Altmel

APPLICATION NOTE

Atmel AT03786: SAM N/S Series Software Migration Guide

Atmel 32-bit Microcontroller

Introduction

This application note helps users to migrate the projects to the Atmel® SAM N/S
series, which includes Atmel SAM3N, SAM3S, SAM4S, and SAM4N. The series
cross-compatibility will be introduced first before getting into the software migration
between SAM N/S series.

Features

e SAM3N, SAM3S, SAM4S, SAM4N products cross-compatibility

e SAM3N, SAM3S, SAM4S, SAM4N software migration guide
e Migrate projects to SAM3N
e Migrate projects to SAM3S
e Migrate projects to SAM4S
e Migrate projects to SAM4N
e ASF peripheral driver migration guide

42185A-SAM-09/2013

Table of Contents

1. INtrOAUCTION L. 3
2. Atmel SAM N/S Series OVEIVIEWuuvvvviiiuiiiiiiiiiiriieirieinneinneennnnanne. 4
2.1 SAM N/S FEATIUIES ...ttt 4

2.2 SAM N/S Package and PiNOULc..ooiiiiiiiiiiiie e 5

2.3 SAM N/S Power Considerationoocueiiiiiieiiiiieeiieeee e 5

2.4 SAM N/S Processor and ArchiteCturecccceeeiieieiiiiee e 5

2.5 SAM N/S Peripheralsccuuiiiiiiiiiiiie et 6

3. Atmel SAM N/S Software Migration Guide...........ccccceeeviiiiiiiieeeeeriinnns 8
3.1 Software Migration Requirement ..o 8

3.2 Software Project Workspace Migrationcocccveeiiiereiiiiee e 8
3.2.1 Migrate Atmel Studio Workspace............cooiiiiiiiiiaiiiiiiiiee e 8

3.2.2 Migrate IAR EWARM WOrkSpaceccccuveeiiiiiiiniiiieiieee e 12

3.3 Peripheral Migrationcoiuiiiiiiii s 16
3.3.1 RESEt CONrOIEr ..o 16

3.3.2 Real-Time TiMercoooiie e 17

3.3.3 Real-Time ClOCKc.ooiiiiiie e 17

3.3.4 WatChdOg. ... eeeiiiiiiie e 18

3.3.5 SUpPlY CONrONIEr ...cooiiieieee e 18

3.3.6 General Purpose Backup Registers..........cccocveiiiiiiiiiiiiiiiee e 18

3.3.7 FIash CONrollerooiiiiiie e 18

3.3.8 = 1 PR 20

3.3.9 Peripheral DIMAooeeeeeeeeeeieeeeeee ettt eaeeeseeanenennnnes 20

3.3.10 Power Management Controller ..o 20

3.3.1T PlO e e 21

3.3.12 P e e 21

3.3.13 PWIM oo e 22

3.3.14 UART/USART ..ottt 23

3.3.15 ADC o e 24

3.3.16 DAC ot e 29

3.3.17 USB DEVICE POtcceiiiiieiciiiee et 30

3.3.18 SO ot i 30

3 3019 T VL e e 30

3.3.20 T O i 30

3.3.21 HSMOCI Lo et 30

3.3.22 CROCCU ..ot ettt 30

3.3:23 ACC e 30

3.3.:24 SO oo 30

4. ReVISION HISTOIYeeiiiiiiiiiiii e 31
/Itmel Atmel AT03786: SAM N/S Series Software Migration Guide [APPLICATION NOTE] 2

42185A-SAM-09/2013

1. Introduction
For more and more applications using Atmel SAM products, it is important to migrate a project easily to a different
microcontroller in the same product family. This application note is intended to help you and analyze the steps you need
to migrate from an existing SAM device based design to other devices in Atmel SAMxN or SAMxS (SAM N/S) series
device families. It groups together all the most important information and lists the vital aspects that you need to address.

To benefit fully from the information in this application note, the user should be familiar with the SAM N/S series
microcontroller family. It is available from www.atmel.com to get more detailed information about datasheets of these

devices.

/ltmeL Atmel AT03786: SAM N/S Series Software Migration Guide [APPLICATION NOTE] 3

42185A-SAM-09/2013

www.atmel.com�

2. Atmel SAM N/S Series Overview

This chapter will give an overview for all SAM N/S series micro-controllers so that users can have a general image of
our products. In the next sections, we will list some tables of features, package, power consideration, processors and
peripherals for deeper introduction.

21

Table 2-1.

SAM N/S Features

Atmel SAM N/S Features

Peripheral ___SAMIN _______SAMAN ________SAW3S ______________sAwis

ARM® Cortex®-M3 R2p0 | ARM Cortex-M4 ROp1

Core

MPU

DSP extension
Cache

Flash memory

SRAM

Max CPU
frequency

Operating voltage

Pin-to-pin
compatible

ROM code

I/0

Altmel

No
No
No

16 to 256KB embedded
Flash, 128-bit wide
access, memory

accelerator, single plane

4 to 24KB embedded
SRAM

48MHz

1.62V-3.6V

Yes
(48-, 64-, and 100-pin
version)

16KB ROM with
embedded boot loader
routines (UART) and
IAP routines

Up to 79 I/O lines with
external interrupt
capability (edge or level
sensitivity), de-
bouncing, glitch filtering
and on-die series
resistor termination,
parallel 1/0O control

Yes
No
No

512 to 1024KB
embedded Flash, 128-

bit wide acceg.s, memory Single plane
accelerator, single plane

Up to 80KB embedded
SRAM

100MHz

1.62V-3.6V

Yes
(48-, 64-, and 100-pin
version)

8KB ROM with
embedded boot loader
routines (UART) and
IAP routines, single-
cycle access at
maximum speed

Up to 79 I/O lines with
external interrupt
capability (edge or level
sensitivity), de-
bouncing, glitch filtering
and on-die series
resistor termination,
parallel I/O control

ARM Cortex-M3 R2p0
Yes
No
No

64 to 1024KB embedded Flash, 128-bit
wide access, memory accelerator

Dual plane
SAM3S1, SAM3SD8
SAM3S2,
SAM354,
SAM3S8,
SAM3S16

16 to 128KB embedded SRAM

64MHz 100MHz
SAM3S1, SAM3S16
SAM3S2,

SAM3S4,

SAMS3S8,

SAM3SD8

1.62V-3.6V

Yes

SAM3S4/2/1 SAM3S8/D8/16
(48-, 64-, and 100- ' (64- and 100-pin
pin version) version)

16KB ROM with embedded boot loader
routines (UART, USB) and IAP routines

ARM Cortex-M4 R0Op1
Yes
Yes
Yes

512 to 2048KB
embedded Flash with
optional dual bank and
cache memory, 128-bit
wide access

Up to 160KB embedded
SRAM

120MHz

1.62V-3.6V

Yes
(64- and 100-pin
version)

16KB ROM with
embedded boot loader
routines (UART, USB)
and IAP routines

Up to 79 I/O lines with external interrupt Up to 79 I/O lines with

capability (edge or level sensitivity), de-
bouncing, glitch filtering and on-die
series resistor termination, parallel I/O
control

external interrupt
capability (edge or level
sensitivity), de-
bouncing, glitch filtering
and on-die series
resistor termination,
parallel I/O control

Atmel AT03786: SAM N/S Series Software Migration Guide [APPLICATION NOTE] 4

42185A-SAM-09/2013

2.2 SAM N/S Package and Pinout

Table 2-2. Atmel SAM N/S Features

SAM N/S Series

Packages -100-lead LQFP, 14*14mm, -100-lead LQFP, 14*14mm, [-100-lead LQFP, 14*14mm, -100-lead LQFP, 14*14mm,
pitch 0.5mm/100-ball pitch 0.5mm/100-ball pitch 0.5mm/100-ball pitch 0.5mm/100-ball
TFBGA, 9*9mm, pitch 0.8mm TFBGA, 9*9mm, pitch TFBGA, 9*9mm, pitch TFBGA, 9*9mm, pitch
- 64-lead LQFP, 10*10mm, 0.8mm/100-ball VFBGA 0.8mm 0.8mm/100-ball VFBGA
pitch 0.5mm/64-pad QFN, 7*7mm, pitch 0.65mm - 64-lead LQFP, 10*10mm, |7*7mm, pitch 0.65mm
9*9mm, pitch 0.5mm - 64-lead LQFP, 10*10mm, |pitch 0.5mm/64-pad QFN, |- 64-lead LQFP, 10*10mm,
- 48-lead LQFP, 7*7mm, pitch 0.5mm/64-pad QFN, | 9*9mm, pitch 0.5mm pitch 0.5mm/64-pad QFN,
pitch 0.5mm/48-pad QFN, 9*9mm, pitch 0.5mm - 48-lead LQFP, 7*7mm, 9*9mm, pitch 0.5mm
7*7Tmm, pitch 0.5mm - 48-lead LQFP, 7*7mm, pitch 0.5mm/48-pad QFN,

pitch 0.5mm/48-pad QFN, | 7*7mm, pitch 0.5mm (for
7*7Tmm, pitch 0.5mm SAM3S4/2/1)

