
UG0451
User Guide

SmartFusion2 and IGLOO2 Programming

50200451. 10.0 2/24

Microsemi Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

©2024 Microsemi, a wholly owned
subsidiary of Microchip Technology Inc. All
rights reserved. Microsemi and the
Microsemi logo are registered trademarks of
Microsemi Corporation. All other trademarks
and service marks are the property of their
respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi
Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

mailto:sales.support@microsemi.com
http://www.microsemi.com

Contents

1 Revision History . 1
1.1 Revision 10.0 . 1
1.2 Revision 9.0 . 1
1.3 Revision 8.0 . 1
1.4 Revision 7.0 . 1
1.5 Revision 6.0 . 1
1.6 Revision 5.0 . 1
1.7 Revision 4.0 . 2
1.8 Revision 3.0 . 2
1.9 Revision 2.0 . 2
1.10 Revision 1.0 . 2
1.11 Revision 0 . 2
1.12 SmartFusion2 List of Changes Table for Reference . 2

2 Programming Overview . 3
2.1 Programming Interface . 7
2.2 Programming Bitstream Generation . 8

2.2.1 Programming Bitstream . 9
2.3 Programming Flow . 11

3 JTAG Programming . 12
3.1 Programming Interface Overview . 12

3.1.1 JTAG Timing Diagram . 13
3.1.2 Design Implementation . 14

3.2 Programming Using an External Programmer . 15
3.2.1 Power Supply Requirements for Programming . 15

3.3 Programming Using an External Microprocessor . 17

4 SPI Slave Programming . 18
4.1 Programming Interface Overview . 18

4.1.1 Design Implementation . 18

5 Auto Programming . 20
5.1 Programming Interface Overview . 20

5.1.1 Design Implementation . 20
5.1.2 Auto Programming of M2S/M2GL050 Device . 22

6 MSS ISP (SmartFusion2 Only) . 23
6.1 Design Implementation . 23

7 In-Application Programming . 28
7.1 Design Implementation . 29

7.1.1 Authenticate . 29
7.1.2 Verify . 29
7.1.3 Program . 30

8 Auto Update . 35
8.1 Configuring the Device for Auto Update . 36
Microchip Proprietary iii

9 Programming Recovery . 37
9.1 Programming Recovery Implementation . 37
9.2 SPI Flash Configuration and Image Selection . 39

9.2.1 MSS/HPMS SPI_0 Port Configuration . 39
9.3 Back Level Protection . 41

10 Production Programming . 43

11 State of SmartFusion2 and IGLOO2 Components During Programming 44
11.1 Use of Flash Freeze Mechanism in Device Programming . 47
Microchip Proprietary iv

Microchip Proprietary v

Figures

Figure 1 Libero SoC Programming Bitstream Generation Flow . 9
Figure 2 JTAG Signals Timing Diagram . 13
Figure 3 JTAG Programming Mode . 14
Figure 4 Programming Microsemi Devices in a JTAG Chain . 15
Figure 5 JTAG Programming using External Programmer . 15
Figure 6 JTAG Programming of a SmartFusion2 Device . 16
Figure 7 Programming Using an External Microprocessor . 17
Figure 8 SPI Slave Programming by External Microprocessor . 19
Figure 9 SPI Slave Programming by External Programmer . 19
Figure 10 SmartFusion2/IGLOO2 MSS/HPMS SPI_0 Port Configured for Auto Programming (Except 050

Device) 21
Figure 11 Timing Relationship of Reset and FLASH_GOLDEN_N Pin . 22
Figure 12 Auto Programming Scheme for M2S/M2GL050 Devices . 22
Figure 13 MSS ISP Update Process . 24
Figure 14 MSS ISP Update Flow . 26
Figure 15 IGLOO2 In-Application Programming Interface . 28
Figure 16 SmartFusion2 In-Application Programming . 30
Figure 17 IAP Flow . 33
Figure 18 Auto Update Programming Ports . 35
Figure 19 Enabling Auto Update . 36
Figure 20 Enabling Programming Recovery . 38
Figure 21 Programming Recovery Configuration for SmartFusion2 . 40
Figure 22 Back Level Protection . 41
Figure 23 Flow Chart of Back Level Protection during Auto-Update and Programming Recovery Mode 42
Figure 24 I/O States During JTAG Programming . 46
Figure 25 Setting I/O States . 47

Microchip Proprietary vi

Tables

Table 1 SmartFusion2 and IGLOO2 Programming Modes (Except M2S/M2GL050 Device) 3
Table 2 M2S/M2GL050 Programming Modes . 6
Table 3 Available Programming Interfaces . 7
Table 4 State of Programming Interface During Reset . 8
Table 5 Programming Bitstream Size (All Variations T/S/TS) . 10
Table 6 JTAG Pin Names and Description . 12
Table 7 Dedicated SC_SPI Pins . 18
Table 8 MSS/HPMS SPI_0 Signals . 20
Table 9 ISP Programming Service Request . 24
Table 10 ISP Programming Options . 24
Table 11 ISP Programming Modes . 24
Table 12 ISP Responses . 25
Table 13 ISP Programming Service Status Codes . 25
Table 14 IAP Service Requests . 31
Table 15 IAP Programming Options . 31
Table 16 IAP Programming Modes . 31
Table 17 IAP Service Responses . 31
Table 18 IAP Programming Service Status Codes . 31
Table 19 Error Codes . 32
Table 20 IAP Bitstream Authorization Error Codes . 32
Table 21 Programming Recovery Configuration Settings (UCNFG[16:12]) . 38
Table 22 SPI Directory . 39
Table 23 User Lock Row Strobe Bits for Programming Recovery . 39
Table 24 SPI Signal Polarity Modes . 39
Table 25 Programming Recovery and Auto Update Truth . 40
Table 26 ASIC Block and I/O State During Programming . 44
Table 27 ASIC Block and I/O State During Programming Recovery/Auto Update . 46

Revision History
1 Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the current publication.

1.1 Revision 10.0
The following is a summary of the changes in revision 10.0 of this document.

• Added a note about golden image during recovery process. See Table 25, page 40.
• Added a note about bitstream size when sanitize eNVM is selected. See Table 5, page 10.
• Added information about auto programming of pre-programmed devices. See Design

Implementation, page 20.
• Updated information about asserting DEVRSTn in Auto Update mode. See Auto Update, page 35.

