
 TB3263
 Getting Started with ADCC for PIC18

Introduction

Author: Ioan Pop, Microchip Technology Inc.

The Analog-to-Digital Converter with Computation (ADCC) peripheral converts an analog voltage value into a 10-bit
numerical value and offers different computational actions that can be performed on the result such as averaging or
low-pass filtering. The code examples in this technical brief also apply to other PIC18 families of devices that feature
a 12-bit ADCC.

For each use case, there are two different implementations which have the same functionalities: one code generated
with MPLAB® Code Configurator (MCC) and one bare metal code. The MCC-generated code offers hardware
abstraction layers that ease the use of the code across different devices from the same family. The bare metal code
is easier to follow, allowing a fast ramp-up on the use case associated code.

This technical brief describes the application area, the modes of operation and the hardware and software
requirements of the Analog-to-Digital Converter with Computation. It covers the following use cases:

• ADCC Single Conversion:
This example shows how to configure the ADCC to perform a single conversion.

• ADCC Temperature Measurement:
This example shows how to configure the ADCC to read the temperature sensor and provide a value in Celsius
and Fahrenheit.

• ADCC Low-pass Filtering of a Conversion:
This example shows how to configure the ADCC to perform a conversion in the low-pass filter mode.

• ADCC Spike Detection:
This example shows how to configure the ADCC to trigger an interrupt when a voltage spike is detected.

Note:  The examples in this technical brief have been developed using the PIC18F47Q10 Curiosity Nano
development board. The PIC18F47Q10 pin package present on the board is QFN.

View Code Examples on GitHub
Click to browse repositories

© 2020 Microchip Technology Inc. Technical Brief DS90003263B-page 1

https://www.microchip.com/mplab/mplab-code-configurator
https://github.com/microchip-pic-avr-examples?q=pic18f47q10adcc&type=&language=

Table of Contents

Introduction...1

1. Peripheral Overview..3

2. ADCC Single Conversion..5

2.1. MCC Generated Code..5
2.2. Bare Metal Code.. 6

3. ADCC Temperature Measurement..8

3.1. MCC Generated Code..8
3.2. Bare Metal Code.. 9

4. ADCC Low-Pass Filtering of a Conversion..11

4.1. MCC Generated Code..11
4.2. Bare Metal Code.. 12

5. ADCC Spike Detection..14

5.1. MCC Generated Code..14
5.2. Bare Metal Code.. 16

6. References..19

7. Revision History.. 20

The Microchip Website...21

Product Change Notification Service..21

Customer Support.. 21

Microchip Devices Code Protection Feature.. 21

Legal Notice... 22

Trademarks.. 22

Quality Management System... 23

Worldwide Sales and Service...24

 TB3263

© 2020 Microchip Technology Inc. Technical Brief DS90003263B-page 2

1. Peripheral Overview
The Analog-to-Digital Converter with Computation (ADCC) is a peripheral that reads an analog voltage, transforms it
into a digital value and performs various computations on the results. The ADCC input can be selected from several
internal channels (Fixed Voltage Reference (FVR), temperature sensor or ground reference) or from an external pin.
The ADC Positive Channel Selection (ADPCH) register selects the channel.

The ADCC can have different positive and negative references. The positive reference can be chosen by writing in
the ADC Positive Voltage Reference Selection (ADPREF) bits of the ADC Reference Selection (ADREF) register. The
available sources are the FVR output, the external VREF+ pin or the supply voltage (VDD). The negative reference can
be selected from the ground reference (VSS) or external VREF- pin by writing in the ADC Negative Voltage Reference
Selection (ADNREF) bit in the same register as before.

Figure 1-1. ADCC Block Diagram

Filename: 10-000034D.vsd

Title: 12-bit ADC Block Diagram

Last Edit: 11/2/2016

First Used: PIC18F24/25K42 (MVAD)

Vref+Vref-

Enable

DACx_output

FVR_buffer

Temp Indicator

PCH[5:0]

External

Channel

 Inputs

GO/DONE

complete

start

ADC

Sample Circuit

Write to bit

GO/DONE

VSS

VDD

VREF+ pin

PREF[1:0]

12-bit Result

ADRESH ADRESL

16

ADFM

12

Internal

Channel

 Inputs

.

.

.

AN0

ANa

ANz

set bit ADIF

VSS

ADON

sampled

input

Fosc
Divider FOSC

FOSC/n

FRC

ADC
Clock
Select

ADC_clk

FRC

ADC CLOCK SOURCE

Trigger Select

Trigger Sources

. . .

ACT[4:0]

AUTO CONVERSION

TRIGGER

Rev. 10-000034D

11/2/2016

Positive
Reference

Select

00

11

10

01Reserved

FVR_buffer1

1

0

NREF

VREF- pin

VSS

CS

 TB3263
Peripheral Overview

© 2020 Microchip Technology Inc. Technical Brief DS90003263B-page 3

The ADCC has two clock sources. They are selected by the value of the Clock Selection (ADCS) bit in the Control 0
(ADCON0) register. The value ‘0’ selects the main microcontroller clock prescaled by a value determined by the
ADCLK register. The value ‘1’ of ADCS selects the dedicated fixed-frequency ADCC clock called FRC.

