
AN2045
Interfacing Serial EEPROMs with 8-Bit

PIC® Microcontrollers
INTRODUCTION

The demand for cheap and portable nonvolatile memory
devices remains steady as long-term memory storage is
still integral to the development of many industrial and
commercial technologies. For a lot of these markets,
serial EEPROM devices are still seen as ideal, cost-
effective solutions for nonvolatile memory embedded
control applications. Despite the resurgence of other
forms of nonvolatile memory, serial EEPROMs still
make their case as a viable choice for applications and
solutions that require portability, low-current and voltage
operations, byte-per-byte operations and competitive
price points. SPI and I2C synchronous serial protocols
remain two of the most popular ways to interface with
serial EEPROM devices. Catering to this, the Master
Synchronous Serial Port (MSSP) module, built into most
of the PIC® Microcontroller devices, provides a
convenient platform for synchronous serial operations in
both of these protocols.

This application note intends to demonstrate how to
interface SPI and I2C serial EEPROM devices using
MPLAB® X 3.10, the XC8 v1.34 compiler and the
MPLAB® Code Configurator v2.25. The Explorer8
Development Board is used as the hardware develop-
ment platform. The firmware written for this application
note is built on the SPI and I2C function codes automat-
ically generated by the MCC, providing references for
byte read and write, buffer/page write, sequential read
and write cycle polling operations. The code has been
tested with EEPROMs of the MikroElectronika
EEPROM and EEPROM2 Click™ Boards, and the SPI
and I2C Plug-In Modules (PIMs) from Microchip’s Serial
EEPROM PIM PICtail™ Pack.

SPI INTERFACE

The SPI protocol is best characterized by three features:
it is synchronous, it designates a master device to
communicate with slave device/s and it is a full-duplex
system where data is exchanged between master and
slave. SPI is a synchronous protocol that makes use of
a clock signal to sync data transfer. No data transfer may
occur unless a clock signal is present. The master device
provides and controls this clock signal. All slave devices
are controlled by this master clock and may not manipu-
late it. As data is being clocked out of either the master or
slave/s, new data is being clocked in simultaneously. This
is consistent with the full-duplex nature of the system. A
Chip Select (CS) signal controls which particular slave
device the master is communicating with, ensuring that
only a single slave is engaged at one time.

For the examples and waveforms in this application
note, a PIC16F1719 microcontroller is used as the
master and a 2 Mbit serial bus EEPROM, mounted on
the MikroElectronika EEPROM2 Click Boards, is the
slave device.

STANDARD SPI SIGNALS

The SPI protocol makes use of four signal lines to
arbitrate the flow of data in the communication system.

• Chip Select (CS)
- This signal is used to select the slave device

that the master will communicate with.
Bringing the line to Active state will select the
device.

• Serial Clock (SCK)
- This is the clock signal generated by the

master that controls when data is sent and
read.

• Serial Data Output (SDO)
- This is the signal line that carries the data

sent out of the device.

• Serial Data Input (SDI)
- This is the signal line that carries the data

sent into the device.

Author: Regine Monique Aurellano
Microchip Technology Inc.

Note: The SDO line of the master should be
connected to the SDI line of the slave.
 2016 Microchip Technology Inc. DS00002045A-page 1

http://www.microchip.com/Explorer8
http://www.microchip.com/Explorer8
http://www.mikroe.com/click/eeprom
http://www.mikroe.com/click/eeprom2/
http://www.mikroe.com/click/eeprom
http://www.mikroe.com/click/eeprom
www.microchip.com/AC243003
www.microchip.com/AC243003
www.microchip.com/AC243003
www.microchip.com/AC243003
www.microchip.com/AC243003
http://www.microchip.com/Explorer8
http://www.microchip.com/Explorer8

AN2045
SPI MSSP INITIALIZATION VIA
MPLAB® CODE CONFIGURATOR
(MCC V2.25)

This section will guide the user in initializing the proper
registers in order to implement SPI using the MSSP
module available in most PIC devices. The MPLAB
Code Configurator (MCC) is used to make this process
easier and more intuitive. Upon opening a new project
and launching the MCC plug-in, select the MSSP
module in the Device Resources sidebar, marked in red
in Figure 1. From the drop-down options, select SPI
Master. This is marked in blue in Figure 1.

In order to configure the MSSP module for the SPI
operation in PIC devices, several registers need to be
properly initialized. To match the configuration of the
slave device, the SPI mode (0,0) will be used, where
the SCK signal Idles low, the data changes at the falling
edge of the clock and is assumed valid at the rising
edge.

FIGURE 1: SELECTING MSSP MODULE IN MCC
DS00002045A-page 2  2016 Microchip Technology Inc.

AN2045
SSPx Status Register (SSPxSTAT)

The SSPxSTAT register holds all of the status bits
associated with the MSSP module. In SPI mode, the
SMP bit determines the part of the input to be sampled.
The CKE bit determines which edge of the clock the
data is transmitted.

The BF bit indicates if the data byte transfer has
already been completed. It is best to ensure the BF bit
is cleared before starting any read or write operation.
Figure 2 shows the position of the bits in the
SSPxSTAT register and Figure 3 shows which parts of
the configuration screen in MCC correspond to bits in
the SSPxSTAT register.

FIGURE 2: SSPxSTAT: SSPx STATUS REGISTER FOR SPI CONFIGURATION

FIGURE 3: CONFIGURING SSPxSTAT BITS ON MCC

The configuration shown in Figure 3 will yield the
following lines of code in spi.c after clicking the
‘Generate Code’ button in MCC (see Example 1).

EXAMPLE 1: SSPxSTAT MCC GENERATED CODE
// BF RCinprocess_TXcomplete; SMP Sample At Middle; CKE Active to Idle;

SSP1STAT = 0x40;
 2016 Microchip Technology Inc. DS00002045A-page 3

AN2045
SSPx Control Register 1 (SSPxCON1)

The SSPxCON1 is one of the configuration registers for
the MSSP module. It holds several indicator bits and
the select bits to be configured in order to put the
module in the desired mode. In SPI mode, the SSPEN
bit needs to be set to enable the serial port. When
enabled, the SCK, SDO and SDI pins are configured
for SPI operation.

The CKP bit determines whether the clock Idles at a
low or high level. The SSPM<3:0> bits determine the
Synchronous Serial mode the module will operate in,
as well as clock preferences. Figure 4 shows the
position of the bits in the SSPxCON1 register, and
Figure 5 shows which parts of the configuration screen
in MCC correspond to bits in the SSPxCON1register.

FIGURE 4: SSPxCON: SSPx CONTROL REGISTER 1 FOR SPI CONFIGURATION

FIGURE 5: CONFIGURING SSPxCON1 BITS ON MCC

The configuration shown in Figure 5 will yield the
following lines of code in spi.c after clicking the
‘Generate Code’ button in MCC (see Example 2).

EXAMPLE 2: SSPxCON1 MCC GENERATED CODE
// SSPEN enabled; WCOL no_collision; SSPOV no_overflow; CKP Idle:Low, Active:High; SSPM FOSC/4;

SSP1CON1 = 0x20;
DS00002045A-page 4  2016 Microchip Technology Inc.

AN2045
For devices with Peripheral Pin Select (PPS) function-
ality, such as the PIC16F1719, the MCC would also
automatically generate code to map the SDO, SDI and
SCK pins to the pins selected in the pin manager, and
initializes them as input or output accordingly. For other
devices without PPS functionality, MCC configures the
pins as input or output, as needed. Figure 6 shows the
pins selected as SDO, SDI and SCK. Example 3 shows
the code snippet generated to implement the selection
via the Peripheral Pin Select (PPS) feature of this
device. As for the CS pin, the user can select any
unused I/O pin, and connect this to the slave device’s
CS pin. The selected CS pin should start at the oppo-
site level needed to activate the slave (i.e., if CS held
low activates the slave, then it should start as high at
Reset). This can be accomplished in the GPIO module
in MCC by checking the appropriate box as shown in
Figure 7. The pin can also be renamed for coding con-
venience.