1.2 Revision 9.0
The following is a summary of the changes in revision 9.0 of this document.

• Information about Back Level Protection, page 41 was added.
• Information about MSS Clock Frequency during IAP was updated. See Use of Flash Freeze

Mechanism in Device Programming, page 47.
• Information about I/O state during programming was updated. See Table 26, page 44 and Table 27,

page 46.

1.3 Revision 8.0
Updated the document for Libero SoC v12.1.

1.4 Revision 7.0
The following is a summary of the changes in revision 7.0 of this document.

• The programming method for auto programming SPI Directory was updated in Table 1, page 3.
• Throughout the document the term user security was changed to custom security.
• A reference was added for digest based verification in Programming Bitstream Generation, page 8.
• A precautionary note was added in Design Implementation, page 14.
• Additional references were added in Programming Recovery Implementation, page 37.

1.5 Revision 6.0
The following is a summary of the changes in revision 6.0 of this document.

• Information about IAP flow was updated. For more information, see Figure 17, page 33.
• Information about MSS ISP update flow was updated. For more information, see Figure 14, page 26.
• Information about IAP error codes was updated. For more information, see Table 19, page 32.
• Information about programming recovery and auto update was updated. For more information, see

Table 25, page 40.

1.6 Revision 5.0
The following is a summary of the changes in revision 5.0 of this document.

• Information about programming overview was updated. For more information, see Table 1, page 3
and Table 2, page 6.

• Information about programming flow was updated. For more information, see Programming Flow,
page 11.

• Information about design implementation for JTAG programming was updated. For more
information, see Design Implementation, page 14.

• Information about programming interface for SPI slave programming was updated. For more
information, Programming Interface Overview, page 12.
Microchip Proprietary 1

Revision History
• Information about design implementation for auto programming was updated. For more information,
see Design Implementation, page 20.

• Information about auto programming of M2S/M2GL050 devices was added. For more information,
see Auto Programming of M2S/M2GL050 Device, page 22.

• Information about design implementation for MSS IP was updated. For more information, see MSS
ISP (SmartFusion2 Only), page 23.

• Information about auto update was updated. For more information, see Auto Update, page 35.
• Information about configuring the MSS/HPMS SPI_0 port was updated. For more information, see

MSS/HPMS SPI_0 Port Configuration, page 39.
• Information about production programming was updated. For more information, see Production

Programming, page 43.
• Information about I/O sates was updated. For more information, see State of SmartFusion2 and

IGLOO2 Components During Programming, page 44.
• Changed the document to the new template.

1.7 Revision 4.0
Updated introduction of Auto Programming chapter (SAR 67871).

1.8 Revision 3.0
The following is a summary of the changes in revision 3.0 of this document.

• Merged SmartFusion2 and IGLOO2 user guide.
• Updated Table 3-1 (SAR 57679 and 63009).
• Updated Table 1-1 (SAR 59429).
• Updated Programming Bitstream Generation section (SAR 62487).

1.9 Revision 2.0
The M2GL005 device was added to Table 1-2. Figure 2-5, Figure 2-7, and Figure 3-1 were revised. SPI
content added throughout.

1.10 Revision 1.0
Corrected the FlashPro4 pin number for TMS/VPUMP in Figure 2-5 (SAR 51653).

1.11 Revision 0
Revision 0 was the first publication of this document.

1.12 SmartFusion2 List of Changes Table for Reference
Date Changed Chapters

Revision 5
(May 2014)

The M2S005 device was added to Table 1-2. Figure 2-5 and Figure 2-7 were revised. SPI
content updated throughout.

Revision 4
(February 2014)

Revamped the User Guide (SAR 51186).

Revision 3
(December 2013)

Updated the JTAG Programming chapter (SAR 51652).

Revision 2
(September 2013)

Updated the JTAG Programming chapter (SAR 48287).

Revision 1
(April 2013)

Restructured the user guide.

Revision 0
(October 2012)

Initial release.
Microchip Proprietary 2

Programming Overview
2 Programming Overview

The SmartFusion®2 and IGLOO®2 devices support multiple programming modes and can address various
platform requirements. Specific programming modes can be implemented based on:

• End user application
• System requirements
• Package selected
• Design phase
For information about limitations on programming capabilities by package, see Programming Interface,
page 7.

SmartFusion2 and IGLOO2 devices support programming via an external master as well as self-
programming. An external master such as a microprocessor or a programmer accesses either the
system controller's dedicated JTAG or SPI port (SC_SPI) to program the device.

Programming modes using these ports are:

• JTAG programming
• SPI-Slave programming
SmartFusion2 and IGLOO2 devices also support self-programming and those programming modes are:

• Auto programming
• Auto update
• Microcontroller Subsystem (MSS) In-System Programming (ISP) (SmartFusion2 only)
• In-Application programming
Additionally, these devices can be programmed by a standalone programmer or automatic test
equipment (ATE) before mounting them on the board. This programming mode is called production
programming. The following tables list the different programming modes and interfaces/ports used for
these modes. In the following chapters these programming methods are discussed in detail.

Table 1 • SmartFusion2 and IGLOO2 Programming Modes (Except M2S/M2GL050 Device)

Description/
Programming
Mode

JTAG/
SPI-Slave
Programming

Auto
Programming Auto Update MSS ISP 2 Step IAP

Production
Programming

Definition An external
programmer or
processor
programs the
device mounted
on the board

System
controller
programs a
blank device
when the flash
golden pin is
asserted at
device power
up

System
controller
programs a pre-
configured
device with a
newer image
stored in SPI
flash when the
device is
powered up

Cortex-M3 in
the MSS
fetches
bitstream from
outside the chip
and calls ISP
system service,
which programs
the FPGA

Cortex-M3 or
user logic
programs the
bitstream into
the SPI flash
connected to
SPI_0 port and
calls IAP
service call,
which programs
the FPGA

A standalone
programmer or
test equipment
programs the
FPGA before it
is surface
mount using an
adapter module
or a test fixture

Port used JTAG or
SC_SPI

MSS/HPMS
SPI_0

MSS/HPMS
SPI_0

Any
communication
peripheral

MSS/HPMS
SPI_0

JTAG

Bitstream
location

PC or on-board
flash device

External SPI
flash device
connected to
SPI_0

External SPI
flash device
connected to
SPI_0

Remote host or
on-board flash
device

External SPI
flash device
connected to
SPI_0

PC
Microchip Proprietary 3

Programming Overview
Bitstream
version

Any bitstream
(no version
dependency)

Any bitstream
(no version
dependency)

Bitstream
version has to
be greater than
existing
bitstream
version
programmed in
the FPGA.
Otherwise, auto
update does
not initiate, and
the device
powers up with
the existing
bitstream.

