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1.0 INTRODUCTION

The 32-Bit Programmable Cyclic Redundancy Check (CRC) module is a software-configurable 
CRC generator. The module provides a hardware implemented method of quickly generating 
checksums for various communication and security applications. The CRC engine calculates the 
CRC checksum without CPU intervention; moreover, it is much faster than the software 
implementation.

The programmable CRC generator provides the following features:

• User-programmable CRC polynomial equation, up to 32 bits

• Programmable shift direction (little or big-endian)

• Independent data and polynomial lengths

• Configurable interrupt output

• Data FIFO

The programmable CRC generator module can be divided into two parts: the control logic and 
the CRC engine. The control logic incorporates a register interface, data FIFO, an interrupt 
generator and a CRC engine interface. The CRC engine incorporates a CRC calculator, which 
is implemented using a serial shifter with XOR function. A simplified block diagram is shown in 
Figure 1-1.

Figure 1-1: Simplified Block Diagram of the Programmable CRC Generator

Note: This family reference manual section is meant to serve as a complement to device 
data sheets. Depending on the device variant, this manual section may not apply to 
all dsPIC33/PIC24 devices.

Please consult the note at the beginning of the “32-Bit Programmable Cyclic 
Redundancy Check (CRC) Generator” chapter in the current device data sheet to 
check whether this document supports the device you are using.

Device data sheets and family reference manual sections are available for 
download from the Microchip Worldwide Web site at: http://www.microchip.com
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 32-Bit Programmable Cyclic Redundancy Check (CRC)
2.0 CRC OVERVIEW

The checksum is a unique number associated with a message, or a particular block of data, 
containing several bytes. Whether it is a data packet for communication, or a block of data stored 
in memory, a piece of information, such as checksum, helps to validate it before processing. The 
simplest way to calculate a checksum is to add together all the data bytes present in the 
message. However, this method of checksum calculation fails badly when the message is 
modified by inverting or swapping groups of bytes. Also, it fails when null bytes are added 
anywhere in the message. 

The Cyclic Redundancy Checksum (CRC) is a more complicated, but robust, error checking 
algorithm. The main idea behind the CRC algorithm is to treat a message as a binary bit stream 
and divide it by a fixed binary number. The remainder from this division is considered to be the 
checksum. Like in division, the CRC calculation is also an iterative process. The only difference 
is that these operations are done on modulo arithmetic, based on mod 2. For example, division 
is replaced with the XOR operation (i.e., subtraction without carry). The CRC algorithm uses the 
term, polynomial, to perform all of its calculations. The divisor, dividend and remainder that are 
represented by numbers are termed as: polynomials with binary coefficients. For example, the 
number, 25h (11001), is represented as:

Equation 2-1:

In order to perform the CRC calculation, a suitable divisor is first selected. This divisor is called 
the generator polynomial. Since CRC is used to detect errors, a generator polynomial of a 
suitable length needs to be chosen for a given application, as each polynomial has different error 
detection capabilities. Some polynomials are widely used for many applications, but the error 
detecting capabilities of any particular polynomial are beyond the scope of this reference section. 

The CRC algorithm is straightforward to implement in software. However, it requires considerable 
CPU bandwidth to implement the basic requirements, such as shift, bit test and XOR. Moreover, 
CRC calculation is an iterative process and additional software overhead for data transfer 
instructions puts enormous burden on the MIPS requirement of a microcontroller. In contrast, the 
software-configurable CRC hardware module facilitates a fast CRC checksum calculation with 
minimal software overhead.

(1 * x4) + (1 * x3) + (0 * x2) + (0 * x1) + (1 * x0) or x4 + x3 + x0
© 2009-2018 Microchip Technology Inc.  DS30009729C-page 3
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3.0 CRC REGISTERS

Different registers associated with the CRC module are described in detail in this section. There 
are eight registers in this module. These are mapped to the data RAM space as Special Function 
Registers (SFRs) in dsPIC33/PIC24 devices:

• CRCCON1: CRC Control Register 1

• CRCCON2: CRC Control Register 2

• CRCXORL: CRC XOR Low Register

• CRCXORH: CRC XOR High Register

• CRCDATL: CRC Data Low Register

• CRCDATH: CRC Data High Register

• CRCWDATL: CRC Shift Low Register

• CRCWDATH: CRC Shift High Register

The CRCCON1 (Register 3-1) and CRCCON2 (Register 3-2) registers control the operation of 
the module, and configure various settings. The CRCXORL/H registers (Register 3-3 and 
Register 3-4) select the polynomial terms to be used in the CRC equation. The CRCDATL/H 
and CRCWDATL/H registers are each register pairs that serve as buffers for the double-word 
input data and CRC processed output, respectively.
DS30009729C-page 4  © 2009-2018 Microchip Technology Inc.
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3.1 Register Maps

A summary of the Special Function Registers associated with the dsPIC33/PIC24 32-Bit Progr
module is provided in Table 3-1.The corresponding registers appear after the summaries, 
register. 

ble 3-1: Special Function Registers Associated with the Programmable CRC Module(1)

ile Name Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4

CCON1 CRCEN — CSIDL VWORD<4:0> CRCFUL CRCMPT CRCISEL CRCGO L

CCON2 — — — DWIDTH<4:0> — — —

CXORL X<15:1>

CXORH X<31:16>

CDATL DATA<15:0>

CDATH DATA<31:16>

CWDATL SDATA<15:0>

CWDATH SDATA<31:16>

gend: — = unimplemented, read as ‘0’.

te 1: Refer to the specific device data sheet for memory map details. 

2: This bit is not available on all devices. Refer to the specific device data sheet for details.
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Register 3-1: CRCCON1: CRC Control Register 1 

R/W-0 U-0 R/W-0 R-0 R-0 R-0 R-0 R-0

CRCEN — CSIDL VWORD<4:0>

bit 15 bit 8

R-0 R-1 R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0

CRCFUL CRCMPT CRCISEL CRCGO LENDIAN MOD(1) — —

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 CRCEN: CRC Enable bit

1 = Enables module
0 = Disables module

bit 14 Unimplemented: Read as ‘0’

bit 13 CSIDL: CRC Stop in Idle Mode bit

1 = Discontinues module operation when device enters Idle mode
0 = Continues module operation in Idle mode

bit 12-8 VWORD<4:0>: Counter Value bits

Indicates the number of valid words in the FIFO. Has a maximum value of 16 when DWIDTH<4:0>  7 
(data words, 8-bit wide or less). Has a maximum value of 8 when DWIDTH<4:0> 15(data words from 9 
to 16-bit wide). Has a maximum value of 4 when DWIDTH<4:0> 31(data words from 17 to 32-bit wide).

bit 7 CRCFUL: CRC FIFO Full bit

1 = FIFO is full
0 = FIFO is not full

bit 6 CRCMPT: CRC FIFO Empty bit

1 = FIFO is empty
0 = FIFO is not empty

bit 5 CRCISEL: CRC Interrupt Selection bit

1 = Interrupt on FIFO empty; final word of data is still shifted through CRC
0 = Interrupt on shift complete (FIFO is empty and no data is shifted from the shift buffer)

bit 4 CRCGO: Start CRC bit

1 = Starts CRC serial shifter; clearing the bit aborts shifting
0 = CRC serial shifter is turned off

bit 3 LENDIAN: Data Word Little Endian Configuration bit

1 = Data word is shifted into the CRC, starting with the LSb (little-endian); reflected input data
0 = Data word is shifted into the CRC, starting with the MSb (big-endian); non-reflected input data

bit 2 MOD: CRC Operating Mode Select bit(1)

