MICROCHIP

32-Bit Programmable Cyclic Redundancy Check (CRC)

HIGHLIGHTS

This section of the manual contains the following major topics:

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

INEFOAUCTION ...ttt e e e et e e e ettt e e e enneeeas 2
CRC OVEIVIBW ...ttt ettt e oottt e e e ekttt e e e e ekt et e e s et b e et e e s e nneeeeenn 3
(012 O = (=0 1] 1] £ SRS 4
(042 (O = o To 1o 1T SRR 11
(7] 011 o] I o o (o3RRI 12
Application of CRC MOAUIEuuuiiiiiiiiiiiie e e e e e 20
Operation iN POWET SAVE MOUESccoiiiiiieeiiieieiiieceiiie ettt e e e e e e e e e e s anenees 33
Related APPlICAtioN NOTES........cciiiii i eraeaeeaeeas 34
REVISION HISTOIY ..ttt ettt e e e ettt e e e e et e e e e s e neeeaaaeanes 35

© 2009-2018 Microchip Technology Inc. DS30009729C-page 1

dsPIC33/PIC24 Family Reference Manual

Note: This family reference manual section is meant to serve as a complement to device
data sheets. Depending on the device variant, this manual section may not apply to
all dsPIC33/PIC24 devices.

Please consult the note at the beginning of the “32-Bit Programmable Cyclic
Redundancy Check (CRC) Generator” chapter in the current device data sheet to
check whether this document supports the device you are using.

Device data sheets and family reference manual sections are available for
download from the Microchip Worldwide Web site at: http://www.microchip.com

1.0 INTRODUCTION

The 32-Bit Programmable Cyclic Redundancy Check (CRC) module is a software-configurable
CRC generator. The module provides a hardware implemented method of quickly generating
checksums for various communication and security applications. The CRC engine calculates the
CRC checksum without CPU intervention; moreover, it is much faster than the software

implementation.

The programmable CRC generator provides the following features:

» User-programmable CRC polynomial equation, up to 32 bits
« Programmable shift direction (little or big-endian)

* Independent data and polynomial lengths

 Configurable interrupt output
« Data FIFO

The programmable CRC generator module can be divided into two parts: the control logic and
the CRC engine. The control logic incorporates a register interface, data FIFO, an interrupt
generator and a CRC engine interface. The CRC engine incorporates a CRC calculator, which
is implemented using a serial shifter with XOR function. A simplified block diagram is shown in

Figure 1-1.

Figure 1-1: Simplified Block Diagram of the Programmable CRC Generator

CRCDATH/CRCDATL

\ 4

Variable FIFO
(4x32, 8x16 or 16x8)

FIFO Empty Event

Peripheral Clock Y

,ii Shift Buffer

}T

LENDIAN

CRC Shift Engine

1 Shift Complete

CRCISEL

| Event

| CRCWDATH, CRCWDATL

Set CRCIF

DS30009729C-page 2

© 2009-2018 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com

32-Bit Programmable Cyclic Redundancy Check (CRC)

2.0 CRC OVERVIEW

The checksum is a unique number associated with a message, or a particular block of data,
containing several bytes. Whether it is a data packet for communication, or a block of data stored
in memory, a piece of information, such as checksum, helps to validate it before processing. The
simplest way to calculate a checksum is to add together all the data bytes present in the
message. However, this method of checksum calculation fails badly when the message is
modified by inverting or swapping groups of bytes. Also, it fails when null bytes are added
anywhere in the message.

The Cyclic Redundancy Checksum (CRC) is a more complicated, but robust, error checking
algorithm. The main idea behind the CRC algorithm is to treat a message as a binary bit stream
and divide it by a fixed binary number. The remainder from this division is considered to be the
checksum. Like in division, the CRC calculation is also an iterative process. The only difference
is that these operations are done on modulo arithmetic, based on mod 2. For example, division
is replaced with the XOR operation (i.e., subtraction without carry). The CRC algorithm uses the
term, polynomial, to perform all of its calculations. The divisor, dividend and remainder that are
represented by numbers are termed as: polynomials with binary coefficients. For example, the
number, 25h (11001), is represented as:

Equation 2-1:

@ xH+@*xH)+(0*x%) + (0% xH +(1* x% or x* + x3+x°

In order to perform the CRC calculation, a suitable divisor is first selected. This divisor is called
the generator polynomial. Since CRC is used to detect errors, a generator polynomial of a
suitable length needs to be chosen for a given application, as each polynomial has different error
detection capabilities. Some polynomials are widely used for many applications, but the error
detecting capabilities of any particular polynomial are beyond the scope of this reference section.

The CRC algorithm is straightforward to implement in software. However, it requires considerable
CPU bandwidth to implement the basic requirements, such as shift, bit test and XOR. Moreover,
CRC calculation is an iterative process and additional software overhead for data transfer
instructions puts enormous burden on the MIPS requirement of a microcontroller. In contrast, the
software-configurable CRC hardware module facilitates a fast CRC checksum calculation with
minimal software overhead.

© 2009-2018 Microchip Technology Inc. DS30009729C-page 3

dsPIC33/PIC24 Family Reference Manual

3.0 CRC REGISTERS

Different registers associated with the CRC module are described in detail in this section. There
are eight registers in this module. These are mapped to the data RAM space as Special Function
Registers (SFRs) in dsPIC33/PIC24 devices:

« CRCCONL1: CRC Control Register 1

« CRCCONZ2: CRC Control Register 2

¢ CRCXORL: CRC XOR Low Register

¢ CRCXORH: CRC XOR High Register

e CRCDATL: CRC Data Low Register

 CRCDATH: CRC Data High Register

e CRCWDATL: CRC Shift Low Register

« CRCWDATH: CRC Shift High Register

The CRCCON1 (Register 3-1) and CRCCON2 (Register 3-2) registers control the operation of
the module, and configure various settings. The CRCXORL/H registers (Register 3-3 and
Register 3-4) select the polynomial terms to be used in the CRC equation. The CRCDATL/H
and CRCWDATL/H registers are each register pairs that serve as buffers for the double-word
input data and CRC processed output, respectively.

DS30009729C-page 4 © 2009-2018 Microchip Technology Inc.

"oul ABojouyda | diyd0IolN 8T0Z-6002 ©

g abed-062.6000€SA

3.1

Register Maps

A summary of the Special Function Registers associated with the dsPIC33/P1C24 32-Bit Programmable Cyclic Redundancy Check (CRC)
module is provided in Table 3-1.The corresponding registers appear after the summaries, followed by a detailed description of each

register.

Table 3-1: Special Function Registers Associated with the Programmable CRC Module®

File Name | Bit15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Re/;”ets
CRCCON1 CRCEN — CSIDL VWORD<4:0> CRCFUL | CRCMPT | CRCISEL | CRCGO |LENDIAN | MOD® — — 0040
CRCCON2 — — — DWIDTH<4:0> = = = PLEN<4:0> 0000
CRCXORL X<15:1> — 0000
CRCXORH X<31:16> 0000
CRCDATL DATA<15:0> 0000
CRCDATH DATA<31:16> 0000
CRCWDATL SDATA<15:0> 0000
CRCWDATH SDATA<31:16> 0000
Legend: — = unimplemented, read as ‘0’.

Note 1: Refer to the specific device data sheet for memory map details.
2: This bit is not available on all devices. Refer to the specific device data sheet for details.

(0YD) »299yD Aouepunpay 211940 s|qewwreibold 1g-2€

dsPIC33/PIC24 Family Reference Manual

Register 3-1: CRCCONL1: CRC Control Register 1
R/W-0 uU-0 R/W-0 R-0 R-0 R-0 R-0 R-0
CRCEN — CSIDL VWORD<4:0>
bit 15 bit 8
R-0 R-1 R/W-0 R/W-0 R/W-0 R/W-0 uU-0 uU-0
CRCFUL | CRCMPT | CRCISEL CRCGO LENDIAN mMop® — —
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown
bit 15 CRCEN: CRC Enable bit
1 = Enables module
0 = Disables module
bit 14 Unimplemented: Read as ‘0’
bit 13 CSIDL: CRC Stop in Idle Mode bit
1 = Discontinues module operation when device enters Idle mode
0 = Continues module operation in Idle mode
bit 12-8 VWORD<4:0>: Counter Value bits
Indicates the number of valid words in the FIFO. Has a maximum value of 16 when DWIDTH<4:0> < 7
(data words, 8-bit wide or less). Has a maximum value of 8 when DWIDTH<4:0> < 15 (data words from 9
to 16-bit wide). Has a maximum value of 4 when DWIDTH<4:0> < 31 (data words from 17 to 32-bit wide).
bit 7 CRCFUL: CRC FIFO Full bit
1 =FIFO is full
0 = FIFO is not full
bit 6 CRCMPT: CRC FIFO Empty bit
1 =FIFO is empty
0 = FIFO is not empty
bit 5 CRCISEL: CRC Interrupt Selection bit
1 = Interrupt on FIFO empty; final word of data is still shifted through CRC
0 = Interrupt on shift complete (FIFO is empty and no data is shifted from the shift buffer)
bit 4 CRCGO: Start CRC bit
1 = Starts CRC serial shifter; clearing the bit aborts shifting
0 = CRC serial shifter is turned off
bit 3 LENDIAN: Data Word Little Endian Configuration bit
1 = Data word is shifted into the CRC, starting with the LSb (little-endian); reflected input data
0 = Data word is shifted into the CRC, starting with the MSb (big-endian); non-reflected input data
bit 2 MOD: CRC Operating Mode Select bit()
1 = Alternate mode: Shift buffer data is XORed with CRC shift engine after bit n
0 = Legacy mode: Shift buffer data is XORed with CRC shift engine before bit 0
bit 1-0 Unimplemented: Read as ‘0’
Note 1: This bit is not available on all devices. Refer to the specific device data sheet for details.