The ADCC can provide right- or left-justified results depending on the setting of the results Format/Alignment
Selection (ADFM) bit in the Control 0 (ADCON0) register in the following way: ‘1’ for right-justified results and ‘0’ for
left-justified. The result is found in the 16-bit ADC Result (ADRES) register.

The ADCC can be configured to start conversions on a trigger signal. The trigger can come from an external pin or
from other peripherals. The timing requirements for a conversion still need to be followed (e.g. if a conversion takes
100 us, then a trigger that comes faster than 100 us will not produce a new conversion).

The ADCC is enabled by setting the ADC Enable (ADON) bit in the Control 0 (ADCON0) register. There are then
three ways to start a conversion. The first is by setting the ADC Conversion Status (ADGO) bit in the ADCON0
register. The second is by receiving an auto-conversion trigger that is configured for this purpose. The third is
automatic, if the ADC Continuous Operation Enable (ADCONT) bit in the ADCON0 register is set. A conversion will
start immediately after the end of the previous one.

The ADCC module is equipped with post-conversion computation features that can be configured through the ADC
Control 2 (ADCON2) register. There are five available computation modes:

• Basic: The normal conversion mode. A single or double conversion is done and then the result is stored in the
ADRES register.

• Accumulate: With each trigger, the result is right-shifted by a number of bits equal to the value in the ADC
Accumulated Calculation Right Shift Select bits in the ADCON2 register and then added to the accumulator, a
threshold test is performed and ADC Repeat Counter (ADCNT) register is incremented.

• Average: With each trigger, the result is right-shifted by a number of bits equal to the value in the ADCRS bits in
the ADCON2 register and then added to the accumulator. When a number of conversions equal to the ADC
Repeat Setting (ADRPT) is completed, the value in the accumulator is divided by the number of samples and a
threshold test is performed and the accumulator is cleared on the next trigger.

• Burst average: It is similar to the Average mode, but it re-triggers the conversion until ADCNT becomes equal to
ADRPT even if continuous mode is not enabled.

• Low-pass filter: It works the same as the Average mode except it performs a low-pass filtering operation on all
the samples and reduces the effect of high-frequency noise on the average.

At the end of each computation, the results are latched and held stable. The error is then calculated by a formula
selected by the ADC Error Calculation Mode Select (ADCALC) bits in the ADC Control 3 (ADCON3) register. The
error is stored in the ADC Setpoint Error (ADERR) register.

The error is then compared to the upper and lower thresholds depending on the setting of the Threshold Interrupt
Mode Select (ADTMD) bits in the ADC Control 3 (ADCON3) register and if it is between the required bounds an
interrupt will be triggered.

 TB3263
Peripheral Overview

© 2020 Microchip Technology Inc. Technical Brief DS90003263B-page 4

2. ADCC Single Conversion
This example shows how to configure the ADCC module to give one conversion of an analog value read from a pin.
The ADCC module is configured to use its dedicated clock (FRC) with results right-justified. First, the sample
capacitor will be discharged by connecting it to the ground potential of the microcontroller and then a conversion will
be started on the analog channel.

The value can then be read from the debugger’s variable watch menu.

To achieve the functionality described by the use case, the following actions will be performed:

• System clock initialization
• Port initialization
• ADCC initialization
• Discharge sample capacitor
• Starting the conversion

2.1 MCC Generated Code
To generate this project using MPLAB Code Configurator (MCC), follow the next steps:

1. Create a new MPLAB X IDE project for PIC18F47Q10.
2. Open MCC from the toolbar (more information about how to install the MCC plug-in can

be found here.
3. Go to Project Resources → System → System Module and do the following configuration:

– Oscillator Select: HFINTOSC
– HF Internal Clock: 1 MHz
– Clock Divider: 1
– In the Watchdog Timer Enable field in WWDT tab, make sure “WDT Disabled” is selected
– In the Programming tab, make sure Low-Voltage Programming Enable is checked.

4. From the Device Resources window, add ADCC, then do the following configuration:
– Enable ADC: Check
– Operating: Basic Mode
– Clock Source: FRC
– Result Alignment: Right
– Positive Reference: VDD
– Negative Reference: VSS

5. Go to Pin Manager → Grid View and select the RA0 pin as ANx input for the ADCC.
Figure 2-1. Pin Mapping

6. Go to the Pin Module in the Project Resources tab and set the RA0 pin as analog and as input (check to see
if output is not checked).

7. Press the Generate button. The generated code can now be found in the project folder.
8. Add the following code to the main function.