1 = Alternate mode: Shift buffer data is XORed with CRC shift engine after bit n
0 = Legacy mode: Shift buffer data is XORed with CRC shift engine before bit 0

bit 1-0 Unimplemented: Read as ‘0’

Note 1: This bit is not available on all devices. Refer to the specific device data sheet for details.
DS30009729C-page 6  © 2009-2018 Microchip Technology Inc.
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Register 3-2: CRCCON2: CRC Control Register 2 

U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

— — — DWIDTH<4:0>

bit 15 bit 8

U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

— — — PLEN<4:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as ‘0’

bit 12-8 DWIDTH<4:0>: Data Word Width Configuration bits

Configures the width of the data word (Data Word Width – 1).

bit 7-5 Unimplemented: Read as ‘0’

bit 4-0 PLEN<4:0>: Polynomial Length Configuration bits

Configures the length of the polynomial (Polynomial Length – 1).
© 2009-2018 Microchip Technology Inc.  DS30009729C-page 7
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Register 3-3: CRCXORL: CRC XOR Low Register 

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

X<15:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0

X<7:1> —

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-1 X<15:1>: XOR of Polynomial Term xn Enable bits

bit 0 Unimplemented: Read as ‘0’

Register 3-4: CRCXORH: CRC XOR High Register 

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

X<31:24>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

X<23:16>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 X<31:16>: XOR of Polynomial Term xn Enable bits
DS30009729C-page 8  © 2009-2018 Microchip Technology Inc.
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Register 3-5: CRCDATL: CRC Data Low Register 

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

DATA<15:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

DATA<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 DATA<15:0>: CRC Input Data bits

Writing to this register fills the FIFO; reading from this register returns ‘0’.

Register 3-6: CRCDATH: CRC Data High Register 

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

DATA<31:24>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

DATA<23:16>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 DATA<31:16>: CRC Input Data bits

Writing to this register fills the FIFO; reading from this register returns ‘0’.
© 2009-2018 Microchip Technology Inc.  DS30009729C-page 9
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Register 3-7: CRCWDATL: CRC Shift Low Register 

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

SDATA<15:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

SDATA<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 SDATA<15:0>: CRC Shift Register bits

Writing to this register writes to the CRC Shift register through the CRC write bus. Reading from this 
register reads the CRC read bus.

Register 3-8: CRCWDATH: CRC Shift High Register 

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

SDATA<31:24>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

SDATA<23:16>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 DATA<31:16>: CRC Shift Register bits

Writing to this register writes to the CRC Shift register through the CRC write bus. Reading from this 
register reads the CRC read bus.
DS30009729C-page 10  © 2009-2018 Microchip Technology Inc.
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4.0 CRC ENGINE 

4.1 Generic CRC Engine 

The CRC engine is a serial shifting CRC calculator, configurable though multiplexer settings. The 
engine can also be configured as to where shift buffer data is introduced using the MOD bit 
(CRCCON1<2>). A simplified diagram of the CRC shift engine is shown in Figure 4-1.

The CRC algorithm uses a simplified form of arithmetic process, using the XOR operation 
instead of binary division. The coefficients of the generator polynomial are programmed with 
the CRCXOR registers. Writing a ‘1’ into a location enables XORing of that element in the 
polynomial. The length of the polynomial is programmed using the PLEN<4:0> bits in the 
CRCCON2 register (CRCCON2<4:0>). The value of PLEN<4:0> signals the length of the 
polynomial and switches a multiplexer to indicate the tap from which the feedback originated.

The result of the CRC calculation is obtained by reading the CRCWDAT registers.

Figure 4-1: CRC Shift Engine Detail

CRCWDATH, CRCWDATL

Bit 0

X(0)(1) X(1)(1)

Read/Write Bus

X(2)(1) X(n)(1)

Note 1: Each XOR stage of the shift engine is programmable. See text for details.

2: Polynomial Length n is determined by (PLEN<4:0> + 1).

3: This mode is not available on all devices. Refer to the specific device data sheet for details.

Bit 1 Bit 2 Bit n(2)Shift Buffer
Data

CRCWDATH, CRCWDATL

Bit 0

X(0) X(1)(1)

Read/Write Bus

X(2)(1) X(n)(1)

Bit 1 Bit 2 Bit n(2)

Shift Buffer
Data

Legacy Mode (MOD bit = 0)

Alternate Mode (MOD bit = 1)(3)
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5.0 CONTROL LOGIC

5.1 Polynomial Interface

The CRC module can be programmed for CRC polynomials of up to the 32nd order, using up to 
32 bits. Polynomial length, which reflects the highest exponent in the equation, is selected by the 
PLEN<4:0> bits (CRCCON2<4:0>). The CRCXOR registers control which exponent terms are 
included in the equation. Setting a particular bit includes that exponent term in the equation 
functionally; this includes an XOR operation on the corresponding bit in the CRC engine. 
Clearing the bit disables the XOR. 

For example, consider two CRC polynomials, one a 16-bit equation and the other a 32-bit 
equation (Equation 5-1).To program these polynomials into the CRC generator, set the register 
bits as shown in Table 5-1.

Equation 5-1:

Table 5-1: CRC Setup Examples for 16 and 32-Bit Polynomials

Note that the appropriate positions are set to ‘1’ to indicate that they are used in the equation 
(e.g., X26 and X23). The Most Significant bit (MSb) of the polynomial does not affect the 
calculation and can be set to any value.

5.2 Data Shift Direction

The LENDIAN bit (CRCCON1<3>) is used to control the shift direction. By default, the CRC 
module will shift data through the engine, MSb first (LENDIAN = 0). Setting LENDIAN to ‘1’ 
causes the CRC module to shift data, LSb first. This setting allows better integration with various 
communication schemes and removes the overhead of reversing the bit order in software. Note 
that this only changes the direction the data is shifted into the engine. The result of the CRC 
calculation will still be a normal CRC result, not a reverse CRC result. 

dsPIC33/PIC24 devices are little-endian. When the CRC module is configured for the big-endian 
(LENDIAN = 0), the input data bytes and words must be swapped in the application code before 
loading them into the data FIFO (CRCDAT registers).

CRC Control Bits
Bit Values

16-Bit Polynomial 32-Bit Polynomial

PLEN<4:0> 01111 11111

X<31:16> 0000 0000 0000 0000 0000 0100 1100 0001

X<15:1> 0001 0000 0010 0001 0001 1101 1011 0111

x16 + x12 + x5 + 1
and 

x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1
DS30009729C-page 12  © 2009-2018 Microchip Technology Inc.
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5.3 Data FIFO

The module incorporates a FIFO that works with a variable data width. The data width is defined 
by the DWIDTH<4:0> bits (CRCCON2<12:8>). It can be configured to any value, between 1 and 
32 bits. The logic associated with the FIFO contains a 5-bit counter, VWORD<4:0> bits 
(CRCCON1<12:8>). 

The value in the VWORD<4:0> bits indicates the number of unprocessed data elements in the 
FIFO. The FIFO is:

• 16-word deep when DWIDTH<4:0>  7 (data words, 8-bit wide or less)

• 8-word deep when DWIDTH<4:0>  15 (data words from 9 to 16-bit wide)

• 4-word deep when DWIDTH<4:0>  31 (data words from 17 to 32-bit wide)

The data for the CRC calculation must be written into the FIFO using the CRCDAT registers. 
Reading the CRCDAT registers always returns zero. To accommodate the MSb first shift method 
(LENDIAN = 0), byte and word swapping must be done in software when filling the FIFO.

When all shifts are done (i.e., the FIFO is empty and the CRC shift engine is Idle), it is possible 
to change the FIFO width (DWIDTH<4:0> bits) without any information loss or CRC result 
damage.