FIGURE 6: MSSP PIN ASSIGNMENTS

EXAMPLE 3: MSSP PIN ASSIGNMENT
CODE

bool state = GIE;
GIE = 0;
PPSLOCK = 0x55;
PPSLOCK = 0xAA;
PPSLOCKbits.PPSLOCKED = 0x00;

// unlock PPS

// RC3->MSSP:SCK
SSPCLKPPSbits.SSPCLKPPS = 0x13;

// RC3->MSSP:SCK
RC3PPSbits.RC3PPS = 0x10;

// RC4->MSSP:SDI
SSPDATPPSbits.SSPDATPPS = 0x14;

// RC5->MSSP:SDO
RC5PPSbits.RC5PPS = 0x11;

PPSLOCK = 0x55;
PPSLOCK = 0xAA;
PPSLOCKbits.PPSLOCKED = 0x01;

// lock PPS
GIE = state;
 2016 Microchip Technology Inc. DS00002045A-page 5

AN2045
FIGURE 7: SETTING THE CS PIN IN MCC

COMMON SPI SERIAL EEPROM
OPERATIONS

Write Enable

In order to begin interacting with the EEPROM, the CS
line should be activated – brought low in the case for
the EEPROM used here. This signals the slave to listen
for the master’s SCK and SDO signals. The transitions
of the CS line should bookend all transactions between
the master and slave.

To begin writing to the EEPROM array or Status register,
the WRITE ENABLE command must be sent by the mas-
ter. The Write Enable (WEL) bit of the Status register is
cleared by issuing a WRITE DISABLE command (WRDI)
or if the device is powered down, or once a write cycle is
completed. Figure 8 shows an example of the WRITE
ENABLE command.

TABLE 1: SAMPLE INSTRUCTION SET FOR THE SPI SERIAL BUS EEPROM

Instruction Description Instruction Format/Opcode

WREN Write Enable 0000 0110

WRDI Write Disable 0000 0100

RDSR Read Status Register 0000 0101

WRSR Write Status Register 0000 0001

READ Read from Memory Array 0000 0011

WRITE Write to Memory Array 0000 0010
DS00002045A-page 6  2016 Microchip Technology Inc.

AN2045
FIGURE 8: WRITE ENABLE COMMAND

For this EEPROM, the WRITE ENABLE command
opcode is 0x06. Refer to the EEPROM’s data sheet for
its specific command opcodes.

Status Register Read

The EEPROM’s Status register holds the bits that show
the current condition of the EEPROM. The most import-
ant indicators for users to keep track of are the WEL
(Write Enable) bit and the WIP (Write in Progress) bit.
If the WEL bit is set, writing to the EEPROM’s data
array is enabled. If the WIP bit is set, a write cycle is in
progress. With this in mind, it is good programming
practice to check these bits first before attempting write
or read operations to avoid collisions. To read from the
EEPROM Status register, bring the CS line low and
send the EEPROM Read Status Register (RDSR)
opcode (0x05 for this EEPROM). The Status register is
then shifted out on the slave EEPROM’s SDO pin and
into the Master’s SDI pin on the next succeeding
clocks. Figure 9 and Figure 10 show the RDSR
command being used to check if the WEL and WIP bits
are set.

Write Enable
Opcode

0x06

0x00
 2016 Microchip Technology Inc. DS00002045A-page 7

AN2045
FIGURE 9: READ STATUS REGISTER COMMAND (WEL BIT SET)

FIGURE 10: READ STATUS REGISTER COMMAND (WEL+WIP BITS SET)

Opcode
Byte

WEL Bit
Enabled

0x05

0x00

0x00

0x02

Opcode
Byte

WEL+WIP Bits
Enabled

0x05 0x00

0x00 0x03
DS00002045A-page 8  2016 Microchip Technology Inc.

AN2045
Byte and Buffer Write

Once the WEL bit is set and the CS line is brought low,
the EEPROM write opcode needs to be sent (0x02 for
this EEPROM), followed by the target starting address
byte/s, with the Most Significant Byte (MSB) sent first.
The data bytes are then clocked in last. Once the CS
line is toggled at the end of this command, the internal
write cycle is initiated.

The WIP bit of the Status register can now be polled to
check when the write is finished (more on this later).

Multiple bytes can be written by continuously sending
data bytes to the EEPROM device without toggling the
CS line. However, users should be mindful of the page
size of the device and starting address, so as not to
overwrite previously stored data. Data exceeding the
allotted page size will warp back to the starting address
of the page, overwriting what may have been written
there. Figure 11 and Figure 12 show how to write a sin-
gle byte of data and multiple bytes of data in an array
to the EEPROM.

FIGURE 11: BYTE WRITE COMMAND

FIGURE 12: BUFFER WRITE COMMAND

Opcode
Byte

Data
 Byte

0x02 0x00 0xAB 0x10 0xBB

0x000x000x000x000x00

Address
Bytes

Data Bytes

0x10 0x1A 0x2A 0x4A 0x8A

0x000x000x000x000x00
 2016 Microchip Technology Inc. DS00002045A-page 9

AN2045
Byte Read and Buffer Read

To read from the EEPROM, bring the CS line low and
send the EEPROM read opcode (0x03 for this
EEPROM), followed by the target starting address
byte/s, with the Most Significant Bytes sent first. The
code clocks out the data from the SDI line by sending
dummy data, consisting of zeros, to the SDO line as
SPI is a data exchange protocol. Once the CS line is

toggled at the end of this command, the transfer is
finished. A multibyte read can be accomplished by
continuously sending dummy data bytes to the
EEPROM device and thus, providing it with the clock
cycles needed to send in the data without toggling the
CS line. Figure 13 and Figure 14 show how to read a
single byte of data and multiple bytes of data in an array
from the EEPROM.

FIGURE 13: READ BYTE COMMAND

FIGURE 14: BUFFER READ COMMAND

Opcode
Byte

Address
Bytes

Data
 Byte

0x03 0x00 0xAB 0x10 0x00

0xBB0x000x000x000x00
DS00002045A-page 10  2016 Microchip Technology Inc.

AN2045
I2C INTERFACE

The I2C protocol shares the first two features of SPI: it
is synchronous and is designed as a master-slave
protocol. Similar to the SPI, I2C also uses a clock signal
to facilitate data transfer. No data transfer may occur
unless a clock signal is present. While the master
device is still the one that provides the clock, slaves
may manipulate the clock by holding it low to prevent
further data transfer if it is still busy (clock stretching).
This is in direct contrast with the SPI master that does
not allow slaves to manipulate the clock signal. More-
over, the SPI protocol operates in Full-Duplex mode,
allowing data to be sent simultaneously from both the
master and slave. While the I2C protocol operates in
Half-Duplex mode, the master and slave are allowed to
send data but not at the same time. This is
implemented by an ‘Acknowledge’ system. Another dif-
ference is that the SPI protocol requires a Chip Select
(CS) connection for each slave device. For I2C, only
two connections between the master and slaves are
needed, regardless of the number of slaves, as the
slave address is sent over the data line instead of using
a CS connection. While the I2C protocol uses fewer
pins, the SPI protocol is usually faster.

For the examples and waveforms in this part of the
application note, a PIC16F1719 microcontroller is used
as the master and the 8 kbit Serial I2C Bus EEPROM,
mounted on the MikroElectronika EEPROM Click
Boards, is used as the slave device.

STANDARD I2C SIGNALS

The I2C protocol makes use of only two signal lines to
control the flow of data in the communication system.

• Serial Clock Line (SCL)
- This is the clock signal generated by the

master that controls when data is sent and
received.

- It can be held low by any slave device if it is
too busy to accept or send data.

• Serial Data Line (SDA)
- This is the signal line that carries the data

sent in and out between master and slave
devices.
 2016 Microchip Technology Inc. DS00002045A-page 11

AN2045
I2C MSSP INITIALIZATION VIA
MPLAB® CODE CONFIGURATOR
(MCC)

This section will guide the user in initializing the proper
registers in order to implement I2C using the MSSP
module available in most PIC devices using the
MPLAB Code Configurator (MCC).

Upon opening a new project and launching the MCC
plug-in, select the MSSP module in the Device
Resources sidebar, marked in red in Figure 15. From
the drop-down options, select ‘I2C Master Interrupt’ as
the microcontroller will be the master device, as
mentioned in this section’s introduction. This is marked
in blue in Figure 15.

FIGURE 15: SELECTING THE MSSP MODULE IN MCC

In order to configure the MSSP module for I2C
operation in the PIC devices, several registers need to
be properly initialized.
DS00002045A-page 12  2016 Microchip Technology Inc.

AN2045
SSPx Status Register (SSPxSTAT)

In I2C Master mode, the R/W bit indicates if a transmit
is in progress. The BF bit indicates if the data transfer
has already been completed. Figure 16 shows the
position of the bits in the SSPxSTAT register.