Add this before the main function. This is the variable that stores the value and can be read with the debugger.

uint16_t volatile adcVal;

 TB3263
ADCC Single Conversion

© 2020 Microchip Technology Inc. Technical Brief DS90003263B-page 5

https://microchipdeveloper.com/install:mcc

Add this code inside the body of the main() function. This discharges the sample capacitor and adds a
function that starts the conversion on the analog channel and returns the value.
ADCC_DischargeSampleCapacitor();
adcVal = ADCC_GetSingleConversion(channel_ANA0);

while (1)
{
 ;
}

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

2.2 Bare Metal Code
The necessary code and functions to implement the presented example are analyzed in this section. It has five
functions: three of them configure the ADCC, the main oscillator and the pin, while the fourth one discharges the
sample capacitor and the last one initiates the conversion and returns the result.

The first step will be to configure the microcontroller to disable the Watchdog Timer (WDT) and to enable low-voltage
programming.

/*disable Watchdog*/
#pragma config WDTE = OFF
/* Low voltage programming enabled, RE3 pin is MCLR */
#pragma config LVP = ON

The CLK_Init function selects HFINTOSC as the main oscillator and sets the frequency to 1 MHz.

static void CLK_Init(void)
{
 /* set HFINTOSC Oscillator */
 OSCCON1bits.NOSC = 6;
 /* set HFFRQ to 1 MHz */
 OSCFRQbits.HFFRQ = 0;
}

The PORT_Init function sets the RA0 pin as analog input.

static void PORT_Init(void)
{
 /*set pin RA0 as analog*/
 ANSELAbits.ANSELA0 = 1;
 /*set pin RA0 as input*/
 TRISAbits.TRISA0 = 1;
}

The ADCC_Init function enables the ADCC, configures it to give right-justified results and use its dedicated clock.

static void ADCC_Init(void)
{
 /* Enable the ADCC module */
 ADCON0bits.ADON = 1;
 /* Select FRC clock */
 ADCON0bits.ADCS = 1;
 /* result right justified */
 ADCON0bits.ADFM = 1;
}

 TB3263
ADCC Single Conversion

© 2020 Microchip Technology Inc. Technical Brief DS90003263B-page 6

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-adcc-single-measurement-mcc

The ADCC_DischargeSampleCap function connects the ADCC to VSS and thus discharges the capacitor to provide
an accurate reading.

static void ADCC_DischargeSampleCap(void)
{
 /*channel number that connects to VSS*/
 ADPCH = 0x3C;
}

The ADCC_ReadValue function selects the channel, starts the conversion, waits for it to end and then returns the
result. This result is saved into a variable that can be watched with the debugger. The channel that connects to pin
RA0 is 0x00.

static uint16_t ADCC_ReadValue(uint8_t channel)
{
 ADPCH = channel;
 /*start conversion*/
 ADCON0bits.ADGO = 1;
 while (ADCON0bits.ADGO)
 {
 ;
 }

 return ((uint16_t)((ADRESH << 8) + ADRESL));
}

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

 TB3263
ADCC Single Conversion

© 2020 Microchip Technology Inc. Technical Brief DS90003263B-page 7

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-adcc-single-measurement-bare

3. ADCC Temperature Measurement
This example shows how to read the internal temperature sensor of the microcontroller. To achieve that, the ADCC
should be enabled and configured to use its dedicated clock (FRC) with results right-justified.

The microcontroller is equipped with a temperature circuit designed to measure the operating temperature of the
silicon die (internal temperature). It is integrated into the Fixed Voltage Reference (FVR) module and provides a
voltage proportional with the die temperature.

The temperature sense circuit is enabled by setting the Temperature Indicator Enable (TSEN) bit in the Fixed Voltage
Reference Control (FVRCON) register. It provides two selectable output ranges: the high range provides more
resolution over temperature range and a higher operating range (>3.6V), while the lower range is provided for low-
voltage operation. The range is selected by the Temperature Indicator Range Selection (TSRNG) bit in the FVRCON
register

First, the sample capacitor will be discharged and then a conversion will be started on the temperature channel.

Two macros are provided for transforming the received ADCC value into a Celsius or Fahrenheit value.

To achieve the functionality described by the use case, the following actions will be performed:

• System clock initialization
• Port initialization
• ADCC initialization
• Discharge sample capacitor
• Starting the conversion

3.1 MCC Generated Code
To generate this project using MPLAB Code Configurator (MCC), follow the next steps:

1. Create a new MPLAB X IDE project for PIC18F47Q10.
2. Open MCC from the toolbar (more information about how to install the MCC plug-in can

be found here.
3. Go to Project Resources → System → System Module and do the following configuration:

– Oscillator Select: HFINTOSC
– HF Internal Clock: 1 MHz
– Clock Divider: 1
– In the Watchdog Timer Enable field in WWDT tab, make sure “WDT Disabled” is selected
– In the Programming tab, make sure Low-Voltage Programming Enable is checked.