With a data width of eight bits or less, the FIFO increments on a write to the lower byte of the 
CRCDATL register (a byte access to the CRCDATL register must be used). The smallest data 
element that can be written into the FIFO is one byte.

For example, if DWIDTH<4:0> is five, then the size of the data is DWIDTH<4:0> + 1 or six. The 
data is written as a whole byte; the two unused upper bits are ignored. Once the data byte is 
written into the CRCDATL register, the value of the VWORD<4:0> bits (CRCCON1<12:8>) 
increments by one.

With data widths more than 8 bits and less than or equal to 16 bits, the FIFO increments on a 
write to the CRCDATL register (16-bit word access to the CRCDATL register must be used). 
Unused upper data bits are ignored. The value of the VWORD<4:0> bits is incremented for every 
write to the CRCDATL register.

When the data width is greater than 16 bits, any write to the CRCDATH register increments the 
VWORD<4:0> bits by one. Writing the lower word into the CRCDATL register must be done 
before writing the upper word into the CRCDATH register. Unused upper data bits are ignored.

Note: Ensure that the new data is not written into the CRCDAT registers when the CRCFUL 
bit is set; if the new data is written, it will be ignored.
© 2009-2018 Microchip Technology Inc.  DS30009729C-page 13
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5.4 CRC Engine Interface

5.4.1 FIFO TO CRC SHIFT ENGINE

To start moving the data from the FIFO to the CRC shift buffer, the CRCGO bit (CRCCON1<4>) 
must be set. The serial shifter starts shifting data from the shift buffer to the CRC shift engine, 
starting from the MSb first for LENDIAN = 0 and LSb first for LENDIAN = 1, when CRCGO = 1
and the value of VWORD<4:0> is greater than zero. If the CRCFUL bit was set earlier, then it is 
cleared when the VWORDx bits decrement by one. The VWORD<4:0> bits decrement by one 
when a FIFO location is moved to the shift buffer. The serial shifter continues shifting until the 
VWORD<4:0> bits reach zero; at this point, the CRCMPT bit becomes set to indicate that the 
FIFO is empty. If the CRCGO bit is cleared during a CRC calculation, then the CRC shift engine 
will stop calculating until the CRCGO bit is set.

The application can write into the FIFO while the shift operation is in progress. The CRCFUL bit 
should be monitored. If the CRCFUL bit is not set, another word can be written into the FIFO. At 
least one instruction cycle must pass after a write to the CRCDAT registers, before a read of the 
valid value of the VWORD<4:0> bits.

When the VWORD<4:0> bits reach the maximum value for the configured value of the 
DWIDTH<4:0> bits, the CRCFUL bit becomes set. When the VWORD<4:0> bits reach zero, the 
CRCMPT bit becomes set. The FIFO is emptied and the VWORD<4:0> bits are set to ‘00000’ 
whenever the CRCEN bit is ‘0’.

5.4.2 NUMBER OF CLOCK CYCLES TO SHIFT DATA

The data from FIFO goes to the shift buffer. It takes two peripheral clock cycles to start moving 
the data words from FIFO to the shift buffer. The data from the shift buffer is then shifted to the 
CRC shift engine. It takes (DWIDTH<4:0> + 1) clock cycles to completely move the data from the 
shift buffer to the CRC shift engine. For example, if DWIDTH<4:0> = 5, then the data length is 
six bits (DWIDTH<4:0> + 1) and six cycles are required to shift the data. In this case, only six bits 
of a byte are shifted out. The two MSbs of each byte are don’t care bits. Similarly, for a 12-bit 
polynomial selection, the Most Significant four bits of each word are ignored.

5.4.3 CRC INITIAL VALUE

The access to the CRC shift engine is provided through the CRCWDAT registers. These registers
can be loaded with a desired CRC initial value prior to the start of the calculations. The form of this 
initial value depends on the operating mode selected by the MOD bit (CRCCON1<2>).

In Alternate mode (MOD bit = 1, not available on all devices), the CRC initial value must be in 
direct form.

In Legacy mode (MOD bit = 0), the CRC initial value must be in non-direct form. The non-direct 
initial value is a value for which the CRC calculation gives the desired direct CRC initial value. For 
example, if the application uses CRC-32 polynomial, 0x04C11DB7, and must start the calculations 
from the CRC direct initial value, 0xFFFFFFFF, then the non-direct value, 0x46AF6449, must be 
loaded in the CRCWDAT registers (the CRC of this non-direct value, 0x46AF6449, is 
0xFFFFFFFF). When the non-direct initial value is written into the shift engine using the CRCWDAT 
registers, it will be converted by the CRC module to the direct initial value after (PLEN<4:0> + 1) 
peripheral clock cycles.

Usually, the CRC calculation starts from the same initial value every time. In this case, the 
non-direct initial value can be found just once and then can be defined as a constant in the 
application code.

Note: The write to the CRCWDAT registers clears/resets the shift buffer.

Note: The CRC non-direct initial value of zero is zero.
DS30009729C-page 14  © 2009-2018 Microchip Technology Inc.
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Example 5-1 shows a possible software routine to get the non-direct initial value from the direct 
initial value.

Example 5-1: Software Routine to Calculate the Non-Direct Initial Value

The CRC module can be used to get the non-direct initial value. To do this:

1. Enable the CRC module (CRCEN = 1) and shifts (CRCGO = 1).

2. Shift the polynomial value right by one.

3. Reverse the bit order of the shifted polynomial value.

4. Write this result in the CRCXOR registers.

5. Set the data width and polynomial length (DWIDTH<4:0> and PLEN<4:0> bits) to the 
polynomial order (length).

6. Reverse the bit order of the desired direct initial value.

7. Write the reversed initial value in the CRCWDAT registers.

8. Write a dummy data to the CRCDAT registers and wait two peripheral clock cycles to 
move the data from the FIFO to the shift buffer, and (PLEN<4:0> + 1) peripheral clock 
cycles to shift out the result.

Alternatively, clear the CRC Interrupt Selection bit (CRCISEL = 0) to get the interrupt when 
shifts from the shift buffer are done, clear the CRC interrupt flag, write a dummy data in 
the CRCDAT registers and wait for the CRC interrupt flag to set.

9. Read the value from the CRCWDAT registers.

10. Reverse the bit order of the read result; it will give the final non-direct initial value.

unsigned long CalculateNonDirectSeed(
unsigned long seed, // direct CRC initial value
unsigned long polynomial, // polynomial
unsigned char polynomialOrder) // polynomial order
{
unsigned char lsb;
unsigned char i;
unsigned long msbmask;

msbmask = ((unsigned long)1)<<(polynomialOrder-1);
for (i=0; i<polynomialOrder; i++) {

lsb = seed & 1;
if (lsb) seed ^= polynomial;
seed >>= 1;
if (lsb) seed |= msbmask;

}
return seed; // return the non-direct CRC initial value
}
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Example 5-2 shows one way to implement this procedure.

To continue calculations of the full data message, in the applications where the intermediate CRC 
sums must be read in the middle of the calculations, the non-direct value must be calculated and 
set to the CRCWDAT registers again. In this case, the CRC direct initial value will be an 
intermediate CRC result read.

