
AN2601
Online Firmware Updates in Timing-Critical Applications
INTRODUCTION

A requirement for many applications is to support firm-
ware updates after the product has been released.
Firmware updates force the application to include a
bootloader to manage the Flash contents and a
communications medium to share information with an
external host device. Depending on the architecture of
the microcontroller, instruction Stalls are executed
during Flash erase/write operations, and because
these operations can take several milliseconds, the
application is typically taken offline to perform firmware
updates. Downtime can last several seconds, which
may be costly for certain end applications. An example
of such an application would be a digitally controlled
Power Supply Unit (PSU) for server markets. In a non-
redundant scenario, performing a software update
brings the PSU offline, resulting in revenue loss. Even
in a redundant environment, manual effort is required
to reprogram the PSU, which also results in additional
cost.

To eliminate downtime during firmware upgrades,
Microchip has introduced several 16-bit device families
(such as dsPIC33EP64GS506, dsPIC33EP128GS808,
PIC24FJ256GB412 and PIC24FJ1024GB610) that
implement two Flash partitions. With the microcontroller
architecture having two physically different Flash parti-
tions, the application is able to execute as normal from
the Active Partition, while the Inactive Partition is
erased, programmed and verified by the Active
Partition’s bootloader. Additional device features have
been implemented for supporting Flash partition swaps
(soft swap) and are briefly mentioned throughout this
application note. For more information on the dual
partition implementation, refer to “Dual Partition
Flash Program Memory” (DS70005156) in the
“dsPIC33/PIC24 Family Reference Manual”.

This application note discusses the compiler tools that
help facilitate LiveUpdate, as well as details regarding
how to set up the MPLAB® X IDE project and implement
firmware for the LiveUpdate event. Example projects are
created and discussed in this application note to further
aid in the development/testing of a LiveUpdate project.
These PSU examples achieve a complete firmware
replacement with an effective downtime of less than a
few microseconds, avoiding any missed interrupts
(critical) or discontinuity of the system’s output.

COMPILER FEATURES
FACILITATING LiveUpdate
In MPLAB XC16, Version 1.30 and later, several features
have been added that enable online firmware updates in
time-sensitive applications. In a LiveUpdate application,
the biggest challenge is retaining RAM values/variables
in the same memory address across firmware versions.
By retaining RAM contents, run-time state information is
maintained, and by keeping the same variables allocated
to the same addresses, start-up initialization delay is
negated. The executable and linkable file (.elf)
contains all pertinent symbol (variable and function
address) information needed for preserving RAM. In
referencing the executable file from the previous build
output, the compiler/linker will be able to map preserved
variables to the RAM locations defined in the previous
build.

For supporting LiveUpdate applications, four different
Preserve Data models have been created. In all
models, the previous firmware version’s .elf file is
referenced. Details regarding how to reference the
.elf file and configure the project for a preserved
data model will be discussed later in “Configuring
MPLAB® X Project”.

Depending on the preserved data model used, the
compiler/linker will either:

• Preserve only those variables with the Preserved
attribute

• Preserve all variables in selected C files

• Preserve all variables in the active project
(all C files)

• Preserve all variables in the entire project
(including library archive files)

Preserving all variables in the active/entire project is
seen as the more commonly used preserved data
model. Any new variables will be initialized by the
compiler, or if in the critical timing path, within a project-
specific priority function. Function Pointers and pointers
to constant data objects stored in Flash (if any) are
manually reinitialized, and minimal firmware is required
to manage changes between firmware updates. This
approach brings the application 100% back online in the
least amount of time. It is expected that only minor
changes are made between firmware revisions, which
makes managing the new variables/pointers reasonable
in these data models.

Author: Alex Dumais and Howard Schlunder
Microchip Technology Inc.
 2018 Microchip Technology Inc. DS00002601A-page 1

AN2601
There are instances where preserving individual
variables on a C file basis, or selectively using the
Preserved attribute, are required or preferred. In these
situations, limited variables are maintained to keep the
core application functional (power supply regulating)
and the time to get the application 100% back online is
not critical. This approach requires reinitialization
routines to configure variables/peripheral states cor-
rectly (i.e., bootloader, task scheduler, etc.) as it would
from a Power-on Reset (POR). Being that the applica-
tion’s core functionality continues uninterrupted, the time
to reinitialize these tasks is acceptable from the user’s
point of view. This approach has a better chance of
ensuring that all variables are linked to the project,
permitting large code changes to the project.

Deciding what model to use can vary depending on the
type of firmware update and is dependent on the
firmware engineer to understand what model best fits
the update. In some instances, it may be better to
selectively preserve a few variables; in other instances,
it might be better to preserve everything, selectively
choosing what is new and needs changing.

To support these different Preserve Data models, the
compiler has introduced several new attributes. Mainly
these attributes determine which variables need to be
preserved or which variables are new and require
initialization. The compiler also now supports a way to
assign order to variable initialization and execute time-
critical functions before definable blocks of variables
are initialized. The new attributes are discussed in the
following sections.

Preserved Attribute

The Preserved attribute specifies that the variable’s
address needs to be consistent between firmware
versions and that the compiler should not reinitialize
this variable on a soft swap event. A variable with a
Preserved attribute will always be initialized from an
ordinary device Reset unless it is simultaneously
attributed as Persistent (Example 1).

EXAMPLE 1: PRESERVED ATTRIBUTE

The Preserved attribute is not required in the Preserve
All model as the compiler/linker will implicitly treat all
variables as requiring preservation. See “Configuring
MPLAB® X Project” for more information on Preserve
Data models.

Update Attribute

The Update attribute specifies that the variable is new
or structurally modified and needs to be initialized. Vari-
ables with the Update attribute are initialized on a soft
swap event, as well as a device Reset, unless marked
with the Persistent attribute (Example 2). Update also
gives the linker freedom to allocate (or reallocate) the
variable to any unoccupied RAM address.

EXAMPLE 2: UPDATE ATTRIBUTE

The Update attribute is only required when the variable
is declared in the scope of one of the Preserve All
models. These variables will then be excluded from
inheriting an implicitly assigned Preserved attribute.

Priority Attribute

The Priority attribute allows code execution and
variable initialization by the Compiler Run Time (CRT)
in a precedence manner. With the Priority attribute,
variables will get initialized and functions will get called,
in the order of their priority, before completion of data
initialization by the CRT and the invocation of main().
The Priority attribute is applied in both a soft swap
scenario, as well as a cold start. See Example 3 for
applying the Priority attribute.

The compiler supports 216 – 1 priority classes with no
limitations to the number of functions/variables in each
priority class. Priority 0 is the highest priority (i.e., exe-
cutes at the earliest possible opportunity) while Priority
Class 65535 will be processed after all lower numbered
priority classes have been processed. The order of
function calls that have the same priority is arbitrary;
however, variables are always initialized before any
function calls in the same priority class. When no prior-
ity is explicitly given, the object will be initialized after all
priority variables/priority functions and subsequently,
main() will be called as normal.

Priority functions should not return any values or take
any arguments. Care must be taken to avoid using
uninitialized variables or call functions that might use
uninitialized variables. If the project implements multiple
functions within the same named section
(i.e., __attribute__((section("example"))), the
Priority attribute can not be applied. Priority levels
between functions in the same named section are not
possible. Consider creating additional named sections if
execution order of priority functions is required.

In LiveUpdate applications, immediately following a
partition swap, a priority function can be implemented
to re-enable interrupts or set any new variables neces-
sary to immediately enable the control algorithms for
the power train before the next Interrupt Service
Routine (ISR) is scheduled. Waiting for all variables to
be initialized by the CRT may require, on the order of
hundreds of microseconds, during which critical ISRs
may otherwise be missed. This Priority attribute,
applied to functions and global/static variables needed
by such functions, provides a way to preempt ordinary
data initialization flow.

uint16_t __attribute__((preserved)) foo = 0;

int16_t _attribute_((update)) foo = 10;

int16_t _attribute_((update, persistent)) foobar;
DS00002601A-page 2  2018 Microchip Technology Inc.

AN2601
As in any application, the CRT variable initialization
routine is invoked at any device Reset. The CRT is
also executed in the case of Live Updates after the
boot swap instruction (BOOTSWP) is executed (call to
address 0x0). This ensures proper stack initialization,
as well as new variable initialization for the upgraded
firmware. However, the CRT now calls the function,

_crt_start_mode(), that checks the soft swap bit in
the NVMCON register as a means to determine if ordi-
nary reset initialization of all non-persistent/no load
variables should take place, or the more limited subset
of variables that are not implicitly or explicitly attributed
Preserved.

EXAMPLE 3: PRIORITY ATTRIBUTE

The soft swap bit, SFTSWP (NVMCON<11>), is an
obvious choice for the return value as this is cleared at
device Reset by hardware and set by executing the
BOOTSWP instruction. If _crt_start_mode() returns,
this bit as set. Then, data in the .rdinit section will
be used by the CRT for initialization; otherwise, the
CRT will consume the ordinary data in the .dinit
table. The .rdinit initialization table contains all
variables required to be initialized between partition

swaps, as well as the addresses of the priority
functions. It is recommended to clear the soft swap bit
after completion of all initialization functions.

The CRT internally defines _crt_start_mode() as
a weak function, so including the function shown in
Example 4 in the application source code will override
it and allow the user to return a value from a different
source other than the Soft Swap bit, if desired.

EXAMPLE 4: CRT START MODE

int16_t _attribute_((update, priority(100)) foo = -1;
void _attribute_((priority(100),optimize(1))) CriticalInit(void);

int _attribute_((optimize(1))) _crt_start_mode(void)
{
 return _SFTSWP; // NVMCON<SFTSWP>, bit 11
}
 2018 Microchip Technology Inc. DS00002601A-page 3

AN2601
CONFIGURING MPLAB® X PROJECT

As mentioned earlier, the .elf file from a previous
build of the application firmware is used for allocating
RAM variables. Depending on the Preserved model
used, the compiler/linker will either:

• Preserve only those variables with the Preserved
attribute

• Preserve all variables in selected C files
• Preserve all variables in the active project
• Preserve all variables in the entire project

(including library archive files)

In all four cases, the linker needs information from the
previous build to allocate RAM appropriately. To set the
.elf path for the linker within the active MPLAB X
project, right click the project and select Properties.
Select XC16 (Global Options) and scroll down to find

the Elf file to use for preserved locations entry. Here,
you can browse directly to the .elf file. The typical
location of the .elf file (within the MPLAB X project
directory) is found here:

.....\<projectName>\dist\default\production\
<projectName>.production.elf

In Figure 1, the active project is on version two and the
linker receives version one’s .elf file for preserving
variables.