2.3 SAM N/S Power Consideration

Table 2-3. Atmel SAM N/S Features

SAM N/S Series

SAMSN _____|sAWAN sAM3S sawas

Lower Power - Sleep, Wait and Backup - Sleep, Wait and Backup | - Sleep, Wait and Backup |- Sleep, Wait and Backup
Modes modes, down to 3pA in modes, down to 0.7pA in modes, down to 1.8uA in modes, down to 1pA in
Backup mode Backup mode Backup mode Backup mode
- Ultra low power RTC - Low power RTC - Ultra low power RTC - Ultra low power RTC

2.4 SAM N/S Processor and Architecture

Table 2-4. Atmel SAM N/S Features

SAM N/S Series

SAM3N SAM4N SAM3S SAM4S

Processor ARM Cortex-M3 Processor |ARM Cortex-M4 Processor | ARM Cortex-M3 Processor | ARM Cortex-M4 Processor
- Version 2.0 - Thumb-2 (ISA) subset - Version 2.0 - Thumb-2 (ISA) subset
- Thumb-2 (ISA) subset consisting of all base - Thumb-2 (ISA) subset consisting of all base
consisting of all base Thumb-2 instructions, 16-bit | consisting of all base Thumb-2 instructions, 16-
Thumb-2 instructions, 16-bit and 32-bit Thumb-2 instructions, 16- | bit and 32-bit
and 32-bit - Harvard processor bit and 32-bit - Harvard processor
- Harvard processor architecture enabling - Harvard processor architecture enabling
architecture enabling simultaneous instruction architecture enabling simultaneous instruction
simultaneous instruction fetch with data load/store simultaneous instruction fetch with data load/store
fetch with data load/store |- Three-stage pipeline fetch with data load/store | - Three-stage pipeline
- Three-stage pipeline - Single cycle 32-bit multiply |- Three-stage pipeline - Single cycle 32-bit
- Single cycle 32-bit multiply |- Hardware divide - Single cycle 32-bit multiply
- Hardware divide - Thumb and Debug states multiply - Hardware divide
- Thumb and Debug states |- Handler and Thread modes |- Hardware divide - Thumb and Debug states
- Handler and Thread - Low latency ISR entry and |- Thumb and Debug states |- Handler and Thread
modes exit - Handler and Thread modes
- Low latency ISR entry and modes - Low latency ISR entry and
exit - Low latency ISR entry and | exit

exit
/ItmeL Atmel AT03786: SAM N/S Series Software Migration Guide [APPLICATION NOTE] 5

42185A-SAM-09/2013

25

Table 2-5.

Reset Controller
Real-Time Timer

Real-Time Clock

WatchDog

Supply
Controller

General Purpose
Backup Register
Flash Controller

Matrix

Peripheral DMA

Power
Management
Controller
PIO

SPI

PWM

UART / USART
ADC

DACC

USB Device Port

Altmel

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

NA

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

NA

Atmel SAM N/S Features

Compatibility

m S/W compatibility

Comments

SAM N/S Peripherals

Handles all the resets of the system without | NA Full compatibility
any external components See 3.3.1
Yes Yes 32-bit Free-running Counter on prescaled NA Partial compatibility
slow clock See 3.3.2
Yes Yes Combines a complete time-of-day clock with | NA Partial compatibility
alarm and a two hundred-year Gregorian See 3.3.3
calendar
Yes Yes 12-bit down counter NA Full compatibility
See 3.3.4
Yes Yes Supports Multiple Wake Up Sources, for Exit | NA Full compatibility
from Backup Low Power Mode See 3.3.5
Yes Yes 32-bit General Purpose Backup Registers NA Full compatibility
See 3.3.6
Yes Yes 128-bit or 64-bit wide memory interface NA Partial compatibility
increases performance See 3.3.7
Yes Yes Implements a multi-layer AHB NA Partial compatibility
See 3.3.8
Yes Yes Removes processor overhead by reducing NA Full compatibility
its intervention during the transfer See 3.3.9
Yes Yes optimizes power consumption by controlling NA Partial compatibility
all system and user peripheral clocks See 3.3.10
Yes Yes Up to 79 I/O lines Identical = Partial compatibility
See 3.3.11
Yes Yes Supports communication with serial external | Identical Full compatibility
devices / Connection to PDC channel See 3.3.12
capabilities optimizes data transfers
Yes Yes 16-bit counter per channel Identical = Partial compatibility
See 3.3.13
Yes Yes Programmable Baud Rate Generator Identical = Partial compatibility
See 3.3.14
Yes Yes ADC timings such as Startup Time and the Identical | Partial compatibility
Tracking Time are configurable See 3.3.15
Yes Yes DACC timings such as Startup Time and the = Identical Partial compatibility
Internal Trigger Period are configurable See 3.3.16
Yes Yes Compliant with the Universal Serial Bus Identical = Full compatibility
(USB) V2.0 full-speed device specification for See 3.3.17
SAM3S
and
SAM4S
Atmel AT03786: SAM N/S Series Software Migration Guide [APPLICATION NOTE] 6

42185A-SAM-09/2013

SSC

TWI

TC

HSMCI

CRCCU

ACC

SMC

Altmel

NA

Yes

Yes

NA

NA

NA

NA

NA

yes

yes

NA

NA

NA

NA

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Supports many serial synchronous
communication protocols generally used in
audio and telecom applications

Can be used with any Atmel Two-wire
Interface bus Serial EEPROM and I?C
compatible device

16-bit Timer Counter channels

Supports the MultiMedia Card (MMC)
Specification V4.3, the SD Memory Card
Specification V2.0, the SDIO V2.0
specification and CE-ATA V1.1

32-bit cyclic redundancy check automatic
calculation / CRC calculation between two
addresses of the memory

Embeds 8 to 1 multiplexers on both inputs

Supports several types of external memory
and peripheral devices, such as SRAM,
EEPROM, LCD Module, NOR / NAND Flash

Identical
for
SAM3S
and
SAM4S

Identical

Identical

Identical
for
SAM3S
and
SAM4S

Identical
for
SAM3S
and
AM4S

Identical
for
SAM3S
and
SAM4S

Identical
for
SAM3S
and
SAM4S

Full compatibility
See 3.3.18

Full compatibility
See 3.3.19

Full compatibility
See 3.3.20

Full compatibility
See 3.3.21

Full compatibility
See 3.3.22

Full compatibility
See 3.3.23

Full compatibility
See 3.3.24

Atmel AT03786: SAM N/S Series Software Migration Guide [APPLICATION NOTE]

42185A-SAM-09/2013

7

3. Atmel SAM N/S Software Migration Guide
The software migration is based on ASF code as former Softpack releases are lack of software compatible with ASF.
Some major steps are required for the migration: Update the project workspace, modify source code of peripheral
drivers if it is necessary and finally port user’s application.
This chapter is intended to give users a brief introduction of every possible step during software migration of SAM N/S
series. Users can benefit from this correct and prompt way which we will talk about in next sections.
3.1 Software Migration Requirement
Before migration, we suggest users to read this article first, and get ASF tool-chains ready (if you have already installed
Atmel studio, these should be ok). Moreover, datasheets of SAM N/S series are also necessary for you when you do
the software migration. Although we will discuss peripheral migration in Section 3.3, it can’t replace the datasheet since
more technique details we won't list here by the limit of document length.
3.2 Software Project Workspace Migration
Software workspace migration includes project files, link files, some essential head files, etc.
We will talk about this topic within two different IDEs: Atmel Studio and IAR™. Meantime, we will take SPI module as
example to explain how to migrate a project from SAM3N to SAM4S. Users can regard this example as a template for
other peripherals or N/S devices migration, because they almost have the same procedures.
For the workspace migration, the getting-started application can be used as the example.
3.21 Migrate Atmel Studio Workspace
Thanks to Atmel Studio, we can use ASF wizard to do the migration, because it is convenient for users to add or
remove a driver and service rather than recoding anymore.
Here we take SPI as example to introduce how to migrate an existing project from SAM3N to SAM4S.
Step 1: Create a SAM4S new project:
Figure 3-1. Project Directory in Atmel Studio
[T A conf_bo inh board.h Flash.ld main. R Solution Explorer * I x
% conf_clack.h - =7 oopraeatasFisPansisIsisreiconfigleont. - | 'Gof| e e
=1 wok + ENSE ;I
* Wfile 2 = lia) AsSF
* T = (& comman
* \brief SiMdS clock configuration. 2 (5 boards
* e [n) boardh
Copyright (e} 2013 Atmel Corporation. All rights reserved. B~ (5} services
* [od clock
* \asf_license_start [53 gpin
* (e iopart
* ‘page License | [ag utils
Redistribution and use in source and binary forms, with or withe boards
modification, are permitted provided that the following conditic : (e samds_ek
| drivers
¥ 1. Redistributions of source code must retain the above copyrigh [53 pio
* this list of conditions and the following dizclaimer. (= proc
: 2. FRedistributions in binary form must reproduce the abowe copyr L:tjl‘scms\s
* thiz list of conditions and the following disclaimer in the ¢ (23 header_files
* and/or other materials prowided with the distribution. =] k ipks
* §OE =y samds
* 3. The name of Atmel may not be used to endorse or promote pradt - (@ samdsi6
® from this software without specific prior written permission. H Bl =) gec
* o [flash.ld
4. This software may only be redistributed and used in conmectic [make
* Atmel microcontroller product. |2 preprocessor
* o syscalls
THIS SOFTWARE IS PROVIDED EY ATMEL "AS IS" AMND ANY EXPRESS OR IR i L_njlc;mpwler‘h
* WARRANTIES, INCLUDING, BUT MOT LIMITED T, THE IMFLIED WARRANTIE jlstatus_mdas‘h
MERCHANTABILITY, FITMESS FOR & PARTICULAR FURPOSE AND NON-INFEIF [(=0 thirdparty
+ EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN MO EVENT SHALL ATMEL E = |5 config
ANT DIRECT, INDIRECT, INCIDENTAL, SPFECIAL, EXEMFLARY, OR CONSEQL _ﬂconfﬁboard‘h
* DAMAGES (INCLUDING, EUT NOT LIMITED TO, PROCUREMENT OF SUBSTITU] ﬂconf_clock‘h ||
OR SERVICES; LOSS OF USE, DAT&, OR FROFITS; OR BUSINESS INTERRIFE n asf.h
* HOWEVER. CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTFJ;I
-4 | ’ 30 Salution Explarer
/ItmeL Atmel AT03786: SAM N/S Series Software Migration Guide [APPLICATION NOTE] 8