DS30009729C-page 6 © 2009-2018 Microchip Technology Inc.

32-Bit Programmable Cyclic Redundancy Check (CRC)

Register 3-2: CRCCON2: CRC Control Register 2

u-0 u-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — DWIDTH<4.0>
bit 15 bit 8
U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — PLEN<4:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown

bit 15-13 Unimplemented: Read as ‘0’

bit 12-8 DWIDTH<4:0>: Data Word Width Configuration bits
Configures the width of the data word (Data Word Width — 1).

bit 7-5 Unimplemented: Read as ‘0’

bit 4-0 PLEN<4:0>: Polynomial Length Configuration bits

Configures the length of the polynomial (Polynomial Length — 1).

© 2009-2018 Microchip Technology Inc. DS30009729C-page 7

dsPIC33/PIC24 Family Reference Manual

Register 3-3: CRCXORL: CRC XOR Low Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
X<15:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 uU-0
X<7:1> —

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown

bit 15-1 X<15:1>: XOR of Polynomial Term x" Enable bits

bit O Unimplemented: Read as ‘0’

Register 3-4: CRCXORH: CRC XOR High Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
X<31:24>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
X<23:16>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown
bit 15-0 X<31:16>: XOR of Polynomial Term x" Enable bits

DS30009729C-page 8 © 2009-2018 Microchip Technology Inc.

32-Bit Programmable Cyclic Redundancy Check (CRC)

Register 3-5: CRCDATL: CRC Data Low Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DATA<15:8>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DATA<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown
bit 15-0 DATA<15:0>: CRC Input Data bits

Writing to this register fills the FIFO; reading from this register returns ‘0’.

Register 3-6: CRCDATH: CRC Data High Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DATA<31:24>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DATA<23:16>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bitis cleared X = Bit is unknown
bit 15-0 DATA<31:16>: CRC Input Data bits

Writing to this register fills the FIFO; reading from this register returns ‘0’.

© 2009-2018 Microchip Technology Inc. DS30009729C-page 9

dsPIC33/PIC24 Family Reference Manual

Register 3-7: CRCWDATL: CRC Shift Low Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SDATA<15:8>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SDATA<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown
bit 15-0 SDATA<15:0>: CRC Shift Register bits

Writing to this register writes to the CRC Shift register through the CRC write bus. Reading from this
register reads the CRC read bus.

Register 3-8: CRCWDATH: CRC Shift High Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SDATA<31:24>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SDATA<23:16>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bitis cleared X = Bit is unknown
bit 15-0 DATA<31:16>: CRC Shift Register bits

Writing to this register writes to the CRC Shift register through the CRC write bus. Reading from this
register reads the CRC read bus.

DS30009729C-page 10 © 2009-2018 Microchip Technology Inc.

32-Bit Programmable Cyclic Redundancy Check (CRC)

4.0 CRC ENGINE
4.1 Generic CRC Engine

The CRC engine is a serial shifting CRC calculator, configurable though multiplexer settings. The
engine can also be configured as to where shift buffer data is introduced using the MOD bit
(CRCCON1<2>). A simplified diagram of the CRC shift engine is shown in Figure 4-1.

The CRC algorithm uses a simplified form of arithmetic process, using the XOR operation
instead of binary division. The coefficients of the generator polynomial are programmed with
the CRCXOR registers. Writing a ‘1’ into a location enables XORing of that element in the
polynomial. The length of the polynomial is programmed using the PLEN<4:0> bits in the
CRCCON?2 register (CRCCON2<4:0>). The value of PLEN<4:0> signals the length of the
polynomial and switches a multiplexer to indicate the tap from which the feedback originated.

The result of the CRC calculation is obtained by reading the CRCWDAT registers.

Figure 4-1: CRC shift Engine Detail

Legacy Mode (MOD bit = 0)

CRCWDATH, CRCWDATL

Read/Write Bus ¢

x(o)(l) 1 x(]_)(l) I x(z)(l) i _____ X(n)(l) z
Shift Buffer Bit 0 Bit 1 —>$—> Bit2 - Bit n®

Alternate Mode (MOD bit = 1)@

CRCWDATH, CRCWDATL

Read/Write Bus ¢
X(0) I X(1)@W 1 X)W $ _____ X(m® I Shig B[gffer

—P| Bit0 Bitl —P Bit2 |- Bitn@

Note 1: Each XOR stage of the shift engine is programmable. See text for details.
2: Polynomial Length n is determined by (PLEN<4:0> + 1).
3: This mode is not available on all devices. Refer to the specific device data sheet for details.

© 2009-2018 Microchip Technology Inc. DS30009729C-page 11

dsPIC33/PIC24 Family Reference Manual

5.0 CONTROL LOGIC

5.1 Polynomial Interface

The CRC module can be programmed for CRC polynomials of up to the 32" order, using up to
32 bits. Polynomial length, which reflects the highest exponent in the equation, is selected by the
PLEN<4:0> bits (CRCCON2<4:0>). The CRCXOR registers control which exponent terms are
included in the equation. Setting a particular bit includes that exponent term in the equation
functionally; this includes an XOR operation on the corresponding bit in the CRC engine.
Clearing the bit disables the XOR.

For example, consider two CRC polynomials, one a 16-bit equation and the other a 32-bit
equation (Equation 5-1).To program these polynomials into the CRC generator, set the register
bits as shown in Table 5-1.

Equation 5-1:

x4+ x2+x5+1
and
W32 43264 222 16 12 0 11 10 0B T 5 Ay 20 g

Table 5-1: CRC Setup Examples for 16 and 32-Bit Polynomials
Bit Values
CRC Control Bits
16-Bit Polynomial 32-Bit Polynomial
PLEN<4:0> 01111 11111
X<31:16> 0000 0000 0000 0000 0000 0100 1100 0001
X<15:1> 0001 0000 0010 0001 0001 1101 1011 0111

Note that the appropriate positions are set to ‘1’ to indicate that they are used in the equation
(e.g., X26 and X23). The Most Significant bit (MSb) of the polynomial does not affect the
calculation and can be set to any value.

5.2 Data Shift Direction

The LENDIAN bit (CRCCON1<3>) is used to control the shift direction. By default, the CRC
module will shift data through the engine, MSb first (LENDIAN = 0). Setting LENDIAN to ‘1’
causes the CRC module to shift data, LSb first. This setting allows better integration with various
communication schemes and removes the overhead of reversing the bit order in software. Note
that this only changes the direction the data is shifted into the engine. The result of the CRC
calculation will still be a normal CRC result, not a reverse CRC result.

dsPIC33/PIC24 devices are little-endian. When the CRC module is configured for the big-endian
(LENDIAN = 0), the input data bytes and words must be swapped in the application code before
loading them into the data FIFO (CRCDAT registers).

DS30009729C-page 12

© 2009-2018 Microchip Technology Inc.

32-Bit Programmable Cyclic Redundancy Check (CRC)

5.3 Data FIFO

The module incorporates a FIFO that works with a variable data width. The data width is defined
by the DWIDTH<4:0> bits (CRCCON2<12:8>). It can be configured to any value, between 1 and
32 bits. The logic associated with the FIFO contains a 5-bit counter, VWORD<4:0> bits
(CRCCON1<12:8>).

The value in the VWORD<4:0> bits indicates the number of unprocessed data elements in the
FIFO. The FIFO is:

« 16-word deep when DWIDTH<4:0> < 7 (data words, 8-bit wide or less)

» 8-word deep when DWIDTH<4:0> < 15 (data words from 9 to 16-bit wide)

 4-word deep when DWIDTH<4:0> < 31 (data words from 17 to 32-bit wide)

The data for the CRC calculation must be written into the FIFO using the CRCDAT registers.

Reading the CRCDAT registers always returns zero. To accommodate the MSb first shift method
(LENDIAN = 0), byte and word swapping must be done in software when filling the FIFO.

Note: Ensure that the new data is not written into the CRCDAT registers when the CRCFUL
bit is set; if the new data is written, it will be ignored.

When all shifts are done (i.e., the FIFO is empty and the CRC shift engine is Idle), it is possible
to change the FIFO width (DWIDTH<4:0> bits) without any information loss or CRC result
damage.

With a data width of eight bits or less, the FIFO increments on a write to the lower byte of the
CRCDATL register (a byte access to the CRCDATL register must be used). The smallest data
element that can be written into the FIFO is one byte.

For example, if DWIDTH<4:0> is five, then the size of the data is DWIDTH<4:0> + 1 or six. The
data is written as a whole byte; the two unused upper bits are ignored. Once the data byte is
written into the CRCDATL register, the value of the VWORD<4:0> bits (CRCCON1<12:8>)
increments by one.

With data widths more than 8 bits and less than or equal to 16 bits, the FIFO increments on a
write to the CRCDATL register (16-bit word access to the CRCDATL register must be used).
Unused upper data bits are ignored. The value of the VWORD<4:0> bits is incremented for every
write to the CRCDATL register.

