibration to within +/-2% of target frequency
• Support for all ATmega48/88/168 AVR® family 
• Enables robust LIN UART communication with low cost clock sources in varying 

operating conditions

Introduction
This application note describes how to calibrate the internal RC oscillator via the
UART. The method used is based on the calibration method used in the Local Intecon-
nect Network (LIN) protocol, synchronizing a slave node to a master node at the
beginning of every message frame. This allows a slave node to communicate with
other nodes at baud rates within specified limits, even when running on a low cost
clock source, such as the internal RC oscillator.

The ATmega48/88/168 AVR microcontroller family offers the possibility to run from an
internal RC oscillator. The internal RC oscillator frequency can be calibrated within
±1% of the frequency specified in the datasheet for the device. This feature is ideal for
synchronization purposes, and offers significant cost savings compared to using an
external oscillator.

Note that this implementation uses the synchronization signal to alter the frequency of
the internal RC oscillator, which again alters the baud rate of the UART module. The
terms “synchronization” and “calibration” in this case essentially means the same, and
will be used interchangeably. The choice of expression is merely related to the
objective.
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Theory of Operation - The internal RC oscillator
In production the internal RC is calibrated at 3.3V and ambient temperature. The accu-
racy of the factory calibration is within +/-1% for all automotive AVRs, including
ATmega48/88/168 microcontroller familyfamily.

Clock Selection The AVR fuse settings control the system clock source being used. The device is hipped
with internal RC oscillator at 8.0MHz and with the fuse CKDIV8 programmed, resulting
in 1.0MHz system clock. The startup time is set to maximum and time-out period
enabled. (CKSEL = "0010", SUT = "10", CKDIV8 = "0"). The default setting ensures that
all users can make their desired clock source setting using any available programming
interface.To use the internal oscillator at 8MHz which is the recommended value for
proper LIN application, the corresponding fuse setting must be set at CKSEL3..0= 0010
and CKDIV8 = “1”.

Base Frequency The following section provides an overview of the internal RC oscillator available in the
ATmega48/88/168 AVR microcontroller familyfamily.

The ATmega48/88/168 has one 8MHz internal RC oscillator. To make it sufficiently
accurate, an Oscillator Calibration register, OSCCAL, is present in the AVR I/O file. The
OSCCAL is one byte wide. The purpose of this register is to be able to tune the oscillator
frequency. This tuning is utilized when calibrating the RC oscillator.

When a device is calibrated by Atmel, the calibration byte is stored in the Signature Row
of the device. The calibration byte can vary from one device to the other, as the RC
oscillator frequency is process dependent. The ATmega48/88/168 has a byte calibration
value for the internal RC Oscillator. This byte resides in the high byte of address 0x000
in the signature address space. During reset, this byte is automatically written into the
OSCCAL Register to ensure correct frequency of the calibrated RC Oscillator. A pro-
gramming tool can be used to read the 8MHz calibration byte from the Signature Row
and store it in a Flash or EEPROM location. The main program reads this location and
copies it into OSCCAL at run-time.

RC Oscillator overview An overview of the ATmega48/88/168 AVR microcontroller family and their oscillators is 
available in Table 1. The 8MHz oscillator is controlled by all the 8 bits of the OSCCAL 
register to tune the frequency. Auto loading of the default calibration value and system 
clock prescaler is present.

Oscillator 
Characteristics

The frequency of the internal RC oscillator is depending on the temperature and operat-
ing voltage. An example of this dependency is illustrated in Figure 1, which shows the
frequency of the 8MHz RC oscillator of the ATmega48/88/168. As seen from the figure,
the frequency increases with increasing temperature, and increases slightly too with
increasing operating voltage.