42185A-SAM-09/2013

In general, there are two folders in src catalog: ASF and config.

As snapshot shows, ASF catalog is consisted of common, SAM and thirdparty.

Common:

boards: This folder includes the appropriate board header file according to the defined board (parameter
BOARD)

services:
e clock: This folder includes System clock / Generic clock / Oscillator / PLL management
e gpio: This folder includes Common GPIO API
e ioport: This folder includes Common IOPORT service main header file

utils: This folder includes Global interrupt management and Atmel part identification macros

boards: This folder includes files related to board definition. (This example is about SAM4S-EK)
drivers: This folder includes all the drivers necessary for this project
utils:
e cmsis: This folder includes cmsis related files for this MCU
e header_files: This folder includes arch file for SAM
e linker_scripts: users can adjust the size of Stack, ROM and RAM in flash.Id if it is necessary
o make: Makefile file for project

e preprocessor: This folder includes Preprocessor / Preprocessor macro repeating / Preprocessor
stringizing / Preprocessor token pasting utils

e syscalls: This folder includes Syscalls for SAM

Thirdparty:

CMSIS: This folder includes some cmsis related header files and lib files.

Under Config folder, there are two header files, one is used to configure board (conf_board.h), i.e.: what peripherals
are available, the certain pin is set as GPIO or special function, etc. The other (conf_clock.h) is used to do the clock
configuration.

Step 2: Include all the necessary peripheral drivers and services through “ASF Wizard”:

Altmel

Atmel AT03786: SAM N/S Series Software Migration Guide [APPLICATION NOTE] 9

42185A-SAM-09/2013

Figure 3-2. ASF-Wizard

Device: ATSAM4S16C Project: I SPI3N4S vl ﬂl

Extensions ‘Wersion

Available Modules Selected Modules

Extensions: Intmel ASF(3.9.1) vl Show: IServices vl Search for mooti Generic board support (driver)
L R | S A GPIC - General purpase InputfOutput (service)
m USART - Serial interface (service) IOPORT - General purpose IfO service (service)
m Sleep manager (service) PIO - Parallel Inputfoutput Controller (driver)
wcommon.services.basic.spi_master.standard_spi (service) Sytam Clock Control (rarice)
wcommon.serV|ces.baS|c.spl_master.usart_spl (service) J m P - Sarial Paripheral Interface Master (Common AP} I"S‘E'"foﬂflm
w Memory Control Access Interface {service)

e

w TWI - Two-Wire Interface {Common APT) {service)

w LISE Device {service)
- .. n
Info Actions Details

Delay routines

| [E

Add => | Apply Revert <« Remove

Summary: |

Press button "Apply", then user complete the driver and service migration.

Some points should be paid attention to:

1. ASF(3.9.1) means the current ASF version which is chosen. In most cases, we always add modules from the

latest versions.

2. Why we add these modules as Figure 3-2 shows? Because they are also included in the original Atmel SAM3N
project, and if we want to do a more convenient code porting for the new project, we had better include all the

modules which have been in previous one by ASF Wizard.
Step 3: Port the user application. Below is the application code in SAM3N project:

#include "asf.h"
#include "conf usart spi master example.h"

/* Manufacturer ID for dataflash. */
uint8 t manufacturer id;

/* Manufacturer ID for Atmel dataflash. */
#define ATMEL MANUFACTURER ID 0x1F

/* AT45DBX Command: Manufacturer ID Read. */
#define AT45DF CMDC RD MID REG 0x9F

/* Buffer size. */
#define DATA BUFFER SIZE 0x04

/* Data buffer. */
uint8 t data[DATA BUFFER STZE] = {AT45DF_CMDC_RD MID REG};

struct usart spi device USART SPI DEVICE EXAMPLE = {
/* Board specific select ID. */
.id = USART SPI DEVICE EXAMPLE ID

}i

static bool usart spi at45dbx mem check(void)

{

/ItmeL Atmel AT03786: SAM N/S Series Software Migration Guide [APPLICATION NOTE]

42185A-SAM-09/2013

10

/* Select the DF memory to check. */
usart spi select device (USART SPI EXAMPLE,
&USART SPI DEVICE EXAMPLE) ;

/* Send the Manufacturer ID Read command. */
usart spi write packet (USART SPI EXAMPLE, data, 1);

/* Receive Manufacturer ID. */
usart spi read packet (USART SPI EXAMPLE, data, DATA BUFFER SIZE);

/* Extract the Manufacturer ID. */
manufacturer id = datal[0];

/* Deselect the checked DF memory. */
usart spi deselect device (USART SPI EXAMPLE,
&USART SPI DEVICE EXAMPLE) ;

/* Check the Manufacturer id. */

if (manufacturer id == ATMEL MANUFACTURER ID) {
return true;
} else {

return false;
}
}

/*! \brief Main function.*/
int main (void)
{

sysclk init();

/*
* Initialize the board.

* The board-specific conf board.h file contains the configuration of
* the board initialization.

*/

board init();

/* Config the USART SPI. */

usart spi_init (USART SPI EXAMPLE);

usart spi setup device (USART SPI EXAMPLE, &USART SPI DEVICE EXAMPLE,
SPI_MODE 0, USART SPI EXAMPLE BAUDRATE, 0);

usart spi enable (USART SPI EXAMPLE) ;

/* Show the test result by LED. */

If (usart_spi at45dbx mem check() == false) {

ioport set pin level (USART SPI EXAMPLE LED PIN EXAMPLE 1,
IOPORT PIN LEVEL LOW) ;

ioport set pin level (USART SPI EXAMPLE LED PIN EXAMPLE 2,
IOPORT PIN LEVEL HIGH);

} else {

ioport set pin level (USART SPI EXAMPLE LED PIN EXAMPLE 1,
IOPORT PIN LEVEL LOW) ;

ioport set pin level (USART SPI EXAMPLE LED PIN EXAMPLE 2,
IOPORT PIN LEVEL LOW) ;

}

while (1) {
/* Do nothing */
}

/ltmeL Atmel AT03786: SAM N/S Series Software Migration Guide [APPLICATION NOTE] 11

42185A-SAM-09/2013

We find that if we want to realize the same function, a header file which names “conf_usart_spi_master_example.h” is
necessary. So we can make a copy of this file into config folder as Figure 3-3 shows:

Figure 3-3. Conf_usart_spi_master_example.h in Config Folder

Solution Explorer = [l X

=)
[od Include ;l

[a] Lib
: e CMSIS EMD USER LICEMCE AGREEMEMT. pdf
=] license.bxt

=] README.bxt

[=- | config
----- El conf_board.h

----- l"l conf_clock.h

- h} conf_usart_spi.h

| | conf_usart_spi_master_example.h |

[r >

And then we can easily copy all the source code into our main.c in new project.

Finally, press "Build Solution”. If the migration succeeds, you can see the message as Figure 3-4:

Figure 3-4. Build Succeeded in Atmel Studio

Oukpuk

Show output from: |Build '|| _}1 | ‘ﬂ —"}0 | =X

=

Pl

Done executing task “RunCompilerTask”
Task "BunfutputFileVerifyTask"
Program Memory Usage : BOTE bytes 0.6 % Full
Data Memory Usage : 13536 bytes 10,3 % Full
Done executing task “RunfutputFileVerifyTask”.
Done building target “CoreRebuild” in project “"SPL3F4S. cproj”.
Tarzet “FostBuildEwent” szkipped, due to falsze condition; (" F(FoztBuildEwent)” 1= *7) waz evaluated az 7 1= 770
Tarzet "ReBuild” in file “D:\Program FileshAtmelbAtmel Studie B 1WWs'uer. common. target=" from project "D 4Froject\ASFASFIZHAS'\SFIZN4SA\SFIZNAS. cproj” (entry point):
Done building target “ReBuild” in project "SPIZH4S. cproj”.
Done building project "SPIZN4S. eproj”.