When the data width is greater than 16 bits, any write to the CRCDATH register increments the
VWORD<4:0> bits by one. Writing the lower word into the CRCDATL register must be done
before writing the upper word into the CRCDATH register. Unused upper data bits are ignored.

© 2009-2018 Microchip Technology Inc. DS30009729C-page 13

dsPIC33/PIC24 Family Reference Manual

54 CRC Engine Interface

541 FIFO TO CRC SHIFT ENGINE

To start moving the data from the FIFO to the CRC shift buffer, the CRCGO bit (CRCCON1<4>)
must be set. The serial shifter starts shifting data from the shift buffer to the CRC shift engine,
starting from the MSb first for LENDIAN = 0 and LSb first for LENDIAN = 1, when CRCGO =1
and the value of VWORD<4:0> is greater than zero. If the CRCFUL bit was set earlier, then it is
cleared when the VWORDX bhits decrement by one. The VWORD<4:0> bits decrement by one
when a FIFO location is moved to the shift buffer. The serial shifter continues shifting until the
VWORD<4:0> bits reach zero; at this point, the CRCMPT bit becomes set to indicate that the
FIFO is empty. If the CRCGO bit is cleared during a CRC calculation, then the CRC shift engine
will stop calculating until the CRCGO bit is set.

The application can write into the FIFO while the shift operation is in progress. The CRCFUL bit
should be monitored. If the CRCFUL bit is not set, another word can be written into the FIFO. At
least one instruction cycle must pass after a write to the CRCDAT registers, before a read of the
valid value of the VWORD<4:0> bits.

When the VWORD<4:0> bits reach the maximum value for the configured value of the
DWIDTH<4:0> bits, the CRCFUL bit becomes set. When the VWORD<4:0> bits reach zero, the
CRCMPT bit becomes set. The FIFO is emptied and the VWORD<4:0> bits are set to ‘00000’
whenever the CRCEN bit is ‘0.

54.2 NUMBER OF CLOCK CYCLES TO SHIFT DATA

The data from FIFO goes to the shift buffer. It takes two peripheral clock cycles to start moving
the data words from FIFO to the shift buffer. The data from the shift buffer is then shifted to the
CRC shift engine. It takes (DWIDTH<4:0> + 1) clock cycles to completely move the data from the
shift buffer to the CRC shift engine. For example, if DWIDTH<4:0> = 5, then the data length is
six bits (DWIDTH<4:0> + 1) and six cycles are required to shift the data. In this case, only six bits
of a byte are shifted out. The two MShs of each byte are don't care bits. Similarly, for a 12-bit
polynomial selection, the Most Significant four bits of each word are ignored.

543 CRC INITIAL VALUE

The access to the CRC shift engine is provided through the CRCWDAT registers. These registers
can be loaded with a desired CRC initial value prior to the start of the calculations. The form of this
initial value depends on the operating mode selected by the MOD bit (CRCCON1<2>).

In Alternate mode (MOD bit = 1, not available on all devices), the CRC initial value must be in
direct form.

In Legacy mode (MOD bit = 0), the CRC initial value must be in non-direct form. The non-direct
initial value is a value for which the CRC calculation gives the desired direct CRC initial value. For
example, if the application uses CRC-32 polynomial, 0x04C11DB7, and must start the calculations
from the CRC direct initial value, OXFFFFFFFF, then the non-direct value, 0Ox46AF6449, must be
loaded in the CRCWDAT registers (the CRC of this non-direct value, Ox46AF6449, is
OXFFFFFFFF). When the non-direct initial value is written into the shift engine using the CRCWDAT
registers, it will be converted by the CRC module to the direct initial value after (PLEN<4:0> + 1)
peripheral clock cycles.

Note: The write to the CRCWDAT registers clears/resets the shift buffer. I

Usually, the CRC calculation starts from the same initial value every time. In this case, the
non-direct initial value can be found just once and then can be defined as a constant in the
application code.

Note: The CRC non-direct initial value of zero is zero. I

DS30009729C-page 14

© 2009-2018 Microchip Technology Inc.

32-Bit Programmable Cyclic Redundancy Check (CRC)

Example 5-1 shows a possible software routine to get the non-direct initial value from the direct
initial value.

Example 5-1: Software Routine to Calculate the Non-Direct Initial Value

unsi gned | ong Cal cul at eNonDi r ect Seed(

unsi gned | ong seed, /'l direct CRCinitial value
unsi gned | ong pol ynomi al , /'l pol ynom al

unsi gned char pol ynomi al Or der) /1 pol ynom al order

{

unsi gned char | sb;

unsi gned char i

unsi gned | ong nmsbmask;

nmsbmask = ((unsigned | ong) 1) <<(pol ynom al Order-1);
for (i=0; i<polynom al Order; i++) {

Isb = seed & 1;

if (1sb) seed ~= pol ynom al;

seed >>= 1;

if (Isb) seed | = msbmask;
}

return seed; /1 return the non-direct CRC initial value

}

The CRC module can be used to get the non-direct initial value. To do this:
1. Enable the CRC module (CRCEN = 1) and shifts (CRCGO = 1).

2. Shift the polynomial value right by one.

3. Reverse the bit order of the shifted polynomial value.

4. Write this result in the CRCXOR registers.

5. Set the data width and polynomial length (DWIDTH<4:0> and PLEN<4:0> bits) to the
polynomial order (length).

6. Reverse the bit order of the desired direct initial value.

7. Write the reversed initial value in the CRCWDAT registers.

8. Write a dummy data to the CRCDAT registers and wait two peripheral clock cycles to
move the data from the FIFO to the shift buffer, and (PLEN<4:0> + 1) peripheral clock
cycles to shift out the result.

Alternatively, clear the CRC Interrupt Selection bit (CRCISEL =0) to get the interrupt when
shifts from the shift buffer are done, clear the CRC interrupt flag, write a dummy data in
the CRCDAT registers and wait for the CRC interrupt flag to set.

9. Read the value from the CRCWDAT registers.

10. Reverse the hit order of the read result; it will give the final non-direct initial value.

© 2009-2018 Microchip Technology Inc. DS30009729C-page 15

dsPIC33/PIC24 Family Reference Manual

Example 5-2 shows one way to implement this procedure.

To continue calculations of the full data message, in the applications where the intermediate CRC
sums must be read in the middle of the calculations, the non-direct value must be calculated and
set to the CRCWDAT registers again. In this case, the CRC direct initial value will be an

intermediate CRC result read.

Example 5-2: Calculating the Non-Direct Initial Value (MOD bit = 0)
unsi gned 1| ong Cal cul at eNonDi r ect Seed(unsi gned long seed, // direct CRCinitial value
unsi gned | ong pol ynom al , // pol ynom al
unsi gned char pol ynomi al Or der) /1 polynomal order (valid values are
/1 8, 16, 32 bits)
{
CRCCON1 = 0;
CRCCON2 = 0;
CRCCONLbi ts. CRCEN = 1; /'l enable CRC
CRCCONLbi ts. CRCI SEL = O0; // interrupt when all shifts are done
CRCCON2bi ts. DW DTH = pol ynomi al Order-1; // data width
CRCCON2bi t's. PLEN = pol ynom al O der - 1; /1 polynomial length
CRCCONlbits. CRCGO = 1, /1 start CRC cal cul ation
pol ynomi al >>= 1; /1 shift the polynomal right
pol ynoni al = ReverseBit O der(pol ynoni al, polynonial Oder); // reverse bits order of the
/1 pol ynom al
CRCXORL = (unsigned short) (pol ynom al &x0000FFFF) ; /1 set the reversed pol ynom al
CRCXORH = (unsigned short) (pol ynoni al >>16) ;
seed = ReverseBit Order(seed, polynom al Oder); /'l reverse bits order of the seed val ue
CRCWDATL = (unsi gned short) (seed&0x0000FFFF) ; /1 set seed val ue
CRCWDATH = (unsi gned short) (seed>>16);
_CRCIF = 0; /1 clear interrupt flag
swi t ch(pol ynomi al Order) // 1oad dunmy data to shift out the
/'l seed result
{
case 8:
((unsi gned char) &CRCDATL) = O0; /1 1oad byte
whi l e(! _CRCIF); /1l wait until shifts are done
seed = CRCWDATL&OxO0O0f f; /'l read reversed seed
case 16:
CRCDATL = 0; /1 1oad short
while(! _CRCIF); /1 wait until shifts are done
seed = CRCWDATL; /'l read reversed seed
br eak;
case 32:
/1 1oad | ong
CRCDATL = 0;
CRCDATH = 0;
whil e(! _CRCIF); /1 wait for shifts are done
seed = ((unsigned | ong) CROWDATH<<16) | CROWDATL; /1 read reversed seed
br eak;
defaul t:
}
seed = ReverseBit Order(seed, polynom al Order); Il reverse the bit order to get the
/1 non-direct seed
return seed; /] return the non-direct CRCinitial value
}

DS30009729C-page 16

© 2009-2018 Microchip Technology Inc.