FIGURE 16: SSPxSTAT: SSPX STATUS REGISTER FOR I2C CONFIGURATION

The following lines of code initialize the SSPxSTAT
register. The MCC automatically generates this code
when the ‘Generate Code’ button is pressed (see
Example 4).

EXAMPLE 4: SSPxSTAT MCC GENERATED CODE

// BF RCinprocess_TXcomplete; UA dontupdate;P stopbit_notdetected; S startbit_notdetected;
R_nW write_noTX; D_nA lastbyte_address;
SSP1STAT = 0x00;
 2016 Microchip Technology Inc. DS00002045A-page 13

AN2045
SSPx Control Register 1 (SSPxCON1)

In I2C mode, the SSPEN bit needs to be set to enable
the serial port and configures SCL and SDA as the
source of the serial port pins.

The SSPM<3:0> bits determine the Synchronous
Serial mode the module will operate in, as well as clock
preferences and the number of bits used for slave
addresses when the module is in Slave mode.
Figure 17 shows the position of the bits in the
SSPxCON1 register and Figure 18 shows which parts
of the configuration screen in MCC correspond to bits
in the SSPxCON1 register. In this example, the I2C
Serial Bus EEPROM uses 7-bit addressing.

FIGURE 17: SSPxCON1: SSPx CONTROL REGISTER 1 FOR I2C CONFIGURATION

FIGURE 18: CONFIGURING SSPxCON1 BITS ON MCC

The configuration shown in Figure 18 will yield the
following lines of code in i2c.c after clicking the
‘Generate Code’ button in MCC (see Example 5).

EXAMPLE 5: SSPxCON1 MCC GENERATED CODE
// SSPEN enabled; WCOL no_collision; SSPOV no_overflow; CKP Idle:Low, Active:High; SSPM FOSC/4_SSPxADD;

SSP1CON1 = 0x28;
DS00002045A-page 14  2016 Microchip Technology Inc.

AN2045
SSPx Control Register 3 (SSPxCON3)

This register mostly holds control bits for I2C functions.
Of concern here is the SDAHT bit, that controls how
long the hold time of SDA will be after the falling edge
of SCL.

Figure 19 shows the position of the bits in the
SSPxCON3 register and Figure 20 shows which parts
of the configuration screen in MCC correspond to bits
in the SSPxCON3 register.

FIGURE 19: SSPxCON3: SSPx CONTROL REGISTER 3 FOR I2C CONFIGURATION

FIGURE 20: CONFIGURING SSPxCON3 BITS ON MCC

The configuration shown in Figure 20 will yield the
following lines of code in i2c.c after clicking the
‘Generate Code’ button in MCC (see Example 6).

EXAMPLE 6: SSPxCON3 MCC GENERATED CODE
// BOEN disabled; AHEN disabled; SBCDE disabled; SDAHT 100ns; DHEN disabled; ACKTIM ackseq;

PCIE disabled; SCIE disabled;
SSP1CON3 = 0x00;
 2016 Microchip Technology Inc. DS00002045A-page 15

AN2045
SSPx Address and Baud Rate Register
(SSPxADD)

For I2C Master mode, this register holds the value of
the Baud Rate clock divider (i.e., the SCL clock period).
This is computed by the formula:
((ADD<7:0> + 1) * 4)/FOSC.

Figure 21 shows the position of the bits in the
SSPxADD register. Figure 22 shows which parts of the
configuration screen in MCC correspond to bits in the
SSPxADD register.

FIGURE 21: SSPxADD: SSPx ADDRESS AND BAUD RATE REGISTER

FIGURE 22: CONFIGURING SSPxADD BITS ON MCC

The configuration shown in Figure 22 will yield the
following lines of code in i2c.c after clicking the
‘Generate Code’ button in MCC (see Example 7).

EXAMPLE 7: SSPxADD MCC
GENERATED CODE

// Baud Rate Generator Value: SSP1ADD 3;
SSP1ADD = 0x03;
DS00002045A-page 16  2016 Microchip Technology Inc.

AN2045
For devices with Peripheral Pin Select (PPS) functionality,
such as the PIC16F1719, the MCC would also automati-
cally generate code to map the SCL and SDA pins to the
pins selected in the pin manager, and configure these
pins as input or output accordingly. Figure 23 shows the
pins selected as SCL and SDA. Example 8 shows the
code snippet generated to implement the selection via the
Peripheral Pin Select (PPS) feature of this device. Also
note that the I2C function driver, provided by the MCC, is
interrupt-based, and so the user must enable global and
peripheral interrupts for it to work. To enable global and
peripheral interrupts, uncomment the lines implementing
the INTERRUPT_GlobalInterruptEnable() and
INTERRUPT_PeripheralInterruptEnable() func-
tions on the MCC-generated main.c file, as shown in
Figure 24.

FIGURE 23: I2C MSSP PIN
ASSIGNMENTS

EXAMPLE 8: MSSP PIN ASSIGNMENT
CODE

bool state = GIE;
GIE = 0;
PPSLOCK = 0x55;
PPSLOCK = 0xAA;
PPSLOCKbits.PPSLOCKED = 0x00; // unlock PPS

SSPCLKPPSbits.SSPCLKPPS = 0x13; // RC3->MSSP:SCL

RC3PPSbits.RC3PPS = 0x10;
// RC3->MSSP:SCL

SSPDATPPSbits.SSPDATPPS = 0x14; // RC4->MSSP:SDA

RC4PPSbits.RC4PPS = 0x11;
// RC4->MSSP:SDA

PPSLOCK = 0x55;
PPSLOCK = 0xAA;
PPSLOCKbits.PPSLOCKED = 0x01; // lock PPS
GIE = state;
 2016 Microchip Technology Inc. DS00002045A-page 17

AN2045
FIGURE 24: CAPTION OF main.c FILE WITH ENABLED INTERRUPTS

void main(void) {
// initialize the device
SYSTEM_Initialize();

// When using interrupts, you need to set the Global and Peripheral Interrupt Enable bits
// Use the following macros to:

// Enable the Global Interrupts
INTERRUPT_GlobalInterruptEnable();

// Enable the Peripheral Interrupts
INTERRUPT_PeripheralInterruptEnable();

// Disable the Global Interrupts
//INTERRUPT_GlobalInterruptDisable();

// Disable the Peripheral Interrupts
//INTERRUPT_PeripheralInterruptDisable();
DS00002045A-page 18  2016 Microchip Technology Inc.

AN2045
COMMON I2C SERIAL EEPROM
OPERATIONS

• Byte Write
• Multibyte Write
• Page Write
• Acknowledge Polling
• Write-Protect
• Address Read
• Sequential Read

Byte Write

The byte write operation in I2C can be broken down into
the following elements: The Start condition, the I2C
slave address byte, the EEPROM address byte, the
data byte and the Stop condition. For this EEPROM,
only a single byte of address data is used. Other
EEPROMs might use multiple byte addresses.

START BIT AND I2C SLAVE ADDRESS BYTE
TRANSMISSION

All I2C commands must begin with a Start condition.
This consists of a high-to-low transition of the SDA line
while the SCL is high. After the Start condition, the I2C
slave address byte is sent, consisting of the device
7-bit I2C slave address (0xA for this EEPROM), and a
Read/Write bit to identify the operation to be performed.
For write operations, the R/W bit is pulled low.

After each byte, at the ninth clock cycle, the slave
EEPROM will hold the SDA line low to signify that it has
received the preceding bits. This is the Acknowledge or
ACK bit.

SENDING THE EEPROM ADDRESS BYTE

After the I2C slave EEPROM has Acknowledged the
receipt of the I2C address, the master should begin
transmitting the EEPROM address byte. In the case
that the EEPROM is using multiple byte addresses, the
bytes should be sent in the order of decreasing signifi-
cance. The EEPROM should respond with an ACK bit
for every byte sent by the master.

SENDING THE DATA BYTE AND THE STOP BIT

Once the EEPROM address byte/s are sent and the
ACK is received, the data byte can now be sent. The
EEPROM should respond by sending an ACK bit after
every byte sent by the master. After this, the master will
generate the Stop condition, signifying that it does not
have any more bytes to write. The Stop condition is
achieved by creating a low-to-high transition of the
SDA line while the SCL line is high.

Figure 25 shows the entire byte write procedure from
Start-to-Stop conditions. In this case, the EEPROM
only uses a single byte for addressing. 0x00 is used as
the address where the data will be written and 0xA5 as
the data byte to be transmitted.

