
32-Bit Programmable Cyclic Redundancy Check (CRC)
HIGHLIGHTS

This section of the manual contains the following major topics:

1.0 Introduction ... 2

2.0 CRC Overview .. 3

3.0 CRC Registers .. 4

4.0 CRC Engine .. 11

5.0 Control Logic... 12

6.0 Application of CRC Module... 20

7.0 Operation in Power Save Modes .. 33

8.0 Related Application Notes... 34

9.0 Revision History .. 35
© 2009-2018 Microchip Technology Inc. DS30009729C-page 1

dsPIC33/PIC24 Family Reference Manual
1.0 INTRODUCTION

The 32-Bit Programmable Cyclic Redundancy Check (CRC) module is a software-configurable
CRC generator. The module provides a hardware implemented method of quickly generating
checksums for various communication and security applications. The CRC engine calculates the
CRC checksum without CPU intervention; moreover, it is much faster than the software
implementation.

The programmable CRC generator provides the following features:

• User-programmable CRC polynomial equation, up to 32 bits

• Programmable shift direction (little or big-endian)

• Independent data and polynomial lengths

• Configurable interrupt output

• Data FIFO

The programmable CRC generator module can be divided into two parts: the control logic and
the CRC engine. The control logic incorporates a register interface, data FIFO, an interrupt
generator and a CRC engine interface. The CRC engine incorporates a CRC calculator, which
is implemented using a serial shifter with XOR function. A simplified block diagram is shown in
Figure 1-1.

Figure 1-1: Simplified Block Diagram of the Programmable CRC Generator

Note: This family reference manual section is meant to serve as a complement to device
data sheets. Depending on the device variant, this manual section may not apply to
all dsPIC33/PIC24 devices.

Please consult the note at the beginning of the “32-Bit Programmable Cyclic
Redundancy Check (CRC) Generator” chapter in the current device data sheet to
check whether this document supports the device you are using.

Device data sheets and family reference manual sections are available for
download from the Microchip Worldwide Web site at: http://www.microchip.com

Shift Buffer

CRC Shift Engine

CRCWDATH, CRCWDATL

LENDIAN1

CRCISEL

1

0

FIFO Empty Event

Shift Complete

Set CRCIF

Peripheral Clock

0

Event

Variable FIFO
(4x32, 8x16 or 16x8)

CRCDATH/CRCDATL
DS30009729C-page 2 © 2009-2018 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com

 32-Bit Programmable Cyclic Redundancy Check (CRC)
2.0 CRC OVERVIEW

The checksum is a unique number associated with a message, or a particular block of data,
containing several bytes. Whether it is a data packet for communication, or a block of data stored
in memory, a piece of information, such as checksum, helps to validate it before processing. The
simplest way to calculate a checksum is to add together all the data bytes present in the
message. However, this method of checksum calculation fails badly when the message is
modified by inverting or swapping groups of bytes. Also, it fails when null bytes are added
anywhere in the message.

The Cyclic Redundancy Checksum (CRC) is a more complicated, but robust, error checking
algorithm. The main idea behind the CRC algorithm is to treat a message as a binary bit stream
and divide it by a fixed binary number. The remainder from this division is considered to be the
checksum. Like in division, the CRC calculation is also an iterative process. The only difference
is that these operations are done on modulo arithmetic, based on mod 2. For example, division
is replaced with the XOR operation (i.e., subtraction without carry). The CRC algorithm uses the
term, polynomial, to perform all of its calculations. The divisor, dividend and remainder that are
represented by numbers are termed as: polynomials with binary coefficients. For example, the
number, 25h (11001), is represented as:

Equation 2-1:

In order to perform the CRC calculation, a suitable divisor is first selected. This divisor is called
the generator polynomial. Since CRC is used to detect errors, a generator polynomial of a
suitable length needs to be chosen for a given application, as each polynomial has different error
detection capabilities. Some polynomials are widely used for many applications, but the error
detecting capabilities of any particular polynomial are beyond the scope of this reference section.

The CRC algorithm is straightforward to implement in software. However, it requires considerable
CPU bandwidth to implement the basic requirements, such as shift, bit test and XOR. Moreover,
CRC calculation is an iterative process and additional software overhead for data transfer
instructions puts enormous burden on the MIPS requirement of a microcontroller. In contrast, the
software-configurable CRC hardware module facilitates a fast CRC checksum calculation with
minimal software overhead.

(1 * x4) + (1 * x3) + (0 * x2) + (0 * x1) + (1 * x0) or x4 + x3 + x0
© 2009-2018 Microchip Technology Inc. DS30009729C-page 3

dsPIC33/PIC24 Family Reference Manual
3.0 CRC REGISTERS

Different registers associated with the CRC module are described in detail in this section. There
are eight registers in this module. These are mapped to the data RAM space as Special Function
Registers (SFRs) in dsPIC33/PIC24 devices:

• CRCCON1: CRC Control Register 1

• CRCCON2: CRC Control Register 2

• CRCXORL: CRC XOR Low Register

• CRCXORH: CRC XOR High Register

• CRCDATL: CRC Data Low Register

• CRCDATH: CRC Data High Register

• CRCWDATL: CRC Shift Low Register

• CRCWDATH: CRC Shift High Register

The CRCCON1 (Register 3-1) and CRCCON2 (Register 3-2) registers control the operation of
the module, and configure various settings. The CRCXORL/H registers (Register 3-3 and
Register 3-4) select the polynomial terms to be used in the CRC equation. The CRCDATL/H
and CRCWDATL/H registers are each register pairs that serve as buffers for the double-word
input data and CRC processed output, respectively.
DS30009729C-page 4 © 2009-2018 Microchip Technology Inc.

©
 2

0
0

9
-2

0
1

8
 M

icro
ch

ip
 T

e
ch

n
o

lo
g

y In
c.

D

S
3

0
0

0
9

7
2

9
C

-p
a

g
e

 5

 32-B
it P

ro
g

ram
m

ab
le C

yclic R
ed

u
n

d
an

cy C
h

eck (C
R

C
)

ammable Cyclic Redundancy Check (CRC)
followed by a detailed description of each

Ta

F Bit 3 Bit 2 Bit 1 Bit 0
All

Resets

CR ENDIAN MOD(2) — — 0040

CR PLEN<4:0> 0000

CR — 0000

CR 0000

CR 0000

CR 0000

CR 0000

CR 0000

Le

No
3.1 Register Maps

A summary of the Special Function Registers associated with the dsPIC33/PIC24 32-Bit Progr
module is provided in Table 3-1.The corresponding registers appear after the summaries,
register.

ble 3-1: Special Function Registers Associated with the Programmable CRC Module(1)

ile Name Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4

CCON1 CRCEN — CSIDL VWORD<4:0> CRCFUL CRCMPT CRCISEL CRCGO L

CCON2 — — — DWIDTH<4:0> — — —

CXORL X<15:1>

CXORH X<31:16>

CDATL DATA<15:0>

CDATH DATA<31:16>

CWDATL SDATA<15:0>

CWDATH SDATA<31:16>

gend: — = unimplemented, read as ‘0’.

te 1: Refer to the specific device data sheet for memory map details.

2: This bit is not available on all devices. Refer to the specific device data sheet for details.

dsPIC33/PIC24 Family Reference Manual
Register 3-1: CRCCON1: CRC Control Register 1

R/W-0 U-0 R/W-0 R-0 R-0 R-0 R-0 R-0

CRCEN — CSIDL VWORD<4:0>

bit 15 bit 8

R-0 R-1 R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0

CRCFUL CRCMPT CRCISEL CRCGO LENDIAN MOD(1) — —

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 CRCEN: CRC Enable bit

1 = Enables module
0 = Disables module

bit 14 Unimplemented: Read as ‘0’

bit 13 CSIDL: CRC Stop in Idle Mode bit

1 = Discontinues module operation when device enters Idle mode
0 = Continues module operation in Idle mode

bit 12-8 VWORD<4:0>: Counter Value bits

Indicates the number of valid words in the FIFO. Has a maximum value of 16 when DWIDTH<4:0>  7
(data words, 8-bit wide or less). Has a maximum value of 8 when DWIDTH<4:0> 15(data words from 9
to 16-bit wide). Has a maximum value of 4 when DWIDTH<4:0> 31(data words from 17 to 32-bit wide).

bit 7 CRCFUL: CRC FIFO Full bit

1 = FIFO is full
0 = FIFO is not full

bit 6 CRCMPT: CRC FIFO Empty bit

1 = FIFO is empty
0 = FIFO is not empty

bit 5 CRCISEL: CRC Interrupt Selection bit

1 = Interrupt on FIFO empty; final word of data is still shifted through CRC
0 = Interrupt on shift complete (FIFO is empty and no data is shifted from the shift buffer)

bit 4 CRCGO: Start CRC bit

1 = Starts CRC serial shifter; clearing the bit aborts shifting
0 = CRC serial shifter is turned off

bit 3 LENDIAN: Data Word Little Endian Configuration bit

1 = Data word is shifted into the CRC, starting with the LSb (little-endian); reflected input data
0 = Data word is shifted into the CRC, starting with the MSb (big-endian); non-reflected input data

bit 2 MOD: CRC Operating Mode Select bit(1)

1 = Alternate mode: Shift buffer data is XORed with CRC shift engine after bit n
0 = Legacy mode: Shift buffer data is XORed with CRC shift engine before bit 0

bit 1-0 Unimplemented: Read as ‘0’

Note 1: This bit is not available on all devices. Refer to the specific device data sheet for details.
DS30009729C-page 6 © 2009-2018 Microchip Technology Inc.