32-Bit Programmable Cyclic Redundancy Check (CRC)

Example 5-2: Calculating the Non-Direct Initial Value (MOD bit = 0) (Continued)
/1 WHERE THE FUNCTI ON TO REVERSE THE BI T ORDER CAN BE

unsi gned | ong ReverseBitOrder(unsigned | ong data, /1 input data
unsi gned char nunber O Bits) /1 width of the input data,
/1 valid values are 8,16,32 bits

{

unsi gned | ong maskin 0;
unsi gned | ong maskout = O;
unsigned long result = 0;
unsi gned char i;

switch(nunber O Bi ts)

{
case 8:
maskin = 0x80;
maskout = 0x01;
br eak;
case 16:
maskin = 0x8000;
maskout = 0x0001;
br eak;
case 32:
maskin = 0x80000000;
maskout = 0x00000001;
br eak;
defaul t:
}
for(i=0; i<nunberOfBits; i++)
{
i f (dat a&maski n){
result | = naskout;
}
maskin >>= 1;
maskout <<= 1;
}

return result;

© 2009-2018 Microchip Technology Inc. DS30009729C-page 17

dsPIC33/PIC24 Family Reference Manual

544 CRC RESULT

Reading the result of a CRC calculation depends on the selected operating mode.

In Alternate mode (MOD bit = 1, not available on all devices), the result is available in the
CRCWDAT registers when all the data in the CRC FIFO buffer has been processed. Submitting
dummy data to generate extra cycles is not required.

In Legacy mode (MOD bit = 0), the CRC module requires (PLEN<4:0> + 1) extra peripheral clock
cycles to finish the calculations. To generate these additional cycles, the dummy data, with the
width equal to the polynomial order (length), must be loaded into the CRCDAT registers. After
the shifts are finished, the final CRC result can be read from the CRCWDAT registers.

There are two procedures to get the final CRC result after all data is loaded into the CRC module.
If the data width (DWIDTH<4:0>) is more than the polynomial length (PLEN<4:0>):

1. Wait for the data FIFO to empty (CRCMPT bit is set).

2. Wait (DWIDTH<4:0> + 1) clock cycles to make sure that shifts from the shift buffer are
finished.

3. Change the data width to the polynomial length (DWIDTH<4:0> = PLEN<4:0>).

Write one dummy data word to the CRCDAT registers.

5. Wait two peripheral clock cycles to move the data from the FIFO to the shift buffer, plus
(PLEN<4:0>+ 1) clock cycles to shift out the result.

Alternatively, clear the CRC Interrupt Selection bit (CRCISEL = 0) to get the interrupt when
all shifts are done. Clear the CRC interrupt flag. Write dummy data in the CRCDAT
registers and wait until the CRC interrupt flag is set.

6. Read the final CRC result from the CRCWDAT registers.

7. Restore the data width (DWIDTH<4:0> bits) for further calculations (OPTIONAL).

P

If the data width (DWIDTH<4:0>) is equal to, or less than, the polynomial length (PLEN<4:0>),
the procedure to get the result can be different:

1. Clearthe CRC Interrupt Selection bit (CRCISEL = 0) to get the interrupt when all shifts are
done.

2. Suspend the calculation by setting CRCGO = 0.

Clear the CRC interrupt flag.

4. Write the dummy data with the total data length equal to the polynomial length in the
CRCDAT registers.

5. Resume the calculation by setting CRCGO = 1.
Wait until the CRC interrupt flag is set.
7. Read the final CRC result from the CRCWDAT registers.

w

o

DS30009729C-page 18

© 2009-2018 Microchip Technology Inc.

32-Bit Programmable Cyclic Redundancy Check (CRC)

When the CRC result is achieved, the CRC non-direct initial value should be written again into
the CRCWDAT registers to clear/reset the shift buffer from the previously loaded dummy data to
start a new calculation. Example 5-3 shows the steps described above for the polynomial orders

of 8, 16 and 32 bits.

Example 5-3:

Routine to Get the Final CRC Result in Legacy Mode (MOD bit = 0)

unsi gned char current Dat aW dt h)
insigned long crc = 0;

whi | e(! CRCCON1bi t s. CRCWMPT) ;

asm volatile ("repeat 9%9\n nop" : :

CRCCON2bi ts. DW DTH = pol ynoni al O der - 1;

CRCCONL1bi t s. CRCl SEL

0;

_CRCIF = 0;

swi t ch(pol ynomi al Order)

CRCCON2bi ts. DW DTH = current Dat aW dt h- 1;

return crc;

unsi gned | ong Get CRC(unsigned char pol ynomni al O der,

"r"(current Dat aW dt h>>1))

{
case 8:
((unsi gned char) & RCDATL) = 0
whi | e(! _CRCI F)
crc = CRCWDATL&OXO0Of f
br eak;
case 16
CRCDATL = 0
whi l e(! _CRCI F)
crc = CROWDATL;
br eak;
case 32
CRCDATL = 0
CRCDATH = 0;
whi l e(! _CRCI F)
crc = ((unsigned | ong) CROCWDATH<<16) | CRCWDATL
br eak;
defaul t:
}

/1
Il

/1

11
11
/1
11
/1

/1

11
Il
/1
/1

11
/1

/1

11
/1

Il
/1

11
/1

/1

valid values are 8,16, 32
valid val ues are 8,16, 32

wait until data FIFOis enpty

wait until previous data

shifts are done

set data width to pol ynoni a

I engt h

interrupt when all shifts are done

clear interrupt flag

polynomial length is 8 bits
| oad byte

wait until shifts are done
get crc

pol ynomial length is 16 bits
| oad short

wait until shifts are done
get crc

pol ynomi al length is 32 bits
| oad | ong

wait until shifts are done
get crc

restore data width for further
cal cul ati ons

return the final CRC val ue

55 Interrupt Operation

The module generates an interrupt that is configurable by the user for either of the two conditions.
If CRCISEL is ‘1’, an interrupt is generated when the VWORD<4:0> bits make a transition from
avalue of ‘1’ to ‘0. If CRCISEL is ‘0’, an interrupt will be generated when the FIFO is empty and

shifts from the shift buffer are finished.

For more details on interrupts and interrupt priority settings, refer to the “Interrupt Controller”

section in the device data sheet.

© 2009-2018 Microchip Technology Inc.

DS30009729C-page 19

dsPIC33/PIC24 Family Reference Manual

6.0 APPLICATION OF CRC MODULE

The CRC is a robust error checking algorithm in digital communication for messages containing
several bytes or words. After calculation, the checksum is appended to the message and
transmitted to the receiving station. The receiver calculates the checksum with the received
message to verify the data integrity.

6.1 Variations

The 32-bit programmable CRC module can be programmed to shift out either the MSb or LSb
first. MSb first is a popular implementation as employed in XMODEM protocol. In one of the
variations (CCITT protocol) for CRC calculation, the LSb is shifted out first. Discussions on all the
variations are beyond the scope of this document, but several variations of CRC can be
implemented using this module.

The choice of the polynomial length, and the polynomial itself, are application-dependent.
Polynomial lengths of 5, 7, 8, 10, 12, 16 and 32 are normally used in various standard
implementations. The following sections explain the recommended step-by-step procedure for
CRC calculation. Users can decide whether zeros, or any other values, need to be appended to
the message stream. Depending on the application, the user may decide whether any value
needs to be appended at all.

6.2 Typical Operation

To use the module for a typical CRC calculation:

1. Setthe CRCEN bit to enable the module.
2. Configure the module for the desired operation:
a) Program the desired polynomial using the CRCXOR registers and the PLEN<4:0> bits.
b) Configure the data width and shift direction using the DWIDTH<4:0> and LENDIAN bits.
3. Setthe CRCGO bit to start the calculations.

4. Set the desired CRC initial value in the CRCWDAT registers as described in Section 5.4.3
“CRC Initial Value”.

5. Load all data into the FIFO by writing to the CRCDAT registers as space becomes
available (the CRCFUL bit must be zero before the next data loading).

6. Wait until the data FIFO is empty (CRCMPT bit is set).
7. Read the CRC result as described in Section 5.4.4 “CRC Result”.

DS30009729C-page 20

© 2009-2018 Microchip Technology Inc.

32-Bit Programmable Cyclic Redundancy Check (CRC)

Example 6-1 through Example 6-10 show typical code for different combinations of polynomial
length, data width, shift direction and CRC Engine modes.