4. The peripherals can be added to the project from the Device Resources window. Add ADCC and FVR. The
peripherals are now available for configuration in the Project Resources window under Peripherals.

5. ADCC configuration:
– Enable ADC: Check
– Operating: Basic Mode
– Clock Source: FRC
– Result Alignment: Right
– Positive Reference: VDD
– Negative Reference: VSS

6. FVR configuration:
– Enable FVR: Check
– Enable Temperature Sensor: Check
– Voltage Range Selection: Lo_Range

7. Press the Generate button. The generated code can now be found in the project folder.

 TB3263
ADCC Temperature Measurement

© 2020 Microchip Technology Inc. Technical Brief DS90003263B-page 8

https://microchipdeveloper.com/install:mcc

8. Add the following code to the main.c file. Add the following code before the main() function. It provides two
macros that will convert the value read from the ADCC to a value in Celsius or Fahrenheit.
#define VDD 3.3
#define ADC_TO_CELSIUS(adcVal) (int16_t) \
 ((1241.4967 - VDD * (1024 - (adcVal))) / 2.70336)
#define ADC_TO_FAHRENHEIT(adcVal) (int16_t) \
 ((((1241.4967 - VDD * (1024 - (adcVal))) / 2.70336) * 1.8) + 32)

uint16_t volatile adcVal;
int16_t volatile celsiusValue;
int16_t volatile fahrenheitValue;

Add the following code to the main() function. It will discharge the sampling capacitor and start a conversion
on the temperature channel and return the value in a variable.
ADCC_DischargeSampleCapacitor();
adcVal = ADCC_GetSingleConversion(channel_Temp);

celsiusValue = ADC_TO_CELSIUS(adcVal);
fahrenheitValue = ADC_TO_FAHRENHEIT(adcVal);

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

3.2 Bare Metal Code
The necessary code and functions to implement the presented example are analyzed in this section. It has five
functions: three of them configure the ADCC, FVR and the main oscillator and one discharges the sample capacitor.
The last one initiates the conversion on the temperature channel.

The first step will be to configure the microcontroller to disable the Watchdog Timer (WDT) and to enable low-voltage
programming.

/*disable Watchdog*/
#pragma config WDTE = OFF
/* Low voltage programming enabled, RE3 pin is MCLR */
#pragma config LVP = ON

The CLK_Init function selects HFINTOSC as the main osciilator and sets the frequency to 1 MHz.

static void CLK_Init(void)
{
 /* set HFINTOSC Oscillator */
 OSCCON1bits.NOSC = 6;
 /* set HFFRQ to 1 MHz */
 OSCFRQbits.HFFRQ = 0;
}

The FVR_Init function enables the Fixed Voltage Reference (FVR) and the temperature sensor. The sensor is
configured to work on the low range as the high range requires an operating voltage above 3.6V.

static void FVR_Init(void)
{
 /*Enable temperature sensor*/
 FVRCONbits.TSEN = 1;
 /*Enable FVR*/
 FVRCONbits.FVREN = 1;
}

The ADCC_Init function configures the peripheral to use its FRC clock and give the results right justified.

static void ADCC_Init(void)
{
 /* Enable the ADCC module */

 TB3263
ADCC Temperature Measurement

© 2020 Microchip Technology Inc. Technical Brief DS90003263B-page 9

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-adcc-temperature-mcc

 ADCON0bits.ADON = 1;
 /* Select FRC clock */
 ADCON0bits.ADCS = 1;
 /* result right justified */
 ADCON0bits.ADFM = 1;
}

The ADCC_DischargeSampleCap function connects the ADCC channel to VSS to discharge the sampling capacitor
and provide accurate results.
static void ADCC_DischargeSampleCap(void)
{
 /*channel number that connects to VSS*/
 ADPCH = 0x3C;
}

The ADCC_ReadValue function initiates the conversion on the temperature channel, waits for it to end and returns
the value. The channel number to connect to the temperature sensor is 0x3C.

static uint16_t ADCC_ReadValue(uint8_t channel)
{
 ADPCH = channel;
 /*start conversion*/
 ADCON0bits.ADGO = 1;
 while (ADCON0bits.ADGO)
 {
 ;
 }

 return ((uint16_t)((ADRESH << 8) + ADRESL));
}

The value from the ADC is then converted to Celsius and Fahrenheit values that give the temperature of the device.
The variables can be checked with the debugger.

#define VDD 3.3
#define ADC_TO_CELSIUS(adcVal) (int16_t) \
 ((1241.4967 - VDD * (1024 - (adcVal))) / 2.70336)
#define ADC_TO_FAHRENHEIT(adcVal) (int16_t) \
 ((((1241.4967 - VDD * (1024 - (adcVal))) / 2.70336) * 1.8) + 32)

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

 TB3263
ADCC Temperature Measurement

© 2020 Microchip Technology Inc. Technical Brief DS90003263B-page 10

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-adcc-temperature-bare

4. ADCC Low-Pass Filtering of a Conversion
This example shows how to set the ADCC in the Low-pass Filter mode, read several values and give an average
result with the high-frequency noise removed by the filter.