 32-Bit Programmable Cyclic Redundancy Check (CRC)

Register 3-2: CRCCON2: CRC Control Register 2

U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

— — — DWIDTH<4:0>

bit 15 bit 8

U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

— — — PLEN<4:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as ‘0’

bit 12-8 DWIDTH<4:0>: Data Word Width Configuration bits

Configures the width of the data word (Data Word Width – 1).

bit 7-5 Unimplemented: Read as ‘0’

bit 4-0 PLEN<4:0>: Polynomial Length Configuration bits

Configures the length of the polynomial (Polynomial Length – 1).
© 2009-2018 Microchip Technology Inc. DS30009729C-page 7

dsPIC33/PIC24 Family Reference Manual

Register 3-3: CRCXORL: CRC XOR Low Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

X<15:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0

X<7:1> —

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-1 X<15:1>: XOR of Polynomial Term xn Enable bits

bit 0 Unimplemented: Read as ‘0’

Register 3-4: CRCXORH: CRC XOR High Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

X<31:24>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

X<23:16>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 X<31:16>: XOR of Polynomial Term xn Enable bits
DS30009729C-page 8 © 2009-2018 Microchip Technology Inc.

 32-Bit Programmable Cyclic Redundancy Check (CRC)
Register 3-5: CRCDATL: CRC Data Low Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

DATA<15:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

DATA<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 DATA<15:0>: CRC Input Data bits

Writing to this register fills the FIFO; reading from this register returns ‘0’.

Register 3-6: CRCDATH: CRC Data High Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

DATA<31:24>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

DATA<23:16>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 DATA<31:16>: CRC Input Data bits

Writing to this register fills the FIFO; reading from this register returns ‘0’.
© 2009-2018 Microchip Technology Inc. DS30009729C-page 9

dsPIC33/PIC24 Family Reference Manual
Register 3-7: CRCWDATL: CRC Shift Low Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

SDATA<15:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

SDATA<7:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 SDATA<15:0>: CRC Shift Register bits

Writing to this register writes to the CRC Shift register through the CRC write bus. Reading from this
register reads the CRC read bus.

Register 3-8: CRCWDATH: CRC Shift High Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

SDATA<31:24>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

SDATA<23:16>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 DATA<31:16>: CRC Shift Register bits

Writing to this register writes to the CRC Shift register through the CRC write bus. Reading from this
register reads the CRC read bus.
DS30009729C-page 10 © 2009-2018 Microchip Technology Inc.

 32-Bit Programmable Cyclic Redundancy Check (CRC)
4.0 CRC ENGINE

4.1 Generic CRC Engine

The CRC engine is a serial shifting CRC calculator, configurable though multiplexer settings. The
engine can also be configured as to where shift buffer data is introduced using the MOD bit
(CRCCON1<2>). A simplified diagram of the CRC shift engine is shown in Figure 4-1.

The CRC algorithm uses a simplified form of arithmetic process, using the XOR operation
instead of binary division. The coefficients of the generator polynomial are programmed with
the CRCXOR registers. Writing a ‘1’ into a location enables XORing of that element in the
polynomial. The length of the polynomial is programmed using the PLEN<4:0> bits in the
CRCCON2 register (CRCCON2<4:0>). The value of PLEN<4:0> signals the length of the
polynomial and switches a multiplexer to indicate the tap from which the feedback originated.

The result of the CRC calculation is obtained by reading the CRCWDAT registers.

Figure 4-1: CRC Shift Engine Detail

CRCWDATH, CRCWDATL

Bit 0

X(0)(1) X(1)(1)

Read/Write Bus

X(2)(1) X(n)(1)

Note 1: Each XOR stage of the shift engine is programmable. See text for details.

2: Polynomial Length n is determined by (PLEN<4:0> + 1).

3: This mode is not available on all devices. Refer to the specific device data sheet for details.

Bit 1 Bit 2 Bit n(2)Shift Buffer
Data

CRCWDATH, CRCWDATL

Bit 0

X(0) X(1)(1)

Read/Write Bus

X(2)(1) X(n)(1)

Bit 1 Bit 2 Bit n(2)

Shift Buffer
Data

Legacy Mode (MOD bit = 0)

Alternate Mode (MOD bit = 1)(3)
© 2009-2018 Microchip Technology Inc. DS30009729C-page 11

dsPIC33/PIC24 Family Reference Manual
5.0 CONTROL LOGIC

5.1 Polynomial Interface

The CRC module can be programmed for CRC polynomials of up to the 32nd order, using up to
32 bits. Polynomial length, which reflects the highest exponent in the equation, is selected by the
PLEN<4:0> bits (CRCCON2<4:0>). The CRCXOR registers control which exponent terms are
included in the equation. Setting a particular bit includes that exponent term in the equation
functionally; this includes an XOR operation on the corresponding bit in the CRC engine.
Clearing the bit disables the XOR.

For example, consider two CRC polynomials, one a 16-bit equation and the other a 32-bit
equation (Equation 5-1).To program these polynomials into the CRC generator, set the register
bits as shown in Table 5-1.

Equation 5-1:

Table 5-1: CRC Setup Examples for 16 and 32-Bit Polynomials

Note that the appropriate positions are set to ‘1’ to indicate that they are used in the equation
(e.g., X26 and X23). The Most Significant bit (MSb) of the polynomial does not affect the
calculation and can be set to any value.

5.2 Data Shift Direction

The LENDIAN bit (CRCCON1<3>) is used to control the shift direction. By default, the CRC
module will shift data through the engine, MSb first (LENDIAN = 0). Setting LENDIAN to ‘1’
causes the CRC module to shift data, LSb first. This setting allows better integration with various
communication schemes and removes the overhead of reversing the bit order in software. Note
that this only changes the direction the data is shifted into the engine. The result of the CRC
calculation will still be a normal CRC result, not a reverse CRC result.

dsPIC33/PIC24 devices are little-endian. When the CRC module is configured for the big-endian
(LENDIAN = 0), the input data bytes and words must be swapped in the application code before
loading them into the data FIFO (CRCDAT registers).

CRC Control Bits
Bit Values

16-Bit Polynomial 32-Bit Polynomial

PLEN<4:0> 01111 11111

X<31:16> 0000 0000 0000 0000 0000 0100 1100 0001

X<15:1> 0001 0000 0010 0001 0001 1101 1011 0111

x16 + x12 + x5 + 1
and

x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1
DS30009729C-page 12 © 2009-2018 Microchip Technology Inc.

 32-Bit Programmable Cyclic Redundancy Check (CRC)
5.3 Data FIFO

The module incorporates a FIFO that works with a variable data width. The data width is defined
by the DWIDTH<4:0> bits (CRCCON2<12:8>). It can be configured to any value, between 1 and
32 bits. The logic associated with the FIFO contains a 5-bit counter, VWORD<4:0> bits
(CRCCON1<12:8>).

The value in the VWORD<4:0> bits indicates the number of unprocessed data elements in the
FIFO. The FIFO is:

• 16-word deep when DWIDTH<4:0>  7 (data words, 8-bit wide or less)

• 8-word deep when DWIDTH<4:0>  15 (data words from 9 to 16-bit wide)

• 4-word deep when DWIDTH<4:0>  31 (data words from 17 to 32-bit wide)

The data for the CRC calculation must be written into the FIFO using the CRCDAT registers.
Reading the CRCDAT registers always returns zero. To accommodate the MSb first shift method
(LENDIAN = 0), byte and word swapping must be done in software when filling the FIFO.

When all shifts are done (i.e., the FIFO is empty and the CRC shift engine is Idle), it is possible
to change the FIFO width (DWIDTH<4:0> bits) without any information loss or CRC result
damage.

With a data width of eight bits or less, the FIFO increments on a write to the lower byte of the
CRCDATL register (a byte access to the CRCDATL register must be used). The smallest data
element that can be written into the FIFO is one byte.

For example, if DWIDTH<4:0> is five, then the size of the data is DWIDTH<4:0> + 1 or six. The
data is written as a whole byte; the two unused upper bits are ignored. Once the data byte is
written into the CRCDATL register, the value of the VWORD<4:0> bits (CRCCON1<12:8>)
increments by one.

With data widths more than 8 bits and less than or equal to 16 bits, the FIFO increments on a
write to the CRCDATL register (16-bit word access to the CRCDATL register must be used).
Unused upper data bits are ignored. The value of the VWORD<4:0> bits is incremented for every
write to the CRCDATL register.