Example 6-1: CRC-SMBus (8-Bit Polynomial with 32-Bit Data, Big-Endian, MOD bit = 1)

/1 This macro is used to swap bytes for big endian
#define Swap(x) __extension__({ \
unsigned long __ x = (x), __v; \
asm ("wsbh 9%®,%;\n\t" \
"rotr 99, 16" \
"=d" o (__v) \
tdt (Lx))s N
v; \

9]

/1 ASCI| bytes "12345678"

vol atile unsigned char __attribute_ ((aligned(4))) nessage[] ={'1,'2",'3,'4" ,'5",'6",'7",'8"};
vol atil e unsi gned char crcResult CRCSMBUS = O0;

i nt main (void)

{
unsigned | ong* pointer;
unsi gned short |ength;
unsigned |ong data;

/1 standard CRC- SMBUS

#def i ne CRCSMBUS_PCLYNOM AL ((unsi gned | ong) 0x00000007)
#def i ne CRCSMBUS_SEED VALUE ((unsigned | ong) 0x00000000) // direct initial value

CRCCON = 0;
CRCCONbi ts. MOD = 1; /] alternate node
CRCCONbits. ON = 1; /1 enable CRC
CRCCONbi ts. LENDI AN = 0; /1 big endian
CRCCONbi ts. CRCI SEL = 0; /1 interrupt when all shifts are done
CRCCONbi ts. DW DTH = 32-1; /1 32-bit data width
CRCCONbi ts. PLEN = 8-1; /1 8-bit polynom al order
CRCXOR = CRCSMBUS_POLYNOM AL; /1 set pol ynom al
CRCWDAT = CRCSMBUS_SEED VALUE; /1 set initial value
CRCCONbi ts. CRCGO = 1; /] start CRC cal cul ation
poi nter = (unsigned | ong*)nessage;
length = sizeof (nessage)/si zeof (unsi gned | ong);
whi | e(1)
{
whi | e(CRCCONbi t s. CRCFUL) ; /1 wait if FIFOis full
data = *poi nter ++; /1l load fromlittle endian
data = Swap(data); /'l swap bytes for big endian
I engt h--;
if(length == 0)
{
br eak;
}
CRCDAT = dat a; /1 32-bit word access to FIFO
}
CRCCONbi t s. CRCGO = 0; /1 suspend CRC cal cul ation
| FSOCLR = _| FSO_CRCI F_MASK; /1 clear the interrupt flag
CRCDAT = data; /'l wite last data into FI FO
CRCCONbi ts. CRCGO = 1; /1 resume CRC cal cul ation
whi | e(!'l FSObi ts. CRCI F); /1 wait until shifts are done

crcResul t CRCSMBUS = (unsi gned char) CRCWDAT&O0xO0Of f ; /1 get CRC result (rmust be OxC7)

while(1);
return 1;

© 2009-2018 Microchip Technology Inc. DS30009729C-page 21

dsPIC33/PIC24 Family Reference Manual

Example 6-2:

CRC-SMBus (8-Bit Polynomial with 32-Bit Data, Little-Endian, MOD bit = 0)

/1 ASCI| bytes "12345678"
vol atile

vol atil e unsigned char crcResul t CRCSMBUS = O;
int mai n (voi d)

{

unsi gned short* poi nter;

unsi gned short | engt h;

unsi gned short dat a_hi gh;

unsi gned short dat a_| ow,

/'l standard CRC- SMBUS

#defi ne CRCSMBUS_POLYNOM AL

» ((unsi gned short)0x0007)
#defi ne CRCSMBUS_SEED VALUE

((unsi gned short) 0x0000)//

CRCCON1 = O0;
CRCCON2 = O0;
CRCCON1bi ts. CRCEN = 1; /1
CRCOONLbi ts. LENDI AN = 0; I/
CRCOONLbi ts. CRO SEL = 0; /1
CROCON2bi ts. DWDTH = 32-1; I
CRCCON2bi ts. PLEN = 8-1; /1
CRCCONlbi ts. CRCGO = 1; /1
CRCXORL = CRCSMBUS_POLYNOM AL; I/
CRCXORH = 0;
CRCWDATL = CRCSMBUS_SEED VALUE; I/
CRCWDATH = 0;
pointer = (unsigned short*)nessage; /1
I ength = sizeof (nmessage)/sizeof (unsigned | ong);
whi | e(l engt h--)
{
whi | e(CRCCONLbi t s. CRCFUL) ; /1
data_l ow = *pointer++; /1
data_hi gh = *poi nter ++;
asm volatile ("swap 9®" : "+r"(data_low)); //
asm volatile ("swap 9B" : "+r"(data_high));
CRCDATL = dat a_hi gh; /1
CRCDATH = dat a_I ow, /1
}
whi | e(! CRCCONLbi t s. CRCMPT) ; I/
/1
asm volatile ("repeat #16-#2\n nop"); /1
CRCCON2bi ts. DW DTH = 8-1; /1
/1
_CRCIF = 0; /1
/1
((unsi gned char) &CRCDATL) = O; /1
while(! _CRCIF); /1
cr cResul t CRCSMBUS = CRCWDATL&OxO0Of f ; I/
while(1);
return 1;

unsigned char __attribute_ ((aligned(2))) message[] =

{v,'2,'3,"'4,'5",'6",'7,"'8},;

FEEEEEEEEE b i e rrr i rd

FEEEEEEEEEE i b i b i rd

non-direct of 0x00

enabl e CRC
bi g endi an
interrupt when all
32-bit data width
8-bit pol ynom al order
start CRC cal cul ation

shifts are done

set pol ynom al

set initial value

cal cul ate CRC

if FIFOis full

wai t

load fromlittle endian

swap bytes for big endian

32-bit word access to FIFO
swap 16-bit words for big endian

wait until FIFOis enpty

wait until previous data shifts are done
16 cycles maxi mum for 32-bit data width

8-bit

switch data width to polynom al |ength

clear the interrupt flag
dummy data to shift out the CRC result

byte access to FIFO

wait until shifts are done
get CRC result (nust be 0xC7)

DS30009729C-page 22

© 2009-2018 Microchip Technology Inc.

32-Bit Programmable Cyclic Redundancy Check (CRC)

Example 6-3:

CRC-16 (16-Bit Data with 32-Bit Polynomial, Little-Endian, MOD bit = 1)

/1 ASCI| bytes "87654321"

vol atile

vol atil e unsigned short crcResultCRCl6 = O;

i nt

{

mai n (void)

unsi gned short* poi nter;
unsi gned short | engt h;
unsi gned short dat a;

/'l standard CRC- 16

#define CRC16_POLYNOM AL ((unsigned | ong) 0x00008005)

#define CRCL6_SEED VALUE ((unsigned | ong) 0x00000000)

CRCCON = 0;

CRCCONbi ts. MOD = 1;
CRCCONbi ts.ON = 1;
CRCCONbi t s. CRCI SEL

= 0;
CRCCONbi t s. LENDI AN = 1;
CRCCONbi ts. DWDTH = 16-1;

CRCCONbi ts. PLEN = 16-1;
CRCXOR = CRC16_POLYNOM AL;
CROWDAT = CRC16_SEED VALUE;
CRCOONbi ts. CRORO = 1;

poi nter = (unsigned short*)nessage;

I ength = sizeof (message)/si zeof (unsi gned short);

whi | e(1)
{
whi | e(CRCCONbi t s. CRCFUL) ;
data = *poi nter ++;
| engt h- -;
if(length == 0)
{

}
((unsigned short)&RCDAT) = dat a;

br eak;

}

CRCCONbi t s. CRCGO = 0;

| FSOCLR = _| FSO_CRCl F_MASK;

((unsi gned short)&RCDAT) = dat a;
CRCCONbi t s. CRCGO = 1,

whi | e(! I FSObi ts. CRCI F);

crcResul t CRC16 = (unsigned short) CROVWDAT;

whil e(1);
return 1;

/1

11
11

/1

/1
Il
Il
/1
11
Il

unsi gned short nessage[] = {0x3738, 0x3536, 0x3334, 0x3132};

direct initial value

al ternate node
enabl e CRC

interrupt when all shifts are done

little endian

16-bit data width
16-bit pol ynom al order
set pol ynom al

set initial value

start CRC cal cul ation

wait if FIFOis full
| oad data

16-bit word access to FIFO

suspend CRC cal cul ation

clear the interrupt flag

wite last data into FI
resume CRC cal cul ation
wait until shifts are d
get CRC result (must be

FO

one
0XE716)

© 2009-2018 Microchip Technology Inc.

DS30009729C-page 23

dsPIC33/PIC24 Family Reference Manual

Example 6-4:

CRC-16 (16-Bit Data, 16-Bit Polynomial, Little-Endian, MOD bit = 0)

/1 ASCI| bytes "87654321"
vol atile unsigned short messagel]

vol atile unsigned short crcResultCRCl6 = O;

int nmai n (voi d)

{

unsi gned short* poi nter;
unsi gned short | engt h;
unsi gned short dat a;

/'l standard CRC-16

CRCCON1
CRCCON2

0;
0;

CRCCON1bi t s. CRCEN
CRCCON1bi t s. CRCI SEL
CRCCON1bi t s. LENDI AN
CRCCON2bi t s. DW DTH
CRCCON2bi t's. PLEN
CRCCON1bi t s. CRCGO

CRCXORL

CRC16_POLYNOM AL;
CRCXORH ;

0;

CRCWDATL
CRCVWDATH

CRC16_SEED VALUE;
0;

poi nter = (unsigned short*)nessage;
length =

whi | e(l engt h--)
whi | e(CRCCONLbi ts. CRCFUL) ;
data = *poi nter ++;
CRCDATL = dat a;
whi | e(CRCCONLbi t's. CRCFUL) ;
CRCCON1bi t s. CRCGO = 0;

_CROF =0;

CRCDATL

0;

CRCCON1bi ts. CRCGO = 1;

while(! _CRC F);

crcResul t CRC16 = CRCWDATL,;
while(1);

return 1;

Il

/1

/1

11

/1

11

/1

11

/1

11

/1

/1

Il

= {0x3738, 0x3536, 0x3334, 0x3132};

R NN NN NNy

R NN NNy
#define CRCL6_PCOLYNOM AL ((unsigned short)0x8005)
#define CRCL16_SEED VALUE ((unsigned short)0x0000) // non-direct of 0x0000

enabl e CRC
interrupt when all
little endian
16-bit data width
16-bit pol ynom al order
start CRC cal cul ation

shifts are done

set pol ynom al
set initial value

cal cul ate CRC

si zeof (message) / si zeof (unsi gned short);

wait if FIFOis full

| oad data

16-bit word access to FIFO

wait if FIFOis full

suspend CRC cal culation to clear interrupt flag
clear interrupt flag

| oad dummy data to shift out the CRC result
data wi dth nust be equal to polynomal |ength
resune CRC cal cul ation

wait until shifts are done

get CRC result (nust be OxE716)

DS30009729C-page 24

© 2009-2018 Microchip Technology Inc.