The mode of the ADCC is set through the ADCON2 register. This example sets the mode to low-pass filter (the
ADMD bit field is equal to 0x4) and sets the time constant of the filter equal to 16 (from the ADCRS bit field; the time
constant is equal to 2 to the power of this bit field).

The ADCC will do a number of conversions equal to the value set in ADRPT, 100 in this example.

The ADCC is configured with right-justified results, running on its dedicated FRC clock.

RA0 is configured as analog input and the main oscillator is HFINTOSC with 1 MHz frequency.

The code will discharge the sample capacitor, initiate the conversion on the analog channel and return the result in a
variable that can be checked with the debugger.

To achieve the functionality described by the use case, the following actions will have to be performed:

• System clock initialization
• Port initialization
• ADCC initialization
• Discharge sample capacitor
• Starting the conversion

4.1 MCC Generated Code
To generate this project using MPLAB Code Configurator (MCC), follow the next steps:

1. Create a new MPLAB X IDE project for PIC18F47Q10.
2. Open MCC from the toolbar (more information about how to install the MCC plug-in can

be found here.
3. Go to Project Resources → System → System Module and do the following configuration:

– Oscillator Select: HFINTOSC
– HF Internal Clock: 1 MHz
– Clock Divider: 1
– In the Watchdog Timer Enable field in WWDT tab, make sure “WDT Disabled” is selected
– In the Programming tab, make sure Low-Voltage Programming Enable is checked.

4. From the Device Resources window, add ADCC. Then do the following configuration:
– Enable ADC: Check
– Operating: Low_pass_filter_mode
– Clock Source: FRC
– Result Alignment: Right
– Positive Reference: VDD
– Negative Reference: VSS
– In Computation Features tab:

• Repeat: 100
• Arc Right Shift: 4

5. Go to Pin Manager → Grid View and select the RA0 pin as ANx input for the ADCC:

 TB3263
ADCC Low-Pass Filtering of a Conversion

© 2020 Microchip Technology Inc. Technical Brief DS90003263B-page 11

https://microchipdeveloper.com/install:mcc

Figure 4-1. Pin Mapping

6. Go to the Pin Module in the Project Resources tab and set the RA0 pin as analog and as input (check to see
if Output is not checked).

7. Press the Generate button. The generated code can now be found in the project folder.
8. Add to the main.c file before the main() function the following line of code.

uint16_t volatile adcVal;

In the main() function add the code that discharges the sample capacitor, starts the conversion on the analog
channel and returns the value in the variable that can be read with the debugger.
ADCC_DischargeSampleCapacitor();
adcVal = ADCC_GetSingleConversion(channel_ANA0);

while (1)
{
 ;
}

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

4.2 Bare Metal Code
The necessary code and functions to implement the presented example are analyzed in this section.

The first step will be to configure the microcontroller to disable the Watchdog Timer (WDT) and to enable low-voltage
programming.

/*disable Watchdog*/
#pragma config WDTE = OFF
/* Low voltage programming enabled, RE3 pin is MCLR */
#pragma config LVP = ON

The CLK_Init function selects HFINTOSC as the main oscillator and sets its frequency to 1 MHz.

static void CLK_Init(void)
{
 /* set HFINTOSC Oscillator */
 OSCCON1bits.NOSC = 6;
 /* set HFFRQ to 1 MHz */
 OSCFRQbits.HFFRQ = 0;
}

The PORT_Init function sets the RA0 pin as analog input.

static void PORT_Init(void)
{
 /*set pin RA0 as analog*/
 ANSELAbits.ANSELA0 = 1;
 /*set pin RA0 as input*/
 TRISAbits.TRISA0 = 1;
}

 TB3263
ADCC Low-Pass Filtering of a Conversion

© 2020 Microchip Technology Inc. Technical Brief DS90003263B-page 12

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-adcc-low-pass-filtering-mcc

The ADCC_Init function configures the mode and time constant in ADCON2 and the number of repetitions in
ADRPT as well as selecting the FRC dedicated clock and setting the results right-justified.

static void ADCC_Init(void)
{
 /* Enable the ADCC module */
 ADCON0bits.ADON = 1;
 /* Select FRC clock */
 ADCON0bits.ADCS = 1;
 /* result right justified */
 ADCON0bits.ADFM = 1;
 /* Low pass filter mode */
 ADCON2bits.ADMD = 4;
 /* lpf time constant = 16 */
 ADCON2bits.ADCRS = 4;