Table 1.  RC oscillator main features for the ATmega48/88/168 microcontroller family

Oscillator 
version

Device RC Oscillator Frequency 
(MHz)

CKDIV PRSCK

5.0 ATmega48/88/168 8.0 Yes Yes
2 AVR140
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Figure 1.  Non Calibrated Oscillator Frequency and Influence by Temperature and
Operating Voltage. ATmega88 8MHz oscillator frequency vs VCC

All devices with tunable oscillators have an OSCCAL register for tuning the oscillator fre-
quency. An increasing value in OSCCAL will result in a “pseudo-monotone” increase in
frequency. The reason for calling it pseudo-monotone is that for some unity increases of
the OSCCAL value the frequency will not increase. However, the next unity increase will
always increase the frequency again. In other words, incrementing the OSCCAL register
by one may not increase the frequency, but increasing the OSCCAL value by two will
always increase the frequency. This information is very relevant when searching for the
best calibration value to fit a given frequency. 

Important: The maximum deviation from the original calibration point is less than ±10%
within the whole temperature and voltage range. 
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Figure 2.  RC Oscillator Frequency vs OSCCAL value

An example of the pseudo-monotone relation between the OSCCAL value and the oscil-
lator frequency of the ATmega48/88/168 can be seen in Figure 2. The figure shows the
variation of the frequency for OSCCAL= 0 to 255. The OSCCAL register is split in two
parts. The MSB of OSCCAL (OSCCAL[7]) selects one of two overlapping frequency
ranges while the 7 least significant bits are used to tune the frequency within this range. 

Important: For all tunable oscillators, it is important to notice that it is not recommended
to tune the oscillator more than 10% off the base frequency specified in the datasheet.
The reason for this is that the internal timing in the device is dependent on the RC oscil-
lator frequency.

Frequency settling time When a new OSCCAL value has been set, it can take some time for the internal RC
oscillator to settle at the new frequency. This settling time is under no circumstances
any longer than 5 microseconds. Allow the oscillator to settle at its new frequency before
making any frequency measurements for calibration.

The LIN Synchronization Method
The Local Interconnect Network (LIN) standard is designed to make reliable communi-
cation possible even when using low-cost clock sources, such as the internal RC
oscillator. Due to the inherent inaccuracy and environment-dependent characteristics of
such clock sources, synchronization measures are included in the protocol. The LIN
synchronization principles are used as a basis for the synchronization methods
described in this application note. 

A LIN network consists of one master node and several slave nodes. The master node
is responsible for controlling all communication on the bus. In LIN terminology, commu-
nication occurs by sending message frames on the bus. Every message frame starts
with a frame header, initiated by the master node (see Figure 3). The header starts with
a BREAK and SYNCH pattern, allowing slave nodes to synchronize to the master before
any communication on the bus is initiated. The BREAK/SYNCH pattern consists of:

– BREAK signal: At least 13 bit times of dominant (low) value.
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– BREAK DELIMITER: At least 1 bit time of recessive (high) value.

– SYNCH byte: A 0x55 is transmitted. Including the start and stop bits, this 
results in a transmitted bit pattern of 0101010101. (Note that the bit 
transmission order is lsb first). See Figure 4.

Figure 3.  LIN Frame Format

Figure 4.  Synch Pattern (0x55) in the Frame Header

After the SYNCH byte, an identifier is transmitted. The identifier uniquely defines which
slave node is supposed to transmit data on the bus, and what information is requested
from the slave node.

Consequence of the 
undefined Duty-Cycle

The duty-cycle of the LIN signals are depending from the hardware implementation, so
may vary from application to one other. Therefore, the values for TBus_Dominant and
TBus_Recessif are not equal. This, indeed, has a strong influence on the way to syn-
chronize the oscillator when considering the 0x55 from the SYNCH byte. Instead of
using all alternate of rising and falling edges of the SYNCH byte, only subsequent rising
and subsequent falling edges must be considered.

Synchronization 
Algorithm

The possibility to change the value of OSCCAL during the Oscillator operation allows for
in-situ calibration of the slave node to entering Master frames. The principle of operation
is to measure the TBit during the SYNCH Byte and to change the calibration value of
OSCCAL to recover from local frequency drifts due to local voltage or temperature
deviation.