32-Bit Programmable Cyclic Redundancy Check (CRC)

Example 6-5: CRC-CCITT (16-Bit Polynomial with 16-Bit Data, Big-Endian, MOD bit = 1)

// This macro is used to swap bytes for big endian
#define Swap(x) __extension__ ({ \

unsigned long _ x = (x), __v; \
asm ("wsbh 99,9%;\n\t" \
"=d" (__v) \
td (X)) N
v\
b

/1 ASCI| bytes "87654321"
vol atile unsigned short nessage[] = {0x3738, 0x3536, 0x3334, 0x3132};
vol atile unsigned short crcResult CRCCClI TT = 0;

int nmai n (voi d)

{

unsi gned short* poi nter;
unsi gned short | engt h;
unsi gned short dat a;

/'l standard CRC-CCITT

#define CROCCI TT_PCLYNOM AL ((unsigned | ong)0x00001021)
#define CRCCC TT_SEED VALLE ((unsigned | ong) OXO000FFFF) // direct initial value

CRCCON = 0;
CRCCONbi ts. MOD = 1; /1 alternate node
CRCCONbits. ON = 1; /'l enable CRC
CRCCONbi ts. CRCI SEL = 0; // interrupt when all shifts are done
CRCCONbi ts. LENDI AN = 0; /1 big endian
CRCCONbi ts. DV DTH = 16-1; /1 16-bit data width
CRCCONbi ts. PLEN = 16-1; /1 16-bit polynom al order
CRCXOR = CRCCCI TT_POLYNOM AL; /'l set pol ynom al
CRCWDAT = CRCCCI TT_SEED VALUE; /'l set initial value
CRCCONbi ts. CRCXO = 1; /1 start CRC cal cul ation
poi nter = (unsigned short*)nessage;
length = sizeof (message)/si zeof (unsi gned short);
whi |l e(1)
{

whi | e(CRCCONbi ts. CRCFUL) ; /1l wait if FIFOis full

data = *pointer++; // 1oad data

data = Swap(data); // swap bytes for big endian

| ength--;

if(length == 0)

{

br eak;

}

((unsigned short)&RCDAT) = data; /1 16-bit word access to FIFO
}
CRCCONbi t s. CRCQO = 0; /1 suspend CRC cal cul ation
| FSOCLR = _I FSO_CRCl F_MASK; // clear the interrupt flag
((unsigned short)&RCDAT) = data; // wite last data into FIFO
CRCCONbi t s. CRCQO = 1; /1 resume CRC cal cul ation
whil e(!l FSObits. CRCIF); /1 wait until shifts are done
crcResul t CRCCCI TT = (unsi gned short) CROWDAT; /1 get CRC result (nust be 0x9B4D)
whil e(1);
return 1,

© 2009-2018 Microchip Technology Inc. DS30009729C-page 25

dsPIC33/PIC24 Family Reference Manual

Example 6-6:

CRC-CCITT (16-Bit Polynomial with 16-Bit Data, Big-Endian, MOD bit = 0)

/1 ASC |

bytes "87654321"

vol atile unsigned short messagel]

vol atile unsigned short crcResultCRCCCITT = 0;
int mai n (void)

{

unsi gned short* poi nter;

unsi gned short | engt h;

unsi gned short dat a;

= {0x3738, 0x3536, 0x3334, 0x3132};

N N N NN NN
/'l standard CRC-CCITT
N N NNy NN NN
#define CROCC TT_POLYNOM AL ((unsi gned short)0x1021)

#define CROOC TT_SEED VALUE ((unsigned short)0x84CF) // non-direct of Oxffff
CRCCONL = O0;
CRCCON2 = 0;
CRCCONlbits. CRCEN = 1; /1
CRCCON1bi ts. CRCI SEL = 0; /1
CRCCONL1bi t s. LENDI AN = 0; I/
CRCCON2bi ts. DWDTH = 16-1; /1
CRCCON2bi t s. PLEN = 16-1; I/
CRCCONlbi ts. CRCGO = 1; /1
CRCXORL = CRCCCI TT_POLYNOM AL; /1
CRCXCRH = 0;
CRCWDATL = CRCCClI TT_SEED VALUE; I/
CRCWDATH = 0;
poi nter = (unsigned short*) message; 11
length = sizeof (nessage)/si zeof (unsi gned short);
whi | e(l ength--)
whi | e(CRCCONLbi t s. CRCFUL) ; /1
data = *poi nter++; /1
asm volatile ("swap 99" "+r"(data)); /1
CRCDATL = dat a; /1
}
whi | e(CRCCONLbi t's. CRCFUL) ; /1
CRCCONL1bi t s. CRCGO = 0; /1
_CRCIF = 0; /1
CRCDATL = 0; /1
/1
CRCCONL1bi ts. CRCGO = 1; /1
while(! _CRCIF); /1
crcResul t CRCCClI TT = CRCOWDATL; I/
while(1);
return 1;

enabl e CRC
interrupt when all
bi g endi an
16-bit data width
16-bit pol ynom al
start CRC cal cul ation

shifts are done
order

set pol ynom al

val ue

set initial

cal cul ate CRC

if FIFOis full

wai t

| oad data

swap bytes for big endian
16 bit word access to FIFO

wait if FIFOis full

suspend CRC cal culation to clear interrupt flag

clear interrupt flag

| oad dummy data to shift out the CRC result
data width nust be equal to pol ynom al |ength

resune CRC cal cul ation

wait until shifts are done

get CRC result (nust be 0x9B4D)

DS30009729C-page 26

© 2009-2018 Microchip Technology Inc.

32-Bit Programmable Cyclic Redundancy Check (CRC)

Example 6-7:

CRC-32 (32-Bit Polynomial with 32-Bit Data, Little-Endian, MOD bit = 1)

/1 ASCI| bytes "12345678"
vol atil e unsigned
/1 function to reverse the bit

char __attribute_ ((aligned(4))) messagel]

order (OPTI ONAL)

unsi gned | ong

ReverseBi t Or der (unsi gned | ong data);

volatile unsigned int crcResultCRC32 = 0;
int mai n(voi d)

{

unsi gned | ong* poi nter;

unsi gned short | engt h;

/'l standard CRC- 32

#define CRC32_POLYNOM AL ((unsigned |ong)0x04C11DB7)
#define CRC32_SEED VALUE ((unsigned | ong) OXFFFFFFFF)

CRCCON = 0;

CRCCONbi ts. MOD = 1;
CRCCONbits. ON = 1,
CRCCONbi t s. CRCI SEL = 0;
CRCCONbi ts. LENDI AN = 1;
CRCCONbi ts. DWDTH = 32-1;
CRCCONbi t s. PLEN = 32-1;
CRCXOR = CRC32_POLYNOM AL,

CRCWDAT = CRC32_SEED VALUE;

CRCCONbi t s. CRCGO = 1;

poi nter = (unsigned | ong*)nessage;

I ength si zeof (message)/ si zeof (unsi gned | ong);
whil e(1)

{

whi | e(CRCCONbi t s. CRCFUL) ;
I engt h--;
if(length
{

}
CRCDAT = *poi nt er ++;

0)

br eak;

}

CRCCONbi t s. CRCGEO = 0;

| FSOCLR = _| FSO_CRCI F_MASK;

CRCDAT = *pointer;

CRCCONbi t s. CRCGO = 1;

whi |l e(!'1 FSObits. CRCI F);

crcResul t CRC32 CRCWDAT;

/1 OPTIONAL reverse CRC value bit order and invert
crcResul t CRC32 = ~ReverseBit Order(crcResul t CRC32);
whil e(1);

return 1;

}

unsi gned
{
unsi gned
unsi gned
unsi gned
unsi gned
maski n 0x80000000
maskout 0x00000001;
for(i=0; i<32; i++)
{

I ong ReverseBit Order (unsigned | ong data)

maski n;
maskout ;
resul t

| ong
| ong
| ong
char i;

0,

i f (dat a&maski n) {
result | = maskout;
}

maskin >>= 1;
maskout <<= 1;

}

return

}

resul t;

= 3,"4,'5,"

{1,222,

direct initial value

al ternate node
enabl e CRC
interrupt when all
little endian
32-bit data width
32-bit polynom al
set pol ynom al

set initial value
start CRC cal cul ation

shifts are done

order

/1 wait if FIFOis full

32-bit word access to FIFO

suspend CRC cal cul ati on
clear the interrupt flag
wite |ast data into FIFO
resunme CRC cal cul ation
wait until shifts are done
get the final CRC result

(must be O0x9AEODAAF)

© 2009-2018 Microchip Technology Inc.