Any bitstream
(no version
dependency)

Any bitstream
(no version
dependency)

Any bitstream
(no version
dependency)

Bitstream
address
location in
external SPI
flash

Not applicable Non-zero
address
location of the
external SPI
flash device

SPI directory
defines where
the update
and/or golden
image is
located. Both
images have to
be in non-zero
address
location, as
address zero is
reserved for
SPI directory.

Not applicable SPI directory
defines where
the update
and/or golden
image is
located. Both
images have to
be in non-zero
address
location, as
address zero is
reserved for
SPI directory.

Not applicable

Table 1 • SmartFusion2 and IGLOO2 Programming Modes (Except M2S/M2GL050 Device)

Description/
Programming
Mode

JTAG/
SPI-Slave
Programming

Auto
Programming Auto Update MSS ISP 2 Step IAP

Production
Programming
Microchip Proprietary 4

Programming Overview
SPI directory Not applicable You must
export SPI
directory while
exporting
bitstream and
program it into
the external
flash device in
address zero
location.

You must
export the SPI
directory while
exporting
bitstream and
program it into
the external
flash device in
address zero
location.
System
controller reads
the SPI
directory for the
image version.
Every time a
new image is
programmed,
you need to
export SPI
directory (by
setting
appropriate
design version
and/or address)
and program
the flash device
before initiating
auto update.

Not applicable You must
export SPI
directory while
exporting
bitstream and
program it into
the external
flash device in
address zero
location.

Not applicable

Programming
recovery
support

Not supported Not supported
since the
device is blank
(recovery bit
has not been
programmed
into the device)

Supported. If
you turn on the
auto update
switch in Libero
SoC, recovery
is turned on by
default. If power
fails, the
system
controller uses
the golden
image defined
in the SPI
directory.

Supported.
First, the FPGA
needs to be
programmed
with recovery
setting enabled
in Libero SoC.

Supported.
First, the FPGA
needs to be
programmed
with recovery
setting enabled
in Libero SoC.

Not supported

Bitstream
format

JTAG
Programming—
Libero SoC
default/STAPL/
DAT
SPI-Slave-DAT

SPI SPI SPI SPI STAPLE, SVF

Table 1 • SmartFusion2 and IGLOO2 Programming Modes (Except M2S/M2GL050 Device)

Description/
Programming
Mode

JTAG/
SPI-Slave
Programming

Auto
Programming Auto Update MSS ISP 2 Step IAP

Production
Programming
Microchip Proprietary 5

Programming Overview
Table 2 • M2S/M2GL050 Programming Modes

Description/
Programming
Mode

JTAG/SPI-Slave
Programming

Auto
Programming MSS ISP 2 Step IAP

Production
Programming

Definition An external
programmer or
processor
programs the
device mounted on
the board

System controller
programs a blank
device when the
flash golden pin is
asserted at device
power up

Cortex-M3 in the
MSS fetches the
bitstream from
outside the chip
and calls ISP
system service,
which programs
the FPGA

Cortex-M3 or user
logic programs the
bitstream into the
SPI flash
connected to
SPI_0 port and
calls IAP service
call, which
programs the
FPGA

A standalone
programmer or test
equipment
programs the
FPGA before it is
surface mount
using an adapter
module or a test
fixture

Port used JTAG or SC_SPI SC_SPI Any
communication
peripheral

MSS/HPMS SPI_0 JTAG

Bitstream
location

PC or on-board
flash

External SPI flash
device connected
to SC_SPI

Remote host or on-
board flash device

External SPI flash
device connected
to SPI_0

PC

Bitstream
version

Any bitstream (no
version
dependency)

Any bitstream (no
version
dependency)

Any bitstream (no
version
dependency)

Any bitstream (no
version
dependency)

Any bitstream (no
version
dependency)

Bitstream
address
location in
external SPI
flash

Not applicable Address 0x00
location of the
external SPI flash
device

Not applicable SPI directory
defines where the
update and/or
golden image is
located. Both
images have to be
in non-zero
address location,
as address zero is
reserved for SPI
directory.

Not applicable

SPI directory Not applicable Not needed Not applicable You must export
SPI directory while
exporting the
bitstream and
program it into the
external flash
device in the
address zero
location.

Not applicable

Programming
recovery
support

Not supported Not supported Not supported Not supported Not supported

Bitstream
format

JTAG
Programming—
Libero SoC
default/STAPL/DAT
SPI-Slave -DAT

SPI SPI SPI STAPLE, SVF
Microchip Proprietary 6

Programming Overview
2.1 Programming Interface
SmartFusion2 and IGLOO2 devices support the programming interfaces listed in the following table.
However, some interfaces are not available in all the device packages. The SC_SPI port is used for auto
programming. All other devices use the MSS/HPMS SPI_0 port for auto programming.

All the packages mentioned in this table are available with lead and lead free. (G) indicates that the
package is RoHS 6/6 compliant/Pb-free.

Table 3 • Available Programming Interfaces

Devices Package JTAG SPI_0 Flash_GOLDEN_N
System Controller SPI Port
(SC_SPI)

M2S005/M2GL005 TQ(G)144 Yes Yes No No

M2S010/M2GL010 Yes Yes No No

M2S005/M2GL005 VF(G)256 Yes Yes Yes Yes

M2S010/M2GL010 Yes Yes Yes No

M2S025/M2GL025 Yes Yes Yes No

M2S025/M2GL025 FCS(G)325 Yes Yes No No

M2S050/M2GL050 Yes Yes No No

M2S060/M2GL060 Yes Yes No No

M2S090/M2GL090 Yes Yes No No

M2S005/M2GL005 VF(G)400 Yes Yes Yes Yes

M2S010/M2GL010 Yes Yes Yes Yes

M2S025/M2GL025 Yes Yes Yes Yes

M2S050/M2GL050 Yes Yes Yes Yes

M2S060/M2GL060 Yes Yes Yes Yes

M2S150/M2GL150 FCV(G)484 Yes Yes Yes Yes

M2S005/M2GL005 FG(G)484 Yes Yes Yes Yes

M2S010/M2GL010 Yes Yes Yes Yes

M2S025/M2GL025 Yes Yes Yes Yes

M2S050/M2GL050 Yes Yes Yes Yes

M2S060/M2GL060 Yes Yes Yes Yes

M2S090/M2GL090 Yes Yes Yes Yes

M2S150/M2GL150 FCS(G)536 Yes Yes Yes Yes

M2S060/M2GL060 FGG676 Yes Yes Yes Yes

M2S090/M2GL090 Yes Yes Yes Yes

M2S050/M2GL050 FG(G)896 Yes No Yes Yes

M2S150/M2GL150 FC(G)1152 Yes Yes Yes Yes
Microchip Proprietary 7

Programming Overview
For board level design, it is important to know the state of these interfaces during reset. The following
table summarizes the state of these interfaces during different reset.