FIGURE 1: PATH TO EXECUTABLE AND LINKABLE FILE

If the Preserve Data model used relies only on those
variables marked with the Preserved attribute, then the
MPLAB X project does not require any other
configurations, other than enabling data sections.

On the same XC16 (Global Options) category in the
project properties, right below the .elf file selection,
there are two check box options for selecting the
Preserve Data model. The first option, Preserve loca-
tions on C files only, tells the compiler that all global and
file scope variables in the active C files need to be treated
as “Preserved” and allocated to identical addresses as

previously used in the .elf file. Any new variable in the
C files would need to be manually marked with an Update
attribute to be excluded from address matching. If new
variables are added without the Update attribute, during
the linking build stage, the toolchain will issue a warning
as these variables cannot be mapped to an equivalent
variable in the referenced .elf file. This warning means
the CRT will leave these variables uninitialized during
LiveUpdate and allocate them to an arbitrary unused
RAM address.

Note: For each firmware release, it is recom-
mended to back up and reference the
.elf file using a different directory to
ensure it does not get inadvertently
erased or modified if the source project is
cleaned or rebuilt.
DS00002601A-page 4  2018 Microchip Technology Inc.

AN2601
The second check box option, Preserve all locations
within the project, is used when as many variables as
possible need to be preserved, including ones hidden
inside precompiled archives, object files and assembly
source files. In both preserve all/entire project options,
it is possible that the compiler will be unable to link if
additional variables were created and required to be
placed in certain memory that is already occupied
(such as near space). If this situation arises, Preserv-
ing variables on a C file basis might be required,
along with reinitialization routines.

It is possible to select individual C files to have the
Preserved Data model rather than the all C files option
mentioned above. In the project pane, right click on the
individual C file that requires preserving variables.
Select Properties and click the Override build options
check box. This will allow configuration on a file basis.
Next, select XC16 (Global Options) and scroll down to
select the Preserve locations on C files box. In this
configuration, all file scope and global variables for that
particular C file will be preserved between builds.

It is also recommended to enable -fdata-sections
and -ffunction-sections compiler options for all
LiveUpdate applications. By default, the compiler will
coalesce variables into generalized sections based off
the initializer (non-zero value, zero or no initialized
data), as well as any attributes that are applied, such as
near or persistent. If within one section of grouped
variables, the new firmware revision wishes to remove

a few variables or an array on N elements, their
historically occupied RAM locations often cannot be
recovered as the linker operates on section allocation
granularity. Additionally, if the firmware update involves
extending the width of a variable that has been
coalesced in a grouped section, then lack of linker
granularity can lead to unrelated variables in the group
having to be reallocated to new RAM addresses. This
would add copy/reinitialization delay to a LiveUpdate.

For these reasons, it is best to place data objects into
their own unique sections. The toolchain will be able to
reuse newly freed RAM addresses and avoid unneces-
sary reallocation of preserved variables that reside
adjacent to modified variables. This will add a little extra
overhead in the number of Flash instructions, as well as
RAM, for variables less than 2 bytes, but will give the best
flexibility to the linker while building subsequent program
versions. Enabling -ffunction-sections has no par-
ticular impact on future LiveUpdate restrictions, but allows
unreferenced code to be removed from the application
when the Remove unused sections, xc16-ld linker
option, is additionally selected. The result is that total code
size will often decrease, despite the modest overhead.

In the Project Properties window, select xc16-gcc, and
select both Place data into its own section and Isolate
each function in a section check boxes. See Figure 2
below for project configurations. Remove unused
sections appears on the xc16-ld subcategory.

FIGURE 2: DATA/FUNCTIONS INDIVIDUAL SECTIONS
 2018 Microchip Technology Inc. DS00002601A-page 5

AN2601
SOFTWARE IMPLEMENTATION

There are many aspects to creating firmware for
LiveUpdate applications, including an intelligent
bootloader that can manage code versioning and
programming/verifying the Inactive Partition, communica-
tion protocol for receiving code images and synchronizing
switchover events to coincide with a window without any
anticipated exception processing.

Although bootloader firmware may be specific to a cus-
tomer implementation, as a starting point for examples,
this application note assumes use of the Microchip
Easy Bootloader Library (EZBL). For more information
on EZBL and for developing a binary image file that fits
the format required, visit Microchip Easy Bootloader.

When a new firmware image is built and sent to the
bootloader over one of many communication protocols,
such as UART or I2C, the bootloader’s first step is to
perform an Inactive Partition erase. These dual
partition Flash devices have a dedicated NVM opcode
for erasing the Inactive Partition (NVMOP<3:0>
(NVMCON<3:0>) = 0b100). The typical NVM unlock
sequence is required to perform any Flash erase/write
routines. During this time, interrupts should be tempo-
rarily disabled to process the sequential writes to
NVMKEY for processing the Inactive Partition erase
command. However, during the partition erase time,
interrupts are enabled and the application firmware is
still fully operational. Interrupts need only be masked
for about 12 instruction cycles.

If using EZBL to erase the Inactive Partition, simply call
the EZBL_EraseInactivePartition() function.
This function will configure and write NVMCOM to
begin erasing the Inactive Partition. The function is
non-blocking (except during the NVMKEY writing
sequence) and will return immediately without waiting
for the NVM hardware to complete the erase cycle.

After starting Inactive Partition erase, the bootloader
can proceed to program and verify the new firmware
image. EZBL implements the EZBL_WriteROMEx()
and EZBL_VerifyROM() functions to facilitate this.
These functions will block as necessary to complete
any outstanding erase/program NVM operations, but
background interrupt processing will proceed normally
throughout such delays. The Inactive Partition always
resides at absolute address 0x400000 and the
firmware is always compiled to execute starting from
absolute address 0x000000 as the Active Partition.
However, to negate the possible difference in .hex file
load memory addresses targeting absolute Partition 1
or Partition 2 (which have run-time state-dependent
addresses), EZBL forces all programming records to
the 0x400000 range, such that only the Inactive
Partition can be externally manipulated. Additional
information, such as information on configuring the
device for Dual Boot mode, can be found in “Dual Par-
tition Flash Program Memory” (DS70005156) in the
“dsPIC33/PIC24 Family Reference Manual”.

FIGURE 3: BOOTLOADER RESPONSIBLE FOR ADDRESS OFFSET

.bl2 Image

101001
101010
111011
000111

USB-to-
UART

Compiled for
Either Partition

Address = Address | 0x400000

Active Partition

Unused

Inactive
Partition

Unused

0x000000

0x400000

Bootloader +
Application
DS00002601A-page 6  2018 Microchip Technology Inc.

www.microchip.com/ezbl
http://www.microchip.com/MicrochipEasyBootloaderforPIC24anddsPIC335655/

AN2601
Within the new program image header, the bootloader
should receive an identification hash or other unique
key corresponding to the system hardware that is
capable of executing the image. This eliminates the
possibility of programing an incorrect code image
meant for a different application. Also at this time, the
bootloader should be able to determine the firmware
version of the incoming code image. The bootloader
can make a comparison with the currently active firm-
ware revision and decide to ignore the remainder of the
incoming code image or to proceed with the update.

Firmware versioning is crucial for LiveUpdate
applications for several reasons:

• Ensures the running application does not perform
a partition swap execution handoff to code that
was compiled against an incompatible application
version with preserved RAM variables at different
locations

• Facilitates non-LiveUpdate fallback execution
handoff using a software Reset when the new
application’s major or minor version numbers indi-
cate an incompatible jump forwards or backwards

• Allows building and testing of LiveUpdatable
images against a single previous firmware
revision, instead of all historical releases

• Improves product maintainability when a simple
machine and human readable version number is
available in diagnostic reports

• Enables bootloader rejection of application
downgrades, which may be an indicator of user
error

In the Microchip EZBL LiveUpdate application examples,
the identification strings (starting with BOOTID) can
be found in the ezbl_dual_partition.mk file.
The Makefile passes the BOOTID strings to the build
time invoked ezbl_tools.jar Java utility that concat-
enates and compresses the strings into a fixed width
SHA-256 hash. Sixteen hash bytes are then appended in
the header block of the .bl2 binary image that is sent to
the target device, as well as stored in Flash memory. The
APPID versioning numbers are also part of the header
block and stored in Flash memory. This approach allows
the bootloader to decide to ignore/accept the incoming
code image before receiving bytes of the actual code
image. This early identification approach mitigates risk by
suppressing Inactive Partition erase, which may contain
a useful backup application image, whenever a rejection
occurs. Additionally, with easily machine compared
binary hashes and version numbers, the bootloader
passively ignores firmware images presented on shared,
broadcast-type communication mediums which are
intended for other target devices.

A different approach could be to define constants at a
fixed Flash memory address for identification and
versioning. In this usage model, the bootloader will need
to program the incoming code image into the Inactive
Flash Partition, and only after that target address location
has been programmed, can the code be validated for the
intended target and that version sequencing permits
LiveUpdate. This approach may have drawbacks as
programming the Inactive Flash Partition occurs before
verifying the code image’s applicability.

Another important reason for identification and firmware
versioning has to do with the Flash boot sequence
numbering. Writing to the Inactive Partition’s FBTSEQ
sequence number should occur after completion of
programming and verification of all other Flash locations.
With a known good image, if application loses power
after writing the sequence number but before the
partition swap, the new code image will still be selected
when the device powers up. Writing the sequence
number can be performed after the partition swap, but
this would stall the CPU for several milliseconds as the
entire last page of Flash would need to be copied/erased
and then programmed. As the FBTSEQ Configuration
Word would now reside in the Active Partition, the
benefits of the dual Flash partitions would not apply.

It is recommended that after successful programming
of the Inactive Partition’s Flash, the bootloader deter-
mines the Inactive Partition’s sequence number by
reading the current partition’s sequence number and
subtracting one. This will always ensure the most
recently programmed application is selected at device
power-up (the lowest valid sequence number becomes
the Active Partition).

When the Inactive Partition is erased, the Inactive Parti-
tion’s sequence number is set to the invalid erased state
of 0xFFFFFF. By not defining a sequence number in the
project, this sequence number will be invalid until
programmed separately by the bootloader. Any loss of
power during the new firmware update event would result
in the Active Partition remaining active. This is why it is
imperative that the inactive sequence number is
programmed separately after all of Flash has been veri-
fied. Only after programming the sequence number in the
Inactive Partition will the Inactive Partition become active
on the next power cycle or Reset.