DS30009729C-page 27

dsPIC33/PIC24 Family Reference Manual

Example 6-8: CRC-32 (32-Bit Polynomial with 32-Bit Data, Little-Endian, MOD bit = 0)

/1 ASCI| bytes "12345678"
volatile wunsigned <char _ attribute_ ((aligned(4))) nessage[] = {'1,'2",'3,'4,'5,'6",'7,"'8},

/1 function to reverse the bit order (OPTI ONAL)
unsi gned | ong ReverseBi t Order (unsi gned | ong data);

vol atile wunsigned 1ong crcResultCRC32 = 0;

int nmain(void)

{
unsi gned short* poi nter;
unsi gned short | engt h;

RN NNy

/'l standard CRC 32

RN NN RN NNy
#define CRC32_POLYNOM AL ((unsi gned | ong) 0x04C11DB7)

#define CRC32_SEED VALUE ((unsi gned | ong) Ox46AF6449) /1 non-direct of Oxffffffff

CRCCON1 = 0;
CRCCON2 = 0;
CRCCON1bits. CRCEN = 1; /'l enabl e CRC
CRCCON1bi ts. CRCI SEL = 0; /1 interrupt when all shifts are done
CRCCON1bi ts. LENDI AN = 1; /1 little endian
CRCCON2bi ts. DWDTH = 32-1; /1 32-bit data width
CRCCON2bi t s. PLEN = 32-1; /1 32-bit polynom al order
CRCCON1bi ts. CRCGO = 1; // start CRC cal cul ation
CRCXORL = CRC32_POLYNOM AL&0Ox0000ffff; /1 set polynom al
CRCXORH = CRC32_POLYNOM AL>>16;
CRCWDATL = CRC32_SEED VALUE&Ox0000f fff; /1] set initial value
CRCWDATH = CRC32_SEED VALUE>>16;
poi nter = (unsigned short*)nessage; /1 cal culate CRC
length = sizeof (nessage)/si zeof (unsi gned | ong);
whi | e(l ength--)
{
whi | e(CRCCONLbi t s. CRCFUL) ; /1 wait if FIFOis full
/1 32-bit word access to FIFO
CRCDATL = *poi nt er ++; /1 must be witten first
CRCDATH = *poi nt er ++; /1l must be witten | ast
}
whi | e(CRCCONLbi t's. CRCFUL) ; // wait if FIFOis full

DS30009729C-page 28 © 2009-2018 Microchip Technology Inc.

32-Bit Programmable Cyclic Redundancy Check (CRC)

Example 6-8: CRC-32 (32-Bit Polynomial with 32-Bit Data, Little-Endian, MOD bit = 0) (Continued)
CRCCONL1bi t s. CRCGO = 0; /1 suspend CRC calculation to clear interrupt flag
_CRCIF = 0; /'l clear interrupt flag
CRCDATL = 0; /1 dummy data to shift out the CRC result
CRCDATH = 0;

CRCCONL1bi t s. CRCGO = 1,

while(! _CRC F);

crcResul t ORC32 = ((unsigned | ong) CROWDATH<<16) | CROWDATL;

crcResul t ORC32 = ~ReverseBit O der (crcResul t CRC32) ;

whil e(1);

return 1

}

unsi gned
{
unsi gned
unsi gned
unsi gned
unsi gned

long ReverseBitOrder(unsigned | ong data)
maski n;

long maskout;

long result = 0;

char i;

| ong

maski n
maskout

= 0x80000000
= 0x00000001;
for(i=0
{

i <32; i++)

i f (dat a&maski n){
result | = maskout;

}
maskin >>= 1
maskout <<= 1;

}

return result;

/1l resume CRC cal cul ation

/1l wait until shifts are done

/'l get the final CRC result

/1
/1
/1

OPTI ONAL
reverse CRC value bit order and
invert (nust be O0x9AE0DAAF)

© 2009-2018 Microchip Technology Inc.

DS30009729C-page 29

dsPIC33/PIC24 Family Reference Manual

Example 6-9: Data Width Switching (32-Bit Polynomial, Little-Endian, MOD bit = 1)

/1 ASCI| bytes "12345678"
vol atile unsigned |ong nessagel[] = {0x34333231, 0x38373635};
/1 ASCIl bytes "123"

vol atile unsigned char nessage2[] = {'1', ,'3};
vol atile unsigned |ong crcResultCRC32 = O

i nt mai n(voi d)

{

unsi gned char* poi nt er 8;

unsi gned | ong* poi nt er 32;

unsi gned short | engt h;

#define CORC32_POLYNOM AL ((unsigned | ong) 0x04C11DB7)
#define CRC32_SEED VALUE ((unsigned | ong) OXFFFFFFFF) // direct initial value

CRCCON = 0;
CRCCONbi ts. MOD = 1; // alternate node
CRCCONbi ts. ON = 1; /'l enable CRC
CRCCONbi ts. CRCI SEL = 0; // interrupt when all shifts are done
CRCCONbi ts. LENDI AN = 1; /1 little endian
CRCCONbi ts. DWDTH = 32-1; /1 32-bit data width
CRCCONbi t s. PLEN = 32-1; /1 32-bit polynonial order
CRCXOR = CRC32_PCLYNOM AL; /1 set polynom al
CRCWDAT = CRC32_SEED VALUE; /1l set initial value
CRCCONbi t s. CRCQO = 1; // start CRC cal cul ation
poi nter32 = (unsigned | ong*)nessagel;
I ength = si zeof (nessagel)/ si zeof (unsi gned | ong);
whi | e(1)
{

whi | e(CRCCONbi ts. CRCFUL) ; /1 wait if FIFOis full

I ength--;

if(length == 0)

{

br eak;

}

CRCDAT = *poi nt er 32++; // 32-bit word access to FIFO
}
CRCCONbi t s. CRCQO = 0; /'l suspend CRC cal cul ation
| FSOCLR = _| FSO_CRC F_MASK; // clear the interrupt flag
CRCDAT = *poi nter32; // wite last 32-bit data into FIFO
CRCCONbi ts. CRCXO = 1; /'l resume CRC cal cul ation
whi | e(!'l FSObits. CRCIF); /1 wait until shifts are done
CRCCONbi ts. DWDTH = 8-1; Il switch the data width to 8-bit
poi nter8 = (unsi gned char*)nessage2; /1 calculate CRC
I engt h = si zeof (nmessage2)/ si zeof (unsi gned char);
whi | e(l ength--)
{

whi | e(CRCCONbi ts. CRCFUL) ; Il wait if FIFOis full

I ength--;

if(length == 0)

{

br eak;

}

((unsigned char) & RCDAT) = *pointer8++; // byte access to FIFO
}
CRCCONbi t s. CRCQO = 0; /| suspend CRC cal cul ation
| FSOCLR = _| FSO_CRC F_MASK; /l clear the interrupt flag
((unsigned char) &RCDAT) = *poi nter8; /Il wite last 8-bit data into FIFO
CRCCONbi ts. CRCXO = 1; /1 resume CRC cal cul ation
whi | e(!'l FSObits. CRCIF); /1 wait until shifts are done
crcResul t CRC32 = CRCWDAT; /1 get the final CRC result (nmust be OxE092727E)
while(1);
return 1,

DS30009729C-page 30 © 2009-2018 Microchip Technology Inc.

32-Bit Programmable Cyclic Redundancy Check (CRC)

Example 6-10: Data Width Switching (32-Bit Polynomial, Little-Endian, MOD bit = 0)
/1 ASCI | bytes "12345678"
vol atil e unsigned |ong nmessagel[] = {0x34333231, 0x38373635};
/!l ASCI| bytes "123"
vol atil e unsigned char nmessage2[] = {'1','2",'3"};
vol atile unsigned 1ong crcResul t CRC32 = 0;
int mai n(voi d)
{
unsi gned char* poi nter8;
unsi gned short* poi nt er 16;
unsi gned short | engt h;
#define CRC32_POLYNOM AL ((unsigned | ong) 0x04C11DB7)
#define CRC32_SEED VALUE ((unsigned | ong) Ox46AF6449) // non-direct of Oxffffffff
CRCCONL = O;
CRCCON2 = 0;

{

asm

{

CRCCONL1bi t s. CRCEN
CRCCONL1bi t s. LENDI AN
CRCCON2bi t s. DW DTH
CRCCON2bi ts. PLEN
CRCCONL1bi t s. CRCGO

CRCXORL =
CRCXORH =

CRCWDATL
CRCVWDATH

pointer16 =
I ength =
whi | e(l engt h--)

CRCDATL
CRCDATH =

pointer8 =
I ength =
whi | e(l ength--)

1
1
32-1;
32-1;
1

CRC32_POLYNOM AL&0x0000f fff;
CRC32_POLYNOM AL>>16;

CRC32_SEED_VALUE&OX0000f f f ;
CRC32_SEED VALUE>>16;

(unsi gned short*)nessagel;

whi | e(CROCONLbi t s. CRCFUL) ;

*poi nt er 16++;
*poi nt er 16++;

whi | e(! CRCCONLbi t s. CRCVPT) ;

vol atile ("repeat #16-#2\n nop");

CRCCON2bi ts. DW DTH = 8-1;

(unsi gned char*) message2;
si zeof (message2)/ si zeof (unsi gned char);

si zeof (messagel)/ si zeof (unsi gned | ong);

/1
11
Il
/1

/1

/1

/1

11
/1
11
11

11
/1
11

/1

enabl e CRC

little endian

32-bit data width
32-bit polynom al order
start CRC cal cul ation

set pol ynomi al

set initial value

cal cul ate CRC

wait if FIFOis full
32-bit word access to FIFO
must be witten first
must be witten |ast

wait until previous
data shifts are done
wait until FIFOis enpty

16 cycles maxi mum for 32-bit data
switch the data width to 8-bit

cal cul ate CRC

© 2009-2018 Microchip Technology Inc.