2.2 Programming Bitstream Generation
The Libero SoC software is used to generate the programming bitstream formats required to support the
different programming modes. Table 5, page 10 shows the different bitstream file types and sizes for
SmartFusion2 and IGLOO2 devices.

Programming is integrated into the Libero SoC software design flow. With the enhanced Libero SoC
design flow, you can program the device directly, without launching the programming software tool
(FlashPro Express) separately. When the design is ready for production, the FlashPro Express Job file
(*.job) can be exported using the Libero SoC software.

FlashPro Express tool uses *.job file for programming the FPGAs. See FlashPro Express user guide for
information about programming the FPGAs.

The programming bitstream contains the following components, which can be selected during bitstream
generation:

• Images of FPGA fabric only
• Full or partial image of eNVM only
• Custom Security
Custom security can be implemented in the bitstream from Configure Security under Program and Debug
Design Options menu of the Design flow in the Libero SoC software.

When the bitstream is exported the digest of the selected components is printed in the Libero log window
and saved in a file under the export folder. This digest can be used to verify whether intended bitstream
was used during programming or not. For more information, see the "Digest-Based Verification Method"
section of the SmartFusion2 and IGLOO2 FPGA Security Best Practices User Guide.

The following figure shows the Libero SoC programming bitstream generation flow. There are two
programming options:

• Option 1: The programming bitstream file is generated by clicking Generate Programming Data.
SmartFusion2 and IGLOO2 devices can be programmed from within the tool, provided the target
board is connected with the FlashPro4/FlashPro5 programmer. Option 1 is used for JTAG
programming mode.

Table 4 • State of Programming Interface During Reset

Programming
Interface

During Power on
Reset

During
DEVRST_N1

1. DEVRST_N is an asynchronous reset pin and must be asserted only when the device is unresponsive because of some
unforeseen circumstances. Do not assert the DEVRST_N pin during programming operation, which might cause severe
consequences including corrupting the device configuration.

During System Control
Reset During MSS Reset

JTAG port JTAG I/Os are
enabled

JTAG I/Os are
enabled

JTAG I/Os enabled, but not
functional as JTAG operation
within the system controller
relies on TRSTB being
negated but held asserted for
system controller’s suspend
mode

Unaffected

System control SPI port
(SC_SPI)

Disabled (floating,
no pull ups)

Disabled
(floating, no
pull ups)

Active but not functional Unaffected

MSS/HPMS SPI_0 port Disabled (floating,
no pull ups)

Disabled
(floating, no
pull ups)

Depends on user
configuration

Depends on user
configuration
Microchip Proprietary 8

https://coredocs.s3.amazonaws.com/Libero/12_1_0/Tool/flashpro_express_ug.pdf
https://www.microsemi.com/document-portal/doc_download/132037-ug0443-smartfusion2-and-igloo2-fpga-security-best-practices-user-guide

Programming Overview
• Option 2: After implementation of the design, the appropriate programming bitstream can be
exported and later used in any of the supported programming modes.

Figure 1 • Libero SoC Programming Bitstream Generation Flow

2.2.1 Programming Bitstream
The programming bitstream contains programming data for FPGA fabric and/or eNVM (partial or full
content). Programming bitstream is always encrypted with the default key.

For additional security, custom security keys can be set in the security policy manager (SPM). For more
information, see the SPM section in the Libero SoC User Guide. If custom security is used default key
will be disabled.

The following table lists the bitstream size. Size does not change with device utilization. For information
about devices offering with and without transceivers and data security (T, TS, S), see the SmartFusion2
Product Brief and IGLOO2 Product Brief.
Microchip Proprietary 9

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132721
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132721
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=131877

Programming Overview
Table 5 • Programming Bitstream Size (All Variations T/S/TS)1

1. Bitstream file increases by two times if sanitize option is selected.

Device File Type
Full Fabric
(in KB)

Full eNVM
(in KB)

Full Fabric + Full
eNVM (in KB)

Full Fabric + Full eNVM +
Custom Security (in
KB)2

2. File size with custom security is larger because of the encryption added to the file.

M2S005/M2GL005 STAPL 522 270 731 1409

SPI3

3. SPI file size with and without custom security option is the same, because the security component in it is small.

296 135 429 429

DAT 297 135 431 860

M2S010/M2GL010 STAPL 933 482 1354 2655

SPI 556 269 823 823

DAT 557 269 825 1648

M2S025/M2GL025 STAPL 1945 482 2367 4679

SPI 1195 269 1463 1463

DAT 1197 269 1464 2926

M2S050/M2GL050 STAPL 3792 482 4213 8373

SPI 2363 269 2630 2630

DAT 2364 269 2632 5261

M2S060/M2GL060 STAPL 3799 480 4211 8360

SPI 2363 263 2624 2624

DAT 2364 263 2625 5248

M2S090/M2GL090 STAPL 5690 900 6526 12996

SPI 3561 532 4092 4092

DAT 3564 533 4095 8186

M2S150/M2GL150 STAPL 9539 900 10376 20696

SPI 5996 532 6527 6527

DAT 5997 533 6528 13054
Microchip Proprietary 10

Programming Overview
2.3 Programming Flow
The following steps summarize the SmartFusion2 and IGLOO2 programming flow:

1. Checks if the device ID matches with that of the file loaded. If yes, the device enters programming
mode.

Note: I/O settings are driven by the BSR during programming.

2. Checks if the security settings of the device matches with that of the programming bitstream. If yes,
the bitstream is authenticated.