 ADRPT = 100;
}

The ADCC_DischargeSampleCap function connects the ADCC channel to VSS in order to discharge the sampling
capacitor.
static void ADCC_DischargeSampleCap(void)
{
 /*channel number that connects to VSS*/
 ADPCH = 0x3C;
}

The ADCC_ReadValue function initiates a conversion on the analog channel and returns the result. The channel
number that connects to pin RA0 is 0x00. The variable can then be checked with the debugger.

static uint16_t ADCC_ReadValue(uint8_t channel)
{
 ADPCH = channel;
 /*start conversion*/
 ADCON0bits.ADGO = 1;
 while (ADCON0bits.ADGO)
 {
 ;
 }

 return ((uint16_t)((ADRESH << 8) + ADRESL));
}

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

 TB3263
ADCC Low-Pass Filtering of a Conversion

© 2020 Microchip Technology Inc. Technical Brief DS90003263B-page 13

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-adcc-low-pass-filtering-bare

5. ADCC Spike Detection
This example presents a solution that will generate an interrupt when a spike is detected in the value that is being
read. A sharp increase or decrease is necessary to generate the interrupt, a slow increase or decrease will not trigger
it. The code was tested with a potentiometer that can be turned quickly between its maximum and minimum values.

The main clock is configured to run from HFINTOSC with 1 MHz with a prescaler of 4 for a clock frequency of 250
kHz. The RA0 pin is configured as analog input.

The ADCC is enabled, Continuous mode is enabled, and the result is right-justified. The clock is given by the main
clock of the microcontroller, divided by two times the value found in the ADC Clock Selection (ADCLK) register plus
one, 128 in this case. This gives a sampling frequency of 169 Hz for the ADCC which is small enough that the
interrupt can be triggered by turning the potentiometer quickly.

The ADCC is configured to run in the Average mode with 16 samples per conversion and a right shift of 16, selected
by setting the ADC Accumulated Calculation Right Shift Select (ADCRS) bits in the ADCON2 register to 4. In order to
ensure a correct average, it is recommended to have the same number of samples as the bits shifted to the right. The
A/D Accumulator Clear Command (ADACLR) bit in the ADCON2 register is set. This Command bit clears the
Overflow Status bit, the accumulator and the count register after each conversion and is necessary for the correct
triggering of the threshold interrupt. When the accumulator overflows and the Overflow Status bit is set, a threshold
interrupt is generated. This condition can be checked in the interrupt handler or the ADACLR bit can be set to prevent
triggers from overflows.

The error calculation is configured as the first derivative of a single measurement (e.g. the error is the difference
between this conversion and the last conversion) and the threshold interrupt is configured to trigger if the error is
higher than the upper threshold of 35 or smaller than the lower threshold of -35.

Finally, the ADCC threshold interrupt, peripheral and global interrupts are enabled.

As in the previous examples, the sample capacitor is discharged by connecting it to Ground and then the conversion
is started.

The interrupt handler returns the value of the error which is found in the ADERRH and ADERRL registers and this
can be checked with the debugger.

To achieve the functionality described by the use case, the following actions will have to be performed:

• System clock initialization
• Port initialization
• ADCC initialization
• Interrupt initialization
• Discharge sample capacitor
• Starting the conversion
• ADCC threshold interrupt handling

5.1 MCC Generated Code
To generate this project using MPLAB Code Configurator (MCC), follow the next steps:

1. Create a new MPLAB X IDE project for PIC18F47Q10.
2. Open MCC from the toolbar (more information about how to install the MCC plug-in can be found here.
3. Go to Project Resources → System → System Module and do the following configuration:

– Oscillator Select: HFINTOSC
– HF Internal Clock: 1 MHz
– Clock Divider: 4
– In the Watchdog Timer Enable field in WWDT tab, make sure “WDT Disabled” is selected
– In the Programming tab, make sure Low-Voltage Programming Enable is checked.

4. From the Device Resources window, add ADCC, then do the following configuration:
– Enable ADC: Check

 TB3263
ADCC Spike Detection

© 2020 Microchip Technology Inc. Technical Brief DS90003263B-page 14

https://microchipdeveloper.com/install:mcc

– Operating: Average_mode
– Clock Source: FOSC/ADCLK
– Clock: FOSC/128
– Result Alignment: Right
– Positive Reference: VDD
– Negative Reference: VSS
– Enable Continuous Operation: Check
– In Computation Features tab:

• Error Calculation: First Derivative of Single measurement
• Threshold Interrupt: ADERR < ADLTH or ADERR > ADUTH
• Lower Threshold: -35
• Upper Threshold: 35
• Repeat: 16
• Arc Right Shift: 4

– In CVD Features:
• Enable ADC Threshold Interrupt: Check

5. Go to Pin Manager → Grid View and select the RA0 pin as ANx input for the ADCC:
Figure 5-1. Pin Mapping

6. Go to the Pin Module in the Project Resources tab and set the RA0 pin as analog and as input (check to see
if Output is not checked).