DS30009729C-page 31

dsPIC33/PIC24 Family Reference Manual

Example 6-10: Data Width Switching (32-Bit Polynomial, Little-Endian, MOD bit = 0) (Continued)

whi | e(CROCONLbi t s. CRCFUL) ;

((unsi gned char) & RCDATL) = *poi nt er 8++;
}
whi | e(! CRCCONLbi t s. CRCVPT) ;
asm vol atile ("repeat #4-#2\n nop");

CRCCON2bi ts. DW DTH = 32-1;

CRCDATL
CRCDATH

0;
0;

asm volatile ("repeat #2+#16-#2\n nop");

crcResul t ORC32 = ((unsigned | ong) CRONDATH<<16) | CRONDATL;

while(l);
return 1,

Il

/1

/1

11
/1

11

/1

11

/1
11
11
/1

11

wait if FIFOis full

byte access to FIFO

wait until FIFOis enpty

wait until previous data shifts are done
4 cycles maximumfor 8-bit data

switch the data width to pol ynomal |ength
32-bit

dummy data to shift out the CRC result

delay 2 cycles to nove data from FI FO
to shift buffer

and 16 cycles for 32-bit word to shift out
the final result

get the final CRC result
(must beOxE092727E)

DS30009729C-page 32

© 2009-2018 Microchip Technology Inc.

32-Bit Programmable Cyclic Redundancy Check (CRC)

7.0 OPERATION IN POWER SAVE MODES
7.1 Sleep Mode

If Sleep mode is entered while the module is operating, the module is suspended in its current
state until clock execution resumes.

7.2 Idle Mode
To continue full module operation in Idle mode, the SIDL bit must be cleared prior to entry into
the mode.

If SIDL = 1, the module behaves the same way as it does in Sleep mode; pending interrupt events
will be passed on, even though the module clocks are not available.

© 2009-2018 Microchip Technology Inc. DS30009729C-page 33

dsPIC33/PIC24 Family Reference Manual

8.0 RELATED APPLICATION NOTES

This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the dsPIC33/PIC24 device families, but the
concepts are pertinent and could be used with modification and possible limitations. The current
application notes related to the 32-Bit Programmable Cyclic Redundancy Check (CRC) are:

Title

No related application notes at this time.

Application Note #

Note: Please visit the Microchip web site (www.microchip.com) for additional application
notes and code examples for the dsPIC33/PIC24 families of devices.

DS30009729C-page 34

© 2009-2018 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com

32-Bit Programmable Cyclic Redundancy Check (CRC)

9.0 REVISION HISTORY
Revision A (April 2009)

This is the initial released revision of this document.

Revision B (August 2013)

This revision includes the following changes:

» Changed the document name from PIC24F Family Reference Manual to dsPIC33/PIC24
Family Reference Manual.

* Revised description of CRCISEL in Register 3-1.

» Added additional information to Section 5.2 “Data Shift Direction”.

» Added additional information to Section 5.3 “ Data FIFO”.

» Made corrections to Figure 5-1, Figure 5-2 and Figure 5-3.

* Revised Section 5.4 “CRC Engine Interface”.

* Revised Section 5.5 “Interrupt Operation” and added code examples.

* Revised Section 6.2 “Typical Operation” and added code examples.

« Minor grammatical corrections throughout the document.

Revision C (May 2018)

This revision includes the following changes:

* Revised Table 3-1.

« Added note to Register 3-1.

« Added note to Figure 4-1.

« Removed Figure 5-1, Figure 5-2 and Figure 5-3.

* Revised Section 5.4.3 “CRC Initial Value”, Section 5.4.4 “CRC Result” and Section 5.5
“Interrupt Operation”.

» Revised title for Example 5-3,

© 2009-2018 Microchip Technology Inc. DS30009729C-page 35

dsPIC33/PIC24 Family Reference Manual

NOTES:

DS30009729C-page 36 © 2009-2018 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicity or otherwise, under any Microchip
intellectual property rights unless otherwise stated.

Microchip received 1ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company'’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

= ISO/TS 16949 =

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR,
AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory,
CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ,
KeeLoQ logo, Kleer, LANCheck, LINK MD, maXStylus,
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip
Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST
Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered
trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

ClockWorks, The Embedded Control Solutions Company,
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,
mTouch, Precision Edge, and Quiet-Wire are registered
trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, Anyln, AnyOut, BodyCom, chipKIT, chipKIT logo,
CodeGuard, CryptoAuthentication, CryptoCompanion,
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,
KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,
PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple
Blocker, SAM-ICE, Serial Quad 1/0, SMART-I.S., SQI,
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and
ZENA are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip
Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology

Germany Il GmbH & Co. KG, a subsidiary of Microchip Technology
Inc., in other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2009-2018, Microchip Technology Incorporated, All Rights
Reserved.

ISBN: 978-1-5224-2981-4

© 2009-2018 Microchip Technology Inc.

DS30009729C-page 37

MICROCHIP

Worldwide Sales and Service

AMERICAS

Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support

Web Address:
www.microchip.com

Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN

Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC

Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing

Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongging
Tel: 86-23-8980-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing

Tel: 86-25-8473-2460
China - Qingdao

Tel: 86-532-8502-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenyang
Tel: 86-24-2334-2829

China - Shenzhen
Tel: 86-755-8864-2200

China - Suzhou
Tel: 86-186-6233-1526

China - Wuhan

Tel: 86-27-5980-5300
China - Xian

Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore

Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei

Tel: 886-2-2508-8600

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79
Germany - Garching

Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-67-3636

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7289-7561

Poland - Warsaw

Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham

Tel: 44-118-921-5800
Fax: 44-118-921-5820

© 2009-2018 Microchip Technology Inc.

DS30009729C-page 38

10/25/17

http://support.microchip.com
http://www.microchip.com

	32-Bit Programmable Cyclic Redundancy Check (CRC)
	Highlights
	1.0 Introduction
	Figure 1-1: Simplified Block Diagram of the Programmable CRC Generator

	2.0 CRC Overview
	Equation 2-1:

	3.0 CRC Registers
	3.1 Register Maps
	Table 3-1: Special Function Registers Associated with the Programmable CRC Module(1)
	Register 3-1: CRCCON1: CRC Control Register 1
	Register 3-2: CRCCON2: CRC Control Register 2
	Register 3-3: CRCXORL: CRC XOR Low Register
	Register 3-4: CRCXORH: CRC XOR High Register
	Register 3-5: CRCDATL: CRC Data Low Register
	Register 3-6: CRCDATH: CRC Data High Register
	Register 3-7: CRCWDATL: CRC Shift Low Register
	Register 3-8: CRCWDATH: CRC Shift High Register

	4.0 CRC Engine
	4.1 Generic CRC Engine
	Figure 4-1: CRC Shift Engine Detail

	5.0 Control Logic
	5.1 Polynomial Interface
	Equation 5-1:
	Table 5-1: CRC Setup Examples for 16 and 32-Bit Polynomials

	5.2 Data Shift Direction
	5.3 Data FIFO
	5.4 CRC Engine Interface
	5.4.1 FIFO to CRC Shift Engine
	5.4.2 Number of Clock Cycles to Shift Data
	5.4.3 CRC Initial Value
	Example 5-1: Software Routine to Calculate the Non-Direct Initial Value
	Example 5-2: Calculating the Non-Direct Initial Value (MOD bit = 0)
	Example 5-2: Calculating the Non-Direct Initial Value (MOD bit = 0) (Continued)

	5.4.4 CRC Result
	Example 5-3: Routine to Get the Final CRC Result in Legacy Mode (MOD bit = 0)

	5.5 Interrupt Operation

	6.0 Application of CRC Module
	6.1 Variations
	6.2 Typical Operation
	Example 6-1: CRC-SMBus (8-Bit Polynomial with 32-Bit Data, Big-Endian, MOD bit = 1)
	Example 6-2: CRC-SMBus (8-Bit Polynomial with 32-Bit Data, Little-Endian, MOD bit = 0)
	Example 6-3: CRC-16 (16-Bit Data with 32-Bit Polynomial, Little-Endian, MOD bit = 1)
	Example 6-4: CRC-16 (16-Bit Data, 16-Bit Polynomial, Little-Endian, MOD bit = 0)
	Example 6-5: CRC-CCITT (16-Bit Polynomial with 16-Bit Data, Big-Endian, MOD bit = 1)
	Example 6-6: CRC-CCITT (16-Bit Polynomial with 16-Bit Data, Big-Endian, MOD bit = 0)
	Example 6-7: CRC-32 (32-Bit Polynomial with 32-Bit Data, Little-Endian, MOD bit = 1)
	Example 6-8: CRC-32 (32-Bit Polynomial with 32-Bit Data, Little-Endian, MOD bit = 0)
	Example 6-8: CRC-32 (32-Bit Polynomial with 32-Bit Data, Little-Endian, MOD bit = 0) (Continued)
	Example 6-9: Data Width Switching (32-Bit Polynomial, Little-Endian, MOD bit = 1)
	Example 6-10: Data Width Switching (32-Bit Polynomial, Little-Endian, MOD bit = 0)
	Example 6-10: Data Width Switching (32-Bit Polynomial, Little-Endian, MOD bit = 0) (Continued)

	7.0 Operation in Power Save Modes
	7.1 Sleep Mode
	7.2 Idle Mode

	8.0 Related Application Notes
	9.0 Revision History
	Worldwide Sales and Service