Example 5-2: Calculating the Non-Direct Initial Value (MOD bit = 0)

unsigned long CalculateNonDirectSeed(unsigned long seed, // direct CRC initial value
    unsigned long polynomial, // polynomial 

unsigned char polynomialOrder) // polynomial order (valid values are
// 8, 16, 32 bits)

{
CRCCON1 = 0;
CRCCON2 = 0;

CRCCON1bits.CRCEN = 1;  // enable CRC
CRCCON1bits.CRCISEL = 0;          // interrupt when all shifts are done
CRCCON2bits.DWIDTH = polynomialOrder-1;          // data width
CRCCON2bits.PLEN = polynomialOrder-1;          // polynomial length
CRCCON1bits.CRCGO = 1;          // start CRC calculation

polynomial >>= 1;                // shift the polynomial right    
     

polynomial = ReverseBitOrder(polynomial, polynomialOrder); // reverse bits order of the
         // polynomial
CRCXORL  = (unsigned short)(polynomial&0x0000FFFF); // set the reversed polynomial
CRCXORH  = (unsigned short)(polynomial>>16);       
seed     = ReverseBitOrder(seed, polynomialOrder);    // reverse bits order of the seed value
CRCWDATL = (unsigned short)(seed&0x0000FFFF);     // set seed value
CRCWDATH = (unsigned short)(seed>>16);

_CRCIF = 0; // clear interrupt flag
switch(polynomialOrder) // load dummy data to shift out the
           // seed result
{

case 8:
 *((unsigned char*)&CRCDATL) = 0; // load byte
 while(!_CRCIF);            // wait until shifts are done
 seed = CRCWDATL&0x00ff;              // read reversed seed

 case 16:
 CRCDATL = 0;              // load short
 while(!_CRCIF);              // wait until shifts are done
 seed = CRCWDATL;              // read reversed seed
 break;

case 32:
 // load long
 CRCDATL = 0;
 CRCDATH = 0;
 while(!_CRCIF);              // wait for shifts are done
 seed = ((unsigned long)CRCWDATH<<16)|CRCWDATL; // read reversed seed
 break;

default:
 ;

}

seed = ReverseBitOrder(seed, polynomialOrder); // reverse the bit order to get the
     // non-direct seed
return seed;                // return the non-direct CRC initial value

}
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Example 5-2: Calculating the Non-Direct Initial Value (MOD bit = 0) (Continued)

 // WHERE THE FUNCTION TO REVERSE THE BIT ORDER CAN BE

unsigned long ReverseBitOrder(unsigned long data, // input data
unsigned char numberOfBits) // width of the input data,
                                    // valid values are 8,16,32 bits

{
unsigned long maskin  = 0;
unsigned long maskout = 0;
unsigned long result  = 0;
unsigned char i;

switch(numberOfBits)
{

case 8:
 maskin  = 0x80;
 maskout = 0x01;
 break;

case 16:
 maskin  = 0x8000;
 maskout = 0x0001;
 break;

case 32:
 maskin  = 0x80000000;
 maskout = 0x00000001;
 break;

default:
 ;

}

for(i=0; i<numberOfBits; i++)
{

if(data&maskin){
 result |= maskout;

}
 maskin  >>= 1;
 maskout <<= 1;

}

return result;
}
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5.4.4 CRC RESULT 

Reading the result of a CRC calculation depends on the selected operating mode.

In Alternate mode (MOD bit = 1, not available on all devices), the result is available in the 
CRCWDAT registers when all the data in the CRC FIFO buffer has been processed. Submitting 
dummy data to generate extra cycles is not required.

In Legacy mode (MOD bit = 0), the CRC module requires (PLEN<4:0> + 1) extra peripheral clock 
cycles to finish the calculations. To generate these additional cycles, the dummy data, with the 
width equal to the polynomial order (length), must be loaded into the CRCDAT registers. After 
the shifts are finished, the final CRC result can be read from the CRCWDAT registers.

There are two procedures to get the final CRC result after all data is loaded into the CRC module.

If the data width (DWIDTH<4:0>) is more than the polynomial length (PLEN<4:0>):

1. Wait for the data FIFO to empty (CRCMPT bit is set).

2. Wait (DWIDTH<4:0> + 1) clock cycles to make sure that shifts from the shift buffer are 
finished.

3. Change the data width to the polynomial length (DWIDTH<4:0> = PLEN<4:0>).

4. Write one dummy data word to the CRCDAT registers.

5. Wait two peripheral clock cycles to move the data from the FIFO to the shift buffer, plus 
(PLEN<4:0> +  1) clock cycles to shift out the result.

Alternatively, clear the CRC Interrupt Selection bit (CRCISEL = 0) to get the interrupt when 
all shifts are done. Clear the CRC interrupt flag. Write dummy data in the CRCDAT 
registers and wait until the CRC interrupt flag is set.

6. Read the final CRC result from the CRCWDAT registers.

7. Restore the data width (DWIDTH<4:0> bits) for further calculations (OPTIONAL).

If the data width (DWIDTH<4:0>) is equal to, or less than, the polynomial length (PLEN<4:0>), 
the procedure to get the result can be different:

1. Clear the CRC Interrupt Selection bit (CRCISEL = 0) to get the interrupt when all shifts are 
done.

2. Suspend the calculation by setting CRCGO = 0.

3. Clear the CRC interrupt flag. 

4. Write the dummy data with the total data length equal to the polynomial length in the 
CRCDAT registers.

5. Resume the calculation by setting CRCGO = 1.

6. Wait until the CRC interrupt flag is set.

7. Read the final CRC result from the CRCWDAT registers.
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When the CRC result is achieved, the CRC non-direct initial value should be written again into 
the CRCWDAT registers to clear/reset the shift buffer from the previously loaded dummy data to 
start a new calculation. Example 5-3 shows the steps described above for the polynomial orders 
of 8, 16 and 32 bits. 

Example 5-3: Routine to Get the Final CRC Result in Legacy Mode (MOD bit = 0)

5.5 Interrupt Operation

The module generates an interrupt that is configurable by the user for either of the two conditions. 
If CRCISEL is ‘1’, an interrupt is generated when the VWORD<4:0> bits make a transition from 
a value of ‘1’ to ‘0’. If CRCISEL is ‘0’, an interrupt will be generated when the FIFO is empty and 
shifts from the shift buffer are finished.

For more details on interrupts and interrupt priority settings, refer to the “Interrupt Controller”
section in the device data sheet.

unsigned long GetCRC(unsigned char polynomialOrder, // valid values are 8,16,32
unsigned char currentDataWidth) // valid values are 8,16,32
{
unsigned long crc = 0;

while(!CRCCON1bits.CRCMPT);             // wait until data FIFO is empty

asm volatile ("repeat %0\n nop" : : "r"(currentDataWidth>>1)); // wait until previous data        
              // shifts are done

CRCCON2bits.DWIDTH  = polynomialOrder-1;            // set data width to polynomial    
             // length

CRCCON1bits.CRCISEL = 0;            // interrupt when all shifts are done

_CRCIF = 0;            // clear interrupt flag

switch(polynomialOrder)
    {

case 8:            // polynomial length is 8 bits
 *((unsigned char*)&CRCDATL) = 0;           // load byte

  while(!_CRCIF);           // wait until shifts are done
 crc = CRCWDATL&0x00ff;           // get crc
 break;

case 16:            // polynomial length is 16 bits
 CRCDATL = 0;           // load short
 while(!_CRCIF);           // wait until shifts are done
 crc = CRCWDATL;           // get crc
 break;

case 32:            // polynomial length is 32 bits
 CRCDATL = 0;           // load long
 CRCDATH = 0;
 while(!_CRCIF);           // wait until shifts are done
 crc = ((unsigned long)CRCWDATH<<16)|CRCWDATL;  // get crc
 break;

default:
 ;

}
CRCCON2bits.DWIDTH = currentDataWidth-1;             // restore data width for further
             // calculations

return crc;            // return the final CRC value

}
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6.0 APPLICATION OF CRC MODULE

The CRC is a robust error checking algorithm in digital communication for messages containing 
several bytes or words. After calculation, the checksum is appended to the message and 
transmitted to the receiving station. The receiver calculates the checksum with the received 
message to verify the data integrity.