When the data width is greater than 16 bits, any write to the CRCDATH register increments the
VWORD<4:0> bits by one. Writing the lower word into the CRCDATL register must be done
before writing the upper word into the CRCDATH register. Unused upper data bits are ignored.

Note: Ensure that the new data is not written into the CRCDAT registers when the CRCFUL
bit is set; if the new data is written, it will be ignored.
© 2009-2018 Microchip Technology Inc. DS30009729C-page 13

dsPIC33/PIC24 Family Reference Manual
5.4 CRC Engine Interface

5.4.1 FIFO TO CRC SHIFT ENGINE

To start moving the data from the FIFO to the CRC shift buffer, the CRCGO bit (CRCCON1<4>)
must be set. The serial shifter starts shifting data from the shift buffer to the CRC shift engine,
starting from the MSb first for LENDIAN = 0 and LSb first for LENDIAN = 1, when CRCGO = 1
and the value of VWORD<4:0> is greater than zero. If the CRCFUL bit was set earlier, then it is
cleared when the VWORDx bits decrement by one. The VWORD<4:0> bits decrement by one
when a FIFO location is moved to the shift buffer. The serial shifter continues shifting until the
VWORD<4:0> bits reach zero; at this point, the CRCMPT bit becomes set to indicate that the
FIFO is empty. If the CRCGO bit is cleared during a CRC calculation, then the CRC shift engine
will stop calculating until the CRCGO bit is set.

The application can write into the FIFO while the shift operation is in progress. The CRCFUL bit
should be monitored. If the CRCFUL bit is not set, another word can be written into the FIFO. At
least one instruction cycle must pass after a write to the CRCDAT registers, before a read of the
valid value of the VWORD<4:0> bits.

When the VWORD<4:0> bits reach the maximum value for the configured value of the
DWIDTH<4:0> bits, the CRCFUL bit becomes set. When the VWORD<4:0> bits reach zero, the
CRCMPT bit becomes set. The FIFO is emptied and the VWORD<4:0> bits are set to ‘00000’
whenever the CRCEN bit is ‘0’.

5.4.2 NUMBER OF CLOCK CYCLES TO SHIFT DATA

The data from FIFO goes to the shift buffer. It takes two peripheral clock cycles to start moving
the data words from FIFO to the shift buffer. The data from the shift buffer is then shifted to the
CRC shift engine. It takes (DWIDTH<4:0> + 1) clock cycles to completely move the data from the
shift buffer to the CRC shift engine. For example, if DWIDTH<4:0> = 5, then the data length is
six bits (DWIDTH<4:0> + 1) and six cycles are required to shift the data. In this case, only six bits
of a byte are shifted out. The two MSbs of each byte are don’t care bits. Similarly, for a 12-bit
polynomial selection, the Most Significant four bits of each word are ignored.

5.4.3 CRC INITIAL VALUE

The access to the CRC shift engine is provided through the CRCWDAT registers. These registers
can be loaded with a desired CRC initial value prior to the start of the calculations. The form of this
initial value depends on the operating mode selected by the MOD bit (CRCCON1<2>).

In Alternate mode (MOD bit = 1, not available on all devices), the CRC initial value must be in
direct form.

In Legacy mode (MOD bit = 0), the CRC initial value must be in non-direct form. The non-direct
initial value is a value for which the CRC calculation gives the desired direct CRC initial value. For
example, if the application uses CRC-32 polynomial, 0x04C11DB7, and must start the calculations
from the CRC direct initial value, 0xFFFFFFFF, then the non-direct value, 0x46AF6449, must be
loaded in the CRCWDAT registers (the CRC of this non-direct value, 0x46AF6449, is
0xFFFFFFFF). When the non-direct initial value is written into the shift engine using the CRCWDAT
registers, it will be converted by the CRC module to the direct initial value after (PLEN<4:0> + 1)
peripheral clock cycles.

Usually, the CRC calculation starts from the same initial value every time. In this case, the
non-direct initial value can be found just once and then can be defined as a constant in the
application code.

Note: The write to the CRCWDAT registers clears/resets the shift buffer.

Note: The CRC non-direct initial value of zero is zero.
DS30009729C-page 14 © 2009-2018 Microchip Technology Inc.

 32-Bit Programmable Cyclic Redundancy Check (CRC)
Example 5-1 shows a possible software routine to get the non-direct initial value from the direct
initial value.

Example 5-1: Software Routine to Calculate the Non-Direct Initial Value

The CRC module can be used to get the non-direct initial value. To do this:

1. Enable the CRC module (CRCEN = 1) and shifts (CRCGO = 1).

2. Shift the polynomial value right by one.

3. Reverse the bit order of the shifted polynomial value.

4. Write this result in the CRCXOR registers.

5. Set the data width and polynomial length (DWIDTH<4:0> and PLEN<4:0> bits) to the
polynomial order (length).

6. Reverse the bit order of the desired direct initial value.

7. Write the reversed initial value in the CRCWDAT registers.

8. Write a dummy data to the CRCDAT registers and wait two peripheral clock cycles to
move the data from the FIFO to the shift buffer, and (PLEN<4:0> + 1) peripheral clock
cycles to shift out the result.

Alternatively, clear the CRC Interrupt Selection bit (CRCISEL = 0) to get the interrupt when
shifts from the shift buffer are done, clear the CRC interrupt flag, write a dummy data in
the CRCDAT registers and wait for the CRC interrupt flag to set.

9. Read the value from the CRCWDAT registers.

10. Reverse the bit order of the read result; it will give the final non-direct initial value.

unsigned long CalculateNonDirectSeed(
unsigned long seed, // direct CRC initial value
unsigned long polynomial, // polynomial
unsigned char polynomialOrder) // polynomial order
{
unsigned char lsb;
unsigned char i;
unsigned long msbmask;

msbmask = ((unsigned long)1)<<(polynomialOrder-1);
for (i=0; i<polynomialOrder; i++) {

lsb = seed & 1;
if (lsb) seed ^= polynomial;
seed >>= 1;
if (lsb) seed |= msbmask;

}
return seed; // return the non-direct CRC initial value
}

© 2009-2018 Microchip Technology Inc. DS30009729C-page 15

dsPIC33/PIC24 Family Reference Manual
Example 5-2 shows one way to implement this procedure.

To continue calculations of the full data message, in the applications where the intermediate CRC
sums must be read in the middle of the calculations, the non-direct value must be calculated and
set to the CRCWDAT registers again. In this case, the CRC direct initial value will be an
intermediate CRC result read.

Example 5-2: Calculating the Non-Direct Initial Value (MOD bit = 0)

unsigned long CalculateNonDirectSeed(unsigned long seed, // direct CRC initial value
 unsigned long polynomial, // polynomial

unsigned char polynomialOrder) // polynomial order (valid values are
// 8, 16, 32 bits)

{
CRCCON1 = 0;
CRCCON2 = 0;

CRCCON1bits.CRCEN = 1; // enable CRC
CRCCON1bits.CRCISEL = 0; // interrupt when all shifts are done
CRCCON2bits.DWIDTH = polynomialOrder-1; // data width
CRCCON2bits.PLEN = polynomialOrder-1; // polynomial length
CRCCON1bits.CRCGO = 1; // start CRC calculation

polynomial >>= 1; // shift the polynomial right

polynomial = ReverseBitOrder(polynomial, polynomialOrder); // reverse bits order of the
 // polynomial
CRCXORL = (unsigned short)(polynomial&0x0000FFFF); // set the reversed polynomial
CRCXORH = (unsigned short)(polynomial>>16);
seed = ReverseBitOrder(seed, polynomialOrder); // reverse bits order of the seed value
CRCWDATL = (unsigned short)(seed&0x0000FFFF); // set seed value
CRCWDATH = (unsigned short)(seed>>16);

_CRCIF = 0; // clear interrupt flag
switch(polynomialOrder) // load dummy data to shift out the
 // seed result
{

case 8:
 ((unsigned char)&CRCDATL) = 0; // load byte
 while(!_CRCIF); // wait until shifts are done
 seed = CRCWDATL&0x00ff; // read reversed seed

 case 16:
 CRCDATL = 0; // load short
 while(!_CRCIF); // wait until shifts are done
 seed = CRCWDATL; // read reversed seed
 break;

case 32:
 // load long
 CRCDATL = 0;
 CRCDATH = 0;
 while(!_CRCIF); // wait for shifts are done
 seed = ((unsigned long)CRCWDATH<<16)|CRCWDATL; // read reversed seed
 break;

default:
 ;

}

seed = ReverseBitOrder(seed, polynomialOrder); // reverse the bit order to get the
 // non-direct seed
return seed; // return the non-direct CRC initial value

}

DS30009729C-page 16 © 2009-2018 Microchip Technology Inc.