3. The following operations occur while the SmartFusion2 and IGLOO2 programming bitstream is
processed:
a. Erases all the features selected (fabric, fabric configuration, and security) to be programmed.

eNVM is not erased; it is reprogrammed only when eNVM programming is selected.
b. If the custom security features are selected to be programmed, they are programmed before

programming the fabric and eNVM.
c. If the FPGA fabric is selected for programming in the bitstream, the fabric is programmed while

processing the bitstream. Verification is built into the programming. If programming is interrupted
or fails in the middle of bitstream, the device is not enabled. The fabric is enabled only after the
entire bitstream is successfully programmed.

Note: The programming action in STAPL provides an optional DO_VERIFY step. This is a separate verification
process that takes additional programming time. This is disabled by default.

d. If eNVM programming is selected, the eNVM blocks are programmed (X = 0, 1, depending on the
die size). Verification is built into the eNVM programming.

e. Exits programming mode. I/O control is transferred from BSR to the fabric design.
Note: Upon completion of the programming, the system controller resets the entire device to implement the

new design. If the Cortex-M3 processor (SmartFusion2 only) is used to update the eNVM, the rest of the
device continues to operate.
Microchip Proprietary 11

JTAG Programming
3 JTAG Programming

SmartFusion2 and IGLOO2 devices support programming using a dedicated JTAG port. The system
controller implements the functionality of a JTAG slave and complies to IEEE 1532 and IEEE 1149.1
standards. The JTAG port communicates with the system controller using:

• A command register that sends the JTAG instruction to be executed.
• A 128-bit data buffer that transfers any associated data.
To start programming using JTAG, the device must not be in Flash*Freeze (F*F) mode. When a device is
not in a programmed state, all user I/O pins are disabled, that is, tristated. This is achieved by keeping
the global IO_EN signal internal signal deactivated, which disables the input buffers. I/O states during
JTAG programming can be configured in Libero SoC. For more information, see State of SmartFusion2
and IGLOO2 Components During Programming, page 44.

3.1 Programming Interface Overview
SmartFusion2 and IGLOO2 devices can be programmed through the dedicated JTAG interface. An
external programmer (such as FlashPro4/5) or a microprocessor is used to program the device. The
devices can be programmed in both single and chain modes. SmartFusion2 and IGLOO2 devices have
JTAG pins in a dedicated bank. The location of the bank varies depending on the package. For more
information about the bank and its location, see SmartFusion2 Pin Descriptions.

JTAG signals can be operated at 1.2 V, 1.5 V, 1.8 V, 2.5 V, or 3.3 V. Therefore, the JTAG bank voltage
can be set to any of these voltages. The logic level of the JTAG signals depends on the JTAG bank
voltage. The following table lists the JTAG pin names, descriptions, and their termination details.

Note: If the JTAG programming mode is not used, JTAG pins must be terminated.

Table 6 • JTAG Pin Names and Description

Name Direction
Weak
Pull Up Termination Description

JTAGSEL Input Yes Terminate with
1 K pull up to
JTAG power
supply

JTAG controller selection.
If JTAGSEL is pulled high, an external TAP controller
connects the JTAG interface to the system controller TAP.
This is the recommended setup for programming and
microcontroller debug through SoftConsole.

Tie to GND
through 1 K

If JTAGSEL is pulled low, an external TAP controller
connects to either the Cortex-M3 JTAG TAP (if debug is
enabled) or an auxiliary TAP (if debug is disabled).
This is the recommended setup for microcontroller
debugging using tools such as IAR or KEIL (SmartFusion2
only). For IGLOO2 based designs, this signal must be held
high through the 1 K pull-up resistor.

JTAG_TCK/
M3_TCK1

Input No Microsemi
recommends
TCK to be tied to
VSS or VDDI
through a resistor
on the board
when unused.
This is according
to IEEE 1532
requirements.

Clock input to JTAG controller and UJTAG2.
 If JTAG is not used, Microsemi recommends tying it off. The
tied off resistor must be placed close to the FPGA pin. This
prevents creation of totem-pole current due to random
oscillations on the input buffer and operation if TMS enters
an undesired state.
Microchip Proprietary 12

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130718

JTAG Programming
3.1.1 JTAG Timing Diagram
The following figure shows the JTAG signals timing diagram. The JTAG 1532 Timing Characteristics table
of the SmartFusion2 and IGLOO2 Datasheet specifies the timing numbers to be met to ensure proper
operation of the JTAG circuitry.

Figure 2 • JTAG Signals Timing Diagram

JTAG_TDI/
M3_TDI1

Input Yes Not required Serial data input to JTAG boundary scan, UJTAG, and ISP.
UJTAG uses this pin or this pin aids another component to
use JTAG, ISP, and UJTAG.

JTAG_TDO/
M3_TDO1

Output No Not required Serial data output from JTAG boundary scan, UJTAG, and
ISP. UJTAG uses this pin or this pin aids another component
to use JTAG, ISP, and UJTAG.

JTAG_TMS/
M3_TMS1

Input Yes Not required The TMS pin controls the use of the following IEEE1532
boundary scan pins: TCK, TDI, TDO, and TRSTB.

JTAG_TRSTB/
M3_TRSTB1

Input Yes Tie to GND
through 1 K

Reset pin for JTAG controller.
The TRSTB pin functions as an active low input to
asynchronously initialize or reset the boundary scan
circuitry. If JTAG is not used, an external pull-down resistor
can be included to ensure that the TAP is held in reset
mode. In critical applications, an upset in the JTAG circuit
could lead to an undesired JTAG state. In such cases,
Microsemi recommends tying off TRSTB to GND through a
resistor placed close to the FPGA pin.

1. Available only in SmartFusion2.
2. The UJTAG macro is a special purpose macro. It provides access to the user JTAG circuitry on-board the chip. You must

instantiate a UJTAG macro in the design to make use of the user JTAG feature. The TMS, TDI, TCK, TRSTB, and TDO pins of
the macro must be connected to the top-level ports of the design.

Table 6 • JTAG Pin Names and Description (continued)

Name Direction
Weak
Pull Up Termination Description

tDISU tDIHD

tTMSSU tTMSHD

TCK

TMS

TDI

TDO
tTCK2Q

Tristate
Microchip Proprietary 13

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130717

JTAG Programming
3.1.2 Design Implementation
FPGA fabric, embedded non volatile flash memory (eNVM), and custom security settings can be
programmed using JTAG programming mode. These can be programmed individually, or at the same
time.