Although the method above is recommended for
programming the sequence number, the
EZBL_WriteFBTSEQ() function supports writing to
either partition and supports absolute or relative values
for programming. The function accepts three parameters
(target partition to be programmed, absolute sequence
number and relative sequence to be programmed) and
returns the result based on operation. Any return value
less than zero indicates a failure. This program boot
sequence function will automatically calculate the 12-bit
complement of the provided absolute or relative
sequence number to ensure a valid 24-bit value is
written to the FBTSEQ Configuration Word.
 2018 Microchip Technology Inc. DS00002601A-page 7

AN2601
The target partition parameter chooses the FBTSEQ
Word on the Active or Inactive Partition (1/0 respec-
tively). As the most common implementation will be to
always target the Inactive Partition, this parameter would
be set to 0. However, the parameter could alternatively
be set to -1 or -2, which indicates absolute Partition 1 or
Partition 2, respectively. For programming the sequence
number with this option, the state of the P2ACTIV bit is
decoded to determine the address where Partition 1 or 2
currently resides.

The absolute sequence parameter can be used if it is
desired to pass in the sequence number. Whatever
12-bit value is passed in will be written to the specified
target partition’s sequence number. For this option, the
relative sequence parameter should be 0.

The relative sequence number is actually a signed
integer to be added to the non-targeted partition’s
sequence number to determine the targeted partition’s
sequence number. If this input parameter is negative
(i.e., -1) and the target partition parameter is 0, the Inac-
tive Partition’s sequence number will become one less
than the currently Active Partition’s sequence number.
At any subsequent Reset, this would cause the currently
Inactive Partition to be selected for execution. For this
option, the absolute sequence parameter should be
zero. Figure 4 provides several examples supported by
the EZBL_WriteFBTSEQ() function.

FIGURE 4: FLASH PARTITION SEQUENCE WRITE EXAMPLES(1,2,3)

Active

P2ACTIV = 1

0x400000

Inactive

P2
0x005FFA

P1
0x??????

FBTSEQ

0x006FF9

EZBL_WriteFBTSEQ(0, 0, -1)

Active

P2ACTIV = 1

0x400000

Inactive

P2
0x??????

P1

FBTSEQ

EZBL_WriteFBTSEQ(-2, 0, -1)

Active

P2ACTIV = 0

0x400000

Inactive

P1
0x005FFA

P2

EZBL_WriteFBTSEQ(1, 0, 1)

0x001FFE

FBTSEQ

0x004FFB

Active

P2ACTIV = 0

0x400000

Inactive

P1

P2
0x006FF9 FBTSEQ

EZBL_WriteFBTSEQ(-2, 0xFF9, 0)

Active

P2ACTIV = 1

0x400000

Inactive

P2
0x??????

P1

FBTSEQ

EZBL_WriteFBTSEQ(1, 0xFFB, 0)

0x004FFB

Absolute Sequence:

Note 1: ‘0x??????’ represents any existing FBTSEQ contents, including the invalid 0xFFFFFF erased state.

2: If it is foreseeable that there will be more than 4095 firmware updates, special care must be taken to properly
reset both sequence numbers. As this seems to be an unlikely event, EZBL_WriteFBTSEQ() does not contain
the code overhead to handle this case. Two calls to EZBL_WriteFBTSEQ() with absolute sequence numbers
can be used to perform such a Reset.

3: Writes to the Active Partition’s sequence number, when not in the erased state, will require an erase of the entire
Flash page where the Configuration Words reside. The Flash page will be stacked, erased and restored, except
with the updated sequence number. This requires interrupts to be disabled and is not optimal for LiveUpdate
applications as the page erase and writes will stall CPU execution. It is recommended to only modify the Inactive
Partition’s sequence number.

0xFFFFFF
DS00002601A-page 8  2018 Microchip Technology Inc.

AN2601
SWITCHOVER TIMING

The most important requirement for online firmware
updates is to have a seamless transition between
firmware revisions. This means the power supply out-
put or motor drive should be uninterrupted during the
firmware update. A key piece to developing firmware

for LiveUpdate applications is the ability to synchronize
to a timing window, where no critical ISRs are executing,
in order to initiate the soft swap event. Lower priority
functions/interrupts may be disabled for a longer period
of time without impacting the main application perfor-
mance. See Figure 5 for an example of a switchover
timing window.

FIGURE 5: SWITCHOVER TIMING WINDOW

In Figure 5, two critical ISRs are required for the power
train and all other application interrupts are disabled
until after the partition swap. Each ISR is executed at a
frequency of 175 kHz and with a process time around
1 µs, leaving a 3.5 µs window for performing the
partition swap and executing priority reinitialization
functions. Note that the partition swap is synchronized
to this timing window to allocate the maximum amount
of time before the next critical ISR is scheduled to
execute.

The application firmware is responsible for synchroniz-
ing the partition swap with critical ISR #2 in this example.
Once the Inactive Partition has been programmed and
verified, firmware disables all non-critical ISRs and
clears a software flag that is only set within the critical
ISR #2. Only after the software flag is set, the partition
swap function can be executed. Another approach
would be to clear the software flag, and from within the
critical ISR #2, call the partition swap function. As this
would add conditional statements inside a high execu-
tion rate loop, the former implementation is more
desirable. Without some type of synchronization routine/
flag for the switchover event, critical ISRs could be
missed which could impact operation of the application.

The majority of the critical switchover timing depends
on the application requirements for critical variable
initialization and reinitialization type functions.

There is, however, a fixed timing requirement that is non
application-specific which includes device initialization,
such as Stack Pointer configuration and general setup of
registers for the processor state. During this switchover
time interval, the following would typically occur:

1. Disable all interrupts.
2. Execute NVM unlock sequence and BOOTSWP

instruction.
3. Jump to address 0x0 which is the entry point to

the new application now present in the Active
Partition addressing space.

4. XC16 Compiler Run Time (CRT) will initialize
stack, Stack Pointer limit and CORCON (if
required).

5. Check soft swap event and start initializing
priority variables and calling priority function.
a) Execute user-defined functions that

initialize critical variables and re-enable
critical interrupts

After time-critical interrupts are enabled, the CRT will
continue with initialization of non-prioritized update
variables and eventually call main().

5.71 µs

Critical ISR #1

Critical ISR #2

Soft Swap Window

Old Firmware New Firmware

t

Sync Event ~3.5 µs
 2018 Microchip Technology Inc. DS00002601A-page 9

AN2601
Example 5 shows a simple macro that executes the
partition swap sequence. This macro should be
executed inside the main function and disables
interrupts by using the Global Interrupt Enable bit, GIE

(INTCON2<15>. In order to re-enable interrupts after
the partition swap, the new code image needs to set the
GIE bit appropriately.

EXAMPLE 5: PARTITION SWAP SEQUENCE MACRO

The instruction immediately after the BOOTSWP instruc-
tion must be a single 24-bit instruction that resides on
the currently Active Partition, but branches to an
address in the newly Active Partition. In a typical
application, address 0x0 contains a GOTO instruction
that points to the address of a C run-time entry function.
In this case, a register direct call to address 0x0 after
BOOTSWP is recommended. This instruction satisfies
the 24-bit size restriction and zero-extends the target
address as an absolute quantity (i.e., not PC relative).
CALL is preferred instead of GOTO as it ensures the
Stack Frame Active SR bit is cleared.

The Easy Bootloader Library includes the
EZBL_PartitionSwap() function that disables all
interrupts (by clearing all IECx registers), manages the
NVM unlock for the BOOTSWP instruction and executes
the jump to address 0x0.

Although it is recommended to perform the switch-
over event at the main() function level, the
EZBL_PartitionSwap() function implementation
allows the partition swap to occur inside any level
interrupt routine. This function overrides the stacks’
return address to point to 0x0 and executes a Return
from Interrupt instruction (RETFIE), which automati-
cally resets the IPL state. Even though all interrupts are
disabled by the EZBL_PartitionSwap() function, it
is recommended to disable all non-critical interrupts
prior to calling this function to ensure lower priority
interrupts do not interfere with synchronization to the
earliest opportunity within the soft swap window.

More information on non application-specific switch-
over timing is provided throughout this application note.
Once the CRT initializes the core compiler environment
SFRs (i.e., W15 Stack Pointer, SPLIM, DSRPAG, etc.),
all priority variables and functions will be initialized/exe-
cuted. From this point on, critical priority functions and
variables decide the application level switchover time.
This is highly dependent on what the application deems
critical to maintain proper operation. Obviously, the
more variables to be initialized and critical routines to
be executed, the longer the complete application
switchover time will grow. If the application requires
major updates, which cannot fit in the available
switchover window, multiple piecewise firmware
updates can be performed sequentially or the boot-
loader can fall back to a non-LiveUpdate Reset after
programming the new code image.

#define MACRO_PARTITIONSWAP() __asm__ volatile(“ bclr INTCON2, #15 \n” \
 “ nop \n” \
 “ nop \n” \
 “ clr W0 \n” \
 “ mov #0x0055, W1 \n” \
 “ mov W1, NVMKEY \n” \
 “ mov #0x00AA, W1 \n” \
 “ mov W1, NVMKEY \n” \
 “ bootswp \n” \
 “ call W0” : : : “w0”, w1”, “memory”)
DS00002601A-page 10  2018 Microchip Technology Inc.

AN2601
As all priority functions get executed in both a cold start
and soft swap event, additional software, such as a
conditional statement that tests the soft swap bit, may
be required. Adding this conditional statement to main
avoids reinitialization of the microcontroller peripherals/
clock upon main function entry and allows any remain-
ing initialization routines for the soft swap condition to
be satisfied to be executed (Example 6).

EXAMPLE 6: PRIORITY FUNCTION
IMPLEMENTATION

The block diagram shown in Figure 6 shows the overall
steps discussed above with respect to executing a
LiveUpdate event.

FIGURE 6: EXECUTION OF LiveUpdate EVENT(1)

Note: It is important to remember that firmware
that is executed on a soft swap may also
need to be executed from a cold start the
next time the application powers up (i.e.,
peripheral initialization).

void __attribute__((priority(x)) FunctionInit(void) {
if(!_SFTSWP) {
// Priority X cold start initialization function

return;
}
// Priority X soft swap initialization function

}

Start
Incoming

Code Image
from Host

Authentic
Code
Image

Program
Inactive
Partition

Checksum Valid,
Program Inactive

Sequence #

Yes

No Bootloader

000000h

Call
0x0

Soft Swap
Firmware

Execute
BOOTSWP

Sync.
Switchover

Disable
ISRs

Time
for

Swap?