 32-Bit Programmable Cyclic Redundancy Check (CRC)
Example 5-2: Calculating the Non-Direct Initial Value (MOD bit = 0) (Continued)

 // WHERE THE FUNCTION TO REVERSE THE BIT ORDER CAN BE

unsigned long ReverseBitOrder(unsigned long data, // input data
unsigned char numberOfBits) // width of the input data,
 // valid values are 8,16,32 bits

{
unsigned long maskin = 0;
unsigned long maskout = 0;
unsigned long result = 0;
unsigned char i;

switch(numberOfBits)
{

case 8:
 maskin = 0x80;
 maskout = 0x01;
 break;

case 16:
 maskin = 0x8000;
 maskout = 0x0001;
 break;

case 32:
 maskin = 0x80000000;
 maskout = 0x00000001;
 break;

default:
 ;

}

for(i=0; i<numberOfBits; i++)
{

if(data&maskin){
 result |= maskout;

}
 maskin >>= 1;
 maskout <<= 1;

}

return result;
}

© 2009-2018 Microchip Technology Inc. DS30009729C-page 17

dsPIC33/PIC24 Family Reference Manual
5.4.4 CRC RESULT

Reading the result of a CRC calculation depends on the selected operating mode.

In Alternate mode (MOD bit = 1, not available on all devices), the result is available in the
CRCWDAT registers when all the data in the CRC FIFO buffer has been processed. Submitting
dummy data to generate extra cycles is not required.

In Legacy mode (MOD bit = 0), the CRC module requires (PLEN<4:0> + 1) extra peripheral clock
cycles to finish the calculations. To generate these additional cycles, the dummy data, with the
width equal to the polynomial order (length), must be loaded into the CRCDAT registers. After
the shifts are finished, the final CRC result can be read from the CRCWDAT registers.

There are two procedures to get the final CRC result after all data is loaded into the CRC module.

If the data width (DWIDTH<4:0>) is more than the polynomial length (PLEN<4:0>):

1. Wait for the data FIFO to empty (CRCMPT bit is set).

2. Wait (DWIDTH<4:0> + 1) clock cycles to make sure that shifts from the shift buffer are
finished.

3. Change the data width to the polynomial length (DWIDTH<4:0> = PLEN<4:0>).

4. Write one dummy data word to the CRCDAT registers.

5. Wait two peripheral clock cycles to move the data from the FIFO to the shift buffer, plus
(PLEN<4:0> + 1) clock cycles to shift out the result.

Alternatively, clear the CRC Interrupt Selection bit (CRCISEL = 0) to get the interrupt when
all shifts are done. Clear the CRC interrupt flag. Write dummy data in the CRCDAT
registers and wait until the CRC interrupt flag is set.

6. Read the final CRC result from the CRCWDAT registers.

7. Restore the data width (DWIDTH<4:0> bits) for further calculations (OPTIONAL).

If the data width (DWIDTH<4:0>) is equal to, or less than, the polynomial length (PLEN<4:0>),
the procedure to get the result can be different:

1. Clear the CRC Interrupt Selection bit (CRCISEL = 0) to get the interrupt when all shifts are
done.

2. Suspend the calculation by setting CRCGO = 0.

3. Clear the CRC interrupt flag.

4. Write the dummy data with the total data length equal to the polynomial length in the
CRCDAT registers.

5. Resume the calculation by setting CRCGO = 1.

6. Wait until the CRC interrupt flag is set.

7. Read the final CRC result from the CRCWDAT registers.
DS30009729C-page 18 © 2009-2018 Microchip Technology Inc.

 32-Bit Programmable Cyclic Redundancy Check (CRC)
When the CRC result is achieved, the CRC non-direct initial value should be written again into
the CRCWDAT registers to clear/reset the shift buffer from the previously loaded dummy data to
start a new calculation. Example 5-3 shows the steps described above for the polynomial orders
of 8, 16 and 32 bits.

Example 5-3: Routine to Get the Final CRC Result in Legacy Mode (MOD bit = 0)

5.5 Interrupt Operation

The module generates an interrupt that is configurable by the user for either of the two conditions.
If CRCISEL is ‘1’, an interrupt is generated when the VWORD<4:0> bits make a transition from
a value of ‘1’ to ‘0’. If CRCISEL is ‘0’, an interrupt will be generated when the FIFO is empty and
shifts from the shift buffer are finished.

For more details on interrupts and interrupt priority settings, refer to the “Interrupt Controller”
section in the device data sheet.

unsigned long GetCRC(unsigned char polynomialOrder, // valid values are 8,16,32
unsigned char currentDataWidth) // valid values are 8,16,32
{
unsigned long crc = 0;

while(!CRCCON1bits.CRCMPT); // wait until data FIFO is empty

asm volatile ("repeat %0\n nop" : : "r"(currentDataWidth>>1)); // wait until previous data
 // shifts are done

CRCCON2bits.DWIDTH = polynomialOrder-1; // set data width to polynomial
 // length

CRCCON1bits.CRCISEL = 0; // interrupt when all shifts are done

_CRCIF = 0; // clear interrupt flag

switch(polynomialOrder)
 {

case 8: // polynomial length is 8 bits
 ((unsigned char)&CRCDATL) = 0; // load byte

 while(!_CRCIF); // wait until shifts are done
 crc = CRCWDATL&0x00ff; // get crc
 break;

case 16: // polynomial length is 16 bits
 CRCDATL = 0; // load short
 while(!_CRCIF); // wait until shifts are done
 crc = CRCWDATL; // get crc
 break;

case 32: // polynomial length is 32 bits
 CRCDATL = 0; // load long
 CRCDATH = 0;
 while(!_CRCIF); // wait until shifts are done
 crc = ((unsigned long)CRCWDATH<<16)|CRCWDATL; // get crc
 break;

default:
 ;

}
CRCCON2bits.DWIDTH = currentDataWidth-1; // restore data width for further
 // calculations

return crc; // return the final CRC value

}

© 2009-2018 Microchip Technology Inc. DS30009729C-page 19

dsPIC33/PIC24 Family Reference Manual
6.0 APPLICATION OF CRC MODULE

The CRC is a robust error checking algorithm in digital communication for messages containing
several bytes or words. After calculation, the checksum is appended to the message and
transmitted to the receiving station. The receiver calculates the checksum with the received
message to verify the data integrity.

6.1 Variations

The 32-bit programmable CRC module can be programmed to shift out either the MSb or LSb
first. MSb first is a popular implementation as employed in XMODEM protocol. In one of the
variations (CCITT protocol) for CRC calculation, the LSb is shifted out first. Discussions on all the
variations are beyond the scope of this document, but several variations of CRC can be
implemented using this module.

The choice of the polynomial length, and the polynomial itself, are application-dependent.
Polynomial lengths of 5, 7, 8, 10, 12, 16 and 32 are normally used in various standard
implementations. The following sections explain the recommended step-by-step procedure for
CRC calculation. Users can decide whether zeros, or any other values, need to be appended to
the message stream. Depending on the application, the user may decide whether any value
needs to be appended at all.

6.2 Typical Operation

To use the module for a typical CRC calculation:

1. Set the CRCEN bit to enable the module.

2. Configure the module for the desired operation:

a) Program the desired polynomial using the CRCXOR registers and the PLEN<4:0> bits.

b) Configure the data width and shift direction using the DWIDTH<4:0> and LENDIAN bits.

3. Set the CRCGO bit to start the calculations.

4. Set the desired CRC initial value in the CRCWDAT registers as described in Section 5.4.3
“CRC Initial Value”.

5. Load all data into the FIFO by writing to the CRCDAT registers as space becomes
available (the CRCFUL bit must be zero before the next data loading).

6. Wait until the data FIFO is empty (CRCMPT bit is set).

7. Read the CRC result as described in Section 5.4.4 “CRC Result”.
DS30009729C-page 20 © 2009-2018 Microchip Technology Inc.

 32-Bit Programmable Cyclic Redundancy Check (CRC)
Example 6-1 through Example 6-10 show typical code for different combinations of polynomial
length, data width, shift direction and CRC Engine modes.