6.1 Variations

The 32-bit programmable CRC module can be programmed to shift out either the MSb or LSb 
first. MSb first is a popular implementation as employed in XMODEM protocol. In one of the 
variations (CCITT protocol) for CRC calculation, the LSb is shifted out first. Discussions on all the 
variations are beyond the scope of this document, but several variations of CRC can be 
implemented using this module.

The choice of the polynomial length, and the polynomial itself, are application-dependent. 
Polynomial lengths of 5, 7, 8, 10, 12, 16 and 32 are normally used in various standard 
implementations. The following sections explain the recommended step-by-step procedure for 
CRC calculation. Users can decide whether zeros, or any other values, need to be appended to 
the message stream. Depending on the application, the user may decide whether any value 
needs to be appended at all.

6.2 Typical Operation

To use the module for a typical CRC calculation:

1. Set the CRCEN bit to enable the module.

2. Configure the module for the desired operation:

a) Program the desired polynomial using the CRCXOR registers and the PLEN<4:0> bits.

b) Configure the data width and shift direction using the DWIDTH<4:0> and LENDIAN bits.

3. Set the CRCGO bit to start the calculations.

4. Set the desired CRC initial value in the CRCWDAT registers as described in Section 5.4.3 
“CRC Initial Value”.

5. Load all data into the FIFO by writing to the CRCDAT registers as space becomes 
available (the CRCFUL bit must be zero before the next data loading).

6. Wait until the data FIFO is empty (CRCMPT bit is set).

7. Read the CRC result as described in Section 5.4.4 “CRC Result”.
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Example 6-1 through Example 6-10 show typical code for different combinations of polynomial 
length, data width, shift direction and CRC Engine modes.

Example 6-1: CRC-SMBus (8-Bit Polynomial with 32-Bit Data, Big-Endian, MOD bit = 1)

// This macro is used to swap bytes for big endian
#define Swap(x) __extension__({ \
unsigned long __x = (x), __v; \
__asm__ ("wsbh %0,%1;\n\t" \
"rotr %0,16" \
: "=d" (__v) \
: "d" (__x)); \
__v; \
})

// ASCII bytes "12345678"
volatile unsigned char __attribute__((aligned(4))) message[] = {'1','2','3','4','5','6','7','8'};
volatile unsigned char crcResultCRCSMBUS = 0;
int main (void)
{
unsigned long* pointer;
unsigned short length;
unsigned long data;

// standard CRC-SMBUS

#define CRCSMBUS_POLYNOMIAL ((unsigned long)0x00000007)
#define CRCSMBUS_SEED_VALUE ((unsigned long)0x00000000) // direct initial value

CRCCON = 0;
CRCCONbits.MOD = 1; // alternate mode
CRCCONbits.ON  = 1; // enable CRC
CRCCONbits.LENDIAN = 0; // big endian
CRCCONbits.CRCISEL = 0; // interrupt when all shifts are done
CRCCONbits.DWIDTH  = 32-1; // 32-bit data width
CRCCONbits.PLEN    = 8-1; // 8-bit polynomial order
CRCXOR  = CRCSMBUS_POLYNOMIAL; // set polynomial
CRCWDAT = CRCSMBUS_SEED_VALUE; // set initial value
CRCCONbits.CRCGO   = 1; // start CRC calculation

pointer = (unsigned long*)message; 
length  = sizeof(message)/sizeof(unsigned long);
while(1)
{

while(CRCCONbits.CRCFUL); // wait if FIFO is full
data = *pointer++; // load from little endian
data = Swap(data); // swap bytes for big endian
length--;
if(length == 0)
{

break;
}
CRCDAT = data; // 32-bit word access to FIFO

}
CRCCONbits.CRCGO = 0; // suspend CRC calculation
IFS0CLR = _IFS0_CRCIF_MASK; // clear the interrupt flag
CRCDAT  = data; // write last data into FIFO
CRCCONbits.CRCGO = 1; // resume CRC calculation

while(!IFS0bits.CRCIF); // wait until shifts are done
crcResultCRCSMBUS = (unsigned char)CRCWDAT&0x00ff; // get CRC result (must be 0xC7)

while(1);
return 1;

}
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Example 6-2: CRC-SMBus (8-Bit Polynomial with 32-Bit Data, Little-Endian, MOD bit = 0)

// ASCII bytes "12345678"
volatile unsigned char __attribute__((aligned(2))) message[] = {'1','2','3','4','5','6','7','8'};

volatile unsigned char crcResultCRCSMBUS = 0;

int main (void)
{
unsigned short* pointer;
unsigned short length;
unsigned short data_high;
unsigned short data_low;
////////////////////////////////////////////////////////////////////////////////
// standard CRC-SMBUS
////////////////////////////////////////////////////////////////////////////////

#define CRCSMBUS_POLYNOMIAL ((unsigned short)0x0007)
#define CRCSMBUS_SEED_VALUE ((unsigned short)0x0000)// non-direct of 0x00

CRCCON1 = 0;
CRCCON2 = 0;

CRCCON1bits.CRCEN = 1; // enable CRC
CRCCON1bits.LENDIAN = 0;       // big endian
CRCCON1bits.CRCISEL = 0;     // interrupt when all shifts are done
CRCCON2bits.DWIDTH = 32-1;      // 32-bit data width
CRCCON2bits.PLEN = 8-1;       // 8-bit polynomial order
CRCCON1bits.CRCGO = 1;       // start CRC calculation

CRCXORL = CRCSMBUS_POLYNOMIAL;             // set polynomial
CRCXORH = 0;

CRCWDATL = CRCSMBUS_SEED_VALUE;            // set initial value
CRCWDATH = 0;

pointer = (unsigned short*)message;         // calculate CRC
length  = sizeof(message)/sizeof(unsigned long);
while(length--)
{
while(CRCCON1bits.CRCFUL); // wait if FIFO is full

data_low  = *pointer++;          // load from little endian
data_high = *pointer++;

asm volatile ("swap %0" : "+r"(data_low)); // swap bytes for big endian
asm volatile ("swap %0" : "+r"(data_high));

CRCDATL = data_high;            // 32-bit word access to FIFO
CRCDATH = data_low;            // swap 16-bit words for big endian

}

while(!CRCCON1bits.CRCMPT);            // wait until FIFO is empty

            // wait until previous data shifts are done
asm volatile ("repeat #16-#2\n nop");        // 16 cycles maximum for 32-bit data width

CRCCON2bits.DWIDTH = 8-1; // 8-bit
// switch data width to polynomial length

_CRCIF = 0; // clear the interrupt flag
            // dummy data to shift out the CRC result

*((unsigned char*)&CRCDATL) = 0;            // byte access to FIFO

while(!_CRCIF);             // wait until shifts are done
crcResultCRCSMBUS = CRCWDATL&0x00ff;         // get CRC result (must be 0xC7)

while(1);

return 1;
}
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Example 6-3: CRC-16 (16-Bit Data with 32-Bit Polynomial, Little-Endian, MOD bit = 1)

// ASCII bytes "87654321"
volatile unsigned short message[] = {0x3738,0x3536,0x3334,0x3132};
volatile unsigned short crcResultCRC16 = 0;
int main (void)
{
unsigned short* pointer;
unsigned short length;
unsigned short data;

// standard CRC-16

#define CRC16_POLYNOMIAL ((unsigned long)0x00008005)
#define CRC16_SEED_VALUE ((unsigned long)0x00000000) // direct initial value