Build succeeded.
====z===== Rebuild All: | =succeeded, O failed, 0 skipped ==========

q
= Cukput

3.2.2 Migrate IAR EWARM Workspace
Here we also take the SPI example from SAM3N to SAM4S to explain how to do migration on IAR EWARM.

Step 1: Update device, choose Atmel SAM4S16C:

/ltmeL Atmel AT03786: SAM N/S Series Software Migration Guide [APPLICATION NOTE] 12

42185A-SAM-09/2013

Figure 3-5. Choose Atmel SAM4S16C

Atmel SAM3IS2C
Options for node “basic_usart_spi_master_example_flash* Atmel SAM354

Atmel SAMIS4A

Atmel SAMIS4E

Categary: Atmel SAM3S4C
Atmel 54M355

Atmel SAMISBA

Atmel SAM3SIE

Assembler

Output Converter Target | Uulpull Library Conllgurallonl Library Options | MISRA-C:200 4 | * Atmel SAM3SEC

Custom Build Atmel SAM3SDE

Build Actions Atmel SAMISDEL

Linker [~ Processor variant ‘ Atrmel SAM3SDEE

Debugger Coe [Cotestia - Atmel SAM3SDEC
Simulator Mone Atmel SAM3U1C
Angel & Device |Pmel GAMING AnalogDevices atmel SAMIUIE
CMSIS DAP Atmnel Atmel SAMIUZC
GDB Server Cirrus, Aatmel SAM3UZE
hn Fommonker W | FRU Ember Atmel SAM3LC
I-jet/ITAGIEL EnergyMicro Atmel SAMILU4E
IinkiJ-Trace & U_“'E MNane = Epson Atmel SaM3R2
T Stellaris £10ig Faraday Atmel SAM3RZC
Macraigar {° BE32 Freescale Atmel SAMIXZE
PE micro * EER Fujitsu Atmel SAM3K2G
ROL e

Hilscher Atmel SAM3E2H

ST-LINK vy
Third-Party Driver e Atmel SAM3Rd

»
»
b
3
»
b
3
3
»
b
3
TI ¥DS100 Infineon » Atmel SAMIE4C
»
3
3
»
b
3
3
»
b
3
»
»

Tnicel Atmel SAM3E4E
Atmel SAM3Z4G
Atmel SAM3EAH
Atmel 5aM3E
Atmel SAM3REC
Atmel SAM3ZEE
Atmel SAM3IKEE
Atmel SAM3HEH
Atmel SAM45164
Atmel SAM4S 166
Atmel 5aM4516C

Marwel

Micronas
Micrasemi
Netsiicon
Murvotan

NP

OKI
ONSemicanductor
Samsung
SlicanLaborataries
Sacle

Abmel SAMIS4A

Step 2: Update Preprocessor in C/C++ Compiler Category:
Figure 3-6. Edit Defined Symbols

Defined spmbals: [one per line) Defined symbols: [ane per line]

BOARD=S4M3IN_EK ;I ™ Preprocessar output ta file BOARD=54MA45_EK ;I I Preprocessor output ta file
SR _MATH_Ch3=tue I™ Preserve comments oo |:> AAM_MATH_CM4=te ™ Presenve comments
_ SAM3MAC__ ™ Generate #line directives __SAMASTEC_ | Generate Hline directives

-] [~

Additional include directories: [one per line]

$PROJ DIRS\..\..\..\..\gpio

SPROJ DIRS\..\..\..\..\..\..\sam\utils\cmsis\sam3n\source\templates

Change to : $PROJ DIRS\..\..\..\..\..\..\sam\utils\cmsis\samd4s\source\templates
SPROJ DIRS\..\..\..\..\..\..\sam\utils\cmsis\sam3n\include

Change to : $PROJ DIRS\..\..\..\..\..\..\sam\utils\cmsis\sam4s\source\templates
$PROJ DIRS\..\..\..\..\..\..\sam\drivers\pmc

SPROJ _DIRS\..\..\..\..\ioport
$PROJ _DIRS\..
$PROJ DIRS\..
$PROJ DIRS\..
$PROJ DIRS\..
$PROJ_DIR$\ .
$PROJ_DIRS\..
$PROJ_DIRS\..
$PROJ_DIRS\..
$PROJ DIRS\..
$PROJ DIRS\..
$PROJ DIRS\..
$PROJ_DIRS\.
Change to
$PROJ DIRS\..
$PROJ_DIR$\ .

.

..\..\sam\utils\header files
..\..\sam\utils
..\..\sam\utils\preprocessor

A\
A\
A\
..\clock
A\
<\
<o\
A\

.

.

.\boards

Autils
.\..\sam\boards
.\..\sam\drivers\pio

.
P A

.

.\sam _usart_ spi
..\..\..\..\sam\boards\sam3n ek
DIRS\..\..\..\..\..\..\sam\boards\samé4s ek
AL .\..\..\sam\drivers\usart

RO

Uy -
P v P e A

PR
.

/ltmeL Atmel AT03786: SAM N/S Series Software Migration Guide [APPLICATION NOTE] 13

42185A-SAM-09/2013

Step 3: Update Link file in Linker Category:

e Linker Configuration file

Original:
SPROJ DIRS\..\..\..\..\..\..\sam\utils\linker scripts\sam3n\sam3n4\iar\flash.icf
Change to:
SPROJ DIRS\..\..\..\..\..\..\sam\utils\linker scripts\sam4s\sam4sl6\iar\flash.icf

Figure 3-7. Edit Linker Configuration File

Linker configuration file
v Overide default
I."x.."-...'x.."xsam"xutils'xlinker_scripts'xsamals"'.sam4s1E"'.iar"'.flash.icf _l

Edi... |

Step 4: Update Setup macros in Debugger Category:

e Use macro file(s)

Original:

SPROJ DIRS\..\..\..\..\..\..\sam\boards\sam3n ek\debug scripts\iar\sam3n ek flash.
mac

Change to:

SPROJ DIRS\..\..\..\..\..\..\sam\boards\sam4s ek\debug scripts\iar\samé4s ek flash.
mac

Figure 3-8. Setup Macros

Setup macroz
¥ Usze macro file(z)

Isamhl:u:uards'\sam#s_ek'xdebug_su:ripts'\iar'\samals_ek_flash.mau: J

| =

Step 5: Update services / boards / drivers, which are different between SAM3N and SAM4S:

1. Original: /common/services/clock/sam3n
Change to: /common/service/clock/sam4s
/ItmeL Atmel AT03786: SAM N/S Series Software Migration Guide [APPLICATION NOTE] 14

42185A-SAM-09/2013

Figure 3-9. samds Folder in Service Catalog

=1 [services

= (1 clock

2 (1 samds
— k1 genclk.h
— K osch
— [kl plLh
sysclk.c
——
— [kl genclikh
— [k osch
L R plh

L— [l svsclik.h

Q: Where is this sam4s folder to be copied?
A: It locates in ..\asf-3.9.1\common\services\clock\sam4s

Note: The actual path depends on where you install ASF on your computer.

2. Original: /sam/boards/sam3n_ek
Change to: /sam/boards/sam4s_ek

Figure 3-10. sam4s_ek Folder

= [sam
—= (1 hoards
L[Jsamds_ek
init.c
led.c
— [led h
L— [) samds_ek.h

Q: Where is this sam4s_ek folder to be copied?

A: It locates on ..\asf-3.9.1\sam\boards\sam4s_ek

Note: The actual path depends on where you install ASF on your computer.

3. Original: /sam/utils/cmsis/sam3n
Change to: /sam/utils/cmsis/sam4s

Figure 3-11. sam4s in Utils Catalog

L@ O utils
F= (O emsis
| Lk
| HE CJinclude
| L@ [source

Q: Where is this sam4s folder to be copied?

A: It locates on ..\asf-3.9.1\sam\utils\cmsis\sam4s

Note: The actual path depends on where you install ASF on your computer.

/ltmeL Atmel AT03786: SAM N/S Series Software Migration Guide [APPLICATION NOTE] 15

42185A-SAM-09/2013

3.3

3.3.1

4. Original: /common/services/spi/usart_spi_master_example/sam3n4c_sam3n_ek
Change to: /common/services/spi/usart_spi_master_example/sam4s16¢c_sam4s_ek

Figure 3-12. conf_clock.h in sam4s16c_sam4s_ek

[Jsam_usart_spi
—E [usar_spi_master_axample
= (1 samds1bo_samds_ek
FaCiar
| L— Rlasth
F— [&) conf_hoard.h
] ccint_clock h I
F— [cont_usart_spih
L conf_usart_spi_master_example.h
usart_spi_master_example.c
L— [usart_spih

Note: User just needs to rename the original folder with’sam4s16¢c_sam4s_ek” and copy the conf_clock.h which
belongs to SAM4S clock configuration into the project.

The conf_clock.h of SAM4S is located in ..\asf-3.9.1\common\services\clock\sam4s\module_config. However, the actual
path depends on where you install ASF on your computer.

Step 6: Finish the migration, then Build Project. If it succeeds, you will see the snapshot in Figure 3-13.