Example 6-1: CRC-SMBus (8-Bit Polynomial with 32-Bit Data, Big-Endian, MOD bit = 1)

// This macro is used to swap bytes for big endian
#define Swap(x) __extension__({ \
unsigned long __x = (x), __v; \
__asm__ ("wsbh %0,%1;\n\t" \
"rotr %0,16" \
: "=d" (__v) \
: "d" (__x)); \
__v; \
})

// ASCII bytes "12345678"
volatile unsigned char __attribute__((aligned(4))) message[] = {'1','2','3','4','5','6','7','8'};
volatile unsigned char crcResultCRCSMBUS = 0;
int main (void)
{
unsigned long* pointer;
unsigned short length;
unsigned long data;

// standard CRC-SMBUS

#define CRCSMBUS_POLYNOMIAL ((unsigned long)0x00000007)
#define CRCSMBUS_SEED_VALUE ((unsigned long)0x00000000) // direct initial value

CRCCON = 0;
CRCCONbits.MOD = 1; // alternate mode
CRCCONbits.ON = 1; // enable CRC
CRCCONbits.LENDIAN = 0; // big endian
CRCCONbits.CRCISEL = 0; // interrupt when all shifts are done
CRCCONbits.DWIDTH = 32-1; // 32-bit data width
CRCCONbits.PLEN = 8-1; // 8-bit polynomial order
CRCXOR = CRCSMBUS_POLYNOMIAL; // set polynomial
CRCWDAT = CRCSMBUS_SEED_VALUE; // set initial value
CRCCONbits.CRCGO = 1; // start CRC calculation

pointer = (unsigned long*)message;
length = sizeof(message)/sizeof(unsigned long);
while(1)
{

while(CRCCONbits.CRCFUL); // wait if FIFO is full
data = *pointer++; // load from little endian
data = Swap(data); // swap bytes for big endian
length--;
if(length == 0)
{

break;
}
CRCDAT = data; // 32-bit word access to FIFO

}
CRCCONbits.CRCGO = 0; // suspend CRC calculation
IFS0CLR = _IFS0_CRCIF_MASK; // clear the interrupt flag
CRCDAT = data; // write last data into FIFO
CRCCONbits.CRCGO = 1; // resume CRC calculation

while(!IFS0bits.CRCIF); // wait until shifts are done
crcResultCRCSMBUS = (unsigned char)CRCWDAT&0x00ff; // get CRC result (must be 0xC7)

while(1);
return 1;

}

© 2009-2018 Microchip Technology Inc. DS30009729C-page 21

dsPIC33/PIC24 Family Reference Manual
Example 6-2: CRC-SMBus (8-Bit Polynomial with 32-Bit Data, Little-Endian, MOD bit = 0)

// ASCII bytes "12345678"
volatile unsigned char __attribute__((aligned(2))) message[] = {'1','2','3','4','5','6','7','8'};

volatile unsigned char crcResultCRCSMBUS = 0;

int main (void)
{
unsigned short* pointer;
unsigned short length;
unsigned short data_high;
unsigned short data_low;
//
// standard CRC-SMBUS
//

#define CRCSMBUS_POLYNOMIAL ((unsigned short)0x0007)
#define CRCSMBUS_SEED_VALUE ((unsigned short)0x0000)// non-direct of 0x00

CRCCON1 = 0;
CRCCON2 = 0;

CRCCON1bits.CRCEN = 1; // enable CRC
CRCCON1bits.LENDIAN = 0; // big endian
CRCCON1bits.CRCISEL = 0; // interrupt when all shifts are done
CRCCON2bits.DWIDTH = 32-1; // 32-bit data width
CRCCON2bits.PLEN = 8-1; // 8-bit polynomial order
CRCCON1bits.CRCGO = 1; // start CRC calculation

CRCXORL = CRCSMBUS_POLYNOMIAL; // set polynomial
CRCXORH = 0;

CRCWDATL = CRCSMBUS_SEED_VALUE; // set initial value
CRCWDATH = 0;

pointer = (unsigned short*)message; // calculate CRC
length = sizeof(message)/sizeof(unsigned long);
while(length--)
{
while(CRCCON1bits.CRCFUL); // wait if FIFO is full

data_low = *pointer++; // load from little endian
data_high = *pointer++;

asm volatile ("swap %0" : "+r"(data_low)); // swap bytes for big endian
asm volatile ("swap %0" : "+r"(data_high));

CRCDATL = data_high; // 32-bit word access to FIFO
CRCDATH = data_low; // swap 16-bit words for big endian

}

while(!CRCCON1bits.CRCMPT); // wait until FIFO is empty

 // wait until previous data shifts are done
asm volatile ("repeat #16-#2\n nop"); // 16 cycles maximum for 32-bit data width

CRCCON2bits.DWIDTH = 8-1; // 8-bit
// switch data width to polynomial length

_CRCIF = 0; // clear the interrupt flag
 // dummy data to shift out the CRC result

((unsigned char)&CRCDATL) = 0; // byte access to FIFO

while(!_CRCIF); // wait until shifts are done
crcResultCRCSMBUS = CRCWDATL&0x00ff; // get CRC result (must be 0xC7)

while(1);

return 1;
}

DS30009729C-page 22 © 2009-2018 Microchip Technology Inc.

 32-Bit Programmable Cyclic Redundancy Check (CRC)
Example 6-3: CRC-16 (16-Bit Data with 32-Bit Polynomial, Little-Endian, MOD bit = 1)

// ASCII bytes "87654321"
volatile unsigned short message[] = {0x3738,0x3536,0x3334,0x3132};
volatile unsigned short crcResultCRC16 = 0;
int main (void)
{
unsigned short* pointer;
unsigned short length;
unsigned short data;

// standard CRC-16

#define CRC16_POLYNOMIAL ((unsigned long)0x00008005)
#define CRC16_SEED_VALUE ((unsigned long)0x00000000) // direct initial value

CRCCON = 0;
CRCCONbits.MOD = 1; // alternate mode
CRCCONbits.ON = 1; // enable CRC
CRCCONbits.CRCISEL = 0; // interrupt when all shifts are done
CRCCONbits.LENDIAN = 1; // little endian
CRCCONbits.DWIDTH = 16-1; // 16-bit data width
CRCCONbits.PLEN = 16-1; // 16-bit polynomial order
CRCXOR = CRC16_POLYNOMIAL; // set polynomial
CRCWDAT = CRC16_SEED_VALUE; // set initial value
CRCCONbits.CRCGO = 1; // start CRC calculation

pointer = (unsigned short*)message;
length = sizeof(message)/sizeof(unsigned short);
while(1)
{

while(CRCCONbits.CRCFUL); // wait if FIFO is full
data = *pointer++; // load data
length--;
if(length == 0)
{

break;
}
((unsigned short)&CRCDAT) = data; // 16-bit word access to FIFO

 }

CRCCONbits.CRCGO = 0; // suspend CRC calculation
IFS0CLR = _IFS0_CRCIF_MASK; // clear the interrupt flag
((unsigned short)&CRCDAT) = data; // write last data into FIFO
CRCCONbits.CRCGO = 1; // resume CRC calculation
while(!IFS0bits.CRCIF); // wait until shifts are done
crcResultCRC16 = (unsigned short)CRCWDAT; // get CRC result (must be 0xE716)

while(1);
return 1;

}

© 2009-2018 Microchip Technology Inc. DS30009729C-page 23

dsPIC33/PIC24 Family Reference Manual
Example 6-4: CRC-16 (16-Bit Data, 16-Bit Polynomial, Little-Endian, MOD bit = 0)

// ASCII bytes "87654321"
volatile unsigned short message[] = {0x3738,0x3536,0x3334,0x3132};

volatile unsigned short crcResultCRC16 = 0;

int main (void)
{
unsigned short* pointer;
unsigned short length;
unsigned short data;

//
// standard CRC-16
//
#define CRC16_POLYNOMIAL ((unsigned short)0x8005)
#define CRC16_SEED_VALUE ((unsigned short)0x0000) // non-direct of 0x0000

CRCCON1 = 0;
CRCCON2 = 0;

CRCCON1bits.CRCEN = 1; // enable CRC
CRCCON1bits.CRCISEL = 0; // interrupt when all shifts are done
CRCCON1bits.LENDIAN = 1; // little endian
CRCCON2bits.DWIDTH = 16-1; // 16-bit data width
CRCCON2bits.PLEN = 16-1; // 16-bit polynomial order
CRCCON1bits.CRCGO = 1; // start CRC calculation

CRCXORL = CRC16_POLYNOMIAL; // set polynomial
CRCXORH = 0;

CRCWDATL = CRC16_SEED_VALUE; // set initial value
CRCWDATH = 0;

pointer = (unsigned short*)message; // calculate CRC
length = sizeof(message)/sizeof(unsigned short);

while(length--)
{

while(CRCCON1bits.CRCFUL); // wait if FIFO is full

data = *pointer++; // load data

CRCDATL = data; // 16-bit word access to FIFO
}

while(CRCCON1bits.CRCFUL); // wait if FIFO is full
CRCCON1bits.CRCGO = 0; // suspend CRC calculation to clear interrupt flag

_CRCIFt = 0; // clear interrupt flag

CRCDATL = 0; // load dummy data to shift out the CRC result
 // data width must be equal to polynomial length

CRCCON1bits.CRCGO = 1; // resume CRC calculation

while(!_CRCIF); // wait until shifts are done

crcResultCRC16 = CRCWDATL; // get CRC result (must be 0xE716)

while(1);

return 1;
}

DS30009729C-page 24 © 2009-2018 Microchip Technology Inc.