To do so, a dichotomy algorithm is proposed as described in Figure 5. 
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5  
7653A–AVR–09/06



  
Figure 5.  Automatic  Dichotomize Cal ibrat ion A lgori thm for  RC osc i l lator
synchronization

The 0x55 of the SYNCH Byte offers three measurements and OSCCAL changes win-
dows. See for more details in Figure 6.

Figure 6.  SYNCH byte used for TBit measurements and OSCCAL changes

The entering signal (LINrx) is sent to the Input Capture of the 16-bit timer. During win-
dowA, the first falling edge of the signal is time-stamped with the value of the 16-bit
timer/counter. Then, the next falling edge of LINrx is once again time-stamped with the
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new value of the timer/counter. The difference (which represents 2xTBit), is compared
with the reference and a decision is made how to change OSCCAL. The internal RC fre-
quency must be settled before the next window (windowB) occurs (remember, it takes
maximum 5µS to stabilize the frequency after OSCCAL has been changed). This proce-
dure can be repeated up to three times total (WindowA, B and C), but can be ended as
soon as the measured TBit gets into the required tolerance (±2%). See Figure 5 and
Figure 6 for more details on both the algorithm and the SYNCH Byte).

Optimum Dichotomous 
Steps

The search of the optimum OSCCAL value for a correct synchronization to entering
Master frame is dichotomous. Based on the three search windows allowed during the
SYNCH Byte (see Figure 6) and the maximum deviation measured on worst case condi-
tions, the following increment/decrement have been selected:

These three values are prefferred values which have been proven working all time what-
ever the original OSCCAL value and the operating conditions. 

Calibration and 
Screening of Production 
Parts

As indicated in Table 1, production parts are shipped calibrated at 8MHz. The calibration
routine is performed at ambiant temperature and 3V and the resulting OSCCAL[7] can
be either ‘0’ or ‘1’. 

To allow linear calibration and correct synchronization routine, the parts are screened
for their frequency at OSCCAL = 127 and OSCCAL = 128. Since the maximum devia-
tion of the Frequency over the full temperature and voltage ranges is ±10%, only parts
with Frequency ≤ 8.8MHZ at OSCCAL = 127 or with Frequency ≥ 7.2MHZ at OSCCAL
= 128 are accepted. These limits have been defined to satisfy the requirements of the
LIN synchronization algorithm described here after.

Precaution Against 
OSCCAL Discontinuity

The Figure 2 illustrates the on-purpose discontinuity. For one correct re-synchroniza-
tion, the frequency change must be kept on the same side of the discontinuity (no
change of OSCCAL[7]). Since there will be no device having frequency changed by
more than 10%, thus no reason to change the frequency value by more than 10%.
Therefore, when calibration tries to cross the border because of subsequent increase
(or decrease) in OSCCAL values, then the routine must be stopped. 

example: For parts operating in the lower part of the curve, if New_OSCCAL >127 then
New_OSCCAL = 127. Similar for parts operating on the high side of the discontinuity.

Comparison with LIN 
proposed method

The LIN specification proposes a synchronization methods which is based on the mea-
surement of local TBit at once during the SYNCH field. This allows the correction of local
oscillator before the remaining part of the frame is interpreted. The method described in
this application note offers to the user the possibility to have up to three local RC oscilla-
tor corrections, thus improving the precision (e.g. robustness) of the system. With this
procedure, no frame, even at start-up can be mis-interpreted for synchronization
reasons.

Table 2.  Prefferred Dichotomous increment/decrement for proper LIN synchronization

Measuring 
Window

OSCCAL 
change (steps)

Window A ± 16

Window B ± 8

Window C ± 4
7  
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C Code Example The following C code gives an example of the implementation of the above described
algorithm for a ATmega88 target. It is called by a LIN controller whose description is not
part of this application note.