Figure 3-13. Build Succeeded in IAR

| Messages
sysclk.c
system_samds.c
usart.c
usar_spi.c
usar_spi_master_example.c
Linking

Total number of errars: 0
Total nurnber of warnings: 0

Peripheral Migration
Peripherals migration gives special consideration for each driver/service. The following are the lists of the peripherals.

We will not list the driver / services interfaces which are identical for the Atmel SAM3N/3S/4N/4S here, since user
should do nothing for them during migration. Some features will be highlighted, which are only realized in specific
devices. User should pay more attention to these parts because the project can’t be migrated to the device successfully
without such features.

Generally speaking, from some macros named using chip type in ASF source code, user can clearly know which
features or functions would only be realized in specific devices.

Reset Controller
There is no need for user to do any modification for this driver migration. The code is identical for SAM3N/3S/4N/4S.

/ltmeL Atmel AT03786: SAM N/S Series Software Migration Guide [APPLICATION NOTE] 16

42185A-SAM-09/2013

3.3.2 Real-Time Timer
Taking advantage of a calibrated 1Hz clock from Real-Time Clock (RTC), the RTT module on Atmel SAM4S/4N
introduces a clock source mode through RTC 1Hz clock selection. This mode is interesting when the RTC 1Hz is
calibrated in order to guarantee the synchronism between RTC and RTT counters.
A Real-time Timer Disable is also provided in SAM4S/4N which makes the user enable/disable the RTT module
conveniently.
These new features make the RTT software on SAM4S/4N different from the one on Atmel SAM3S/3N.
[Only for SAM4N/4S]:
e User can decide whether The RTT 32-bit counter is driven by the 16-bit prescaler roll-over events or RTC 1Hz
clock
This feature is realized by function:
void rtt sel source(Rtt *p rtt, bool is rtc_sel);
e The slow clock source can be fully disabled to reduce power consumption when RTT is not required
This feature is realized by functions:
void rtt enable(Rtt *p rtt);
void rtt disable(Rtt *p rtt);
When doing migrations, the above functions should be taken care of, especially when migrating code to SAM3S/3N. In
these cases, replacement of rtt_sel_source(RTT, true) could be usually achieved by setting the prescaler of RTT to the
frequency of slow clock: rtt_init(RTT, 32768).
There is no direct replacement for rtt_enable()/rtt_disable() on SAM3S/3N. These two functions should be removed on
SAM3S/3N applications. The impact of this removal should be treated by the applications, e.g., enable/disable the RTT
interrupts routines to make the application working properly.
3.3.3 Real-Time Clock
The crystal oscillator that drives the RTC may not be as accurate as expected mainly due to temperature variation. So
when in the application, we always hope the RTC is equipped with circuitry which is able to correct slow clock crystal
drift. To compensate for possible temperature variations over time, there is an accurate clock calibration circuitry which
can be programmed on-the-fly in Atmel SAM3S8/3SD8/4N/4S. And it can also be programmed during application
manufacturing.
[Only for SAM3S8/3SD8/4N/4S]:
e User can decide whether Gregorian Calendar or Persian Calendar to be used
This feature is realized by function:
void rtc set calendar mode (Rtc *p rtc, uint32 t ul mode);
e User can do Crystal Oscillator Clock Calibration, since a clock divider calibration circuitry is able to
compensate for crystal oscillator frequency inaccuracy
This feature is realized by function:
void rtc set calibration(Rtc *p rtc, uint32 t ul direction ppm,
uint32 t ul correction, uint32 t ul range ppm);
There is no direct replacement for ric_set_calibration of other devices. Users should realize the similar function by other
ways such as an optional calibration RTC circuit on the board.
/ItmeL Atmel AT03786: SAM N/S Series Software Migration Guide [APPLICATION NOTE] 17

42185A-SAM-09/2013

3.34

3.3.5

3.3.6

3.3.7

In SAM3S8/3SD8/4S, waveforms can be generated by the RTC in order to take advantage of the RTC inherent
prescalers, while the RTC is the only powered circuitry (low power mode of operation, backup mode) or in any active
modes. Going into backup or low power operating modes does not affect the waveform generation outputs.

[Only for SAM3S8/3SD8/4S]:

e An RTC output can be programmed to generate several waveforms, including a prescaled clock derived from
32.768kHz

This feature is realized by functions:

void rtc set waveform(Rtc *p rtc, uint32 t ul channel, uint32 t ul value);
void rtc set pulse parameter (Rtc *p rtc, uint32 t ul time high,uint32 t
ul period);

There is no direct replacement for other devices. Users should realize the similar function by the other peripherals such
as TC, PWM, etc.

[Only for SAM3N]:

e User can disables or enable the Write Protect if WPKEY corresponds to 0x525443 (“RTC” in ASCII)
This feature is realized by functions:

void rtc set writeprotect(Rtc *p rtc, uint32 t ul enable);

Watchdog
There is no need for user to do any modification for this driver migration. The code is identical for SAM3N/3S/4N/4S.

Supply Controller
There is no need for user to do any modification for this driver migration. The code is identical for SAM3N/3S/4N/4S.

General Purpose Backup Registers
There is no need for user to do any modification for this driver migration. The code is identical for SAM3N/3S/4N/4S.

Flash Controller
Most of the driver interfaces are identical for SAM3N/3S/4N/4S, and some differences are listed in Table 3-1.

Table 3-1. EFC Command

EFC Command ___ SAM3N sAM3S mm

Get Flash Descriptor | Yes

Write page Yes Yes Yes Yes
Write page and lock Yes Yes Yes Yes
Erase page and write = Yes Yes Yes, but within some Yes, but within some
page constraints that lists constraints that lists
below the table below the table
Erase page and write | Yes Yes Yes, but within some Yes, but within some
page then lock constraints that lists constraints that lists
below the table below the table
Erase all Yes Yes Yes Yes
Erase plane No Only supported by SAM3SD8 No No
uint32 t

flash erase plane(uint32 t
ul address);

/ltmeL Atmel AT03786: SAM N/S Series Software Migration Guide [APPLICATION NOTE] 18

42185A-SAM-09/2013

Erase pages No No Yes, but within some Yes, but within some
constraints that lists constraints that lists
below the table below the table

Set Lock Bit Yes Yes Yes Yes

Clear Lock Bit Yes Yes Yes Yes

Get Lock Bit Yes Yes Yes Yes

Set GPNVM Bit Yes Yes Yes Yes

Clear GPNVM Bit Yes Yes Yes Yes

Get GPNVM Bit Yes Yes Yes Yes

Start unique ID Yes Yes Yes Yes

Stop unique ID Yes Yes Yes Yes

Get CALIB Bit Yes Yes, but not supported by Yes Yes

SAM3SD8,SAM3S8

Erase sector No No Yes Yes

Write user signature No No Yes
uint32 t

flash write user signature(uint32 t
ul address, const void *p buffer,
uint32 t ul size);

Erase user signature | No No Yes

uint32 t

flash erase user signature (void);
Start read user No No Yes
signature uint32 t

flash read user signature(uint32_t
*p data, uint32 t ul size);

Stop read user No No Yes Yes
signature

[Constraints for EWP/EWPL/Erase Page command of SAM4S and SAM4N]:

Erasing the memory can be performed as follows:
e On a512-byte page inside a sector, of 8KB

Note: EWP and EWPL commands can only be used in 8KB sectors.
e On a 4KB Block inside a sector of 8/48/64KB

Note: Erase Page commands can only be used with FARG[1:0] = 1.
e On a sector of 8/48/64KB

Note: Erase Page commands can only be used with FARG[1:0] = 2.
e On chip

The Write commands of the Flash cannot be used below 330kHz.

User can refer to the Memories Chapter for more details in datasheet.

Since we have these constraints for SAM4S and SAM4N, there are two functions specific for them in flash_efc service:

uint32 t flash erase page(uint32 t ul address, uint8 t uc page num);
uint32 t flash erase sector(uint32 t ul address);

/ltmeL Atmel AT03786: SAM N/S Series Software Migration Guide [APPLICATION NOTE] 19

42185A-SAM-09/2013

So we suggest users to use these functions before any write operation by Atmel SAM4S and SAM4N. There is no need
for Atmel SAM3N and SAM3S because EWP/EWPL command doesn’t have such constraint for them.

In addition, for SAM3N/3S, the Partial Programming mode works only with 128-bit (or higher) boundaries. It cannot be
used with boundaries lower than 128 bits (8, 16, or 32-bit for example). For SAM4N/SAMA4S, the Partial Programming
mode works only with 32-bit (or higher) boundaries. It cannot be used with boundaries lower than 32 bits (8 or 16-bit for
example). To write a single byte or a 16-bit half-word, the remaining byte of the 32-bit word must be filled with OxFF,
then the 32-bit word must be written to Flash buffer. If several 32-bit words need to be programmed, they must be
written in ascending order to Flash buffer before executing the write page command. If a write page command is
executed after writing each single 32-bit word, the write order of the word sequence does not matter.