FIGURE 25: BYTE WRITE COMMAND

SCL

SDA

START BIT I2C SLAVE
ADDRESS BYTE

EEPROM
ADDRESS BYTE DATA BYTE STOP BIT

Write [0xA0] 0x00 + ACK 0xA5 + ACK

 2016 Microchip Technology Inc. DS00002045A-page 19

AN2045
Multibyte and Page Write

Writing multiple bytes starts off similar enough to the
byte write operation. The Start bit, I2C slave address
byte and EEPROM address byte/s are all sent and
Acknowledged in that order. However, instead of send-
ing a Stop condition after the first data byte has been
transmitted and Acknowledged, the master just keeps
on sending more data bytes consecutively. This
EEPROM accepts up to 16 bytes to be written in a
single write cycle. The page size of the EEPROM
determines how many bytes of data can be consecu-
tively written with the I2C slave address and EEPROM
address bytes being sent only once. It is very important
to point out that page write operations are limited to
writing bytes within a single physical page, regardless
of how many bytes are actually being written.

This means that if the number of bytes being written
exceeds the page limit, the excess bytes will wrap back
to the starting address of the page, overwriting data
already written there. Once all bytes are sent, the
master will initiate the Stop condition, thus beginning
the internal write cycle.

Figure 26 shows the first three bytes sent in a buffer
write operation. Note that immediately after the
EEPROM Acknowledges the receipt of a byte, the
master begins the transmission of the next byte.

FIGURE 26: MULTIPLE BYTE WRITE OPERATION

I2C SLAVE
ADDRESS BYTE

EEPROM
ADDRESS BYTE DATA BYTES

SCL

SDA
Write [0xA0] 0x10 + ACK 0x1A + ACK 0x2A + ACK 0x4A + ACK
DS00002045A-page 20  2016 Microchip Technology Inc.

AN2045
Byte Read

The byte read operation in I2C starts off similarly to the
byte write as the EEPROM address should be written
to the slave first, before the slave EEPROM can send
the data from that address. The Start condition is sent
first, then the I2C slave address byte, then the
EEPROM address byte/s. After sending the EEPROM
address bytes, the Stop condition is sent instead of
data bytes. After the I2C master initiates the read oper-
ation with a new Start condition, the I2C slave address
byte is sent with the LSB pulled high to signify a read
operation. The I2C master then sends nine clock pulses
and the slave sends the single byte of data needed.

START BIT AND I2C SLAVE ADDRESS BYTE
TRANSMISSION

All I2C commands must begin with a Start condition.
This consists of a high-to-low transition of the SDA line
while the SCL is high. After the Start condition, the I2C
slave address and direction byte are sent, consisting of
the device 7-bit I2C slave address (0xA for this
EEPROM), and a Read/Write bit to determine the
operation to be performed.

To initiate the byte read operation, the target EEPROM
data address must be written to the EEPROM.

To achieve this, the R/W bit is set low to indicate that
the I2C master is writing to the slave. After each byte
written by the master, the slave will hold the SDA line
low, indicating the preceding byte was received.

SENDING THE ADDRESS BYTE

After the EEPROM has Acknowledged the receipt of
the I2C slave address byte, the master should begin
transmitting the EEPROM address byte. In the case
that the EEPROM is using multiple byte addresses, the
bytes should be sent in the order of decreasing
significance. The EEPROM should respond with an
ACK bit after each byte is sent by the master.

SENDING THE STOP BIT

Once the address byte/s are sent and the ACK is
received in read operations, the Stop bit is sent by the
master at this point. The EEPROM should respond by
sending an ACK bit.

RECEIVING THE DATA BYTE

A new Start condition is generated and the I2C slave
address byte is sent once again, but with the R/W bit
set high to signify that the master wants to perform a
read operation. Once the I2C slave address byte is
Acknowledged by the I2C slave, the I2C master will
send nine clock pulses and the slave will respond by
sending the data byte. After the master has received
the data byte, it will release the SDA line at the ninth
clock cycle. This is a Not Acknowledge (NACK)
condition. This signals that the master is not requesting
anymore data from the slave.

Figure 27 and Figure 28 show the entire byte read pro-
cedure. Figure 27 shows how the EEPROM address
from where the data should be read is sent to the slave
device. Figure 28 shows the read command and the
data byte being sent from the slave. In this case, the
EEPROM only uses a single byte for addressing. 0x00
is used as the EEPROM address where the data will be
written and 0xA5 as the data byte to be transmitted.
 2016 Microchip Technology Inc. DS00002045A-page 21

AN2045
FIGURE 27: SENDING THE ADDRESS FOR THE READ COMMAND

FIGURE 28: BYTE READ COMMAND

START BIT STOP BIT

SCL

SDA

I2C SLAVE
ADDRESS BYTE

EEPROM
ADDRESS BYTE

Write [0xA0] 0x00 + ACK

SCL

SDA

START BIT DATA BYTE STOP BITI2C SLAVE
ADDRESS BYTE

Read [0xA1] 0xA5 + NACK

DS00002045A-page 22  2016 Microchip Technology Inc.

AN2045
Multibyte/Sequential Read

Unlike page write operations that are limited by the
physical page size of the device, a sequential read can
read the entire contents of the memory in a single
operation. Reading multiple bytes starts off similar
enough to the byte read operation. The Start bits, I2C
slave address byte, EEPROM address byte/s and Stop
condition are all sent and Acknowledged in that order.
A new Start condition is generated and the I2C slave
address byte, with the LSB set high, should be sent.

However, instead of the I2C master sending a NACK bit
after the first byte has been transmitted, the I2C master
pulls the line low, sending an ACK bit, signifying that

there is more data requested by the master. The
master sends an ACK bit after each byte it receives,
except after the last byte, where it will send the NACK
bit, indicating that the master is not requesting any
more data to be sent. Once all bytes are received, the
master will initiate the Stop condition to end the
operation.

Figure 29 shows a sequential read operation. Note that
each byte successfully sent is followed by an ACK bit,
save for the last byte, which is followed by a NACK bit.

FIGURE 29: SEQUENTIAL READ OPERATION

START
BIT DATA BYTES STOP BIT

SCL

SDA

I2C SLAVE
ADDRESS BYTE

Read [0xA1] 0x1A + ACK 0x2A + ACK 0x4A+ ACK 0x8A + NACK

 2016 Microchip Technology Inc. DS00002045A-page 23

AN2045
Acknowledge Polling

While most EEPROM data sheets specify a write cycle
time, some write cycles might be shorter than this
period. Specifying a delay period therefore, might not
be efficient. Hence, it is recommended that users use
Acknowledge polling to check if the current write cycle
is finished.

This is done by continuously sending a Start condition
and the I2C slave address byte, with the LSB set low
(signifying a write operation), until an Acknowledge bit
is detected. This is because when a write cycle is in
progress, EEPROMs will not Acknowledge commands.

Figure 30 shows an Acknowledge polling operation
before an address write operation.

FIGURE 30: ACKNOWLEDGE POLLING

SCL

SDA

START BIT STOP BITI2C SLAVE
ADDRESS BYTE

Write [0xA0] + NACK

DS00002045A-page 24  2016 Microchip Technology Inc.

AN2045
CONCLUSION

This application note illustrates the ease and efficiency
with which interfacing serial EEPROM devices is
accomplished by using the MSSP modules and the
MCC. Basic operations in the SPI and I2C protocols
were discussed and shown step-by-step. The code is
highly portable and can be used on most 8-bit PIC
microcontrollers and serial EEPROM devices, with just
minor modifications. Using the code provided, users
can begin to build their own SPI and I2C EEPROM
applications. If a more complex, or a more decon-
structed firmware design is needed, users can always
fall back on the MCC-generated SPI and I2C functions
that formed the backbone of the provided driver files.
This document has demonstrated that when paired
with the MSSP module and the MPLAB® Code Config-
urator, building solutions involving serial EEPROMs
that use SPI or I2C does not have to be as tedious or
as labor-intensive as it used to be.
 2016 Microchip Technology Inc. DS00002045A-page 25

AN2045
APPENDIX A: CONNECTING THE EEPROMs TO THE MICROCONTROLLER

FIGURE A-1: SPI CONNECTION DIAGRAM
DS00002045A-page 26  2016 Microchip Technology Inc.