/*

**

****************************************************************************

**

**

**             Copyright (c) 2004/2005 - Atmel Corporation

**             Proprietary Information

**

** Project    : AVR LIN SLAVE CONTROLLER

** Module     :

** Description: input capture interrupt routine for tbit calcualtion

** Target       : AVR ATMEGA48/88/168

** Compiler     : IAR Embedded Workbench

**

**

** Version :     Date:         Author:      Comment:

**    1.0        19.08.2004    E.G.          Creation

**    1.1        19.11.2004    E.G.          3 cycle RC calibration (OSCCAL +/- computed offset)

**    1.2        25.11.2004    E.G.          divide and conquer 3 steps for RC Oscillators v8.0

**    1.3        08.06.2005    E.G.          No cross over frequency discontinuity version

**

**

**

**

** LICENSE -

**

** ATMEL - 2004/2005

** All software programs are provided 'as is' without warranty of any kind:

** Atmel does not state the suitability of the provided materials for any

** purpose. Atmel hereby disclaim all warranties and conditions with regard

** to the provided software, including all implied warranties, fitness for

** a particular purpose, title and non-infringement.In no event will Atmel

** be liable for any indirect or consequential damages or any damages

** whatsoever resulting from the usage of the software program.

****************************************************************************

**

*/

//

/*_____ I N C L U D E S ____________________________________________________*/

#include "config.h"

#include "lib_mcu/lin_uart/slave_lin.h"

#include "lib_mcu/lin_uart/runtime_calibration_lib.h"

//divide and conquer 3 cycles for LIN run-time Internal Oscillator Calibration
8 AVR140
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//initial step = 16 , 2nd step =8, 3rd and last step = 4

//Ressource usage: Timer 1 (16 bit) + Input Capture module

//System Frequency: Internal RC oscillator @ 8MHz

/*_____ D E F I N I T I O N S ______________________________________________*/

volatile U8  Timer_IC_cnt;

volatile U8 _lin_synchronized;    //lin is synchronized with master if set (within 2%)

volatile U16 TimeStamp_IC1;

volatile U16 TimeStamp_IC2;

//**************************************************************************

// Timer Input Capture interrupt service routine

// use to calculate LIN master Tbit value (for minimum jitter)

//**************************************************************************

#pragma vector= TIMER1_CAPT_vect

__interrupt void TIMER1_CAPT_ISR (void){

#ifdef _RUN_TIME_RC_CALIBRATION_ENABLE

  U8 new_osccal;

  U8 osccal_prior_synchr;

  U8 osccal_step;

  U16 measured_master_tbit;

  signed int tbit_diff;

  //******************* 1st Cycle (Window A) *******************//

  if (Timer_IC_cnt == 0) {

    TimeStamp_IC1 = ICR1; //timestamp for 1st SynchField falling edge (First Measure Cycle)

  } else if (Timer_IC_cnt == 1) {

    TimeStamp_IC2 = ICR1; //timestamp for 2nd SynchField falling edge (First Measure Cycle), 2 Master 
Tbit measured

    TCCR1B  = (1<<ICES1) | (1<<CS10);  //input capture on rising edge for next cycle, no prescaler

    osccal_step = 16;

    measured_master_tbit = TimeStamp_IC2 - TimeStamp_IC1  ;

    tbit_diff = EXPECTED_TBIT - measured_master_tbit;

    osccal_prior_synchr = OSCCAL ;

    //test if we are in the right range, if true stop capturing

    if ((tbit_diff <= TBIT_DIFF_THRESHOLD_MAX) && (tbit_diff >= TBIT_DIFF_THRESHOLD_MIN)){

      Timer_stop_capture(); // stop autocalibration sequence

      _lin_synchronized = 1;  //lin slave is now synchronized correctly

    }else{

      //otherwise increment or decrement only by +/- step

      _lin_synchronized = 0;

      if (tbit_diff > 0) {

        new_osccal =  osccal_prior_synchr + osccal_step ;

      } else {

        new_osccal =  osccal_prior_synchr - osccal_step ;

      }

      if (new_osccal<128 & osccal_prior_synchr>=128) {
9  
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        new_osccal = 128;   //high to low side saturation