3.3.8 Matrix
In SAM3S/4S, the SMC NAND Flash Chip Select Configuration Register (CCFG_SMCNFCS) allow to manage the chip
select signal (NCSx) as assigned to NAND Flash or not. Each NCSx can be individually assigned to NAND Flash or not.
When the NCSx is assigned to NANDFLASH, the signals NANDOE and NANDWE are used for the NCSx signal
selected.
[Only for SAM3S/4S]:
e SMC NAND Flash Chip select Configuration Register
This feature is realized by functions:
void matrix set nandflash cs(uint32 t ul cs);
uint32 t matrix get nandflash cs(void);
There is no direct replacement for other devices, users should remove these functions and realize it by application
design.
3.3.9 Peripheral DMA
There is no need for user to do any maodification for this driver migration. The code is identical for SAM3N/3S/4N/4S.
3.3.10 Power Management Controller
PLLBCK is special for SAM3S/4S series, which can give another choice for multiplication of the divider’s outputs. And
the user can select the PLLA or the PLLB output as the USB Source Clock by writing the USBS bit in PMC_USB. If
using the USB, the user must program the PLL to generate an appropriate frequency depending on the USBDIV bit in
PMC_USB.
[Only for SAM3S/4S]:
e |t can provide PLLBCK which is the output of the Divider and 80 to 240 MHz programmable PLL more than
PLLACK
This feature is realized by functions:
uint32 t pmc_switch mck to pllbck(uint32 t ul pres);
uint32 t pmc_switch pck to pllbck(uint32 t ul id, uint32 t ul pres);
uint32 t pmc_is locked pllbck(void);
void pmc_enable pllbck(uint32 t mulb, uint32 t pllbcount, uint32 t divb);
void pmc_disable pllbck(void);
e USB clock configuration
This feature is realized by functions:
void pmc_switch udpck to pllack(uint32 t ul usbdiv);
void pmc_switch udpck to pllbck(uint32 t ul usbdiv);
void pmc_enable udpck(void) ;
void pmc disable udpck(void);
/ItmeL Atmel AT03786: SAM N/S Series Software Migration Guide [APPLICATION NOTE] 20

42185A-SAM-09/2013

3.3.11

3.3.12

There is no direct replacement for other devices, since there are no such peripherals for users to be used.
[Only for SAM4S/4N]:

e |t can set the embedded flash state in wait mode
This feature is realized by function:

void pmc set flash in wait mode(uint32 t ul flash state);

In Atmel SAM4N, the frequency of the slow clock crystal oscillator can be monitored by means of logic driven by the
main RC oscillator known as a reliable clock source. This function is enabled by configuring the XT32KFME bit of the
Main Oscillator Register (CKGR_MOR).

[Only for SAM4N]:

e |t can do the slow crystal oscillator frequency monitoring
This feature is realized by functions:

void pmc_enable sclk osc freq monitor (void);
void pmc disable sclk osc freq monitor (void);

There is no direct replacement for other devices, users should remove these functions and realize them by some
additional circuit or application design.

PIO

In Atmel SAM3S/4S, the PIO Controller integrates an interface able to read data from a CMOS digital image sensor, a
high-speed parallel ADC, a DSP synchronous port in synchronous mode, etc. For better understanding and to ease
reading, the following description uses an example with a CMOS digital image sensor.

[Only for SAM3S/4S]:

e An 8-bit parallel capture mode is available which can be used to interface a CMOS digital image sensor, an
ADC, a DSP synchronous port in synchronous mode, etc.

This feature is realized by functions:

void pio capture set mode(Pio *p pio, uint32 t ul mode);

void pio capture enable(Pio *p pio);

void pio capture disable(Pio *p pio);

uint32 t pio capture read(const Pio *p pio, uint32 t * pul data);

void pio capture enable interrupt(Pio *p pio, const uint32 t ul mask);
void pio capture disable interrupt(Pio * p pio, const uint32 t ul mask);
uint32 t pio capture get interrupt status(const Pio *p pio);

uint32 t pio capture get interrupt mask(const Pio *p pio);

Pdc *pio_capture get pdc base(const Pio *p pio);

There is no direct replacement for other devices, users should remove these functions and realize them by some

software skills such as rolling if it is possible.

SPI
There is no need for user to do any modification for this driver migration. The code is identical for SAM3N/3S/4N/4S.

/ltmeL Atmel AT03786: SAM N/S Series Software Migration Guide [APPLICATION NOTE] 21

42185A-SAM-09/2013

3.3.13 PWM

In Atmel SAM3S/48S, it is possible to change the update period of synchronous channels while they are enabled. To
prevent an unexpected update of the synchronous channels registers, the user must use the “PWM Sync Channels
Update Period Update Register” (PWM_SCUPUPD) to change the update period of synchronous channels while they
are still enabled. This register holds the new value until the end of the update period of synchronous channels (when
UPRCNT is equal to UPR in “PWM Sync Channels Update Period Register’ (PWM_SCUP)) and the end of the current
PWM period, and then updates the value for the next period.

[Only for SAM3S/4S]:

e Synchronous Channel share the same counter, mode to update the synchronous channels registers after a
programmable Number of periods

This feature is realized by functions:

uint32 t pwm sync init (Pwm *p pwm, pwm sync update mode t mode,
uint32 t ul update period);

uint32 t pwm sync get period counter (Pwm * p pwm);

void pwm sync unlock update (Pwm *p pwm) ;

void pwm_sync change period(Pwm *p pwm, uint32 t ul update period);
void pwm sync enable interrupt (Pwm *p pwm, uint32 t ul sources);
void pwm sync disable interrupt (Pwm *p pwm, uint32 t ul sources);

In SAM3S/4S, it is possible to change the update period of comparison channels while they are enabled. To prevent an
unexpected comparison match, the user must use the “PWM Comparison x Value Update Register” and the “PWM
Comparison x Mode Update Register” (PWM_CMPVUPDx and PWM_CMPMUPDX) to change respectively the
comparison values and the comparison configurations while the channel 0 is still enabled. These registers hold the new
values until the end of the comparison update period (when CUPRCNT is equal to CUPR in “PWM Comparison x Mode
Register” (PWM_CMPMXx) and the end of the current PWM period, then update the values for the next period.

e Provides independent comparison units able to compare a programmed value with the current value of counter

These comparisons are intended to generate pulses on the event lines (used to synchronize ADC), to generate
software interrupts and to trigger PDC transfer requests for the synchronous channels

This feature is realized by functions:

uint32 t pwm cmp init (Pwm *p pwm, pwm cmp_ t *p cmp);

uint32 t pwm cmp change setting(Pwm *p pwm, pwm cmp t *p cmp);

uint32 t pwm cmp get period counter (Pwm *p pwm, uint32 t ul cmp unit);

uint32 t pwm cmp get update counter (Pwm *p pwm, uint32 t ul cmp unit);

void pwm cmp enable interrupt (Pwm *p pwm, uint32 t ul sources,

pwm_cmp interrupt t type);

void pwm cmp disable interrupt (Pwm *p pwm, uint32 t ul sources,
pwm_cmp_ interrupt t type);

void pwm pdc set request mode (Pwm *p pwm, pwm pdc request mode t request mode,
uint32 t ul cmp unit);

void pwm pdc enable interrupt (Pwm *p pwm, uint32 t ul sources);

void pwm pdc disable interrupt (Pwm *p pwm, uint32 t ul sources);

e One programmable Fault Input providing an asynchronous protection of outputs
This feature is realized by functions:

uint32 t pwm fault init(Pwm *p pwm, pwm fault t *p fault);

uint32 t pwm fault get status (Pwm *p pwm);

pwm level t pwm fault get input level (Pwm *p pwm, pwm fault id t id);
void pwm fault clear status(Pwm *p pwm, pwm fault id t id);

/ltmeL Atmel AT03786: SAM N/S Series Software Migration Guide [APPLICATION NOTE] 22

42185A-SAM-09/2013

3.3.14

e Stepper motor control (2 Channels)
This feature is realized by function:

void pwm stepper motor init (Pwm *p pwm, pwm stepper motor pair t pair,
bool b enable gray, bool b down);

e User can change output selection of the PWM channel and change dead-time value for pwm outputs
This feature is realized by functions:

void pwm channel update output (Pwm *p pwm, pwm channel t *p channel,
pwm output t *p output, bool b sync);

void pwm channel update dead time (Pwm *p pwm, pwm channel t *p channel,

uintl6 t us_deadtime pwmh, uintl6é t us deadtime pwml);

There is no direct replacement for other devices; users should remove these functions since other devices’ PWM
module can’t support these features.

UART/USART

For UART, there is no need for user to do any modification for this driver migration. The code is identical for Atmel
SAM3N/3S/4N/4S.

For USART, most of the driver interfaces are identical for SAM3N/3S/4N/4S, and some differences are listed below: In
SAM3S/4S, The USART features modem mode, which enables control of the signals: DTR (Data Terminal Ready),
DSR (Data Set Ready), RTS (Request to Send), CTS (Clear to Send), DCD (Data Carrier Detect) and RI (Ring
Indicator). While operating in modem mode, the USART behaves as a DTE (Data Terminal Equipment) as it drives DTR
and RTS and can detect level change on DSR, DCD, CTS and RI. Setting the USART in modem mode is performed by
writing the USART_MODE field in the Mode Register (US_MR) to the value 0x3. While operating in modem mode the
USART behaves as though in asynchronous mode and all the parameter configurations are available.