CRCCON = 0;
CRCCONbits.MOD = 1; // alternate mode
CRCCONbits.ON  = 1; // enable CRC
CRCCONbits.CRCISEL = 0; // interrupt when all shifts are done
CRCCONbits.LENDIAN = 1; // little endian
CRCCONbits.DWIDTH  = 16-1; // 16-bit data width
CRCCONbits.PLEN    = 16-1; // 16-bit polynomial order
CRCXOR  = CRC16_POLYNOMIAL; // set polynomial
CRCWDAT = CRC16_SEED_VALUE; // set initial value
CRCCONbits.CRCGO = 1; // start CRC calculation

pointer = (unsigned short*)message;
length = sizeof(message)/sizeof(unsigned short);
while(1)
{

while(CRCCONbits.CRCFUL); // wait if FIFO is full
data = *pointer++; // load data
length--;
if(length == 0)
{

break;
}
*((unsigned short*)&CRCDAT) = data; // 16-bit word access to FIFO

    }

CRCCONbits.CRCGO = 0; // suspend CRC calculation
IFS0CLR = _IFS0_CRCIF_MASK; // clear the interrupt flag
*((unsigned short*)&CRCDAT) = data; // write last data into FIFO
CRCCONbits.CRCGO = 1; // resume CRC calculation
while(!IFS0bits.CRCIF); // wait until shifts are done
crcResultCRC16 = (unsigned short)CRCWDAT; // get CRC result (must be 0xE716)

while(1);
return 1;

}
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Example 6-4: CRC-16 (16-Bit Data, 16-Bit Polynomial, Little-Endian, MOD bit = 0)

// ASCII bytes "87654321"
volatile unsigned short message[] = {0x3738,0x3536,0x3334,0x3132};

volatile unsigned short crcResultCRC16 = 0;

int main (void)
{
unsigned short* pointer;
unsigned short length;
unsigned short data;

////////////////////////////////////////////////////////////////////////////////
// standard CRC-16
////////////////////////////////////////////////////////////////////////////////
#define CRC16_POLYNOMIAL ((unsigned short)0x8005)
#define CRC16_SEED_VALUE ((unsigned short)0x0000) // non-direct of 0x0000

CRCCON1 = 0;
CRCCON2 = 0;

CRCCON1bits.CRCEN   = 1;           // enable CRC
CRCCON1bits.CRCISEL = 0;           // interrupt when all shifts are done
CRCCON1bits.LENDIAN = 1;          // little endian
CRCCON2bits.DWIDTH  = 16-1;           // 16-bit data width
CRCCON2bits.PLEN    = 16-1;           // 16-bit polynomial order
CRCCON1bits.CRCGO   = 1;           // start CRC calculation
 
CRCXORL = CRC16_POLYNOMIAL;          // set polynomial
CRCXORH = 0;

CRCWDATL = CRC16_SEED_VALUE; // set initial value
CRCWDATH = 0;
 
pointer = (unsigned short*)message; // calculate CRC
length  = sizeof(message)/sizeof(unsigned short);

while(length--)
{

while(CRCCON1bits.CRCFUL);          // wait if FIFO is full

data = *pointer++;         // load data

CRCDATL = data;         // 16-bit word access to FIFO
}
        

while(CRCCON1bits.CRCFUL);          // wait if FIFO is full
CRCCON1bits.CRCGO = 0;           // suspend CRC calculation to clear interrupt flag

_CRCIFt = 0;           // clear interrupt flag

CRCDATL = 0;          // load dummy data to shift out the CRC result
           // data width must be equal to polynomial length

CRCCON1bits.CRCGO = 1;           // resume CRC calculation

while(!_CRCIF);          // wait until shifts are done

crcResultCRC16 = CRCWDATL;          // get CRC result (must be 0xE716)

while(1);
   

return 1;
}
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Example 6-5: CRC-CCITT (16-Bit Polynomial with 16-Bit Data, Big-Endian, MOD bit = 1) 

// This macro is used to swap bytes for big endian
#define Swap(x) __extension__({ \
unsigned long __x = (x), __v; \
__asm__ ("wsbh %0,%1;\n\t" \
: "=d" (__v) \
: "d" (__x)); \
__v; \
})
// ASCII bytes "87654321"
volatile unsigned short message[] = {0x3738,0x3536,0x3334,0x3132};
volatile unsigned short crcResultCRCCCITT = 0;
int main (void)
{
unsigned short* pointer;
unsigned short length;
unsigned short data;

// standard CRC-CCITT

#define CRCCCITT_POLYNOMIAL ((unsigned long)0x00001021)
#define CRCCCITT_SEED_VALUE ((unsigned long)0x0000FFFF) // direct initial value

CRCCON = 0;
CRCCONbits.MOD = 1; // alternate mode
CRCCONbits.ON  = 1; // enable CRC
CRCCONbits.CRCISEL = 0; // interrupt when all shifts are done
CRCCONbits.LENDIAN = 0; // big endian
CRCCONbits.DWIDTH  = 16-1; // 16-bit data width
CRCCONbits.PLEN    = 16-1; // 16-bit polynomial order
CRCXOR  = CRCCCITT_POLYNOMIAL; // set polynomial
CRCWDAT = CRCCCITT_SEED_VALUE; // set initial value
CRCCONbits.CRCGO = 1; // start CRC calculation

pointer = (unsigned short*)message;
length  = sizeof(message)/sizeof(unsigned short);
while(1)
{

while(CRCCONbits.CRCFUL); // wait if FIFO is full
data = *pointer++; // load data
data = Swap(data); // swap bytes for big endian
length--;
if(length == 0)
{

break;
}
*((unsigned short*)&CRCDAT) = data; // 16-bit word access to FIFO

}

CRCCONbits.CRCGO = 0; // suspend CRC calculation
IFS0CLR = _IFS0_CRCIF_MASK; // clear the interrupt flag
*((unsigned short*)&CRCDAT) = data; // write last data into FIFO
CRCCONbits.CRCGO = 1; // resume CRC calculation
while(!IFS0bits.CRCIF); // wait until shifts are done
crcResultCRCCCITT = (unsigned short)CRCWDAT; // get CRC result (must be 0x9B4D)

    while(1);
    return 1;
}
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Example 6-6: CRC-CCITT (16-Bit Polynomial with 16-Bit Data, Big-Endian, MOD bit = 0) 

// ASCII bytes "87654321"
volatile unsigned short message[] = {0x3738,0x3536,0x3334,0x3132};

volatile unsigned short crcResultCRCCCITT = 0;

int main (void)
{
unsigned short* pointer;
unsigned short length;
unsigned short data;

////////////////////////////////////////////////////////////////////////////////
// standard CRC-CCITT
////////////////////////////////////////////////////////////////////////////////
#define CRCCCITT_POLYNOMIAL ((unsigned short)0x1021)
#define CRCCCITT_SEED_VALUE ((unsigned short)0x84CF) // non-direct of 0xffff

CRCCON1 = 0;
CRCCON2 = 0;

CRCCON1bits.CRCEN   = 1;         // enable CRC
CRCCON1bits.CRCISEL = 0;         // interrupt when all shifts are done
CRCCON1bits.LENDIAN = 0;          // big endian
CRCCON2bits.DWIDTH  = 16-1;         // 16-bit data width
CRCCON2bits.PLEN    = 16-1;          // 16-bit polynomial order
CRCCON1bits.CRCGO   = 1;          // start CRC calculation

CRCXORL = CRCCCITT_POLYNOMIAL; // set polynomial
CRCXORH = 0;