      }

      if (new_osccal>=128 & osccal_prior_synchr<128){

        new_osccal = 127;  //low to high side saturation

      }

      OSCCAL = new_osccal;  //takes about 5us to get the new frequency

    }

    //******************* 1st Cycle (Window A( *******************//

    //******************* 2nd Cycle ("Window B")*******************//

  } else if (Timer_IC_cnt == 2) {

    TimeStamp_IC1 = ICR1;   //timestamp for 2nd SynchField rising edge (Second Measurement Cycle)

  } else if (Timer_IC_cnt ==3) {

    TimeStamp_IC2 = ICR1;    //timestamp for 3rd SynchField rising edge (Second Measure Cycle), 2 
Master Tbit measured

    TCCR1B  &= ~(1<<ICES1);  //input capture on falling edge for next cycle

    measured_master_tbit = TimeStamp_IC2 - TimeStamp_IC1;

    tbit_diff = EXPECTED_TBIT - measured_master_tbit;

    osccal_prior_synchr = OSCCAL ;

    osccal_step = 8;

    //test if we are in the right range, if true stop capturing

    if ((tbit_diff <= TBIT_DIFF_THRESHOLD_MAX) && (tbit_diff >= TBIT_DIFF_THRESHOLD_MIN)){

      Timer_stop_capture();//stop autocalibration sequence

      _lin_synchronized = 1; //lin slave is now synchronized correctly

    }else{

      //otherwise increment or decrement by +/- step

      _lin_synchronized = 0;

      if (tbit_diff > 0) {

        new_osccal =  osccal_prior_synchr + osccal_step ;

      } else {

        new_osccal =  osccal_prior_synchr - osccal_step ;

      }

      if (new_osccal<128 & osccal_prior_synchr>=128) {

        new_osccal = 128;  //high to low side saturation

      }

      if (new_osccal>=128 & osccal_prior_synchr<128){

        new_osccal = 127;  //low to high side saturation

      }

      OSCCAL = new_osccal;  //takes about 5us to get the new frequency

    }

    //******************* 2nd Cycle ("Window B")*******************//

    //******************* 3rd Cycle ("Window C")*******************//

  }else if (Timer_IC_cnt == 4) {

    TimeStamp_IC1 = ICR1;  //timestamp for 4th SynchField falling edge (Second Measurement Cycle)

  } else if (Timer_IC_cnt ==5) {

    TimeStamp_IC2 = ICR1; //timestamp for 5th and last SynchField falling edge (Third and last Measure 
Cycle), 2 Master Tbit measured

    osccal_step = 4;
10 AVR140
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    measured_master_tbit = TimeStamp_IC2 - TimeStamp_IC1  ;

    tbit_diff = EXPECTED_TBIT - measured_master_tbit;

    osccal_prior_synchr = OSCCAL ;

    //test if we are in the right range, if true stop capturing

    if ((tbit_diff <= TBIT_DIFF_THRESHOLD_MAX) && (tbit_diff >= TBIT_DIFF_THRESHOLD_MIN)){

      Timer_stop_capture();//stop autocalibration sequence

      _lin_synchronized = 1; //lin slave is now synchronized correctly

    }else{

      //otherwise increment or decrement  by +/- step

      _lin_synchronized = 0;

      if (tbit_diff > 0) {

        new_osccal =  osccal_prior_synchr + osccal_step ;

      } else {

        new_osccal =  osccal_prior_synchr - osccal_step ;

      }

      if (new_osccal<128 & osccal_prior_synchr>=128) {

        new_osccal = 128;  //high to low side saturation

      }

      if (new_osccal>=128 & osccal_prior_synchr<128){

        new_osccal = 127;  //low to high side saturation

      }

      OSCCAL = new_osccal;  //takes about 5us to get the new frequency

      Timer_stop_capture();   //stop autocalibration sequence

      _lin_synchronized = 1; //lin slave is now synchronized correctly

    }

  }

  //******************* 3rd Cycle ("Window C")*******************//

  Timer_IC_cnt ++ ;

#endif

}
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