 32-Bit Programmable Cyclic Redundancy Check (CRC)
Example 6-5: CRC-CCITT (16-Bit Polynomial with 16-Bit Data, Big-Endian, MOD bit = 1)

// This macro is used to swap bytes for big endian
#define Swap(x) __extension__({ \
unsigned long __x = (x), __v; \
__asm__ ("wsbh %0,%1;\n\t" \
: "=d" (__v) \
: "d" (__x)); \
__v; \
})
// ASCII bytes "87654321"
volatile unsigned short message[] = {0x3738,0x3536,0x3334,0x3132};
volatile unsigned short crcResultCRCCCITT = 0;
int main (void)
{
unsigned short* pointer;
unsigned short length;
unsigned short data;

// standard CRC-CCITT

#define CRCCCITT_POLYNOMIAL ((unsigned long)0x00001021)
#define CRCCCITT_SEED_VALUE ((unsigned long)0x0000FFFF) // direct initial value

CRCCON = 0;
CRCCONbits.MOD = 1; // alternate mode
CRCCONbits.ON = 1; // enable CRC
CRCCONbits.CRCISEL = 0; // interrupt when all shifts are done
CRCCONbits.LENDIAN = 0; // big endian
CRCCONbits.DWIDTH = 16-1; // 16-bit data width
CRCCONbits.PLEN = 16-1; // 16-bit polynomial order
CRCXOR = CRCCCITT_POLYNOMIAL; // set polynomial
CRCWDAT = CRCCCITT_SEED_VALUE; // set initial value
CRCCONbits.CRCGO = 1; // start CRC calculation

pointer = (unsigned short*)message;
length = sizeof(message)/sizeof(unsigned short);
while(1)
{

while(CRCCONbits.CRCFUL); // wait if FIFO is full
data = *pointer++; // load data
data = Swap(data); // swap bytes for big endian
length--;
if(length == 0)
{

break;
}
((unsigned short)&CRCDAT) = data; // 16-bit word access to FIFO

}

CRCCONbits.CRCGO = 0; // suspend CRC calculation
IFS0CLR = _IFS0_CRCIF_MASK; // clear the interrupt flag
((unsigned short)&CRCDAT) = data; // write last data into FIFO
CRCCONbits.CRCGO = 1; // resume CRC calculation
while(!IFS0bits.CRCIF); // wait until shifts are done
crcResultCRCCCITT = (unsigned short)CRCWDAT; // get CRC result (must be 0x9B4D)

 while(1);
 return 1;
}

© 2009-2018 Microchip Technology Inc. DS30009729C-page 25

dsPIC33/PIC24 Family Reference Manual
Example 6-6: CRC-CCITT (16-Bit Polynomial with 16-Bit Data, Big-Endian, MOD bit = 0)

// ASCII bytes "87654321"
volatile unsigned short message[] = {0x3738,0x3536,0x3334,0x3132};

volatile unsigned short crcResultCRCCCITT = 0;

int main (void)
{
unsigned short* pointer;
unsigned short length;
unsigned short data;

//
// standard CRC-CCITT
//
#define CRCCCITT_POLYNOMIAL ((unsigned short)0x1021)
#define CRCCCITT_SEED_VALUE ((unsigned short)0x84CF) // non-direct of 0xffff

CRCCON1 = 0;
CRCCON2 = 0;

CRCCON1bits.CRCEN = 1; // enable CRC
CRCCON1bits.CRCISEL = 0; // interrupt when all shifts are done
CRCCON1bits.LENDIAN = 0; // big endian
CRCCON2bits.DWIDTH = 16-1; // 16-bit data width
CRCCON2bits.PLEN = 16-1; // 16-bit polynomial order
CRCCON1bits.CRCGO = 1; // start CRC calculation

CRCXORL = CRCCCITT_POLYNOMIAL; // set polynomial
CRCXORH = 0;

CRCWDATL = CRCCCITT_SEED_VALUE; // set initial value
CRCWDATH = 0;

pointer = (unsigned short*)message; // calculate CRC
length = sizeof(message)/sizeof(unsigned short);

while(length--)
{

while(CRCCON1bits.CRCFUL); // wait if FIFO is full

data = *pointer++; // load data

asm volatile ("swap %0" : "+r"(data)); // swap bytes for big endian
CRCDATL = data; // 16 bit word access to FIFO
}

while(CRCCON1bits.CRCFUL); // wait if FIFO is full

CRCCON1bits.CRCGO = 0; // suspend CRC calculation to clear interrupt flag

_CRCIF = 0; // clear interrupt flag

CRCDATL = 0; // load dummy data to shift out the CRC result
// data width must be equal to polynomial length

CRCCON1bits.CRCGO = 1; // resume CRC calculation

while(!_CRCIF); // wait until shifts are done

crcResultCRCCCITT = CRCWDATL; // get CRC result (must be 0x9B4D)

while(1);

return 1;
}

DS30009729C-page 26 © 2009-2018 Microchip Technology Inc.

 32-Bit Programmable Cyclic Redundancy Check (CRC)
Example 6-7: CRC-32 (32-Bit Polynomial with 32-Bit Data, Little-Endian, MOD bit = 1)

// ASCII bytes "12345678"
volatile unsigned char __attribute__((aligned(4))) message[] = {'1','2','3','4','5','6','7','8'};
// function to reverse the bit order (OPTIONAL)
unsigned long ReverseBitOrder(unsigned long data);
volatile unsigned int crcResultCRC32 = 0;
int main(void)
{
unsigned long* pointer;
unsigned short length;

// standard CRC-32

#define CRC32_POLYNOMIAL ((unsigned long)0x04C11DB7)
#define CRC32_SEED_VALUE ((unsigned long)0xFFFFFFFF) // direct initial value

CRCCON = 0;
CRCCONbits.MOD = 1; // alternate mode
CRCCONbits.ON = 1; // enable CRC
CRCCONbits.CRCISEL = 0; // interrupt when all shifts are done
CRCCONbits.LENDIAN = 1; // little endian
CRCCONbits.DWIDTH = 32-1; // 32-bit data width
CRCCONbits.PLEN = 32-1; // 32-bit polynomial order
CRCXOR = CRC32_POLYNOMIAL; // set polynomial
CRCWDAT = CRC32_SEED_VALUE; // set initial value
CRCCONbits.CRCGO = 1; // start CRC calculation
pointer = (unsigned long*)message;
length = sizeof(message)/sizeof(unsigned long);
while(1)
{

while(CRCCONbits.CRCFUL); // wait if FIFO is full
length--;
if(length == 0)
{

break;
}
CRCDAT = *pointer++; // 32-bit word access to FIFO

}
CRCCONbits.CRCGO = 0; // suspend CRC calculation
IFS0CLR = _IFS0_CRCIF_MASK; // clear the interrupt flag
CRCDAT = *pointer; // write last data into FIFO
CRCCONbits.CRCGO = 1; // resume CRC calculation
while(!IFS0bits.CRCIF); // wait until shifts are done
crcResultCRC32 = CRCWDAT; // get the final CRC result
// OPTIONAL reverse CRC value bit order and invert (must be 0x9AE0DAAF)
crcResultCRC32 = ~ReverseBitOrder(crcResultCRC32);
while(1);
return 1;

}
unsigned long ReverseBitOrder(unsigned long data)
{
unsigned long maskin;
unsigned long maskout;
unsigned long result = 0;
unsigned char i;
maskin = 0x80000000;
maskout = 0x00000001;

for(i=0; i<32; i++)
{

if(data&maskin){
result |= maskout;

}
maskin >>= 1;
maskout <<= 1;

}
return result;
}

© 2009-2018 Microchip Technology Inc. DS30009729C-page 27

dsPIC33/PIC24 Family Reference Manual
Example 6-8: CRC-32 (32-Bit Polynomial with 32-Bit Data, Little-Endian, MOD bit = 0)

// ASCII bytes "12345678"
volatile unsigned char __attribute__((aligned(4))) message[] = {'1','2','3','4','5','6','7','8'};

// function to reverse the bit order (OPTIONAL)
unsigned long ReverseBitOrder(unsigned long data);

volatile unsigned long crcResultCRC32 = 0;

int main(void)
{
unsigned short* pointer;
unsigned short length;
//
// standard CRC-32
//
#define CRC32_POLYNOMIAL ((unsigned long)0x04C11DB7)
#define CRC32_SEED_VALUE ((unsigned long)0x46AF6449) // non-direct of 0xffffffff

CRCCON1 = 0;
CRCCON2 = 0;

CRCCON1bits.CRCEN = 1; // enable CRC
CRCCON1bits.CRCISEL = 0; // interrupt when all shifts are done
CRCCON1bits.LENDIAN = 1; // little endian
CRCCON2bits.DWIDTH = 32-1; // 32-bit data width
CRCCON2bits.PLEN = 32-1; // 32-bit polynomial order
CRCCON1bits.CRCGO = 1; // start CRC calculation

CRCXORL = CRC32_POLYNOMIAL&0x0000ffff; // set polynomial
CRCXORH = CRC32_POLYNOMIAL>>16;

CRCWDATL = CRC32_SEED_VALUE&0x0000ffff; // set initial value
CRCWDATH = CRC32_SEED_VALUE>>16;

pointer = (unsigned short*)message; // calculate CRC
length = sizeof(message)/sizeof(unsigned long);
while(length--)
{

while(CRCCON1bits.CRCFUL); // wait if FIFO is full

// 32-bit word access to FIFO
CRCDATL = *pointer++; // must be written first
CRCDATH = *pointer++; // must be written last

}

while(CRCCON1bits.CRCFUL); // wait if FIFO is full
DS30009729C-page 28 © 2009-2018 Microchip Technology Inc.