CRCWDATL = CRCCCITT_SEED_VALUE;       // set initial value
CRCWDATH = 0;

pointer = (unsigned short*)message;        // calculate CRC
length  = sizeof(message)/sizeof(unsigned short);

while(length--)
{

while(CRCCON1bits.CRCFUL);          // wait if FIFO is full

data = *pointer++; // load data

asm  volatile ("swap %0" : "+r"(data)); // swap bytes for big endian
CRCDATL = data; // 16 bit word access to FIFO
}

while(CRCCON1bits.CRCFUL); // wait if FIFO is full

CRCCON1bits.CRCGO = 0; // suspend CRC calculation to clear interrupt flag

_CRCIF = 0; // clear interrupt flag

CRCDATL = 0; // load dummy data to shift out the CRC result
// data width must be equal to polynomial length

CRCCON1bits.CRCGO = 1; // resume CRC calculation

while(!_CRCIF); // wait until shifts are done

crcResultCRCCCITT = CRCWDATL; // get CRC result (must be 0x9B4D)

while(1);
   

return 1;
}
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Example 6-7: CRC-32 (32-Bit Polynomial with 32-Bit Data, Little-Endian, MOD bit = 1)

// ASCII bytes "12345678"
volatile unsigned char __attribute__((aligned(4))) message[] = {'1','2','3','4','5','6','7','8'};
// function to reverse the bit order (OPTIONAL)
unsigned long ReverseBitOrder(unsigned long data);
volatile unsigned int crcResultCRC32 = 0;
int main(void)
{
unsigned long* pointer;
unsigned short length;

// standard CRC-32

#define CRC32_POLYNOMIAL ((unsigned long)0x04C11DB7)
#define CRC32_SEED_VALUE ((unsigned long)0xFFFFFFFF) // direct initial value

CRCCON = 0;
CRCCONbits.MOD = 1; // alternate mode
CRCCONbits.ON  = 1; // enable CRC
CRCCONbits.CRCISEL = 0; // interrupt when all shifts are done
CRCCONbits.LENDIAN = 1; // little endian
CRCCONbits.DWIDTH  = 32-1; // 32-bit data width
CRCCONbits.PLEN    = 32-1; // 32-bit polynomial order
CRCXOR  = CRC32_POLYNOMIAL; // set polynomial
CRCWDAT = CRC32_SEED_VALUE; // set initial value
CRCCONbits.CRCGO = 1; // start CRC calculation
pointer = (unsigned long*)message;
length  = sizeof(message)/sizeof(unsigned long);
while(1)
{

while(CRCCONbits.CRCFUL); // wait if FIFO is full
length--;
if(length == 0)
{

break;
}
CRCDAT = *pointer++; // 32-bit word access to FIFO

}
CRCCONbits.CRCGO = 0; // suspend CRC calculation
IFS0CLR = _IFS0_CRCIF_MASK; // clear the interrupt flag
CRCDAT  = *pointer; // write last data into FIFO
CRCCONbits.CRCGO = 1; // resume CRC calculation
while(!IFS0bits.CRCIF); // wait until shifts are done
crcResultCRC32 = CRCWDAT; // get the final CRC result
// OPTIONAL reverse CRC value bit order and invert (must be 0x9AE0DAAF)
crcResultCRC32 = ~ReverseBitOrder(crcResultCRC32); 
while(1);
return 1;

}
unsigned long ReverseBitOrder(unsigned long data)
{
unsigned long maskin;
unsigned long maskout;
unsigned long result = 0;
unsigned char i;
maskin  = 0x80000000;
maskout = 0x00000001;

for(i=0; i<32; i++)
{

if(data&maskin){
result |= maskout;

}
maskin >>= 1;
maskout <<= 1;

}
return result;
}
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Example 6-8: CRC-32 (32-Bit Polynomial with 32-Bit Data, Little-Endian, MOD bit = 0)

// ASCII bytes "12345678"
volatile unsigned char __attribute__((aligned(4))) message[] = {'1','2','3','4','5','6','7','8'};

// function to reverse the bit order (OPTIONAL)
unsigned long ReverseBitOrder(unsigned long data);

volatile unsigned long crcResultCRC32 = 0;

int main(void)
{
unsigned short* pointer;
unsigned short length;
////////////////////////////////////////////////////////////////////////////////
// standard CRC-32
////////////////////////////////////////////////////////////////////////////////
#define CRC32_POLYNOMIAL ((unsigned long)0x04C11DB7)
#define CRC32_SEED_VALUE ((unsigned long)0x46AF6449) // non-direct of 0xffffffff

CRCCON1 = 0;
CRCCON2 = 0;

CRCCON1bits.CRCEN   = 1; // enable CRC
CRCCON1bits.CRCISEL = 0; // interrupt when all shifts are done
CRCCON1bits.LENDIAN = 1; // little endian
CRCCON2bits.DWIDTH  = 32-1; // 32-bit data width
CRCCON2bits.PLEN    = 32-1; // 32-bit polynomial order
CRCCON1bits.CRCGO   = 1; // start CRC calculation

CRCXORL = CRC32_POLYNOMIAL&0x0000ffff; // set polynomial
CRCXORH = CRC32_POLYNOMIAL>>16;

CRCWDATL = CRC32_SEED_VALUE&0x0000ffff; // set initial value
CRCWDATH = CRC32_SEED_VALUE>>16;

pointer = (unsigned short*)message; // calculate CRC
length  = sizeof(message)/sizeof(unsigned long);
while(length--)
{

while(CRCCON1bits.CRCFUL); // wait if FIFO is full

// 32-bit word access to FIFO
CRCDATL = *pointer++; // must be written first
CRCDATH = *pointer++; // must be written last

}

while(CRCCON1bits.CRCFUL); // wait if FIFO is full
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 32-Bit Programmable Cyclic Redundancy Check (CRC)
Example 6-8: CRC-32 (32-Bit Polynomial with 32-Bit Data, Little-Endian, MOD bit = 0) (Continued)

CRCCON1bits.CRCGO = 0; // suspend CRC calculation to clear interrupt flag
_CRCIF = 0; // clear interrupt flag

CRCDATL = 0; // dummy data to shift out the CRC result
CRCDATH = 0;

CRCCON1bits.CRCGO = 1; // resume CRC calculation

while(!_CRCIF); // wait until shifts are done

crcResultCRC32 = ((unsigned long)CRCWDATH<<16)|CRCWDATL; // get the final CRC result

crcResultCRC32 = ~ReverseBitOrder(crcResultCRC32); // OPTIONAL
// reverse CRC value bit order and
// invert (must be 0x9AE0DAAF)

while(1);

return 1;
}

unsigned long ReverseBitOrder(unsigned long data)
{
unsigned long maskin;
unsigned long maskout;
unsigned long result = 0;
unsigned char i;

maskin  = 0x80000000;
maskout = 0x00000001;

for(i=0; i<32; i++)
{

if(data&maskin){
result |= maskout;

}
maskin  >>= 1;
maskout <<= 1;

}

return result;
}
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Example 6-9: Data Width Switching (32-Bit Polynomial, Little-Endian, MOD bit = 1)

// ASCII bytes "12345678"
volatile unsigned long message1[] = {0x34333231,0x38373635};
// ASCII bytes "123"
volatile unsigned char message2[] = {'1','2','3'};
volatile unsigned long crcResultCRC32 = 0;
int main(void)
{
unsigned char* pointer8;
unsigned long* pointer32;
unsigned short length;
#define CRC32_POLYNOMIAL ((unsigned long)0x04C11DB7)
#define CRC32_SEED_VALUE ((unsigned long)0xFFFFFFFF) // direct initial value