No

Yes

A
C

T
IV

E
 P

A
R

T
IT

IO
N

Initialize ‘N’
Priority

Variables

CRT Execute Priority
‘N’ Functions,

Enable ISRs as

Initialize
Non-Priority

Variables
Needed

N+1

main()

Remaining
Switchover

FW and
Enable ISRs

Bootloader
Soft Swap
Firmware

IN
A

C
T

IV
E

 P
A

R
T

IT
IO

N

400000h

F
la

sh
 M

em
or

y
S

pa
ce

Note 1: During the CALL instruction, after execution of the BOOTSWP instruction, the two partitions swap
memory locations, making the Inactive Partition the newly Active Partition.
 2018 Microchip Technology Inc. DS00002601A-page 11

AN2601
SOFTWARE RESTRICTIONS

As a high-level language, C source files support a
number of programming constructs that can lead to
ambiguities when attempting to preserve variable
addresses in a current project relative to a historically
built project executable image. With the slightest of
source content, header include, file renaming or optimi-
zation changes, it can be impossible for the toolchain to
prove if one variable seen in the current project is
equivalent to an older one or not. This section covers
some potential problems and manual solutions
necessary to build a correct, coherent LiveUpdate
application.

Static Variables

Global variables are naturally required to be uniquely
named as these variables are used across multiple
files, so they generally can be preserved and automat-
ically handled by XC16. Likewise, auto-storage class
objects, such as a typical function’s local variables, are
allocated temporarily on the run-time stack, making
them non-persistent and not a problem for LiveUpdate
(assuming they are out-of-scope at the time of the
partition swap).

However, statically allocated variables at file scope and
function local scope need not have a unique name
across the project or within a source file. For these
variables, the compiler places them in unique, but unpre-

dictably named sections. For example, static local
variables, cnt or i, can reside locally within several
different functions. The compiler will allocate each of
these reoccurring variables into uniquely named sec-
tions (if not explicitly attributed) by appending a storage
qualifier token and a four-digit decimal number
(.nbss.cnt.1234). Because of the unpredictability of
these section names, which may change as the code
and compiler optimization change, preserving static
local and file scope variables is quite difficult.

If a static local variable accidentally remained in the
project, and preserving that variable is required, the
linker may emit a warning or error while building the new
LiveUpdate application. To solve such a problem, the
variable’s declaration needs to be decorated with an
address attribute to force allocation to the correct
address. Example 7 forces the local variable,
bootUnlockState, to an address of 0x0000105E.

EXAMPLE 7: FIXED ADDRESS VARIABLE

Determining the address of the equivalent historical vari-
able is not straightforward as the symbol name for these
types of variables is not always shown in the map file.
XC16 does offer an object dump executable that accepts
an .elf file, which typically contains more information
than the map file.

Using the command window, change the current directory
to the XC16 installation folder. For the default installation
folder, the path would be as shown in Figure 7.

FIGURE 7: COMMAND PROMPT FOR GENERATING OBJECT DUMP FILE

Note: To minimize future LiveUpdate application
development effort, avoid using static
local variables and ensure static file scope
variables are uniquely named throughout
the project.

static char __attribute__((preserved, address(0x0000105E)))
bootUnlockState = 0x00;

DS00002601A-page 12  2018 Microchip Technology Inc.

AN2601
The object dump executable (xc16-objdump) is
located in the bin folder. Specifying the compiler to
dump all headers (--all-headers) and symbol (--syms)
information is typically sufficient for finding variable
information. For more options supported by the execut-
able, add --help after the xc16-objdump executable.
The path to the input file is needed to complete the
object dump, which would be the previous firmware
build’s .elf output artifact. Lastly, stdout is redirected
to a temporary text file to view and search the object
information. In the example below, this is saved to
test.txt on the Desktop.

It is possible to search the text file for the symbol name,
as shown in Figure 8, and have the address informa-
tion displayed in the command prompt instead of
opening the .txt file and searching manually. If the
text file isn’t required to be saved for further use, it can
be deleted as well from the command prompt.

FIGURE 8: COMMAND PROMPT FOR FINDING ADDRESS LOCATION BY VARIABLE NAME

The first row of this pruned dump is a section definition
from the .elf headers, whereas the remaining lines
are from the symbol table. The second column contains
single character flags for the symbols, where ‘O’ indi-
cates a data Object located in RAM or PSV const

memory. The symbol’s address, located in the first
column, is generally the information needed when
attempting to restore the address of a preserved local
static variable that cannot be automatically mapped by
the toolchain.

 2018 Microchip Technology Inc. DS00002601A-page 13

AN2601
POINTERS

Pointers allocated globally or statically in RAM often
need special consideration for LiveUpdate applica-
tions. As Flash contents do not maintain preserved
addresses under any model, any pointers to Flash,
such as callback functions, const/PSV data array and
const string pointers will need to be reinitialized in the
new firmware before use. Examples of this are shown
in “Application Examples”.

In most instances, it is assumed that a preserved RAM
Pointer will point to RAM data objects that have also
been preserved. Alternatively, the pointer may point to

an SFR, which is intrinsically hardware preserved.
Therefore, these pointers may not require LiveUpdate
reinitialization. If, for any reason, the contents to which
the pointer points to are moved, as in not preserved or
simply relocated due to an increase in the number of
array elements or the size of each element, the pointer,
along with the new RAM contents, will need to be
initialized upon a LiveUpdate event.

If the application has RAM space to preserve the old
contents and pointer along with the new variables, it is
possible to calculate the proper offset and apply it to the
new RAM contents, as shown in Figure 9.

FIGURE 9: POINTER/RAM INITIALIZATION(1,2,3)

V1 Firmware:

uint16_t dataAvgArray[4];
uint16_t *dataAvgPtr = dataAvgArray;

dataAvgArray[4]

0x1234 0

1

2

3

V2 Firmware (Preserve-All model):

uint16_t __attribute__((persistent)) dataAvgArray[4];
uint16_t __attribute__((persistent)) *dataAvgPtr;
uint16_t __attribute__(update, persistent)) dataAvgArrayNew[8]

*dataAvgPtr

0x1234

dataAvgArrayNew[8]

0

1

2

3

4

5

6

7

0x1800

*dataAvgPtr

void __attribute__((priority(100))) ArrayInit(void)
{

uint16_t i;

if(!_SFTSWP) // Ordinary reset
 {

dataAvgPtr = dataAvgArrayNew;
return;

}

// LiveUpdate - copy existing array data
for(i = 0; i < sizeof(dataAvgArray)/sizeof(dataAvgArray[0]); i++)

dataAvgArrayNew[i] = dataAvgArray[i];

// Determine new pointer target
dataAvgPtr = &dataAvgArrayNew[((unsigned int)dataAvgPtr -

(unsigned int)dataAvgArray)/sizeof(dataAvgArray[0])];
}

dataAvgArray[4]

0

1

2

3

Note 1: dataAvgArray[]’s declaration is preserved in V2 to permit named access to the existing LiveUpdate contents and
ensure the allocated RAM is not clobbered by unrelated new (update) variables. A V2 to V3 LiveUpdate project could
delete the array to recover its RAM.

2: The pointer and both arrays have the Persistent attribute to prevent implicit CRT initialization with zeros. Without
persistence, dataAvgArray[]’s cold start initializer would waste code space, dataAvgPtr would be catastrophi-
cally zeroed after the ArrayInit() priority function set the correct value (cold start-up only), and
dataAvgArrayNew[], being an update variable, would be catastrophically zeroed after ArrayInit() returned
during the LiveUpdate event.

3: dataAvgPtr’s value is computed using array indexing and integer arithmetic as this allows the target data type to
be redeclared using a different data type if needed. For example, *dataAvgPtr could be changed to a
(uint32_t *), dataAvgArrayNew[] to 8 uint32_ts and dataAvgPtr == &dataAvgArray[1] would convert
to dataAvgPtr = &dataAvgArrayNew[1] without causing misalignment or a type conversion error.
DS00002601A-page 14  2018 Microchip Technology Inc.

AN2601
Instead of incrementing a static pointer to access array
contents, the array can be indexed by a temporary
calculation local to the scope the memory is accessed
by or a separate index variable (offset) can be used that
can always be preserved. In some instances, the firm-
ware can be written to ensure the offset is always at
zero, base of the array, before executing the partition
swap. This would ensure that reinitializing the pointer to
the new base would always point to the appropriate
index in the new firmware version. These are simply
just suggestions, as there are numerous ways to
handle pointer reinitialization if the application requires
updating pointers and/or RAM contents that the pointer

points too. When working with application libraries,
many of the same software restrictions apply, but now
it is even more crucial to follow these recommenda-
tions. This is due to the fact that the library may not
always be recompiled, which is especially true if owned
by a third party. If possible, it is recommended to enable
-fdata-sections while compiling the library project
to ensure the finest variable manipulation granularity
while linking LiveUpdate projects.

Table 1 summarizes the complexity for different
LiveUpdate scenarios when the Preserve All model is
used.

TABLE 1: LiveUpdate SCENARIOS

Level of Firmware
Change

Examples Register and RAM Variables New Firmware Requirement

Simple

Change to Firmware Constants
• Compensator coefficients
• Lookup table
• Fault threshold limits, etc.

No new variables or SFR
changes

Loading new constants to
variable locations if not stored
in Flash

Addition/deletion of firmware — —

Deletion of variables Variables orphaned —

Local static variable — Adding address attribute to
variable to properly map

Moderately Low

New variables (non-critical,
tagged with Update attribute)

New variables created New variable initialization if
marked persistent and used
in priority function, otherwise
CRT initializes

Reduce number of elements in
an array

Variables orphaned, possibly
reuse location

May need to reset index

Modification to peripherals SFRs modified Peripheral initialization
function supports both
LiveUpdate and cold start

Pointers to functions, const
strings and PSV constants in
Flash

 — Reinitialization of pointers

Moderate

New variables (timing-critical,
tagged with Update attribute)

New variables created High-priority function
initializing variables

Increase number of array
elements or modify structure
(i.e., add/remove/reorder
members) – non timing-critical

Additional array/structure
required with new sizing while
preserving old

Variable remapping
function(s), offset calculation
firmware, need
to update pointers

Timing-critical firmware to be
executed once after soft swap

New variable(s) Application-specific

Complex

Timing-critical firmware
requiring variable remapping:
• New compensator

algorithm
• Increase array elements

or modify structure

Additional array/structure
required with new sizing while
preserving old

Variable remapping
function(s) and new variables
requiring initialization during
high-priority functions

Changing data type but
retaining same size

— Firmware to correct data type
 2018 Microchip Technology Inc. DS00002601A-page 15

AN2601
Application Examples

DIGITAL POWER STARTER KIT EXAMPLE

For illustrating the different Preserve Data models and
how online firmware updates are possible, three differ-
ent firmware versions were created and carried out on
the Digital Power Starter Kit (DPSK). For details on the
DPSK, please visit the Intelligent Power page. The
source code for these projects is distributed in the
EZBL download. Version 1 firmware is the initial start-
ing point, which contains Voltage mode control of both
buck and boost converters, with control algorithms
executing at 175 kHz, software task scheduler that
calls bootloader related functions, LCD display
functions, Fault management, load transient software
via I2C and UART communication software.