Note: During JTAG or SPI-Slave programming, do not run any of the AES/DRBG/ECC Point Multiplication
system services when System controller is processing the initial component of the bitstream (BITS). The
system service may corrupt the bitstream information if the user design requests AES/DRBG/ECC Point
Multiplication system services. This issue does not exist in Auto-update, IAP or Programming recovery. If
these security system services must be run during programming, you must generate a STAPL/DAT file
using Libero 11.8 SP3 or contact Technical Support to use older Libero versions.

• During programming, the board must provide power to the following pins: VPP, VPPNVM, VDD, and
VDDIOx (x: number of the JTAG I/Os). VDDIOx provides power to the JTAG circuitry. For information
about the voltage range, see the SmartFusion2 and IGLOO2 Datasheet.

• A USB-based FlashPro4/5 programmer can be used to program the SmartFusion2 and IGLOO2
devices using this dedicated JTAG interface. Libero SoC (or standalone FlashPro Express) software
executes the programming from a PC connected to the programmer.

The following figure shows the FlashPro4/5 programmer connected to the JTAG ports of the
SmartFusion2 device. Only this programming mode is supported by the current version of the Libero SoC
software.

Figure 3 • JTAG Programming Mode

A single FlashPro4/5 programmer can program multiple FPGAs (same or different family) with multiple
non-Microsemi devices in a single JTAG chain, concurrently, as shown in the following figure.

The TDO pin of the JTAG header represents the beginning of the chain and the TDI pin of the last device
is connected back to the JTAG header. While programming any Microsemi device in the chain, the Libero
SoC (or standalone FlashPro Express) software puts non-Microsemi devices in the chain into bypass
mode. Once a device is in bypass mode, its data register length becomes one and does not react to any
programming instructions given by the programmer. To put the device into bypass mode, the programmer
must know its instruction register (IR) length.

For information about chain programming, see the FlashPro Express v12.1 User Guide for all the
families.

SmartFusion2/IGLOO2

 System
Controller

FlashPro4/5* USB PC

*The FlashPro3 programmer can be used in JTAG programming mode but it has been discontinued.

JTAG I/Os
Microchip Proprietary 14

https://soc.microsemi.com/Portal/Default.aspx
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130717
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130717
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1244146
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1244146

JTAG Programming
Figure 4 • Programming Microsemi Devices in a JTAG Chain

3.2 Programming Using an External Programmer
SmartFusion2/IGLOO2 devices can be programmed using an external programmer through the
dedicated JTAG port. When programming with the Libero SoC or standalone FlashPro Express software,
a FlashPro4/FlashPro5 cable must be connected to the JTAG pins of the device through a 10-pin
programming header, as shown in the following figures. The target board must provide power to the VPP,
VPPNVM, VDD, and VDDIOx (where x = JTAG bank number) pins.

Figure 5 • JTAG Programming using External Programmer

3.2.1 Power Supply Requirements for Programming
During SmartFusion2 or IGLOO2 programming, The required power supplies for JTAG must be within the
prescribed specification and JTAG signals must be toggling within that specification, see Figure 2,
page 13. Required signal integrity measures must be taken to ensure that the power supplies and JTAG
signals are free from noise. For information about the tolerance levels, see the SmartFusion2 SoC FPGA
Datasheet.

• Each power supply required for programming
• Normal device operation as well as the specification for the JTAG signals
SmartFusion2 and IGLOO2 FPGAs require a single programming voltage to be applied at the VPP pin
during programming. This voltage must be supplied from the board. Under normal operating conditions,
VPP and VPPNVM must be connected to their respective supply range. For the VPP and VPPNVM

FlashPro4/5

JTAG Header

TDI

TDO

Device #6 Device #5 Device #4

Device #3Device #2Device #1

Non-Microsemi
 SoC Device
 IR = 4

Non-Microsemi
 SoC Device
 IR = 6

Non-Microsemi
 SoC Device
 IR = 4

SmartFusion2/
IGLOO2
Device
IR = 8

Non-Microsemi
 SoC Device
 IR = 4

ProASIC3
 Device
 IR = 4

SmartFusion2/IGLOO2

JTAG

System Controller

Fabric (Blank)
eNVM

(Blank)

AES256

System Board

FlashPro4/5
USB

Programming Header (dedicated JTAG)
Mfr.: P/N: HTST-105-01-L-DV-A
Mfr.: Samtec Inc

 10-pin
Ribbon Cable
Microchip Proprietary 15

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130717
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130717

JTAG Programming
tolerance ranges, see the SmartFusion2 SoC FPGA Datasheet. The board must supply JTAG voltage to
the VDDIOx pin of the device and the VJTAG pin of the programmer header.

In Libero SoC 11.8 SP3 and later versions, FlashPro will not detect VPP if the board contains only
RTG4/SmartFusion2/IGLOO2 devices. Leave VPUMP pin of the JTAG header floating if the board has
only RTG4/SmartFusion2/IGLOO2 devices.

If the board contains ProASIC3/IGLOO/Fusion/SmartFusion devices along with SmartFusion2/IGLOO2
devices in the JTAG chain, connect VPUMP of the ProASIC3/IGLOO/Fusion/SmartFusion device to the
JTAG header’s VPUMP pin.

Microsemi recommends that VPP and JTAG power supply lines are kept separate with independent
filtering capacitors. For capacitor requirements, see the following figure. The bypass capacitor must be
placed within 2.5 cm of the device pins. For termination requirements of JTAG pins, see Table 6,
page 12.

Figure 6 • JTAG Programming of a SmartFusion2 Device

JTAG_TCK

JTAG_TDO

JTAG_TMS

JTAG_TDI

JTAG_TRSTB

FlashPro4/
FlashPro5/

JTAG HeaderTCK

TDO

TMS

VPUMP

TDI

GND

PROG_MODE

VJTAG

TRST

GND

Mfr. P/N: HTST-105-01-L-DV-A
Mfr.: Samtec Inc

0.1 F

1

3

5

7

9 10

8

6

4

2

VDDIO = JTAG Bank
Voltage

JTAGSELSmartFusion2/
IGLOO2

VPP

10 K

DEVRST_N

VDDIO = JTAG Bank
Voltage
Microchip Proprietary 16

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130717

JTAG Programming
3.3 Programming Using an External Microprocessor
Programming using an on-board microprocessor can be accomplished by the following:

• The microprocessor's GPIO driving the JTAG or system controller's SPI port
• An algorithm written in C code known as DirectC
DirectC supports programming the FPGA fabric, eNVM, and security settings individually or at the same
time. For more information, see the DirectC User Guide.