[Only for SAM3S/4S]:

e Full modem line support on USART1 (DCD-DSR-DTR-RI)
These functions are related to this feature:

uint32 t usart init modem(Usart *p usart,const sam usart opt t *p usart opt,
uint32 t ul mck);

void usart drive DTR pin low (Usart *p usart);

void usart drive DTR pin high(Usart *p usart);

There is no direct replacement for other devices; users should remove these functions since other devices’ USART
module can’t support these features.

e Optional Manchester Encoding
These functions are related to this feature:

void usart man set tx pre len(Usart *p usart, uint8 t uc len);

void usart man set tx pre pattern(Usart *p usart, uint8 t uc pattern);
void usart man set tx polarity(Usart *p usart, uint8 t uc polarity);
void usart man set rx pre len(Usart *p usart, uint8 t uc len);

void usart man set rx pre pattern(Usart *p usart, uint8 t uc pattern);
void usart man set rx polarity(Usart *p usart, uint8 t uc polarity);
void usart man enable drift compensation (Usart *p usart);

void usart man disable drift compensation(Usart *p usart);

There is no direct replacement for other devices, users should remove these functions and realize them through other
ways like code/decode by software.

/ltmeL Atmel AT03786: SAM N/S Series Software Migration Guide [APPLICATION NOTE] 23

42185A-SAM-09/2013

3.3.15 ADC
Most of the driver interfaces are identical for Atmel SAM3N/3S/4N/4S, and list some difference below:

[Only for SAM3S/4S]:

e Selectable Single Ended or Differential Input Voltage
This feature is realized by functions:

void adc_enable channel differential input (Adc *p_adc, const enum

adc_channel num t channel);

void adc_disable channel differential input (Adc *p_adc, const enum
adc_channel num t channel);

void adc_enable channel input offset (Adc *p adc, const enum adc channel num t
channel) ;

void adc_disable channel input offset (Adc *p_ adc, const enum adc_channel num t

channel) ;

void adc_ set channel input gain(Adc *p_adc, const enum adc_channel num t
channel, const enum adc _gainvalue t uc gain);

e PWM Event Line Trigger and drive of PWM Fault Input
e Allows different analog settings for each channel
This feature is realized by functions:

void adc_enable anch(Adc *p_adc);
void adc_disable anch(Adc *p_adc);

e ADC Bias Current Control
This feature is realized by function:

void adc set bias current (Adc *p adc, const uint8 t uc ibctl);

[Only for SAM3S8/3SD8/4S/4N]:

e Automatic calibration mode
This feature is realized by function:

#if SAM3S8 || SAM3SD8 || SAM4S

void adc_set calibmode (Adc *p adc);

#elif SAMAN

static inline enum status_code adc_start calibration(Adc *const adc);
#endif

[Only for SAM4N]:

e The 11-bit and 12-bit resolution modes are obtained by interpolating multiple samples to acquire better
accuracy

This feature is realized by function:

enum adc_resolution {

ADC 8 BITS = ADC MR LOWRES BITS 8, /* ADC 8-bit resolution */
ADC 10 BITS = ADC MR LOWRES BITS 10, /* ADC 10-bit resolution */
ADC 11 BITS = ADC_EMR OSR OSR4, /* ADC 1l-bit resolution */
ADC 12 BITS = ADC_EMR OSR OSR16 /* ADC 12-bit resolution */

b

void adc set resolution(Adc *const adc,const enum adc resolution res);

/ltmeL Atmel AT03786: SAM N/S Series Software Migration Guide [APPLICATION NOTE] 24

42185A-SAM-09/2013

e Internal Reference Voltage Selection
This feature is realized by function:

enum adc_refer voltage source ({
ADC REFER VOL EXTERNAL = 0,
ADC_REFER VOL_ STUCK_AT MIN,
ADC_REFER VOL_VDDANA,
ADC_REFER VOL_IRVS
i

static inline void adc_ref vol sel (Adc *const adc,
enum adc_refer voltage source adc_ref src,
uint8 t irvs)

Note: The ADC API of Atmel SAM3N/3S/4S is located in ..\sam\drivers\adc\adc.h and adc.c. But there are other files
(adc_samd4n.c and adc_sam4n.h) which are special for SAM4N since we have used a different API
convention. Here we will list APIs in Table 3-2 with similar function but using different interface.

Table 3-2. ADC Timing API

SAM3s/4s void adc_configure timing(Adc *p adc, const uint8 tuc tracking,const enum
adc_settling time t settling, const uint8 t uc transfer);

SAM3N void adc configure timing(Adc *p adc, const uint8 t uc tracking);
SAM4N void adc_get config defaults(struct adc_config *const cfg)
{

cfg->mck = sysclk get cpu hz();
cfg->adc _clock = 6000000UL;
cfg->startup time = ADC STARTUP TIME 4;
2;

cfg->transfer = 2;

cfg->tracktim

cfg->useq = false;

static void adc_set config(Adc *const adc, struct adc config *config)

{

reg = (config->useq ?
ADC MR _USEQ REG ORDER : 0) |

ADC_MR_PRESCAL (config->mck /
(2 * config->adc_clock) - 1)
ADC MR TRACKTIM (config->tracktim) |
ADC_ MR TRANSFER (config->transfer) |
(config->startup time);

adc->ADC MR = reg;

/ltmeL Atmel AT03786: SAM N/S Series Software Migration Guide [APPLICATION NOTE] 25

42185A-SAM-09/2013

Table 3-3. Temperature Sensor API

| series __Functn

SAM3s/4s void adc_enable ts(Adc *p_adc);
void adc_disable ts(Adc *p_adc);

SAM3N N.A

SAM4N void adc_temp sensor get config defaults(struct adc temp sensor config *const
cfg);

void adc_temp sensor set config(Adc *const adc, struct adc temp sensor config
*config);

Table 3-4. Trigger API

| series ___Functon

SAM3S/4S/3N void adc_configure trigger(Adc *p adc, const enum adc_trigger t trigger,const
uint8 t uc freerun);

SAM4N static inline void adc_set trigger (Adc *const adc,const enum adc_trigger
trigger);

Table 3-5. Power Save API

SAM3S/4S/3N void adc configure power save (Adc *p_adc, const uint8 t uc sleep,const uint8 t
uc_ fwup) ;

SAM4N void adc_set power mode (Adc *const adc,const enum adc power mode mode) ;

Table 3-6. Sequence API

SAM3S/4S/3N void adc_configure sequence (Adc *p_adc, const enum adc channel num t
ch list[],const uint8 t uc num);

SAM4N void adc_configure sequence (Adc *const adc,const enum adc channel num
ch list[], const uint8 t uc num);

/ltmeL Atmel AT03786: SAM N/S Series Software Migration Guide [APPLICATION NOTE] 26

42185A-SAM-09/2013

Table 3-7. Tag API

| series __Functn

SAM3S/4S/3N | void adc_enable tag(Adc *p adc);
void adc_disable tag(Adc *p_ adc);

enum adc_channel num t adc get tag(const Adc *p adc);

SAM4N void adc _get config defaults (struct adc config *const cfg)
{

cfg->transfer = 2;
cfg->useq = false;
cfg->tag = false;

static void adc set config(Adc *const adc, struct adc config *configq)

{

adc->ADC_EMR = (config->tag ?
ADC EMR TAG : 0) |
(config->aste ?
ADC EMR ASTE SINGLE TRIG AVERAGE : 0);

Table 3-8. Comparison API

SAM3S/4S/3N | uint32 t adc_get comparison mode (const Adc *p_ adc);
void adc_set comparison mode (Adc *p_adc, const uint8 t uc mode);

void adc_set comparison window (Adc *p adc, const uintl6 t
us low threshold,const uintl6 t us high threshold);

void adc_set comparison channel (Adc *p_adc, const enum adc channel num t
channel) ;

SAM4N static inline enum adc_cmp mode adc get comparison mode (Adc *const adc);

void adc_set comparison mode (Adc *const adc,const enum adc cmp mode mode,const
enum adc channel num channel, uint8 t cmp filter);

static inline void adc set comparison window (Adc *const adc,const uintlé t
us low threshold,const uintlé t us high threshold);

/ltmeL Atmel AT03786: SAM N/S Series Software Migration Guide [APPLICATION NOTE] 27

42185A-SAM-09/2013

Table 3-9. Channel API

| series __Functn

SAM3S/4S/3N | void adc_enable channel (Adc *p_adc, const enum adc channel num t adc_ch);

void adc_disable channel (Adc *p_adc, const enum adc channel num t adc_ch);
void adc_enable all channel (Adc *p adc);
void adc_disable all channel (Adc *p_ adc);

uint32 t adc get channel status(const Adc *p adc, const enum adc channel num t
adc ch);

uint32 t adc_get channel value(const Adc *p adc,const enum adc channel num t
adc ch);

uint32 t adc get latest value(const Adc *p adc);
SAM4N static inline void adc_channel enable (Adc *const adc,const enum
adc channel num adc ch);

static inline void adc channel disable (Adc *const adc,const enum
adc_channel num adc ch);

static inline uint32 t adc channel get status(Adc *const adc,const enum
adc_channel num adc ch);

static inline uint32 t adc channel get value (Adc *const adc,enum
adc_channel num adc ch);

static inline uint32 t adc _get latest value (Adc *const adc);