In this example, the buck converter 2P2Z compensator
performance is purposely designed to be unstable.
Observing the transient response by connecting an
oscilloscope probe (AC Coupled) to the buck con-
verter’s output voltage test point (TP5) will show the
sub-optimally designed compensator. The first online
firmware update event will be to improve the buck con-
verter compensator performance, as well as adding
additional software features, such as calculating the
switchover time and additional LCD display options for
showcasing timing events.

The first LiveUpdate event will use the Preserve All
model (preserve all locations within the project check
box). All new variables will be marked with the Update
attribute and Priority attribute (if required). In V2 firm-
ware, the 2P2Z compensator is replaced by a properly
designed 3P3Z compensator. There will need to be a
priority initialization function for the 3P3Z compensator
that is part of the critical timing path, as the buck
converter output has to remain stable during firmware
transition. The coefficients for the 2P2Z compensator
have been deleted, but the control history and error
history arrays are needed for initializing the 3P3Z
compensator arrays. Figure 10 shows how data from
the 2P2Z compensator error history is copied from one
RAM location to the 3P3Z compensator array location
and Example 8 shows the firmware that initializes the
new compensator immediately following the
LiveUpdate partition swap.

FIGURE 10: RAM MAPPING BETWEEN
CODE VERSIONS

Note: In a LiveUpdate application, some initial-
ization routines called in the critical path
may also need to be executed from a cold
start. Since some variables may not be
initialized yet, the same initialization
routine may need to be called elsewhere
in the software (i.e., main()).

buckErrorHistory2P2Z[3] buckErrorHistory3P3Z[4]

e(n)

e(n-1)

e(n-2)

e(n)

e(n)

e(n-1)

e(n-2)

V1 FIRMWARE V2 FIRMWARE
DS00002601A-page 16  2018 Microchip Technology Inc.

http://www.microchip.com/design-centers/intelligent-power

AN2601
EXAMPLE 8: CRITICAL INITIALIZATION FUNCTION(1)
void __attribute__((priority(100), optimize(1))) CriticalInit(void) {

if(!_SFTSWP) { // Return if cold start
sftSwapFlag = 0;
return;

}

sftSwapFlag = 1; // Flag initialized at this priority level not by CRT

// Reinitialize anything time critical
InitBuckComp(); // Load new compensator parameters and init W-Registers

// Load control/error history - extrapolating values as needed and copying from the old
// variable
buckControlHistory3P3Z[0] = buckControlHistory2P2Z[0];
buckControlHistory3P3Z[1] = buckControlHistory2P2Z[0];
buckControlHistory3P3Z[2] = buckControlHistory2P2Z[1];

buckErrorHistory3P3Z[0] = buckErrorHistory2P2Z[0];
buckErrorHistory3P3Z[1] = buckErrorHistory2P2Z[0];
buckErrorHistory3P3Z[2] = buckErrorHistory2P2Z[1];
buckErrorHistory3P3Z[3] = buckErrorHistory2P2Z[2];

// Enable compensator ISR(s) now that the buck compensator has been reinitialized
_ADCAN1IE = _ADCAN3IE = 1;

}

Note 1: The attribute, priority(100), is assigned instead of priority(1), even though this function is considered the
most time-sensitive code in the project. By leaving numbering gaps between priority classes, it is possible to
implement some other even more time-critical code in the future without having to come back to this function and
move it to a lower priority/higher number.
 2018 Microchip Technology Inc. DS00002601A-page 17

AN2601
Using a file compare tool, such as WinMerge or
Beyond Compare, the output map files for Version 1
and Version 2 can be examined. As all data is placed in
individual sections, some variables from the V1 firm-
ware have been orphaned and those locations have

been reused by V2 firmware. In Figure 11, the output
map files show that the new 6-element array for the
3P3Z A coefficients resides where the 6-element array
of the 2P2Z B coefficients were.

FIGURE 11: VARIABLE MAPPING PRESERVE ALL MODEL

Further examination of the map files shows locations
where other new variables reside and shows that all
variables in the V2 firmware were correctly mapped to
V1 firmware.

STEPS TO EXECUTE FIRST LiveUpdate

To execute this first LiveUpdate event, first program the
DPSK with Version 1 firmware using the PICkit™ On-
Board (PKOB) or other programming tools, such as
MPLAB REAL ICE™ or MPLAB ICD. Connect an
MCP2221 USB-to-UART breakout board (jumpered for
3.3V) to connector J1 on the DPSK. The three connec-
tions required are TX, RX and GND. These three pins (1,
3 and 6) are mapped one-to-one from the breakout
board to the DPSK board. Connect the mini-USB cable
to your PC and determine the COM port the USB device
enumerated with.

Control Panel  Device Manager  Ports
(COM & LPT)

For more information on the breakout board, visit the
MCP2221 Breakout Module page. The port informa-
tion will be required for executing the LiveUpdate event
with this implementation.

The application, when running, should display the
buck/boost output voltage and load settings. Pressing
switch SW1 will toggle the LCD display and show input
voltage and temperature readings, as well as the Active
Partition. With a scope probe on the output of the buck
converter, the transient response can be observed. The
Active Partition display is based on the setting of the
P2ACTIV bit in the NVMCON Special Function Register.
This bit, when read, will distinguish which partition is
the Active Partition.

Next, open Version 2 firmware using MPLAB X IDE and
navigate to the ezbl_dual_partition.mk Makefile,
which can be found under important files. Open the file
and change the communication port to match the port
that the USB enumerated with.

--communicator -com=COMX

DS00002601A-page 18  2018 Microchip Technology Inc.

http://www.microchip.com/developmenttools/productdetails.aspx?partno=adm00559
http://www.microchip.com/developmenttools/productdetails.aspx?partno=adm00559

AN2601
Building V2 firmware will invoke the ezbl_tools.jar
application, which will convert the .elf artifact output
to a binary .bl2 file and send this data out over the
COM port to the dsPIC33EP64GS502 target device.
V1 firmware will receive the UART data and program
V2 firmware to the Inactive Partition. After all data has
been programmed and verified, V1 firmware initiates
the BOOTSWP event.

With an oscilloscope probe connected to the buck
converter output (TP5), and another scope probe
connected to pin 5 of J3, the switchover event can be
captured. Figure 12 demonstrates this LiveUpdate
event and shows that the buck converter output was
unaffected during the switchover event.

FIGURE 12: SEAMLESS FIRMWARE TRANSITION FROM V1 TO V2

The upper half of Figure 12 displays the application’s
AC-coupled transient response for a step load toggling
every 1.2 ms (1 ms/div). The bottom plot is a zoomed
in view (500 ns/div) where the LiveUpdate execution
handover took place.

The change in compensator performance is quite
noticeable. The transition time from V1 firmware’s
EZBL_PartitionSwap() function call to V2 firm-
ware’s CriticalInit() function is captured in the
figure (Ch4 high pulse timing).

This is the non application-specific switchover time
discussed in the “Software Implementation” section.
This is the minimum EZBL_PartitionSwap() and
CRT start-up time required as the CRT does not

initialize any variables before CriticalInit() is
called, nor are there any higher priority initialization
functions declared in the project. The duration Channel
4 is low indicates the application-specific timing that
makes up the critical software for re-enabling the power
train using the new 3P3Z compensator.

Pressing switch SW1 will reveal a new LCD display
screen that prints out the critical swap time, which
should be around 1.9 µs. The CriticalInit() func-
tion took an additional 1 µs for a total downtime of
approximately 3 µs. For this LiveUpdate instance, the
available soft swap window was 3.5 µs, so not a single
interrupt for both the buck and boost converters were
missed or delayed as a result of the firmware update.

V1 Firmware Transient Response V2 Firmware Transient Response

Application-Specific
Switchover (1 µs)

Non Application-Specific
Switchover (1.9 µs)
 2018 Microchip Technology Inc. DS00002601A-page 19

AN2601
In this application example with the Preserve All model,
there are pointers stored in RAM structures that point to
Flash functions and these will need to be reinitialized
before any code referencing these pointers is executed.
As these pointers are tied to UART communication and
the bootloader tasks, they are not initialized in the critical
path. Instead, these pointers were updated inside the
SecondaryInit() priority function. After reconfiguring
the pointers, all remaining interrupts can be enabled.
Example 9 shows the remaining priority code to com-
plete the LiveUpdate event and get the application fully
operational.

EXAMPLE 9: FLASH POINTER INITIALIZATION

Note: The toolchain moves the contents of Flash
between build instances. Any pointer
stored in RAM that points to Flash, such as
Function Callback Pointers stored in RAM
structures, need to be reinitialized in a
LiveUpdate event. Determining what
pointers are present in the application is a
manual process and it is good practice to
record all such pointers in the application to
ensure proper reinitialization during
LiveUpdate events. Failure to reinitialize
RAM Pointers to Flash objects will result in
unexpected behavior of the application,
typically an address error trap or Invalid
Opcode Reset. Applying the address
attribute to functions can force code to their
historical location. However, on larger
devices, this does not ensure that a Func-
tion Pointer, preserved in RAM, will remain
valid as XC16 may substitute a function’s
true address with a 16-bit linker generated
handle. Handles are addresses to “GOTO
trampoline” instructions required to
branch to code above 16-bit addressing
limits. The location of a trampoline cannot
be assigned to an absolute address.

void __attribute__((priority(200))) SecondaryInit(void) {
if(!_SFTSWP) {

return;
}
// Fix I2C1_OnWrite function callback pointer
I2C_Tx.onWriteCallback = I2C1_OnWrite;
_MI2C1IE = 1; // I2C 1 Master-mode dynamic load switching communications code

// Fix UART FIFO function callback pointers
UART1_RxFifo.onReadCallback = UART_RX_FIFO_OnRead;
UART1_TxFifo.onWriteCallback = UART_TX_FIFO_OnWrite;
UART1_RxFifo.flushFunction = UART1_RX_FIFO_Flush;
UART1_TxFifo.flushFunction = UART1_TX_FIFO_Flush;
_U1TXIE = 1; // UART 1 TX EZBL Bootloader FIFO code
_U1RXIE = 1; // UART 1 RX EZBL Bootloader FIFO code

// Fix NOW Task function pointer for calling the Bootloader
EZBL_bootloaderTask.callbackFunction = EZBL_BootloaderTaskFunc;
_T1IE = 1; // Timer 1 NOW tick timing code

}

DS00002601A-page 20  2018 Microchip Technology Inc.