CRCCON = 0;
CRCCONbits.MOD = 1; // alternate mode
CRCCONbits.ON  = 1; // enable CRC
CRCCONbits.CRCISEL = 0; // interrupt when all shifts are done
CRCCONbits.LENDIAN = 1; // little endian
CRCCONbits.DWIDTH  = 32-1; // 32-bit data width
CRCCONbits.PLEN    = 32-1; // 32-bit polynomial order
CRCXOR  = CRC32_POLYNOMIAL; // set polynomial
CRCWDAT = CRC32_SEED_VALUE; // set initial value
CRCCONbits.CRCGO = 1; // start CRC calculation

pointer32 = (unsigned long*)message1;
length    = sizeof(message1)/sizeof(unsigned long);
while(1)
{

while(CRCCONbits.CRCFUL); // wait if FIFO is full
length--;
if(length == 0)
{

break;
}
CRCDAT = *pointer32++; // 32-bit word access to FIFO

}
CRCCONbits.CRCGO = 0; // suspend CRC calculation
IFS0CLR = _IFS0_CRCIF_MASK; // clear the interrupt flag
CRCDAT  = *pointer32; // write last 32-bit data into FIFO
CRCCONbits.CRCGO = 1; // resume CRC calculation
while(!IFS0bits.CRCIF); // wait until shifts are done
CRCCONbits.DWIDTH = 8-1; // switch the data width to 8-bit

pointer8 = (unsigned char*)message2; // calculate CRC
length   = sizeof(message2)/sizeof(unsigned char);
while(length--)
{

while(CRCCONbits.CRCFUL); // wait if FIFO is full
length--;
if(length == 0)
{

break;
}
*((unsigned char*)&CRCDAT) = *pointer8++; // byte access to FIFO

}
CRCCONbits.CRCGO = 0; // suspend CRC calculation
IFS0CLR = _IFS0_CRCIF_MASK; // clear the interrupt flag
*((unsigned char*)&CRCDAT) = *pointer8; // write last 8-bit data into FIFO
CRCCONbits.CRCGO = 1; // resume CRC calculation
while(!IFS0bits.CRCIF); // wait until shifts are done
crcResultCRC32 = CRCWDAT; // get the final CRC result (must be 0xE092727E)

while(1);
return 1;

}
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 32-Bit Programmable Cyclic Redundancy Check (CRC)
Example 6-10: Data Width Switching (32-Bit Polynomial, Little-Endian, MOD bit = 0)

// ASCII bytes "12345678"
volatile unsigned long message1[] = {0x34333231,0x38373635};

// ASCII bytes "123"
volatile unsigned char message2[] = {'1','2','3'};

volatile unsigned long crcResultCRC32 = 0;

int main(void)
{
unsigned char* pointer8;
unsigned short* pointer16;
unsigned short length;

#define CRC32_POLYNOMIAL ((unsigned long)0x04C11DB7)
#define CRC32_SEED_VALUE ((unsigned long)0x46AF6449) // non-direct of 0xffffffff

CRCCON1 = 0;
CRCCON2 = 0;

CRCCON1bits.CRCEN   = 1; // enable CRC
CRCCON1bits.LENDIAN = 1; // little endian
CRCCON2bits.DWIDTH  = 32-1; // 32-bit data width
CRCCON2bits.PLEN    = 32-1; // 32-bit polynomial order
CRCCON1bits.CRCGO   = 1; // start CRC calculation

CRCXORL = CRC32_POLYNOMIAL&0x0000ffff; // set polynomial
CRCXORH = CRC32_POLYNOMIAL>>16;

CRCWDATL = CRC32_SEED_VALUE&0x0000ffff; // set initial value
CRCWDATH = CRC32_SEED_VALUE>>16;

pointer16 = (unsigned short*)message1; // calculate CRC
length    = sizeof(message1)/sizeof(unsigned long);
while(length--)

    {

while(CRCCON1bits.CRCFUL); // wait if FIFO is full
// 32-bit word access to FIFO

CRCDATL = *pointer16++; // must be written first
CRCDATH = *pointer16++; // must be written last

}

// wait until previous
// data shifts are done

while(!CRCCON1bits.CRCMPT); // wait until FIFO is empty

asm volatile ("repeat #16-#2\n nop"); // 16 cycles maximum for 32-bit data

CRCCON2bits.DWIDTH = 8-1; // switch the data width to 8-bit

pointer8 = (unsigned char*)message2; // calculate CRC
length   = sizeof(message2)/sizeof(unsigned char);
while(length--)
{
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Example 6-10: Data Width Switching (32-Bit Polynomial, Little-Endian, MOD bit = 0) (Continued)

while(CRCCON1bits.CRCFUL); // wait if FIFO is full

*((unsigned char*)&CRCDATL) = *pointer8++; // byte access to FIFO
}

while(!CRCCON1bits.CRCMPT); // wait until FIFO is empty

// wait until previous data shifts are done
asm volatile ("repeat #4-#2\n nop"); // 4 cycles maximum for 8-bit data

// switch the data width to polynomial length
CRCCON2bits.DWIDTH = 32-1; // 32-bit

CRCDATL = 0; // dummy data to shift out the CRC result
CRCDATH = 0;

asm volatile ("repeat #2+#16-#2\n nop"); // delay 2 cycles to move data from FIFO
// to shift buffer
// and 16 cycles for 32-bit word to shift out
// the final result

crcResultCRC32 = ((unsigned long)CRCWDATH<<16)|CRCWDATL; // get the final CRC result
// (must be0xE092727E)

while(1);
return 1;

}
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 32-Bit Programmable Cyclic Redundancy Check (CRC)
7.0 OPERATION IN POWER SAVE MODES

7.1 Sleep Mode

If Sleep mode is entered while the module is operating, the module is suspended in its current 
state until clock execution resumes.

7.2 Idle Mode

To continue full module operation in Idle mode, the SIDL bit must be cleared prior to entry into 
the mode.

If SIDL = 1, the module behaves the same way as it does in Sleep mode; pending interrupt events 
will be passed on, even though the module clocks are not available.
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8.0 RELATED APPLICATION NOTES

This section lists application notes that are related to this section of the manual. These 
application notes may not be written specifically for the dsPIC33/PIC24 device families, but the 
concepts are pertinent and could be used with modification and possible limitations. The current 
application notes related to the 32-Bit Programmable Cyclic Redundancy Check (CRC) are:

Title Application Note #

No related application notes at this time.

Note: Please visit the Microchip web site (www.microchip.com) for additional application 
notes and code examples for the dsPIC33/PIC24 families of devices.
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 32-Bit Programmable Cyclic Redundancy Check (CRC)
9.0 REVISION HISTORY

Revision A (April 2009)

This is the initial released revision of this document.

Revision B (August 2013)

This revision includes the following changes:

• Changed the document name from PIC24F Family Reference Manual to dsPIC33/PIC24 
Family Reference Manual.

• Revised description of CRCISEL in Register 3-1.

• Added additional information to Section 5.2 “Data Shift Direction”.

• Added additional information to Section 5.3 “Data FIFO”.

• Made corrections to Figure 5-1, Figure 5-2 and Figure 5-3.

• Revised Section 5.4 “CRC Engine Interface”.

• Revised Section 5.5 “Interrupt Operation” and added code examples.

• Revised Section 6.2 “Typical Operation” and added code examples.

• Minor grammatical corrections throughout the document.

Revision C (May 2018)

This revision includes the following changes:

• Revised Table 3-1.

• Added note to Register 3-1.

• Added note to Figure 4-1.

• Removed Figure 5-1, Figure 5-2 and Figure 5-3.

• Revised Section 5.4.3 “CRC Initial Value”, Section 5.4.4 “CRC Result” and Section 5.5 
“Interrupt Operation”.

• Revised title for Example 5-3,
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