7. Press the Generate button. The generated code can now be found in the project folder.
8. Add the following code to the main.c file. The code sets the Interrupt Service Routine (ISR) for the ADCC

threshold interrupt to the ThresholdISR() function that returns the value of the error when the interrupt is
triggered and clears the Interrupt flag. The rest of the code enables the global and peripheral interrupts as well
as discharging the sampling capacitor and starting the conversion on the analog channel.
uint16_t volatile errVal;

void main(void)
{

 SYSTEM_Initialize();

 INTERRUPT_GlobalInterruptEnable();

 INTERRUPT_PeripheralInterruptEnable();
 ADCC_SetADTIInterruptHandler(ThresholdISR);
 ADCC_DischargeSampleCapacitor();
 ADCC_StartConversion(channel_ANA0);

 while (1)
 {
 ;
 }
}

void ThresholdISR(void)
{
 errVal = ADCC_GetErrorCalculation();
 PIR1bits.ADTIF = 0;

}

 TB3263
ADCC Spike Detection

© 2020 Microchip Technology Inc. Technical Brief DS90003263B-page 15

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

5.2 Bare Metal Code
The necessary code and functions to implement the presented example are analyzed in this section. The code
contains seven functions and the main function that implements the previously described functionality.

The first step will be to configure the microcontroller to disable the Watchdog Timer (WDT) and to enable low-voltage
programming.
/*disable Watchdog*/
#pragma config WDTE = OFF
/* Low voltage programming enabled, RE3 pin is MCLR */
#pragma config LVP = ON

The CLK_Init function selects HFINTOSC as the main oscillator, sets its frequency to 1 MHz and sets the prescaler
to 4 for a operating frequency of 250 kHz.

static void CLK_Init(void)
{
 /* set HFINTOSC Oscillator */
 OSCCON1bits.NOSC = 6;
 /* clk divided by 4 */
 OSCCON1bits.NDIV = 4;
 /* set HFFRQ to 1 MHz */
 OSCFRQbits.HFFRQ = 0;
}

The PORT_Init function configures the RA0 pin as analog input.

static void PORT_Init(void)
{
 /*set pin RA0 as analog*/
 ANSELAbits.ANSELA0 = 1;
 /*set pin RA0 as input*/
 TRISAbits.TRISA0 = 1;
}

The function ADCC_Init configures the ADCC: it enables it, activates Continuous Conversion mode, sets the result
right-justified, selects the main clock divided by 128 as the ADCC clock.

static void ADCC_Init(void)
{
 /* Enable the ADCC module */
 ADCON0bits.ADON = 1;
 /* Enable continuous operation*/
 ADCON0bits.ADCONT = 1;
 /* result right justified */
 ADCON0bits.ADFM = 1;
 /*FOSC divided by 128*/
 ADCLKbits.ADCS = 63;

It sets the number of repetitions to 16, sets the ADACLR bit, selects the Average mode and sets the number of bits
that will be right-shifted at the end of a conversion to 16.

 ADRPT = 16;

 /*clear status bits on overflow enabled (this setting prevents overflow
 interrupts that trigger the same interrupt as the threshold interrupt)*/
 ADCON2bits.ADACLR = 1;
 /* Average mode */
 ADCON2bits.ADMD = 2;

 TB3263
ADCC Spike Detection

© 2020 Microchip Technology Inc. Technical Brief DS90003263B-page 16

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-adcc-spike-trigger-mcc

 /*result is right shifted by 16*/
 ADCON2bits.ADCRS = 4;

It then selects the Error Calculation mode as the first derivative of a single measurement, the Threshold Comparison
mode as the error being higher than the upper threshold or smaller than the lower threshold and sets the upper
threshold to 35 and the lower threshold to -35.

 /* mode: error bigger than upper threshold
 or lower than lower threshold*/
 ADCON3bits.ADTMD = 4;
 /*error calculation method:
 difference between the last result and the current result*/
 ADCON3bits.ADCALC = 0;
 /*upper threshold*/
 ADUTH = 35;
 /*lower threshold*/
 ADLTH = -35;

Finally, it clears the Threshold Interrupt bit and enables the Threshold interrupt.

 /* Clear the ADC Threshold interrupt flag */
 PIR1bits.ADTIF = 0;
 /* Enable ADCC threshold interrupt*/
 PIE1bits.ADTIE = 1;
}

The ADCC_DischargeSampleCap function connects the ADCC channel to VSS in order to discharge the sampling
capacitor.

static void ADCC_DischargeSampleCap(void)
{
 /*channel number that connects to VSS*/
 ADPCH = 0x3C;
}

The INTERRUPT_Init function enables the global and peripheral interrupts.

static void INTERRUPT_Init(void)
{
 /* Enable global interrupts */
 INTCONbits.GIE = 1;
 /* Enable peripheral interrupts */
 INTCONbits.PEIE = 1;
}