AN2601
LiveUpdate WITH FEWER
DEPENDENCIES

To demonstrate the different Preserve Data models, a
third revision of software is required, but this time the
MPLAB X project will remove the Preserve All Data
model. The .elf file to use for address preservation
now points to Version 2 firmware’s .elf output artifact.
In this case, only a small number of critical variables
have been manually marked with the Preserved
attribute. These are the variables to keep the power
train fully operational, such as buck/boost controller
requirements (control reference, control history, error
history and A/B coefficients), as well as the system
state flags. All other variables and peripheral SFRs will
be reinitialized upon partition swap.

With V2 firmware running on the microcontroller, right
click the V3 project and select build (ensure the
ezbl_dual_partition.mk file has the proper COM
port selected). This will load V3 firmware into the
Inactive Partition and perform the partition swap, as
discussed above, with V1 to V2 firmware transition.

With this new firmware build (LiveUpdate scenario):

• Buck/boost converter remains fully operational
and stable. Associated variables had the preserve
attribute applied.

• Boost load has changed in the firmware update.

• CriticalInit() function removed the V1 to V2
RAM copy for buck error/control history and the
initialization routine for the buck converter.

• Reinitializing pointers in SecondaryInit()
function is not required.

Additionally, LiveUpdate to V3 calls these initialization
routines when restarting main(), even though no func-
tionality has been intentionally changed relating to
them. Reinitialization is required as their variables are
not preserved and can freely move to new addresses
during linking:

• LCD screen display variable has been reinitialized;
therefore, the LCD resets to the home screen.

• EZBL_BootloaderInit() reinitialized UART
communications, timing peripherals and variables
associated with them. A conditional statement for
SFTSWP to avoid re-executing of oscillator
initialization code is necessary to prevent
temporary interruption to the PWM and ADC.

• The I2C peripheral (used to control the output loads)
and communication variables are reinitialized.

In this example, the total swap time is much longer than
that from V1 to V2 firmware, as the majority of the appli-
cation variables were reinitialized by the CRT at the boot
swap event. This particular LiveUpdate scenario may be
required as structures grow, variable types change within
structures, or perhaps because an outside software
library is being updated with no way to identify if the
changes within it can safely reuse existing state variables
implemented in the previous library release. No matter
the reason, the majority of variables will be reinitialized
and it is important to note that certain functions may need
to be called from a soft swap event for all application
features to resume back to normal operation. For things
like LCD reinitialization, this can yield the illusion that the
product has undergone a device Reset, but in actuality, a
controlled Reset of selected subsystems took place.

Figure 13 shows the map files of one build instance
between V2 and V3 firmware. As expected, only those
variables marked as preserved retained their original
address.
 2018 Microchip Technology Inc. DS00002601A-page 21

AN2601
FIGURE 13: VARIABLE MAPPING PRESERVE SELECTED VARIABLES MODEL

DS00002601A-page 22  2018 Microchip Technology Inc.

AN2601
VALID CODE IMAGE RECEPTION

The ezbl_dual_partition.mk Makefile, in con-
junction with the EZBL Java application, create the
SHA-256 hash that contains vendor, model, application
name and any other identification strings. This hash
key is broken down into 32-bit chunks to be passed to
the linker as a symbol and is eventually part of the
application to get passed to the device. As described in
the “Software Implementation” section, this informa-
tion is used to ensure the code image being received is
meant for this application. Only after validating the
hash will the bootloader perform the download of the
code image.

Example 10 shows the hash key fields for these
applications.

EXAMPLE 10: BOOTID_HASH

In the examples provided, there are three identification
fields for software versioning. These consist of major,
minor and build number. If new firmware having a major
version match and a minor ID of exactly one greater
than the existing code is sent to the bootloader, a
LiveUpdate will be performed. Any image with a
mismatched major ID or minor+1 fields will be pro-
grammed to the Inactive Partition (sequence number
too), but with successful verification, the device will
reset to begin executing the new firmware rather than
attempt a partition swap. This behavior is useful for
situations that are deemed too difficult to build a
LiveUpdate project for and it enables forced deploy-
ment of code that is one or more updates behind (or
potentially ahead of) the firmware release that was
used to develop the LiveUpdate project.

If an image with an exact match of major, minor and
build number is sent to the bootloader, the bootloader
rejects the image without modifying the Inactive
Partition. This avoids unnecessary programming and
device Reset if a user inadvertently tries to program the
same firmware more than once.

It may be useful during development to perform
LiveUpdate scenarios against the same project with the
existing and new code images differing by one build
cycle. For this reason, an image with a mismatched
build number, but matched major and minor versions,
will attempt a LiveUpdate without Reset. However, it is
important to note what software executes on the soft
swap event and if this software can switch from itself to
itself. In the V2 firmware example provided in
Example 8, if the buck reinitialization code in the critical
ISR is commented out, this code would then accept
continuous switchover events to the same code image.
Failure to comment it out would result in unpredictable
behavior on the buck converter, as old 2P2Z controller
code is being referenced without the old 2P2Z state
existing in RAM. Additionally, since the project is con-
figured to preserve variable addresses against the V1
.elf artifact, update variables added in V2 can move
during linking with respect to the prior build cycle.
Lastly, SFRs need to be considered as they could carry
state information that would not be generated by Reset
or LiveUpdate from a historical V1 executable.

750W AC/DC EXAMPLE

To show different application examples of online firmware
updates, Microchip has also developed firmware
examples for the 750W AC/DC reference design. In
digitally controlled AC/DC power converters, it is
common to have two microcontrollers separated by an
isolation barrier, one for the PFC front-end and one for
the DC-DC converter. There is typically a UART commu-
nication bridge for sending data between the two
microcontrollers. This system configuration presents a
small challenge for LiveUpdate applications.

The main objective is to perform firmware updates for
both power converters without bringing the supply off-
line to do so. The issue with this configuration is that the
host (i.e., PC) does not have direct access to the PFC
microcontroller. To circumvent this, the DC-DC stage
needs to act like a messenger between the host and
PFC controller, which means additional sophistication
is required in the DC-DC controller.

BOOTID_VENDOR = "Microchip Technology"
BOOTID_MODEL = "ezbl_product"
BOOTID_NAME = "Microchip Development Board"
BOOTID_OTHER = "Dual Flash Partition Device"
 2018 Microchip Technology Inc. DS00002601A-page 23

AN2601
In this example, the DC-DC controller acts as a broad-
cast repeater by automatically passing all incoming
host messages to the PFC controller. Both the DC-DC
and the PFC controller will read the identification
header when the host offers a new firmware image,
and if there is a match with either controller, that
controller will respond while the other sits Idle (monitor
state). When the PFC microcontroller is the target
device, the PFC will Acknowledge the identification
match by sending a response back to the DC-DC con-
troller, which is then relayed to the host. The DC-DC
controller will continue to broadcast the incoming bytes,
but will discard them from local processing until the
End-of-File (EOF) or extended interval of communica-
tion silence is observed. Once the transfer ends, the
internal EZBL state machine is reset and a bootloader
wake-up string is then required to start the bootload
process again. Monitoring the bytes, even though data
is meant for another controller, allows for synchroniza-
tion and eliminates any chance the non-targeted
controller(s) could act on any part of the binary content
in the broadcasted image.

The software could be partitioned such that the DC-DC
controller keeps the identification and versioning records
for the PFC within its firmware. Here, the DC-DC node
would be able to make the decision to pass the incom-
ing data to the PFC controller if that was the intended
target device. This approach can preserve communica-
tions bandwidth, but comes at the cost of greater
overhead in the DC-DC node and requires greater
maintenance should the PFC controller be treated as a
substitutable block. Added challenges arise if the
system is designed to scale with more nodes connect-
ing to the bus or other types of data need to pass
between the PFC node and the host PC. Because of
the above issues, in Microchip’s 750W AC/DC Refer-
ence Design, the same bootloader firmware is used for
both converters and the DC-DC controller always
rebroadcasts host data through the isolation barrier to
the PFC. If the PFC generates outbound data, the
DC-DC will relay such messages back to the host.

There are two challenges with getting data across the
isolation barrier. The first challenge is being able to
distinguish between data that is occurring regularly
between power converters and that of a new code
image for LiveUpdate. In this example, the PFC and
DC-DC UARTs are configured for 9-Bit Data mode with

the 9th bit set to indicate a board-local, or IC-IC, data
byte. The 9th bit is cleared when the byte originates
from or is headed to the off-board host PC. This creates
two virtual communication domains while sharing the
same communication hardware. The DC-DC node’s
UART over to the host implements traditional eight data
bit formatting to maintain a normal appearance to the
outside world and avoid wasting communication band-
width on a 9th bit that would always be ‘0’. Priority is
given to IC-IC traffic, which temporarily suspends any
code image transfer through the isolation barrier. How-
ever, as every data byte is tagged with a target domain
bit, the protocol can be readily adapted for equitable,
ping-pong style sharing of the communications pipe on
a per-byte basis. As 9-Bit Data mode may not be
suitable for all applications, different methods for distin-
guishing the two paths can be developed. One option
is to coalesce adjacent bytes into a frame and append
a header indicating the target domain and frame’s byte
length prior to transmitting the frame. Although this
method can scale to support almost any communica-
tion hardware, this would adversely affect message
latency and jitter for periodic transmissions. It also may
carry high overhead both in terms of implementation
complexity and bandwidth used, especially if IC-IC
messages are short and frequent.