AN2045
FIGURE A-2: I2C CONNECTION DIAGRAM
 2016 Microchip Technology Inc. DS00002045A-page 27

AN2045
APPENDIX B: SOURCE CLICK™ BOARD CONNECTION DIAGRAMS

FIGURE B-1: EEPROM CLICK™ BOARD CONNECTION DIAGRAM

FIGURE B-2: EEPROM2 CLICK™ BOARD CONNECTION DIAGRAM

EEPROM Click™ Board
VSS

VCC

Vcc
TM

Vcc

Vcc

EEPROM2
ClickBoard

Vcc

Vcc

Vcc

VSS

VCC

ClickTM Board

DS00002045A-page 28  2016 Microchip Technology Inc.

AN2045
APPENDIX C: SOURCE CODE LISTINGS

EXAMPLE C-1: eeprom_spi.c

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

/**
EEPROM SPI Source File

Company:
Microchip Technology Inc.

File Name:
eeprom_spi.c

Summary:
This is the source file containing the EEPROM SPI functions.

Description:
This header file provides implementations for driver APIs for all modules selected in
the GUI.
Generation Information :

Product Revision : MPLAB® Code Configurator - v2.25.2
Device : PIC16F1719
Driver Version : 2.00

The generated drivers are tested against the following:
Compiler : XC8 v1.34
MPLAB : MPLAB X v2.35 or v3.00

*/

/*
Copyright (c) 2013 - 2015 released Microchip Technology Inc. All rights reserved.

Microchip licenses to you the right to use, modify, copy and distribute
Software only when embedded on a Microchip microcontroller or digital signal
controller that is integrated into your product or third party product
(pursuant to the sublicense terms in the accompanying license agreement).

You should refer to the license agreement accompanying this Software for
additional information regarding your rights and obligations.

SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY, TITLE, NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT SHALL MICROCHIP OR ITS LICENSORS BE LIABLE OR OBLIGATED UNDER
CONTRACT, NEGLIGENCE, STRICT LIABILITY, CONTRIBUTION, BREACH OF WARRANTY, OR
OTHER LEGAL EQUITABLE THEORY ANY DIRECT OR INDIRECT DAMAGES OR EXPENSES
INCLUDING BUT NOT LIMITED TO ANY INCIDENTAL, SPECIAL, INDIRECT, PUNITIVE OR
CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA, COST OF PROCUREMENT OF
SUBSTITUTE GOODS, TECHNOLOGY, SERVICES, OR ANY CLAIMS BY THIRD PARTIES
(INCLUDING BUT NOT LIMITED TO ANY DEFENSE THEREOF), OR OTHER SIMILAR COSTS.
 2016 Microchip Technology Inc. DS00002045A-page 29

AN2045
EXAMPLE C-1: eeprom_spi.c (CONTINUED)

*/

#include "mcc_generated_files/mcc.h"
#include "eeprom_spi.h"

void SPI_ByteWrite (uint8_t *addressBuffer, uint8_t addlen, uint8_t byteData)
{

uint8_t check;

//Toggle CS line to start operation
CS_LAT = 0;

//Send Write Enable command
SPI_Exchange8bit(EEPROM_WREN);

//Toggle CS line to end operation
CS_LAT = 1;

//Check if WEL bit is set
while(check != 2)

check = SPI_ReadStatusRegister();

//Toggle CS line to start operation
CS_LAT = 0;

//Send Write Command
SPI_Exchange8bit(EEPROM_WRITE_EN);
//Send address byte/s
SPI_Exchange8bitBuffer(addressBuffer,addlen,NULL);
//Send data byte
SPI_Exchange8bit(byteData);

//Toggle CS line to end operation
CS_LAT = 1;

}

uint8_t SPI_ByteRead (uint8_t *addressBuffer, uint8_t addlen)
{

uint8_t readByte;

//Toggle CS line to start operation
CS_LAT = 0;

//Send Read Command
SPI_Exchange8bit(EEPROM_READ_EN);
//Send address bytes
SPI_Exchange8bitBuffer(addressBuffer,addlen,NULL);
//Send Dummy data to clock out data byte from slave
readByte = SPI_Exchange8bit(DUMMY_DATA);

//Toggle CS line to end operation
CS_LAT = 1;

//return data byte read

return(readByte);
}

DS00002045A-page 30  2016 Microchip Technology Inc.

AN2045
EXAMPLE C-1: eeprom_spi.c (CONTINUED)
uint8_t SPI_ReadStatusRegister(void)
{

uint8_t statusByte;

//Toggle CS line to start operation
CS_LAT = 0;

//Send Read Status Register Operation
SPI_Exchange8bit(EEPROM_RDSR);
//Send Dummy data to clock out data byte from slave
statusByte = SPI_Exchange8bit(DUMMY_DATA);

//Toggle CS line to end operation
CS_LAT = 1;

//return data byte read
return(statusByte);

}

uint8_t SPI_WritePoll(void)
{

uint8_t pollByte;

//Read the Status Register
pollByte = SPI_ReadStatusRegister();

//Check if WEL and WIP bits are still set
while(pollByte == 3)
{

pollByte = SPI_ReadStatusRegister();
}

//return 1 if WEL and WIP bits are cleared and the write cycle is finished
return(1);

}

void SPI_SequentialWrite(uint8_t *addressBuffer, uint8_t addlen, uint8_t *writeBuffer,
uint8_t buflen)
{

//Toggle CS line to begin operation
CS_LAT = 0;

//Send Write Enable Command
SPI_Exchange8bit(EEPROM_WREN);

//Toggle CS line to end operation
CS_LAT = 1;

//Toggle CS line to start operation
CS_LAT = 0;

//Send Write Command
SPI_Exchange8bit(EEPROM_WRITE_EN);
//Send address bytes
SPI_Exchange8bitBuffer(addressBuffer,addlen,NULL);
//Send data bytes to be written
SPI_Exchange8bitBuffer(writeBuffer,buflen,NULL);
 2016 Microchip Technology Inc. DS00002045A-page 31

AN2045
EXAMPLE C-1: eeprom_spi.c (CONTINUED)

EXAMPLE C-2: eeprom_spi.h

//Toggle CS line to end operation
CS_LAT = 1;

}

uint8_t SPI_SequentialRead(uint8_t *addressBuffer,uint8_t addlen, uint8_t *readBuffer,
uint8_t buflen)
{

//Toggle CS line to begin operation
CS_LAT = 0;

//Send Read Command
SPI_Exchange8bit(EEPROM_READ_EN);
//Send Address bytes
SPI_Exchange8bitBuffer(addressBuffer,addlen,NULL);
//Send dummy/NULL data to clock out data bytes from slave

SPI_Exchange8bitBuffer(NULL,buflen,readBuffer);

//Toggle CS line to end operation
CS_LAT = 1;

}

/**
EEPROM SPI Header File

Company:
Microchip Technology Inc.

File Name:
eeprom_spi.h

Summary:
This is the header file containing the EEPROM I2C functions.

Description:
This header file provides implementations for driver APIs for all modules selected in the GUI.
Generation Information :

Product Revision : MPLAB® Code Configurator - v2.25.2
Device : PIC16F1719
Driver Version : 2.00

The generated drivers are tested against the following:
Compiler : XC8 v1.34
MPLAB : MPLAB X v2.35 or v3.00

*/

/*
Copyright (c) 2013 - 2015 released Microchip Technology Inc. All rights reserved.

Microchip licenses to you the right to use, modify, copy and distribute
Software only when embedded on a Microchip microcontroller or digital signal
controller that is integrated into your product or third party product
(pursuant to the sublicense terms in the accompanying license agreement).
DS00002045A-page 32  2016 Microchip Technology Inc.

AN2045
EXAMPLE C-2: eeprom_spi.h (CONTINUED)
You should refer to the license agreement accompanying this Software for
additional information regarding your rights and obligations.

SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY, TITLE, NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT SHALL MICROCHIP OR ITS LICENSORS BE LIABLE OR OBLIGATED UNDER
CONTRACT, NEGLIGENCE, STRICT LIABILITY, CONTRIBUTION, BREACH OF WARRANTY, OR
OTHER LEGAL EQUITABLE THEORY ANY DIRECT OR INDIRECT DAMAGES OR EXPENSES
INCLUDING BUT NOT LIMITED TO ANY INCIDENTAL, SPECIAL, INDIRECT, PUNITIVE OR
CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA, COST OF PROCUREMENT OF
SUBSTITUTE GOODS, TECHNOLOGY, SERVICES, OR ANY CLAIMS BY THIRD PARTIES
(INCLUDING BUT NOT LIMITED TO ANY DEFENSE THEREOF), OR OTHER SIMILAR COSTS.