The ADCC_StartConversion function selects the RA0 analog channel for the ADCC and starts the conversion by
setting the ADGO bit in the ADCON0 register. The channel number to connect to pin RA0 is 0x00.

static void ADCC_StartConversion(uint8_t channel)
{
 ADPCH = channel;
 /* Start the conversion */
 ADCON0bits.ADGO = 1;
}

The INTERRUPT_InterruptManager function is called at every interrupt. It checks to see if the peripheral
interrupts are enabled and then checks to see if the ADCC threshold interrupt is enabled and triggered. It then calls
ADCC_ThresholdISR to store the value of the error into the errVal variable.

void __interrupt() INTERRUPT_InterruptManager(void)
{
 if (INTCONbits.PEIE)
 {
 if ((PIE1bits.ADTIE) && (PIR1bits.ADTIF))

 {
 ADCC_ThresholdISR();

 TB3263
ADCC Spike Detection

© 2020 Microchip Technology Inc. Technical Brief DS90003263B-page 17

 }
 }
}
static void ADCC_ThresholdISR(void)
{
 /*read the error*/
 errVal = ((ADERRH << 8) + ADERRL);
 /*clear interrupt flag*/
 PIR1bits.ADTIF = 0;
}

The main function calls the previously described functions in order and then waits for the interrupt. The variable can
be checked with a debugger after an interrupt has been triggered,

void main(void)
{
 CLK_Init();
 PORT_Init();
 ADCC_Init();
 ADCC_DischargeSampleCap();
 INTERRUPT_Init();

 /*channel number that connects to RA0*/
 ADCC_StartConversion(0x00);
 while (1)
 {
 ;
 }
}

View the PIC18F47Q10 Code Example on GitHub
Click to browse repositories

 TB3263
ADCC Spike Detection

© 2020 Microchip Technology Inc. Technical Brief DS90003263B-page 18

https://github.com/microchip-pic-avr-examples/pic18f47q10-cnano-adcc-spike-trigger-bare

6. References
1. MPLAB Code Configurator User’s Guide
2. PIC1000: Getting Started with Writing C-Code for PIC16 and PIC18 Technical Brief
3. TB3194: PIC16/PIC18 ADC² Technical Brief

 TB3263
References

© 2020 Microchip Technology Inc. Technical Brief DS90003263B-page 19

http://ww1.microchip.com/downloads/en/DeviceDoc/MCC_v3.xx_User%27s%20Guide.pdf
https://www.microchip.com/wwwappnotes/appnotes.aspx?appnote=en1002117
http://ww1.microchip.com/downloads/en/appnotes/pic16-pic18-adc2-90003194a.pdf

7. Revision History
Document Revision Date Comments

B 10/2020 Updated PIC1000 link from References section.

A 05/2020 Initial document release.

 TB3263
Revision History

© 2020 Microchip Technology Inc. Technical Brief DS90003263B-page 20

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specifications contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is secure when used in the intended manner and under normal

conditions.
• There are dishonest and possibly illegal methods being used in attempts to breach the code protection features

of the Microchip devices. We believe that these methods require using the Microchip products in a manner
outside the operating specifications contained in Microchip’s Data Sheets. Attempts to breach these code
protection features, most likely, cannot be accomplished without violating Microchip’s intellectual property rights.

• Microchip is willing to work with any customer who is concerned about the integrity of its code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code

protection does not mean that we are guaranteeing the product is “unbreakable.” Code protection is constantly
evolving. We at Microchip are committed to continuously improving the code protection features of our products.
Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act.
If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue
for relief under that Act.

 TB3263

© 2020 Microchip Technology Inc. Technical Brief DS90003263B-page 21

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip
products. Information regarding device applications and the like is provided only for your convenience and may be
superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS IS”. MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE
OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR
CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE
WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR
THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk,
and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or
expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST,
MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer,
QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control,
HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus,
ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider,
Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom,
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP,
INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad
I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense,
ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2020, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-6881-3

 TB3263

© 2020 Microchip Technology Inc. Technical Brief DS90003263B-page 22

Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

 TB3263

© 2020 Microchip Technology Inc. Technical Brief DS90003263B-page 23

http://www.microchip.com/quality

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2020 Microchip Technology Inc. Technical Brief DS90003263B-page 24

http://www.microchip.com/support
http://www.microchip.com

	Introduction
	Table of Contents
	1. Peripheral Overview
	2. ADCC Single Conversion
	2.1. MCC Generated Code
	2.2. Bare Metal Code

	3. ADCC Temperature Measurement
	3.1. MCC Generated Code
	3.2. Bare Metal Code

	4. ADCC Low-Pass Filtering of a Conversion
	4.1. MCC Generated Code
	4.2. Bare Metal Code

	5. ADCC Spike Detection
	5.1. MCC Generated Code
	5.2. Bare Metal Code

	6. References
	7. Revision History
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