Another option would be to toggle between protocol
domains by means of an out-of-band signal. For
example, the transmitting node could send a Break to
intentionally trigger a framing error on the receiver,
followed by a 1-byte indicator signaling the new target
communications domain. This method would contrib-
ute almost no bandwidth overhead since LiveUpdate
traffic is very rare and both nodes would normally stay
in IC-IC mode. When communicating with the host, the
bootloader data passed back includes status or avail-
able buffer sizes in order to implement software flow
control. This tells the host how much free space is
available in the receive data buffer and forces the host
to wait if the bootloader is busy erasing or programming
existing data with nowhere to queue more data. As a
result, the bandwidth lost by 9-bit signaling and
temporary delay induced by IC-IC traffic prioritization is
immaterial.
DS00002601A-page 24  2018 Microchip Technology Inc.

AN2601
The second challenge is in handling mismatch between
data rates. The communication medium with the host is
UART in this example, but could just as easily have
been I2C. The communication link between the host
and DC-DC converter supports auto-baud and can
sustain 460 Kbytes per second (460800 baud), which
is the maximum permitted by the MCP2221A USB to
UART converters on the reference board. The commu-
nication between the two microcontrollers is typically a
fixed baud rate with a slower throughput (115200 baud;
limited by the isolator’s performance). To handle the
difference in communication rates, the DC-DC buffer
holding host data to be sent to the PFC microcontroller

needs to be as large as the receive data buffer in the
PFC. This ensures the PFC will not request more data
from the host than the DC-DC has room to buffer in
case IC-IC traffic fully blocks the isolation barrier for an
extended interval. Although of lessor significance, it is
suggested that the DC-DC transmit buffer towards the
host be allocated as big as the PFC’s transmit buffer.
This ensures PFC status and flow control signaling to
the host will not be corrupted in the event the host node
chooses a baud rate appreciably slower than the
communications rate though the isolation barrier. See
Figure 14 for implementation details.

FIGURE 14: 750W AC/DC COMMUNICATION STRUCTURE

This implementation shares the host transmit buffer as
only one converter should be writing to it at a time.

There are multiple LiveUpdate examples associated
with this reference design. On the DC-DC side, the
main example modifies the I/Q format for the controller

coefficients to obtain a better loop gain response by
increasing the controller bandwidth. This is observable
when looking at the load transient response. Figure 15
captures the switchover instant and the new
controller’s transient behavior.

FIGURE 15: 750W DC-DC CONVERTER TRANSIENT RESPONSE IMPROVEMENT

PFC Controller

10 Bytes: IC-IC
96 Bytes: Code

14 Bytes: IC-IC
32 Bytes: Code

Power ConverterIsolation
Barrier

Opto

Opto

Rx

Tx

DC-DC Controller
10 Bytes: IC-IC
96 Bytes: Code

14 Bytes: IC-IC

96 Bytes Rx

32 Bytes Tx
Rx

UART2

UART-
USB HOST

9th Bit Set: IC-to-IC Comm.
9th Bit Cleared: Code Image

Tx

 2018 Microchip Technology Inc. DS00002601A-page 25

AN2601
This is a similar example to the DPSK, but instead of
bringing in a new controller type and having to initialize
that controller, additional firmware was developed to
ensure the controller modifications occur with small
steady-state error. The new coefficients are then
loaded and new software flags are initialized, which will
adjust the accumulated control history appropriately for
the new controller coefficients. The controller update
happens well after the critical timing path.

Setting up the appropriate switchover timing window
posed a few more challenges relative to the DPSK
example, as there are five critical interrupt events for
executing the control system (see Figure 16).

One interrupt executes the voltage compensator
(ISR5), two ISRs control the Fault input source for
proper Peak Current mode control with a single current
sense input (ISR1/3) and the other two events are the
slope compensation calculations (ISR2/4). In
Figure 16, it can be seen that the switchover event is
synchronized to ISR2 completion.

FIGURE 16: 750W DC-DC CONVERTER SWITCHOVER SYNCHRONIZATION

ISR1 ISR2

Switchover
Window

4.5 µS

ISR3 ISR4 ISR5

PWM Period 13.7 µS
DS00002601A-page 26  2018 Microchip Technology Inc.

AN2601
Since ISR2 and ISR4 are the same interrupt routine, just
called twice, knowledge of what ISR event occurred
previously is required to align to the window where the
voltage compensator isn’t being called. In this design, a
maximum switchover window of 4.5 µs is obtained.
Removing the 1.9 µs for non application-specific
switchover timing, our critical path timing is 2.6 µs, which
is short, but remains useful for many different update
cases. For more details on the DC-DC converter design,
see AN2388, “Peak Current Controlled ZVS Full-Bridge
Converter with Digital Slope Compensation”
(DS00002388) application note.

For the PFC converter, two different LiveUpdate
examples were created to show the flexibility of online
firmware updates. The first example introduces a new

algorithm that is executed at 50 kHz to improve ITHD of
the power converter. This new algorithm improves ITHD
by reducing the switching frequency near the AC zero-
cross events. This update required an additional bit field
to be added to an existing bit field structure. This is a
fairly simple update as there is nothing timing-critical and
no variable remapping is required. The firmware does
require pointers to Flash to be reinitialized, but otherwise
is mostly a change to executable data, preserving all of
RAM. Figure 17 captures the input AC current before
and after the switchover event. The AC cycles following
the switchover event show less distortion near the
zero-crossings.

FIGURE 17: 750W PFC DISTORTION CORRECTION THROUGH LiveUpdate

V1 firmware
shows distortion
near zero-cross.

V2 firmware
introduced
algorithm that
varies the
switching
frequency near
the zero-cross to
reduce ITHD by
~2%.

Switchover Event
 2018 Microchip Technology Inc. DS00002601A-page 27

AN2601
The second online firmware update is similar to the first
example with respect to adding a new function and a
single member to a structure. In this example, it was
observed at a given load point, the system would
oscillate due to the adaptive algorithms for the current
reference calculation. Additional firmware was devel-
oped which required algorithms to be enabled/disabled
near the zero-cross event. Adding in the additional

conditional statements fixed the instability issue, as
seen in Figure 18. Before the switchover event, it can
be seen that the input current amplitude oscillates
between cycles. After the switchover event, this issue
is no longer seen. Also in this example, the I/O indicator
for the switchover event in the new firmware was repur-
posed and is toggling at a different rate to indicate new
firmware is executing.

FIGURE 18: 750W PFC INSTABILITY CORRECTION THROUGH LiveUpdate

The PFC converter presented its own challenges for
determining the switchover event. In this application we
have the current loop, which is the highest executed
loop running at 100 kHz, critical input signal condition-
ing functions, several adaptive algorithms executing at
50 kHz and many functions executing at 12.5 kHz,

including the voltage compensator. In between every
other current interrupt event, there are a lot of functions
that get executed. This means the switchover event
needs to synchronize to the end of the current loop
ISR, but in the window that alternates with the other
priority functions.

Switchover Event V3 Firmware Repurposed I/O Use

V2 firmware
shows stability
issue at a given
load point.

V3 firmware
introduced
additional
conditional
statements to
alleviate the
stability issue.
DS00002601A-page 28  2018 Microchip Technology Inc.

AN2601
Figure 19 shows a screenshot of the critical ISRs
running in the PFC application.

From the figure, it can be seen that the switchover
event occurs in the proper cycle and right after the cur-
rent loop. This will maximize the critical timing path for

the PFC, which in this example, will be close to 8 µs.
This scope plot was captured during the first online
update event.

FIGURE 19: 750W PFC SWITCHOVER TIMING SYNCHRONIZATION

Input Current

Switch Current

Critical ISRs

Sync Switchover
 2018 Microchip Technology Inc. DS00002601A-page 29

AN2601
DEBUGGING LiveUpdate
APPLICATIONS

Debugging online firmware updates is possible as
MPLAB X allows selecting the target partition for where
code will be physically programmed. In a dual partition
device, the Active Partition is the only one which the
CPU can execute from and it is always located starting
at address 0x000000. The Inactive Partition always
resides at 0x400000, and is available for non-blocking
erase and programming commands, but cannot be
used for execution until it swaps places with and
becomes the Active Partition. The physical concept of

Partition 1 versus Partition 2 has no significance to soft-
ware outside the context of determining which partition
will be made active at device Reset when the hardware
compares FBTSEQ Configuration Word values. By
selecting either Partition One/Active or Two/Inactive in
the XC16 global options within the Project Properties
dialog, the code will be compiled and linked to execute
starting from address 0x000000, but the data records in
the final .hex file will have a 0x000000 or 0x400000
offset applied. See Figure 20 for the location of partition
selection.

FIGURE 20: PARTITION SELECTION FOR DEBUGGING APPLICATION
DS00002601A-page 30  2018 Microchip Technology Inc.

AN2601
In order to debug the switchover event, the previous
project will need to be added as a Loadable into the
newly active project and the proper partition will need
to be selected. As the examples used in this application
note, use default sequence numbers and always target
Partition 1; the active project for debugging will be con-
figured for Partition 2. This aligns with the natural order

for performing LiveUpdate events. To add the previous
project as a loadable, right click the Loadables folder
under the Projects tab in MPLAB X and select Add
Loadable Project. Browse to the previous project and
select Add. Ensure the previous project was built with
the correct partition selected (Figure 21).

FIGURE 21: DEBUGGING SWITCHOVER EVENT

At the moment, with current development tools, it is not
possible to add hardware breakpoints to the Inactive
Partition. Hardware breakpoints will always map to the
Active Partition. To halt CPU execution after the
switchover event, software breakpoints can be added
to the new firmware. Once halted in the newly Active
Partition, hardware breakpoints may be used. It may be
important to ensure certain peripherals (such as PWM)
continue executing after halting the microcontroller.

As both firmware images are being programmed,
debugging a LiveUpdate switchover event does not
require bootloader firmware. However, additional soft-
ware will need to be developed to initiate the partition
swap, such as an I/O port change (push button) or even
a time-out period using a timer. This can greatly
simplify testing partition swap events and testing critical
initialization variables/functions in an application.

MPLAB® X
App_vN

Select
Partition #1

MPLAB X
App_vN + 1

Clean/Build

Load Project
N as Loadable

Select

Program

Partition #2

Clean/Build

Device

Partition
#1 Active

Switch
Partitions

?