*/
#include "mcc_generated_files/spi.h"

#ifndef EEPROM_SPI_H
#define EEPROM_SPI_H

#ifdef __cplusplus
extern "C" {
#endif

#define EEPROM_READ_EN 0x03 // read data from memory
#define EEPROM_WREN 0x06 // set the write enable latch
#define EEPROM_WRITE_EN 0x02 // write data to memory array
#define EEPROM_RDSR 0x05 // read STATUS register

void SPI_ByteWrite (uint8_t *addressBuffer, uint8_t addlen, uint8_t byteData);
uint8_t SPI_ByteRead (uint8_t *addressBuffer,uint8_t addlen);
uint8_t SPI_ReadStatusRegister(void);
uint8_t SPI_WritePoll(void);
void SPI_SequentialWrite(uint8_t *addressBuffer, uint8_t addlen, uint8_t *writeBuffer,uint8_t buflen);
uint8_t SPI_SequentialRead(uint8_t *addressBuffer,uint8_t addlen, uint8_t *readBuffer, uint8_t buflen);

#ifdef __cplusplus
}
#endif

#endif /* EEPROM_SPI_H */
 2016 Microchip Technology Inc. DS00002045A-page 33

AN2045
EXAMPLE C-3: SAMPLE MAIN FILE CALLING SPI FUNCTIONS
/**

Generated Main Source File

Company:
Microchip Technology Inc.

File Name:
main.c

Summary:
This is the main file generated using MPLAB® Code Configurator

Description:
This header file provides implementations for driver APIs for all modules selected in the GUI.
Generation Information :

Product Revision : MPLAB® Code Configurator - v2.25.2
Device : PIC16F1719
Driver Version : 2.00

The generated drivers are tested against the following:
Compiler : XC8 v1.34
MPLAB : MPLAB X v2.35 or v3.00

*/

/*
Copyright (c) 2013 - 2015 released Microchip Technology Inc. All rights reserved.

Microchip licenses to you the right to use, modify, copy and distribute
Software only when embedded on a Microchip microcontroller or digital signal
controller that is integrated into your product or third party product
(pursuant to the sublicense terms in the accompanying license agreement).

You should refer to the license agreement accompanying this Software for
additional information regarding your rights and obligations.

SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY, TITLE, NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT SHALL MICROCHIP OR ITS LICENSORS BE LIABLE OR OBLIGATED UNDER
CONTRACT, NEGLIGENCE, STRICT LIABILITY, CONTRIBUTION, BREACH OF WARRANTY, OR
OTHER LEGAL EQUITABLE THEORY ANY DIRECT OR INDIRECT DAMAGES OR EXPENSES
INCLUDING BUT NOT LIMITED TO ANY INCIDENTAL, SPECIAL, INDIRECT, PUNITIVE OR
CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA, COST OF PROCUREMENT OF
SUBSTITUTE GOODS, TECHNOLOGY, SERVICES, OR ANY CLAIMS BY THIRD PARTIES
(INCLUDING BUT NOT LIMITED TO ANY DEFENSE THEREOF), OR OTHER SIMILAR COSTS.

*/

#include "mcc_generated_files/mcc.h"
#include "eeprom_spi.h"

/*
Main application

*/

void main(void) {
// initialize the device
SYSTEM_Initialize();
DS00002045A-page 34  2016 Microchip Technology Inc.

AN2045
EXAMPLE C-3: SAMPLE MAIN FILE CALLING SPI FUNCTIONS (CONTINUED)
// When using interrupts, you need to set the Global and Peripheral Interrupt Enable bits
// Use the following macros to:

// Enable the Global Interrupts
//INTERRUPT_GlobalInterruptEnable();

// Enable the Peripheral Interrupts
//INTERRUPT_PeripheralInterruptEnable();

// Disable the Global Interrupts
//INTERRUPT_GlobalInterruptDisable();

// Disable the Peripheral Interrupts
//INTERRUPT_PeripheralInterruptDisable();

uint8_t writeBuffer[] = {0x1A, 0x2A, 0x4A, 0x8A} ;
uint8_t readBuffer[10];
uint8_t addressBuffer[] = {0xAB,0x00,0x10}; // Store the address you want to access here
uint8_t readByte;

//Writes one byte to the address specified
SPI_ByteWrite(&addressBuffer,sizeof(addressBuffer),0xA5);

//Wait for write cycle to complete
SPI_WritePoll();

//Reads one byte of data from the address specified
readByte = SPI_ByteRead(&addressBuffer,sizeof(addressBuffer));

//Intermission
__delay_ms(10);

//Writes the data in writeBuffer beginning from the address specified
SPI_SequentialWrite(&addressBuffer,sizeof(addressBuffer),&writeBuffer,sizeof(writeBuffer));

//Wait for write cycle to complete
SPI_WritePoll();

//Reads specified number of data bytes into the readBuffer array beginning from the address
 indicated
SPI_SequentialRead(&addressBuffer,sizeof(addressBuffer),&readBuffer,4);

//Stop here
while (1) {

;
// Add your application code

}
}
/**

End of File
*/
 2016 Microchip Technology Inc. DS00002045A-page 35

AN2045
EXAMPLE C-4: eeprom_i2c.c
/**

EEPROM I2C Source File

Company:
Microchip Technology Inc.

File Name:
eeprom_i2c.c

Summary:
This is the source file containing the EEPROM I2C functions and constants.

Description:
This header file provides implementations for driver APIs for all modules selected in the GUI.
Generation Information :

Product Revision : MPLAB® Code Configurator - v2.25.2
Device : PIC16F1719
Driver Version : 2.00

The generated drivers are tested against the following:
Compiler : XC8 v1.34
MPLAB : MPLAB X v2.35 or v3.00

*/

/*
Copyright (c) 2013 - 2015 released Microchip Technology Inc. All rights reserved.

Microchip licenses to you the right to use, modify, copy and distribute
Software only when embedded on a Microchip microcontroller or digital signal
controller that is integrated into your product or third party product
(pursuant to the sublicense terms in the accompanying license agreement).

You should refer to the license agreement accompanying this Software for
additional information regarding your rights and obligations.

SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY, TITLE, NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT SHALL MICROCHIP OR ITS LICENSORS BE LIABLE OR OBLIGATED UNDER
CONTRACT, NEGLIGENCE, STRICT LIABILITY, CONTRIBUTION, BREACH OF WARRANTY, OR
OTHER LEGAL EQUITABLE THEORY ANY DIRECT OR INDIRECT DAMAGES OR EXPENSES
INCLUDING BUT NOT LIMITED TO ANY INCIDENTAL, SPECIAL, INDIRECT, PUNITIVE OR
CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA, COST OF PROCUREMENT OF
SUBSTITUTE GOODS, TECHNOLOGY, SERVICES, OR ANY CLAIMS BY THIRD PARTIES
(INCLUDING BUT NOT LIMITED TO ANY DEFENSE THEREOF), OR OTHER SIMILAR COSTS.
*/

#include "mcc_generated_files/mcc.h"
#include "eeprom_i2c.h"

uint8_t timeOut = 0;

int I2C_ByteWrite(uint8_t *dataAddress, uint8_t dataByte, uint8_t addlen)
{

uint8_t writeBuffer[PAGE_LIMIT+3];
uint8_t buflen;

//Copy address bytes to the write buffer so it can be sent first
for(int i = 0; i < addlen; i++)
DS00002045A-page 36  2016 Microchip Technology Inc.