 32-Bit Programmable Cyclic Redundancy Check (CRC)
Example 6-8: CRC-32 (32-Bit Polynomial with 32-Bit Data, Little-Endian, MOD bit = 0) (Continued)

CRCCON1bits.CRCGO = 0; // suspend CRC calculation to clear interrupt flag
_CRCIF = 0; // clear interrupt flag

CRCDATL = 0; // dummy data to shift out the CRC result
CRCDATH = 0;

CRCCON1bits.CRCGO = 1; // resume CRC calculation

while(!_CRCIF); // wait until shifts are done

crcResultCRC32 = ((unsigned long)CRCWDATH<<16)|CRCWDATL; // get the final CRC result

crcResultCRC32 = ~ReverseBitOrder(crcResultCRC32); // OPTIONAL
// reverse CRC value bit order and
// invert (must be 0x9AE0DAAF)

while(1);

return 1;
}

unsigned long ReverseBitOrder(unsigned long data)
{
unsigned long maskin;
unsigned long maskout;
unsigned long result = 0;
unsigned char i;

maskin = 0x80000000;
maskout = 0x00000001;

for(i=0; i<32; i++)
{

if(data&maskin){
result |= maskout;

}
maskin >>= 1;
maskout <<= 1;

}

return result;
}

© 2009-2018 Microchip Technology Inc. DS30009729C-page 29

dsPIC33/PIC24 Family Reference Manual
Example 6-9: Data Width Switching (32-Bit Polynomial, Little-Endian, MOD bit = 1)

// ASCII bytes "12345678"
volatile unsigned long message1[] = {0x34333231,0x38373635};
// ASCII bytes "123"
volatile unsigned char message2[] = {'1','2','3'};
volatile unsigned long crcResultCRC32 = 0;
int main(void)
{
unsigned char* pointer8;
unsigned long* pointer32;
unsigned short length;
#define CRC32_POLYNOMIAL ((unsigned long)0x04C11DB7)
#define CRC32_SEED_VALUE ((unsigned long)0xFFFFFFFF) // direct initial value

CRCCON = 0;
CRCCONbits.MOD = 1; // alternate mode
CRCCONbits.ON = 1; // enable CRC
CRCCONbits.CRCISEL = 0; // interrupt when all shifts are done
CRCCONbits.LENDIAN = 1; // little endian
CRCCONbits.DWIDTH = 32-1; // 32-bit data width
CRCCONbits.PLEN = 32-1; // 32-bit polynomial order
CRCXOR = CRC32_POLYNOMIAL; // set polynomial
CRCWDAT = CRC32_SEED_VALUE; // set initial value
CRCCONbits.CRCGO = 1; // start CRC calculation

pointer32 = (unsigned long*)message1;
length = sizeof(message1)/sizeof(unsigned long);
while(1)
{

while(CRCCONbits.CRCFUL); // wait if FIFO is full
length--;
if(length == 0)
{

break;
}
CRCDAT = *pointer32++; // 32-bit word access to FIFO

}
CRCCONbits.CRCGO = 0; // suspend CRC calculation
IFS0CLR = _IFS0_CRCIF_MASK; // clear the interrupt flag
CRCDAT = *pointer32; // write last 32-bit data into FIFO
CRCCONbits.CRCGO = 1; // resume CRC calculation
while(!IFS0bits.CRCIF); // wait until shifts are done
CRCCONbits.DWIDTH = 8-1; // switch the data width to 8-bit

pointer8 = (unsigned char*)message2; // calculate CRC
length = sizeof(message2)/sizeof(unsigned char);
while(length--)
{

while(CRCCONbits.CRCFUL); // wait if FIFO is full
length--;
if(length == 0)
{

break;
}
((unsigned char)&CRCDAT) = *pointer8++; // byte access to FIFO

}
CRCCONbits.CRCGO = 0; // suspend CRC calculation
IFS0CLR = _IFS0_CRCIF_MASK; // clear the interrupt flag
((unsigned char)&CRCDAT) = *pointer8; // write last 8-bit data into FIFO
CRCCONbits.CRCGO = 1; // resume CRC calculation
while(!IFS0bits.CRCIF); // wait until shifts are done
crcResultCRC32 = CRCWDAT; // get the final CRC result (must be 0xE092727E)

while(1);
return 1;

}

DS30009729C-page 30 © 2009-2018 Microchip Technology Inc.

 32-Bit Programmable Cyclic Redundancy Check (CRC)
Example 6-10: Data Width Switching (32-Bit Polynomial, Little-Endian, MOD bit = 0)

// ASCII bytes "12345678"
volatile unsigned long message1[] = {0x34333231,0x38373635};

// ASCII bytes "123"
volatile unsigned char message2[] = {'1','2','3'};

volatile unsigned long crcResultCRC32 = 0;

int main(void)
{
unsigned char* pointer8;
unsigned short* pointer16;
unsigned short length;

#define CRC32_POLYNOMIAL ((unsigned long)0x04C11DB7)
#define CRC32_SEED_VALUE ((unsigned long)0x46AF6449) // non-direct of 0xffffffff

CRCCON1 = 0;
CRCCON2 = 0;

CRCCON1bits.CRCEN = 1; // enable CRC
CRCCON1bits.LENDIAN = 1; // little endian
CRCCON2bits.DWIDTH = 32-1; // 32-bit data width
CRCCON2bits.PLEN = 32-1; // 32-bit polynomial order
CRCCON1bits.CRCGO = 1; // start CRC calculation

CRCXORL = CRC32_POLYNOMIAL&0x0000ffff; // set polynomial
CRCXORH = CRC32_POLYNOMIAL>>16;

CRCWDATL = CRC32_SEED_VALUE&0x0000ffff; // set initial value
CRCWDATH = CRC32_SEED_VALUE>>16;

pointer16 = (unsigned short*)message1; // calculate CRC
length = sizeof(message1)/sizeof(unsigned long);
while(length--)

 {

while(CRCCON1bits.CRCFUL); // wait if FIFO is full
// 32-bit word access to FIFO

CRCDATL = *pointer16++; // must be written first
CRCDATH = *pointer16++; // must be written last

}

// wait until previous
// data shifts are done

while(!CRCCON1bits.CRCMPT); // wait until FIFO is empty

asm volatile ("repeat #16-#2\n nop"); // 16 cycles maximum for 32-bit data

CRCCON2bits.DWIDTH = 8-1; // switch the data width to 8-bit

pointer8 = (unsigned char*)message2; // calculate CRC
length = sizeof(message2)/sizeof(unsigned char);
while(length--)
{

© 2009-2018 Microchip Technology Inc. DS30009729C-page 31

dsPIC33/PIC24 Family Reference Manual
Example 6-10: Data Width Switching (32-Bit Polynomial, Little-Endian, MOD bit = 0) (Continued)

while(CRCCON1bits.CRCFUL); // wait if FIFO is full

((unsigned char)&CRCDATL) = *pointer8++; // byte access to FIFO
}

while(!CRCCON1bits.CRCMPT); // wait until FIFO is empty

// wait until previous data shifts are done
asm volatile ("repeat #4-#2\n nop"); // 4 cycles maximum for 8-bit data

// switch the data width to polynomial length
CRCCON2bits.DWIDTH = 32-1; // 32-bit

CRCDATL = 0; // dummy data to shift out the CRC result
CRCDATH = 0;

asm volatile ("repeat #2+#16-#2\n nop"); // delay 2 cycles to move data from FIFO
// to shift buffer
// and 16 cycles for 32-bit word to shift out
// the final result

crcResultCRC32 = ((unsigned long)CRCWDATH<<16)|CRCWDATL; // get the final CRC result
// (must be0xE092727E)

while(1);
return 1;

}

DS30009729C-page 32 © 2009-2018 Microchip Technology Inc.

 32-Bit Programmable Cyclic Redundancy Check (CRC)
7.0 OPERATION IN POWER SAVE MODES

7.1 Sleep Mode

If Sleep mode is entered while the module is operating, the module is suspended in its current
state until clock execution resumes.

7.2 Idle Mode

To continue full module operation in Idle mode, the SIDL bit must be cleared prior to entry into
the mode.

If SIDL = 1, the module behaves the same way as it does in Sleep mode; pending interrupt events
will be passed on, even though the module clocks are not available.
© 2009-2018 Microchip Technology Inc. DS30009729C-page 33

dsPIC33/PIC24 Family Reference Manual
8.0 RELATED APPLICATION NOTES

This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the dsPIC33/PIC24 device families, but the
concepts are pertinent and could be used with modification and possible limitations. The current
application notes related to the 32-Bit Programmable Cyclic Redundancy Check (CRC) are:

Title Application Note #

No related application notes at this time.