Table 3-10. Interrupt API

SAM3S/4S/3N void adc_enable interrupt (Adc *p adc, const uint32 t ul source);
void adc_disable interrupt (Adc *p_adc, const uint32 t ul source);
uint32 t adc get status(const Adc *p adc);
uint32 t adc get interrupt mask(const Adc *p adc);

SAM4N void adc enable interrupt (Adc *const adc,
enum adc interrupt source interrupt source);
void adc disable interrupt (Adc *const adc,
enum adc interrupt source interrupt source);
static inline uint32 t adc get interrupt status(Adc *const adc);

static inline uint32 t adc get interrupt mask (Adc *const adc);

Table 3-11. PDC API

| series __Functn

SAM3S/4S/3N Pdc *adc_get pdc base (const Adc *p_adc);
SAM4N static inline Pdc *adc_get pdc base (Adc *const adc)

Table 3-12. Resolution Setting API

SAM3S/4S/3N | void adc_set resolution(Adc *p _adc, const enum adc_resolution t resolution);

SAM4N void adc set resolution(Adc *const adc, const enum adc resolution res);

/ltmeL Atmel AT03786: SAM N/S Series Software Migration Guide [APPLICATION NOTE] 28

42185A-SAM-09/2013

Table 3-13. Initialization API

| series __Functn

SAM3S/4S/3N | uint32 t adc init(Adc *p_adc, const uint32 t ul mck,const uint32 t
ul adc clock, const uint8 t uc startup);

SAM4N enum status_code adc_init (Adc *const adc, struct adc config *const config);

3.3.16 DAC
Most of the driver interfaces are identical for Atmel SAM3N/3S/4N/4S, and some difference are listed below:
[Only for SAM3S/48]:

e Up to two channels 12-bit DAC, and enable the flexible channel selection mode (TAG).
This feature is realized by functions:

uint32 t dacc_set channel selection(Dacc *p_dacc, uint32 t ul channel);
uint32 t dacc_enable channel (Dacc *p dacc, uint32 t ul channel);
uint32 t dacc disable channel (Dacc *p dacc, uint32 t ul channel);
uint32 t dacc_get channel status(Dacc *p dacc);

void dacc_enable flexible selection(Dacc *p dacc);

There is no direct replacement for other devices; users should remove these functions since there is only one analog
output in SAM3N/4N. They can realize the similar function by dacc_enable(Dacc *p_dacc) / dacc_disable(Dacc
*p_dacc).

e The DACC Sleep Mode maximizes power saving by automatically deactivating the DACC when it is not being

used for conversion. Automatic Wake-up on Trigger and Back-to-Sleep Mode after Conversions of all Enabled
Channels.

Allows to adapt the slew rate of the analog output and adapt performance versus power consumption
This feature is realized by function:
uint32 t dacc_set power save(Dacc *p dacc, uint32 t ul sleep mode,
uint32 t ul fast wakeup mode);

uint32 t dacc_set analog_control (Dacc *p dacc, uint32 t ul analog control);
uint32 t dacc_get analog control (Dacc *p dacc);

There is no direct replacement for other devices, users should remove these functions. But in SAM3N/4N, users can
reduce the power by dacc_enable(Dacc *p_dacc) / dacc_disable(Dacc *p_dacc).

e User can configure STARTUP time / Refresh Period and decide whether to run at Max Speed Mode.
This feature is realized by function:

uint32 t dacc_set timing(Dacc *p dacc, uint32 t ul refresh, uint32 t
ul maxs,uint32 t ul startup);

For SAM3N/4N, there is a function named dacc_set_timing(Dacc *p_dacc, uint32_t ul_startup, uint32_t
ul_clock_divider) for replacement. But there is no Max Speed Mode and Refresh Period setting in it. Users should pay
more attention whether they are necessary in their application.

[Only for SAM3N/4N]:
e One channel output with 10-bit resolution.
e The DAC can be enabled and disabled through the DACEN bit of the DACC Mode Register.

This feature is realized by functions:

void dacc_enable (Dacc *p dacc);
void dacc_disable (Dacc *p_dacc);

/ltmeL Atmel AT03786: SAM N/S Series Software Migration Guide [APPLICATION NOTE] 29

42185A-SAM-09/2013

For Atmel SAM3S/4S, there are functions such as dacc_enable_channel(Dacc *p_dacc, uint32_t ul_channel) /
dacc_disable_channel(Dacc *p_dacc, uint32_t ul_channel) for replacement.

e User can configure Start-up time and clock divider for internal trigger.
This feature is realized by function:

uint32 t dacc_set timing(Dacc *p_dacc, uint32 t ul startup,
uint32 t ul clock divider);

For SAM3S/4S, there is a function named dacc_set_timing(Dacc *p_dacc, uint32_t ul_refresh, uint32_t ul_maxs,
uint32_t ul_startup) for replacement.

3.3.17 USB Device Port
There is no need for user to do any modification for this driver migration. The code is identical for SAM3S/4S.

* SAM3N/4N don't have this device support

3.3.18 SSC
There is no need for user to do any modification for this driver migration. The code is identical for SAM3S/4S.

* SAM3N/4N don't have this device support

3.3.19 TWI

There is no need for user to do any modification for this driver migration. The code is identical for SAM3N/3S/4N/4S.

3.3.20 TC
There is no need for user to do any modification for this driver migration. The code is identical for SAM3N/3S/4N/4S.

3.3.21 HSMCI
There is no need for user to do any modification for this driver migration. The code is identical for SAM3S/4S.

*SAM3N/4N don't have this device support

3.3.22 CRCCU
There is no need for user to do any modification for this driver migration. The code is identical for SAM3S/4S.

* SAM3N/4N don't have this device support

3.3.23 ACC
There is no need for user to do any modification for this driver migration. The code is identical for SAM3S/4S.

* SAM3N/4N don't have this device support

3.3.24 SMC

There is no need for user to do any modification for this driver migration. The code is identical for SAM3S/4S.

* SAM3N/4N don't have this device support

/ltmeL Atmel AT03786: SAM N/S Series Software Migration Guide [APPLICATION NOTE] 30

42185A-SAM-09/2013

4. Revision History

Doc. Rev. Date Comments
42185A 09/2013 Initial document release

/ltmel_ Atmel AT03786: SAM N/S Series Software Migration Guide [APPLICATION NOTE] 31

42185A-SAM-09/2013

Atmel | Enabling Unlimited Possibilities’

Atmel Corporation Atmel Asia Limited Atmel Munich GmbH Atmel Japan G.K.

1600 Technology Drive Unit 01-5 & 16, 19F Business Campus 16F Shin-Osaki Kangyo Building
San Jose, CA 95110 BEA Tower, Millennium City 5 Parkring 4 1-6-4 Osaki, Shinagawa-ku
USA 418 Kwun Tong Road D-85748 Garching b. Munich Tokyo 141-0032

Tel: (+1)(408) 441-0311 Kwun Tong, Kowloon GERMANY JAPAN

Fax: (+1)(408) 487-2600 HONG KONG Tel: (+49) 89-31970-0 Tel: (+81)(3) 6417-0300
www.atmel.com Tel: (+852) 2245-6100 Fax: (+49) 89-3194621 Fax: (+81)(3) 6417-0370

Fax: (+852) 2722-1369

© 2013 Atmel Corporation. All rights reserved. / Rev.: 42185A-SAM-09/2013

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation or its
subsidiaries. ARM® and Cortex® are registered trademarks of ARM Ltd. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

http://www.atmel.com/�

	1. Introduction
	2. Atmel SAM N/S Series Overview
	2.1 SAM N/S Features
	2.2 SAM N/S Package and Pinout
	2.3 SAM N/S Power Consideration
	2.4 SAM N/S Processor and Architecture
	2.5 SAM N/S Peripherals

	3. Atmel SAM N/S Software Migration Guide
	3.1 Software Migration Requirement
	3.2 Software Project Workspace Migration
	3.2.1 Migrate Atmel Studio Workspace
	3.2.2 Migrate IAR EWARM Workspace

	3.3 Peripheral Migration
	3.3.1 Reset Controller
	3.3.2 Real-Time Timer
	3.3.3 Real-Time Clock
	3.3.4 Watchdog
	3.3.5 Supply Controller
	3.3.6 General Purpose Backup Registers
	3.3.7 Flash Controller
	3.3.8 Matrix
	3.3.9 Peripheral DMA
	3.3.10 Power Management Controller
	3.3.11 PIO
	3.3.12 SPI
	3.3.13 PWM
	3.3.14 UART/USART
	3.3.15 ADC
	3.3.16 DAC
	3.3.17 USB Device Port
	3.3.18 SSC
	3.3.19 TWI
	3.3.20 TC
	3.3.21 HSMCI
	3.3.22 CRCCU
	3.3.23 ACC
	3.3.24 SMC

	4. Revision History