AN2045
EXAMPLE C-4: eeprom_i2c.c (CONTINUED)

{
writeBuffer[i] = dataAddress[i];

}

//Check if this is an address write or a data write.
if(dataByte != NULL)
{

writeBuffer[addlen] = dataByte;
buflen = addlen+1;

}
else

buflen = addlen;

//set status to Message Pending to send the data
I2C_MESSAGE_STATUS status = I2C_MESSAGE_PENDING;

//This variable is the built in acknowledge polling mechanism. This counts how many retries
the system has already done to send the data.

timeOut = 0;

//While the message has not failed...
while(status != I2C_MESSAGE_FAIL)
{

// Initiate a write to EEPROM
I2C_MasterWrite(writeBuffer,buflen,SLAVE_ADDRESS,&status);

// wait for the message to be sent or status has changed.
while(status == I2C_MESSAGE_PENDING);

// if transfer is complete, break the loop
if (status == I2C_MESSAGE_COMPLETE)

break;
// if transfer fails, break the loop

if (status == I2C_MESSAGE_FAIL)
break;

//Max retry is set for max Ack polling. If the Acknowledge bit is not set, this will
just loop again until the write command is acknowledged
if (timeOut == MAX_RETRY)

break;
else

timeOut++;
}

// if the transfer failed, stop at this point
if (status == I2C_MESSAGE_FAIL)
return 1;

}

uint8_t I2C_ByteRead(uint8_t *dataAddress,uint8_t dataByte, uint8_t addlen)
{

int check;

//Write the address to the slave
check = I2C_ByteWrite(dataAddress,NULL,addlen);

//If not successful, return to function
if(check == 1)

return;
 2016 Microchip Technology Inc. DS00002045A-page 37

AN2045
EXAMPLE C-4: eeprom_i2c.c (CONTINUED)
//Get ready to send data
I2C_MESSAGE_STATUS status = I2C_MESSAGE_PENDING;
//Set up for ACK polling
timeOut = 0;

//While the code has not detected message failure..
while(status != I2C_MESSAGE_FAIL)
{

// Initiate a Read to EEPROM
I2C_MasterRead(dataByte,1,SLAVE_ADDRESS,&status);

// wait for the message to be sent or status has changed.
while(status == I2C_MESSAGE_PENDING);

// if transfer is complete, break the loop
if (status == I2C_MESSAGE_COMPLETE)

break;

// if transfer fails, break the loop
if (status == I2C_MESSAGE_FAIL)

break;

// check for max retry and skip this byte
if (timeOut == MAX_RETRY)

break;
else

timeOut++;
}

}
int I2C_BufferWrite(uint8_t *dataAddress, uint8_t *dataBuffer, uint8_t addlen, uint8_t buflen)
{

uint8_t writeBuffer[PAGE_LIMIT+3];
I2C_MESSAGE_STATUS status = I2C_MESSAGE_PENDING;

//Set Address as the bytes to be written first
for(int i = 0; i < addlen; i++)
{

writeBuffer[i] = dataAddress[i];
}

//Ensure that the page limit is not breached so as to avoid overwriting other data
if(buflen > PAGE_LIMIT)

buflen = PAGE_LIMIT;

//Copy data bytes to write buffer
for(int j = 0; j < buflen; j++)
{

writeBuffer[addlen+j] = dataBuffer[j];
}
//Set up for ACK polling
timeOut = 0;
while(status != I2C_MESSAGE_FAIL)
{

// Initiate a write to EEPROM
I2C_MasterWrite(writeBuffer,buflen+addlen,SLAVE_ADDRESS,&status);
DS00002045A-page 38  2016 Microchip Technology Inc.

AN2045
EXAMPLE C-4: eeprom_i2c.c (CONTINUED)
// wait for the message to be sent or status has changed.

while(status == I2C_MESSAGE_PENDING);
// if transfer is complete, break the loop

if (status == I2C_MESSAGE_COMPLETE)
break;
// if transfer fails, break the loop

if (status == I2C_MESSAGE_FAIL)
break;

//check for max retry and skip this byte
if (timeOut == MAX_RETRY)

break;
else

timeOut++;
}

// if the transfer failed, stop at this point
if (status == I2C_MESSAGE_FAIL)
return 1;

}
void I2C_BufferRead(uint8_t *dataAddress, uint8_t *dataBuffer, uint8_t addlen,uint8_t buflen)
{

int check = 0;
I2C_MESSAGE_STATUS status = I2C_MESSAGE_PENDING;

//Write Address from where to read
check = I2C_ByteWrite(dataAddress,NULL,addlen);

//check if address write is successful
if(check == 1)

return;

//Set up for ACK polling
timeOut = 0;

while(status != I2C_MESSAGE_FAIL){
// Initiate a Read to EEPROM
I2C_MasterRead(dataBuffer,buflen,SLAVE_ADDRESS,&status);

// wait for the message to be sent or status has changed.
while(status == I2C_MESSAGE_PENDING);

// if transfer is complete, break the loop
if (status == I2C_MESSAGE_COMPLETE)

break;

// if transfer fails, break the loop
if (status == I2C_MESSAGE_FAIL)

break;

// check for max retry and skip this byte
if (timeOut == MAX_RETRY)

break;
else

timeOut++;
}

}

 2016 Microchip Technology Inc. DS00002045A-page 39

AN2045
EXAMPLE C-5: eeprom_i2c.h
/**

EEPROM I2C Header File

Company:
Microchip Technology Inc.

File Name:
eeprom_i2c.h

Summary:
This is the header file containing the EEPROM I2C functions and constants.

Description:
This header file provides implementations for driver APIs for all modules selected in the GUI.
Generation Information :

Product Revision : MPLAB® Code Configurator - v2.25.2
Device : PIC16F1719
Driver Version : 2.00

The generated drivers are tested against the following:
Compiler : XC8 v1.34
MPLAB : MPLAB X v2.35 or v3.00

*/

/*
Copyright (c) 2013 - 2015 released Microchip Technology Inc. All rights reserved.

Microchip licenses to you the right to use, modify, copy and distribute
Software only when embedded on a Microchip microcontroller or digital signal
controller that is integrated into your product or third party product
(pursuant to the sublicense terms in the accompanying license agreement).

You should refer to the license agreement accompanying this Software for
additional information regarding your rights and obligations.

SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY, TITLE, NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT SHALL MICROCHIP OR ITS LICENSORS BE LIABLE OR OBLIGATED UNDER
CONTRACT, NEGLIGENCE, STRICT LIABILITY, CONTRIBUTION, BREACH OF WARRANTY, OR
OTHER LEGAL EQUITABLE THEORY ANY DIRECT OR INDIRECT DAMAGES OR EXPENSES
INCLUDING BUT NOT LIMITED TO ANY INCIDENTAL, SPECIAL, INDIRECT, PUNITIVE OR
CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA, COST OF PROCUREMENT OF
SUBSTITUTE GOODS, TECHNOLOGY, SERVICES, OR ANY CLAIMS BY THIRD PARTIES
(INCLUDING BUT NOT LIMITED TO ANY DEFENSE THEREOF), OR OTHER SIMILAR COSTS.

*/
#ifdef __cplusplus
extern "C" {
#endif

#define MAX_RETRY 100
#define SLAVE_ADDRESS 0x50
#define PAGE_LIMIT 16 // Change as stated on the EEPROM device data sheet

int I2C_ByteWrite(uint8_t *dataAddress, uint8_t dataByte, uint8_t addlen);
uint8_t I2C_ByteRead(uint8_t *dataAddress, uint8_t dataByte,uint8_t addlen);
int I2C_BufferWrite(uint8_t *dataAddress, uint8_t *dataBuffer, uint8_t addlen, uint8_t buflen);
void I2C_BufferRead(uint8_t *dataAddress, uint8_t *dataBuffer, uint8_t addlen, uint8_t buflen);

#ifdef __cplusplus
}
#endif

#endif /* EEPROM_I2C_H */
DS00002045A-page 40  2016 Microchip Technology Inc.

AN2045
EXAMPLE C-6: SAMPLE MAIN FILE CALLING I2C FUNCTIONS
/**

Generated Main Source File

Company:
Microchip Technology Inc.

File Name:
main.c

Summary:
This is the main file generated using MPLAB® Code Configurator

Description:
This header file provides implementations for driver APIs for all modules selected in the

GUI.
Generation Information :

Product Revision : MPLAB® Code Configurator - v2.25.2
Device : PIC16F1719
Driver Version : 2.00

The generated drivers are tested against the following:
Compiler : XC8 v1.34
MPLAB : MPLAB X v2.35 or v3.00

*/

/*
Copyright (c) 2013 - 2015 released Microchip Technology Inc. All rights reserved.

Microchip licenses to you the right to use, modify, copy and distribute
Software only when embedded on a Microchip microcontroller or digital signal
controller that is integrated into your product or third party product
(pursuant to the sublicense terms in the accompanying license agreement).

You should refer to the license agreement accompanying this Software for
additional information regarding your rights and obligations.

SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY, TITLE, NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT SHALL MICROCHIP OR ITS LICENSORS BE LIABLE OR OBLIGATED UNDER
CONTRACT, NEGLIGENCE, STRICT LIABILITY, CONTRIBUTION, BREACH OF WARRANTY, OR
OTHER LEGAL EQUITABLE THEORY ANY DIRECT OR INDIRECT DAMAGES OR EXPENSES
INCLUDING BUT NOT LIMITED TO ANY INCIDENTAL, SPECIAL, INDIRECT, PUNITIVE OR
CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA, COST OF PROCUREMENT OF
SUBSTITUTE GOODS, TECHNOLOGY, SERVICES, OR ANY CLAIMS BY THIRD PARTIES
(INCLUDING BUT NOT LIMITED TO ANY DEFENSE THEREOF), OR OTHER SIMILAR COSTS.
 2016 Microchip Technology Inc. DS00002045A-page 41

AN2045
EXAMPLE C-6: SAMPLE MAIN FILE CALLING I2C FUNCTIONS (CONTINUED)

*/

#include "mcc_generated_files/mcc.h"
#include "eeprom_i2c.h"

/*
Main application

*/
void main(void) {

// initialize the device
SYSTEM_Initialize();

// When using interrupts, you need to set the Global and Peripheral Interrupt Enable bits
// Use the following macros to:

// Enable the Global Interrupts
INTERRUPT_GlobalInterruptEnable();

// Enable the Peripheral Interrupts
INTERRUPT_PeripheralInterruptEnable();

// Disable the Global Interrupts
//INTERRUPT_GlobalInterruptDisable();

// Disable the Peripheral Interrupts
//INTERRUPT_PeripheralInterruptDisable();

uint8_t sourceData[] = {0x1A, 0x2A, 0x4A, 0x8A,0x1A, 0x2A, 0x4A, 0x8A,0x1A, 0x2A,
0x4A, 0x8A,0x1A, 0x2A, 0x4A, 0x8A};

uint8_t addressBuffer[] = {0xAB,0x10} ; //Put your address here
uint8_t readBuffer[16];
uint8_t readByte;

int r = 0;

//Writes a byte of data to address specified
r = I2C_ByteWrite(&addressBuffer,0x5B,sizeof(addressBuffer));

//Reads a byte of data stored at the address specified
I2C_ByteRead(&addressBuffer,&readByte,sizeof(addressBuffer));

//Write a specified number of data bytes beginning at the specified address
r = I2C_BufferWrite(&addressBuffer,&sourceData,sizeof(addressBuffer),4);

//Reads a specified number of data bytes beginning at the specified address
I2C_BufferRead(&addressBuffer,&readBuffer,sizeof(addressBuffer),4);

//stop here
while (1) {

; // Add your application code
}

}
//}
/**

End of File
*/
DS00002045A-page 42  2016 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.
 2016 Microchip Technology Inc.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

== ISO/TS 16949 ==
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer,
LANCheck, MediaLB, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC,
SST, SST Logo, SuperFlash and UNI/O are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are
registered trademarks of Microchip Technology Incorporated
in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo,
CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit
Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet,
KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB
Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,
PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O,
Total Endurance, TSHARC, USBCheck, VariSense,
ViewSpan, WiperLock, Wireless DNA, and ZENA are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

Silicon Storage Technology is a registered trademark of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology
Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2016, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0201-5

Microchip received ISO/TS-16949:2009 certification for its worldwide
DS00002045A-page 43

headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS00002045A-page 44  2016 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110

Canada - Toronto
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon

Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Dongguan
Tel: 86-769-8702-9880

China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116

China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

ASIA/PACIFIC
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-3019-1500

Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310

Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-213-7828

Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Dusseldorf
Tel: 49-2129-3766400

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Venice
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Poland - Warsaw
Tel: 48-22-3325737

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

07/14/15

http://support.microchip.com
http://www.microchip.com

	Introduction
	SPI Interface
	Standard SPI Signals
	SPI MSSP Initialization via MPLAB® Code Configurator (MCC v2.25)
	FIGURE 1: Selecting MSSP Module in MCC
	SSPx Status Register (SSPXSTAT)
	FIGURE 2: SSPxSTAT: SSPx Status Register for SPI Configuration
	FIGURE 3: Configuring SSPxSTAT Bits on MCC
	EXAMPLE 1: SSPxSTAT MCC Generated Code

	SSPx Control Register 1 (SSPxCON1)
	FIGURE 4: SSPxCON: SSPx Control Register 1 for SPI Configuration
	FIGURE 5: Configuring SSPxCON1 Bits on MCC
	EXAMPLE 2: SSPxCON1 MCC Generated Code
	FIGURE 6: MSSP Pin Assignments
	EXAMPLE 3: MSSP Pin Assignment Code
	FIGURE 7: Setting the CS Pin in MCC

	Common SPI Serial EEPROM Operations
	Write Enable
	FIGURE 8: Write Enable Command

	Status Register Read
	FIGURE 9: Read Status Register Command (WEL Bit Set)
	FIGURE 10: Read Status Register Command (WEL+WIP Bits Set)

	Byte and Buffer Write
	FIGURE 11: Byte Write Command
	FIGURE 12: Buffer Write Command

	Byte Read and Buffer Read
	FIGURE 13: Read Byte Command
	FIGURE 14: Buffer Read Command

	I2C Interface
	Standard I2C Signals
	I2C MSSP Initialization via MPLAB® Code Configurator (MCC)
	FIGURE 15: Selecting the MSSP Module in MCC
	SSPx Status Register (SSPxSTAT)
	FIGURE 16: SSPxSTAT: SSPx Status Register for I2C Configuration
	EXAMPLE 4: SSPxSTAT MCC Generated Code

	SSPx Control Register 1 (SSPxCON1)
	FIGURE 17: SSPxCON1: SSPx Control Register 1 for I2C Configuration
	FIGURE 18: Configuring SSPxCON1 Bits on MCC
	EXAMPLE 5: SSPxCON1 MCC Generated Code

	SSPx Control Register 3 (SSPxCON3)
	FIGURE 19: SSPxCON3: SSPx Control Register 3 for I2C Configuration
	FIGURE 20: Configuring SSPXCON3 Bits on MCC
	EXAMPLE 6: SSPxCON3 MCC Generated Code

	SSPx Address and Baud Rate Register (SSPxADD)
	FIGURE 21: SSPxADD: SSPx Address and Baud Rate Register
	FIGURE 22: Configuring SSPxADD Bits on MCC
	EXAMPLE 7: SSPxADD MCC Generated Code
	FIGURE 23: I2C MSSP Pin Assignments
	EXAMPLE 8: MSSP Pin Assignment Code
	FIGURE 24: Caption of main.c File with Enabled Interrupts

	Common I2C Serial EEPROM Operations
	Byte Write
	Start Bit and I2C Slave Address Byte Transmission
	Sending the EEPROM Address Byte
	Sending the Data Byte and the Stop Bit
	FIGURE 25: Byte Write Command

	Multibyte and Page Write
	FIGURE 26: Multiple Byte Write Operation

	Byte Read
	Start Bit and I2C Slave Address Byte Transmission
	Sending the Address Byte
	Sending the Stop Bit
	Receiving the Data Byte
	FIGURE 27: Sending the Address for the Read Command
	FIGURE 28: Byte Read Command

	Multibyte/Sequential Read
	FIGURE 29: Sequential Read Operation

	Acknowledge Polling
	FIGURE 30: Acknowledge Polling

	Conclusion
	Appendix A: Connecting the EEPROMs to the Microcontroller
	FIGURE A-1: SPI Connection Diagram
	FIGURE A-2: I2C Connection Diagram

	Appendix B: Source Click™ Board Connection Diagrams
	FIGURE B-1: EEPROM Click™ Board Connection Diagram
	FIGURE B-2: EEPROM2 Click™ Board Connection Diagram

	Appendix C: Source Code Listings
	EXAMPLE C-1: eeprom_spi.c
	EXAMPLE C-1: eeprom_spi.c (continued)
	EXAMPLE C-1: eeprom_spi.c (continued)
	EXAMPLE C-1: eeprom_spi.c (continued)
	EXAMPLE C-2: eeprom_spi.h
	EXAMPLE C-2: eeprom_spi.h (continued)
	EXAMPLE C-3: Sample Main File Calling SPI Functions
	EXAMPLE C-3: Sample Main File Calling SPI Functions (continued)
	EXAMPLE C-4: eeprom_i2c.c
	EXAMPLE C-4: eeprom_i2c.c (continued)
	EXAMPLE C-4: eeprom_i2c.c (continued)
	EXAMPLE C-4: eeprom_i2c.c (continued)
	EXAMPLE C-5: eeprom_i2c.h
	EXAMPLE C-6: Sample Main File Calling I2C Functions
	EXAMPLE C-6: Sample Main File Calling I2C Functions (continued)

	Trademarks
	Worldwide Sales