Note: Programming through system controller's SPI port using DirectC-SPI is discussed in SPI Slave
Programming, page 18.

The following figure shows the programming implementation using:

• An external microprocessor with at least 256 bytes of RAM
• A memory device to store and run DirectC
• Access to the data file containing the programming bitstream
• A JTAG or SPI interface3 to the target device
An API, I/O functions emulating JTAG or SPI protocols must be created to provide the required functions
that act as an interface between DirectC and the hardware. The API is then linked to DirectC and
compiled using the target microprocessor’s compiler. Once the API is compiled, the resulting binary must
be downloaded into the flash memory of microprocessor where it can be accessed to program the
device. While programming using the external microprocessor, the same board level considerations must
be followed as mentioned in the Programming Using an External Programmer, page 15.

Figure 7 • Programming Using an External Microprocessor

Internal or External
Memory Running

DirectC

On-Board Memory
Device Containing
Programming Data

SmartFusion2

Microprocessor

Internal RAM

I/O (JTAG or SPI) Function (API)
Microchip Proprietary 17

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132588

SPI Slave Programming
4 SPI Slave Programming

In the SPI slave programming mode, an external SPI master programs the SmartFusion2 or IGLOO2
devices. The SPI master can be an external microprocessor or a programmer such as FlashPro5. The
SPI master interfaces with the system controller through a dedicated SC_SPI port, which is in SPI slave
mode by default. The system controller operates in a fixed SPI mode, 3 (SPO/CPOL= SPH/CPHA =1).
For specific device or package support of the SC_SPI port, see Table 3, page 7. Microsemi DirectC-SPI
programming must be used with an external microprocessor that acts as a master to program the
SmartFusion2 or IGLOO2 devices in the SPI-Slave mode. For more information, see the SPI-DirectC
Solution User Guide.

4.1 Programming Interface Overview
The system controller’s dedicated SC_SPI port is located in different bank numbers based on the die or
package. See the pin tables of the respective devices for the bank numbers. These ports are part of
MSIOs. The bank must be powered up before programming in SPI mode. The following table provides
description of the dedicated SC_SPI pins.

4.1.1 Design Implementation
The following figure shows the recommended board configuration for SPI slave programming using an
external microprocessor. The command protocol used on the SPI Slave programming is similar to the
JTAG command protocol. The target board must provide power to the VPP, VPPNVM, VDD, and VDDIOx
(where x = SC_SPI bank number) pins.

For the recommended voltage ranges and pin locations, see the SmartFusion2 and IGLOO2 Datasheet
and the corresponding package pin assignment table.

You do not need to reset the FPGA after programming; the DirectC algorithm resets it after the
programming is completed. For information about the I/O states during SPI slave programming, see
State of SmartFusion2 and IGLOO2 Components During Programming, page 44.

Note: During JTAG or SPI-Slave programming, do not run any of the AES/DRBG/ECC Point Multiplication
system services when System controller is processing the initial component of the bitstream (BITS). The
system service may corrupt the bitstream information if the user design requests AES/DRBG/ECC Point
Multiplication system services. This issue does not exist in Auto-update, IAP or Programming recovery. If
these security system services must be run during programming, you must generate a STAPL/DAT file
using Libero 11.8 SP3 or contact Technical Support to use older Libero versions.

Table 7 • Dedicated SC_SPI Pins1

1. If unused, these pins must be left floating. These pins have internal pull up
activated after the device is powered up.

Name Polarity Direction Descriptions
SC_SPI_SS Low In SPI slave select

SC_SPI_SDO High Out SPI data output

SC_SPI_SDI High In SPI data input

SC_SPI_CLK High In SPI clock
Microchip Proprietary 18

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134066
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134066
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130717
https://soc.microsemi.com/Portal/Default.aspx

SPI Slave Programming
Figure 8 • SPI Slave Programming by External Microprocessor

The following figure shows the recommended board configuration for SPI slave programming using an
external programmer.

Figure 9 • SPI Slave Programming by External Programmer

CS

SCLK

MISO

MOSI

10 K

3.3 V

10 K

VDDIOy y = Bank number where the pin is located

SmartFusion2/IGLOO2
(SPI Slave)

External Microprocessor
(SPI Master)

SC_SPI_SDO

SC_SPI_SDI

SC_SPI_SSFLASH_GOLDEN_N

DEVRST_N
SC_SPI_CLK

10 K

VPP

SC_SPI_CLK

SC_SPI_SDO

SC_SPI_SS

SC_SPI_SDI

FlashPro5 Header

SCK

MISO

SS

VPUMP

MOSI

GND

PROG_MODE

VSPI

FL_GLDN

GND

VDDIOx

Mfr. P/N: HTST-105-01-L-DV-A
Mfr.: Samtec Inc

0.1 F

1

3

5

7

9 10

8

6

4

2

10 K

3.3 V

SmartFusion2/IGLOO2
(SPI Slave)

10 K

VDDIOy y = Bank number where the pin is located

VPP

10 K
FLASH_GOLDEN_N

DEVRST_N
Microchip Proprietary 19

Auto Programming
5 Auto Programming

In auto programming mode, SmartFusion2 and IGLOO2 devices program themselves by downloading
the bitstream from an external SPI flash device. The system controller configures the MSS or HPMS
SPI_0 port for the SPI master mode when the dedicated FLASH_GOLDEN_N pin is asserted low upon
system reboot. An external SPI flash memory device programmed with a bitstream has to be connected
to the SPI_0 port. SPI_0 port requires serial flash devices supporting the RDID (9F), 24-bit read (0B),
and 32-bit read (0C). If RDID indicates a size greater than 2^24 the firmware switches to using the 0C
command, otherwise it uses 0B.

Note: FLASH_GOLDEN_N pin is not available in all packages. For more information, see Table 3, page 7.

5.1 Programming Interface Overview
MSS/HPMS SPI_0 port is used as the programming interface during auto programming. SPI_0 port is
located in a specific bank. See the pin tables of the respective devices for the bank numbers. These ports
are part of MSIOs. The bank must be powered up before programming the devices. The following table
provides description of the SPI_0 pins.