No

Execute
BOOTSWP

Partition
#2 Active

TMR/Push
Button

Yes
 2018 Microchip Technology Inc. DS00002601A-page 31

AN2601
TIPS AND TRICKS

Swap Time Optimization

The CRT initialization function and the
EZBL_PartitionSwap() function are provided for
reference. These functions can be modified on an
application basis to reduce the non application-specific
switchover timing. In the partition swap function, all
interrupts are disabled by clearing all IECx registers.
Although this routine is generic for use with multiple
processors, it is optimized and ensures all interrupts
get disabled. However, disabling all interrupts may be
redundant. All low-priority interrupts would have been
disabled earlier, before initiating the switchover, as to
create the switchover window. Only critical interrupts
are required to be disabled at this time. Reducing this
routine down to just critical interrupts disabled could
reduce the switchover time by ~200 ns. The Global
Interrupt Enable bit, GIE (INTCON2<15>), could be
used to disable critical ISRs and reduce switchover
time further. Just ensure that all critical initialization
code tied to the critical ISRs is executed before
enabling interrupts.

Similar to the code examples discussed in this Applica-
tion note, the CRT function can also be rewritten to help
reduce the switchover time. There are several branch
conditions that could be replaced with bit test, skip type
instructions that could save a few instruction cycles in
the critical path.

The Compiler Run-Time start-up function can be found
in the compiler directory at the following path:

<xc16 install directory>\src\libpic30.zip

As CRT data initialization is implemented by decoding a
table of packed records located in Flash, initializing
priority variables using the CRT could take many instruc-
tion cycles. For this reason, variables in the critical timing
path should have the Persistent attribute and be initial-
ized using code placed in a priority function that explicitly
assigns values, and not by the CRT. Although literals
and derived constants encoded in the instruction stream
consume more Flash space, this will save significant
time in the critical path and allow these variables to be
appropriately initialized for both cold start and soft swap
cases. See priority initialization in Example 8.

Preserved Address; Not Preserved
Correctness

It is worth noting that there are a few variable declaration
instances where the toolchain is able to satisfy a
variable’s preservation address, but which results in
incorrect run-time behavior without a build warning. For
example, as a structure’s member order changes, or
maybe even a structure and/or array size shrinks, there
is no build indication to the user. Although this is to be
expected, in a LiveUpdate scenario this could be prob-
lematic if improperly handled. Consider the example
where a preserved structure’s member order changes.
The linker sees a structure as one conglomerated unit
and the Preserve attribute will cause the base address
of the structure to remain unchanged. However, as a
structure contains member variables, each with a
sequentially increasing address offset relative to the
base of the structure, any reordering of internal
members or a change to a member’s type width will
cause all subsequent member variables to be accessed
using the wrong relative offset, and thus, the wrong
system RAM address. To preserve a structure with these
internal changes, an initialization function will need to
swap the RAM values for those members that were
affected, paying close attention to effects of hidden
alignment padding bytes that may be added or removed
as a result of the new member ordering. Also note that
any function that uses a stored pointer or offset to inter-
nal structure members will also need to be updated in
the new software version. If changes to the structure are
complicated, a less fragile approach may be to imple-
ment the desired structure as a new variable, preserving
the old one, and writing an initialization routine to
marshal the preserved data out of the original structure
and into the new one.

A modified array can produce essentially identical
problems. The linker can only preserve the base
address of the array and complain if the array grew such
that it overlaps some other preserved or absolutely
positioned variable. Changes to the base data type,
indexable geometries, attributes or reduction of
elements can materially affect how the data is stored or
accessed and may need special transition routines.

For the two scenarios where preserved structure or array
lengths change (shorten), with -fdata-sections
enabled, these newly open RAM locations can be
reused by the linker. This means that the newly added
(Update attributed) variables may get initialized by the
CRT and clobber the existing tail data in the preserved
variable. If the preserved tail was intended to be saved
and reused in a separate, dedicated variable, then this
tail needs to by copied in a priority function before the
CRT overwrites it. Additionally, the user is responsible
for ensuring that the new firmware revision has
properly changed any indexing component if being
accessed indirectly with pointers. If this is not taken
care of, incorrect data may be read and/or an address
error trap could be generated.
DS00002601A-page 32  2018 Microchip Technology Inc.

AN2601
Additional Debugging Technique

Sometimes, despite best efforts to maintain variable
addresses and define handover routines to maintain a
coherent operating state after swapping partitions, you
may still run into a trap exception or spontaneous
device Reset shortly following a LiveUpdate. These are
almost certainly caused by run-time data that needs
special handling, but which got missed when decorat-
ing variables with attributes and setting up initialization
routines. Depending on the application, reproducing
and then debugging the problem can pose a serious
challenge.

To help in these scenarios, it is valuable to have
hardware provisions for a fast UART debugging con-
sole, preferably electrically isolated, such that you can
transfer comprehensive RAM, SFR and Flash dumps
for leisurely analysis in a text file. By saving a log before
swapping partitions and another identically structured
log at the earliest opportunity following a Fault, it is
possible to compare the two files and look for
unexpected data in unexpected places.

Several EZBL APIs can be used to help generate such
logs. Of potential interest is the EZBL_TrapHandler()
function, located in ezbl_lib.a (source code in
EZBL distribution at ezbl_lib\weak_defaults\

EZBL_TrapHandler.c). This function implements a
generic trap exception handler that prints some SFRs,
RAM contents and Flash contents commonly needed for
debugging, and can be easily modified to print a compre-
hensive report of all device states. That data appears as
human readable text, so any serial console application on
the PC may be used to view and/or save it.

To try this trap handler:

1. Ensure ezbl_lib.a is added to the project
under Libraries.

2. #include “ezbl.h”

3. At file level scope in any .c file, insert:

EZBL_KeepSYM(EZBL_TrapHandler);

4. Comment out any other trap handler functions
that you have in your project, such as
_DefaultInterrupt() and _Address
ErrorTrap(). EZBL_TrapHandler() will
only be called when a project function isn’t
defined for a particular trap.

5. Ensure that the system clock, the NOW timing
APIs and a UART TX pin are configured to
transmit the debug output prior to any trap. The
code necessary to configure the UART may take
the form:

EXAMPLE 11:

6. The handler can be tested by calling it or
creating a divide-by-zero math error:

EZBL_CallISR(EZBL_TrapHandler);

or

volatile int i = i/0;

NOW_Reset(TMR1, 7370000/2); // Configure NOW timing APIs for Timer 1 with system clock assumed
to be FRC/2 Hz

IOCON2bits.PENH = 0; // Disable PWM2H function on desired U2TX pin
_RP45R = _RPOUT_U2TX; // Assign U2TX function to RP45 pin
UART_Reset(2, NOW_Fcy, 230400, 1); // Initialize UART2 @ 230400 baud and set as target of stdout messages
 2018 Microchip Technology Inc. DS00002601A-page 33

AN2601
NOTES:
DS00002601A-page 34  2018 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.
 2018 Microchip Technology Inc.

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

== ISO/TS 16949 ==
Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR,
AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory,
CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ,
KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus,
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip
Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST
Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered
trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

ClockWorks, The Embedded Control Solutions Company,
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,
mTouch, Precision Edge, and Quiet-Wire are registered
trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo,
CodeGuard, CryptoAuthentication, CryptoCompanion,
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,
KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,
PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and
ZENA are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip
Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology
Germany II GmbH & Co. KG, a subsidiary of Microchip Technology
Inc., in other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2018, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-2730-8
DS00002601A-page 35

DS00002601A-page 36  2018 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733

China - Beijing
Tel: 86-10-8569-7000

China - Chengdu
Tel: 86-28-8665-5511

China - Chongqing
Tel: 86-23-8980-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-2943-5100

China - Nanjing
Tel: 86-25-8473-2460

China - Qingdao
Tel: 86-532-8502-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenyang
Tel: 86-24-2334-2829

China - Shenzhen
Tel: 86-755-8864-2200

China - Suzhou
Tel: 86-186-6233-1526

China - Wuhan
Tel: 86-27-5980-5300

China - Xian
Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160

Japan - Tokyo
Tel: 81-3-6880- 3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870

Philippines - Manila
Tel: 63-2-634-9065

Singapore
Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching
Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-67-3636

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7289-7561

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Gothenberg
Tel: 46-31-704-60-40

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

10/25/17

http://support.microchip.com
http://www.microchip.com

	Introduction
	Compiler Features Facilitating LiveUpdate
	Preserved Attribute
	EXAMPLE 1: Preserved Attribute

	Update Attribute
	EXAMPLE 2: Update Attribute

	Priority Attribute
	EXAMPLE 3: Priority Attribute
	EXAMPLE 4: CRT Start Mode

	Configuring MPLAB® X Project
	FIGURE 1: Path to Executable and Linkable File
	FIGURE 2: Data/Functions Individual Sections

	Software Implementation
	FIGURE 3: Bootloader Responsible for Address Offset
	FIGURE 4: Flash Partition Sequence Write Examples(1,2,3)

	Switchover Timing
	FIGURE 5: Switchover Timing Window
	EXAMPLE 5: Partition Swap Sequence Macro
	EXAMPLE 6: Priority Function Implementation
	FIGURE 6: Execution of LiveUpdate Event(1)

	Software Restrictions
	Static Variables
	EXAMPLE 7: Fixed Address Variable
	FIGURE 7: Command Prompt for Generating Object Dump File
	FIGURE 8: Command Prompt for Finding Address Location by Variable Name

	Pointers
	FIGURE 9: Pointer/RAM Initialization(1,2,3)
	TABLE 1: LiveUpdate Scenarios
	Application Examples
	Digital Power Starter Kit Example
	FIGURE 10: RAM Mapping Between Code Versions
	EXAMPLE 8: Critical Initialization Function(1)
	FIGURE 11: Variable Mapping Preserve All Model

	Steps to Execute First LiveUpdate
	FIGURE 12: Seamless Firmware Transition from V1 to V2
	EXAMPLE 9: Flash Pointer Initialization

	LiveUpdate with Fewer Dependencies
	FIGURE 13: Variable Mapping Preserve Selected Variables Model

	Valid Code Image Reception
	EXAMPLE 10: BOOTID_HASH

	750W AC/DC Example
	FIGURE 14: 750W AC/DC Communication Structure
	FIGURE 15: 750W DC-DC Converter Transient Response Improvement
	FIGURE 16: 750W DC-DC Converter Switchover Synchronization
	FIGURE 17: 750W PFC Distortion Correction through LiveUpdate
	FIGURE 18: 750W PFC Instability Correction through LiveUpdate
	FIGURE 19: 750W PFC Switchover Timing Synchronization

	Debugging LiveUpdate Applications
	FIGURE 20: Partition Selection for Debugging Application
	FIGURE 21: Debugging Switchover Event

	Tips and Tricks
	Swap Time Optimization
	Preserved Address; Not Preserved Correctness
	Additional Debugging Technique
	EXAMPLE 11:

	Worldwide Sales and Service