Note: Please visit the Microchip web site (www.microchip.com) for additional application
notes and code examples for the dsPIC33/PIC24 families of devices.
DS30009729C-page 34 © 2009-2018 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com

 32-Bit Programmable Cyclic Redundancy Check (CRC)
9.0 REVISION HISTORY

Revision A (April 2009)

This is the initial released revision of this document.

Revision B (August 2013)

This revision includes the following changes:

• Changed the document name from PIC24F Family Reference Manual to dsPIC33/PIC24
Family Reference Manual.

• Revised description of CRCISEL in Register 3-1.

• Added additional information to Section 5.2 “Data Shift Direction”.

• Added additional information to Section 5.3 “Data FIFO”.

• Made corrections to Figure 5-1, Figure 5-2 and Figure 5-3.

• Revised Section 5.4 “CRC Engine Interface”.

• Revised Section 5.5 “Interrupt Operation” and added code examples.

• Revised Section 6.2 “Typical Operation” and added code examples.

• Minor grammatical corrections throughout the document.

Revision C (May 2018)

This revision includes the following changes:

• Revised Table 3-1.

• Added note to Register 3-1.

• Added note to Figure 4-1.

• Removed Figure 5-1, Figure 5-2 and Figure 5-3.

• Revised Section 5.4.3 “CRC Initial Value”, Section 5.4.4 “CRC Result” and Section 5.5
“Interrupt Operation”.

• Revised title for Example 5-3,
© 2009-2018 Microchip Technology Inc. DS30009729C-page 35

dsPIC33/PIC24 Family Reference Manual
NOTES:
DS30009729C-page 36 © 2009-2018 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.
 2009-2018 Microchip Technology Inc.

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

== ISO/TS 16949 ==
Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR,
AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory,
CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ,
KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus,
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip
Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST
Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered
trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

ClockWorks, The Embedded Control Solutions Company,
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,
mTouch, Precision Edge, and Quiet-Wire are registered
trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo,
CodeGuard, CryptoAuthentication, CryptoCompanion,
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,
KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,
PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and
ZENA are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip
Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology
Germany II GmbH & Co. KG, a subsidiary of Microchip Technology
Inc., in other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2009-2018, Microchip Technology Incorporated, All Rights
Reserved.

ISBN: 978-1-5224-2981-4
DS30009729C-page 37

DS30009729C-page 38  2009-2018 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Austin, TX
Tel: 512-257-3370

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Novi, MI
Tel: 248-848-4000

Houston, TX
Tel: 281-894-5983

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800

Raleigh, NC
Tel: 919-844-7510

New York, NY
Tel: 631-435-6000

San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270

Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733

China - Beijing
Tel: 86-10-8569-7000

China - Chengdu
Tel: 86-28-8665-5511

China - Chongqing
Tel: 86-23-8980-9588

China - Dongguan
Tel: 86-769-8702-9880

China - Guangzhou
Tel: 86-20-8755-8029

China - Hangzhou
Tel: 86-571-8792-8115

China - Hong Kong SAR
Tel: 852-2943-5100

China - Nanjing
Tel: 86-25-8473-2460

China - Qingdao
Tel: 86-532-8502-7355

China - Shanghai
Tel: 86-21-3326-8000

China - Shenyang
Tel: 86-24-2334-2829

China - Shenzhen
Tel: 86-755-8864-2200

China - Suzhou
Tel: 86-186-6233-1526

China - Wuhan
Tel: 86-27-5980-5300

China - Xian
Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444

India - New Delhi
Tel: 91-11-4160-8631

India - Pune
Tel: 91-20-4121-0141

Japan - Osaka
Tel: 81-6-6152-7160

Japan - Tokyo
Tel: 81-3-6880- 3770

Korea - Daegu
Tel: 82-53-744-4301

Korea - Seoul
Tel: 82-2-554-7200

Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906

Malaysia - Penang
Tel: 60-4-227-8870

Philippines - Manila
Tel: 63-2-634-9065

Singapore
Tel: 65-6334-8870

Taiwan - Hsin Chu
Tel: 886-3-577-8366

Taiwan - Kaohsiung
Tel: 886-7-213-7830

Taiwan - Taipei
Tel: 886-2-2508-8600

Thailand - Bangkok
Tel: 66-2-694-1351

Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

Finland - Espoo
Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching
Tel: 49-8931-9700

Germany - Haan
Tel: 49-2129-3766400

Germany - Heilbronn
Tel: 49-7131-67-3636

Germany - Karlsruhe
Tel: 49-721-625370

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Germany - Rosenheim
Tel: 49-8031-354-560

Israel - Ra’anana
Tel: 972-9-744-7705

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Italy - Padova
Tel: 39-049-7625286

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Norway - Trondheim
Tel: 47-7289-7561

Poland - Warsaw
Tel: 48-22-3325737

Romania - Bucharest
Tel: 40-21-407-87-50

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

Sweden - Gothenberg
Tel: 46-31-704-60-40

Sweden - Stockholm
Tel: 46-8-5090-4654

UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

10/25/17

http://support.microchip.com
http://www.microchip.com

	32-Bit Programmable Cyclic Redundancy Check (CRC)
	Highlights
	1.0 Introduction
	Figure 1-1: Simplified Block Diagram of the Programmable CRC Generator

	2.0 CRC Overview
	Equation 2-1:

	3.0 CRC Registers
	3.1 Register Maps
	Table 3-1: Special Function Registers Associated with the Programmable CRC Module(1)
	Register 3-1: CRCCON1: CRC Control Register 1
	Register 3-2: CRCCON2: CRC Control Register 2
	Register 3-3: CRCXORL: CRC XOR Low Register
	Register 3-4: CRCXORH: CRC XOR High Register
	Register 3-5: CRCDATL: CRC Data Low Register
	Register 3-6: CRCDATH: CRC Data High Register
	Register 3-7: CRCWDATL: CRC Shift Low Register
	Register 3-8: CRCWDATH: CRC Shift High Register

	4.0 CRC Engine
	4.1 Generic CRC Engine
	Figure 4-1: CRC Shift Engine Detail

	5.0 Control Logic
	5.1 Polynomial Interface
	Equation 5-1:
	Table 5-1: CRC Setup Examples for 16 and 32-Bit Polynomials

	5.2 Data Shift Direction
	5.3 Data FIFO
	5.4 CRC Engine Interface
	5.4.1 FIFO to CRC Shift Engine
	5.4.2 Number of Clock Cycles to Shift Data
	5.4.3 CRC Initial Value
	Example 5-1: Software Routine to Calculate the Non-Direct Initial Value
	Example 5-2: Calculating the Non-Direct Initial Value (MOD bit = 0)
	Example 5-2: Calculating the Non-Direct Initial Value (MOD bit = 0) (Continued)

	5.4.4 CRC Result
	Example 5-3: Routine to Get the Final CRC Result in Legacy Mode (MOD bit = 0)

	5.5 Interrupt Operation

	6.0 Application of CRC Module
	6.1 Variations
	6.2 Typical Operation
	Example 6-1: CRC-SMBus (8-Bit Polynomial with 32-Bit Data, Big-Endian, MOD bit = 1)
	Example 6-2: CRC-SMBus (8-Bit Polynomial with 32-Bit Data, Little-Endian, MOD bit = 0)
	Example 6-3: CRC-16 (16-Bit Data with 32-Bit Polynomial, Little-Endian, MOD bit = 1)
	Example 6-4: CRC-16 (16-Bit Data, 16-Bit Polynomial, Little-Endian, MOD bit = 0)
	Example 6-5: CRC-CCITT (16-Bit Polynomial with 16-Bit Data, Big-Endian, MOD bit = 1)
	Example 6-6: CRC-CCITT (16-Bit Polynomial with 16-Bit Data, Big-Endian, MOD bit = 0)
	Example 6-7: CRC-32 (32-Bit Polynomial with 32-Bit Data, Little-Endian, MOD bit = 1)
	Example 6-8: CRC-32 (32-Bit Polynomial with 32-Bit Data, Little-Endian, MOD bit = 0)
	Example 6-8: CRC-32 (32-Bit Polynomial with 32-Bit Data, Little-Endian, MOD bit = 0) (Continued)
	Example 6-9: Data Width Switching (32-Bit Polynomial, Little-Endian, MOD bit = 1)
	Example 6-10: Data Width Switching (32-Bit Polynomial, Little-Endian, MOD bit = 0)
	Example 6-10: Data Width Switching (32-Bit Polynomial, Little-Endian, MOD bit = 0) (Continued)

	7.0 Operation in Power Save Modes
	7.1 Sleep Mode
	7.2 Idle Mode

	8.0 Related Application Notes
	9.0 Revision History
	Worldwide Sales and Service