5.1.1 Design Implementation
In auto programming, an external SPI flash memory is preprogrammed and attached to the MSS/HPMS
SPI_0 port of a blank SmartFusion2 or IGLOO2 device.

The programming bitstream must be programmed at a location other than address 0x00 of the SPI flash
connected to the MSS/HPMS SPI_0 port. Address 0x00 is reserved for the SPI directory.

During auto programming of pre-programmed device (programming recovery enabled) using
<filename>_security_only_master.spi file, the security component does not get programmed
but the fabric component gets programmed. The security component is bypassed because the recovery
information is stored in the security segment of the FPGA fabric. Erasing the FPGA would erase that
option and you can program the security component using <filename>_master.spi file.

During auto programming, authentication system service is not available. Microsemi recommends
encrypting the golden bitstream with custom security. Custom security is enabled in the Libero SoC
software (see Security Policy Manager in the Libero Online Help). For more information about
authentication, see In-Application Programming, page 28.

When programming begins, if the system controller detects a corrupted bitstream, programming is
aborted. In this case, a valid bitstream must be programmed into the SPI flash and auto programming
needs to be reinitiated.

Table 8 • MSS/HPMS SPI_0 Signals

Name Type Descriptions
SPI_0_SDI Input Serial data input

SPI_0_SDO Output Serial data output

SPI_0_CLK Output Serial clock. It is a serial programmable bit rate clock out signal.

SPI_0_SSO1

1. Active low signal.

Output Slave select

FLASH_GOLDEN_N1 Input If pulled low, the SPI_0 port is put into master mode, which indicates that the
device is to be reprogrammed from an image in the external SPI flash
attached to the SPI_0 interface.
Microchip Proprietary 20

http://soc.microsemi.com/kb/article.aspx?id=SL5704

Auto Programming
The following figure shows the recommended board configuration to support auto programming. The
target board must provide power to the VPP, VPPNVM, VDD, and VDDIOx (where x = SPI_0 interface
bank number) pins.

For the recommended voltage ranges and pin locations, see the SmartFusion2 and IGLOO2 Datasheet
and the corresponding package pin assignment table.

For information about the I/O states during auto programming, see State of SmartFusion2 and IGLOO2
Components During Programming, page 44.

Figure 10 • SmartFusion2/IGLOO2 MSS/HPMS SPI_0 Port Configured for Auto Programming (Except 050
Device)

The MSS/HPMS SPI_0 port is enabled to operate as SPI master at power-on-reset when the
FLASH_GOLDEN_N pin is asserted low (pulled low with a 10 K resistor).

The FLASH_GOLDEN_N pin must be sensed by the system controller for a certain amount of time after
the DEVRST_N pin is deasserted or power-on-reset is completed. See the following figure for the timing
relations between power-on-reset and the FLASH_GOLDEN_N pin.

Figure 10, page 21 shows the control of the FLASH_GOLDEN_N pin using a three pin jumper. This pin
can be controlled by an external signal or a microprocessor.

Four SPI slave select pins of the SPI_0 interface (SS4, SS5, SS6, and SS7) drive high during auto
programing (except 005 and 010 devices). The remaining SPI_0 pins are tristated with weak pull up.
These four pins that drive high during auto programming must not be used as control pins.

The I/O level will be the same as bank voltage used for SPI_0 bank and the drive strength will be
maximum for this I/O level. For example, if the SPI_0 bank was powered by 1.8 V, then the drive strength
will be the maximum value allowed for 1.8 V LVCMOS I/O. For the maximum drive strength allowed for
LVCMOS 1.8 V transmitter, see the SmartFusion2 and IGLOO2 Datasheet.

The system controller reads the SPI flash device ID and device density to determine the read algorithm,
and then programs the device with the bitstream. In auto programming, SmartFusion2 and IGLOO2
devices are blank, and hence SPI signal polarity is mode 3 (SPO=SPH=1).

VDDIOy

3 Pin Jumper

10 K

10 K

10 K

10 K

10 K

3.3 V

3.3 V

0.1 µF

VPP

FLASH_GOLDEN_N

DEVRST_N

SPI_0_SDI

SPI_0_SDO

VCC

External Flash

SmartFusion2/IGLOO2
(Master)

DI

DO
GND

CLK

CS

HOLD

WP

SPI_0_CLK

SPI_0_SS0

y=bank number where
this pin is located

10 K
Microchip Proprietary 21

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130717
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130717

Auto Programming
Figure 11 • Timing Relationship of Reset and FLASH_GOLDEN_N Pin

5.1.2 Auto Programming of M2S/M2GL050 Device
Auto programming in M2S/M2GL050 devices is performed slightly different than the other devices. The
system controller's dedicated SPI port (SC_SPI) is used in auto programming of 050 devices, as shown
in the following figure.

The SC_SPI port is enabled to operate as SPI master at power-on-reset or when DEVRST_N is asserted
low, and when the FLASH_GOLDEN_N pin is asserted low (pulled low with a 10 K resistor).

Like other devices, an external SPI flash device needs to be connected with the SC_SPI port, and the
standard 0B read command needs to be supported by a serial flash. The bitstream needs to be
preprogrammed at 0x00 location of the external SPI flash device. Other requirements remain the same.

Figure 12 • Auto Programming Scheme for M2S/M2GL050 Devices

Power_on_Reset_N

T1 = SPI activity start time = 800 µs

FLASH_GOLDEN Pin

Programming Starts

T1

VDDIOy

3 Pin Jumper

10 K

10 K

10 K

10 K

10 K

3.3 V

3.3 V

0.1 µF

VPP

FLASH_GOLDEN_N

DEVRST_N

SC_SPI_SDI

SC_SPI_SDO

VCC

External Flash

M2S/M2GL050
(Master)

DI

DO
GND

CLK

CS

HOLD

WP

SC_SPI_CLK

SC_SPI_SS

y=bank number where
this pin is located

10 K
Microchip Proprietary 22

MSS ISP (SmartFusion2 Only)
6 MSS ISP (SmartFusion2 Only)

In this mode, programming is performed under the control of the Cortex-M3 firmware that fetches the
programming bitstream directly from one of the communication ports (such as, USB, MMUART, SPI, and
I2C) and feeds to the system controller through the COMM_BLK.

The fabric is not operational during programming or verification operations. Downloading the
programming bitstream and programming the fabric and/or the eNVM with that bitstream are done in a
single step. SmartFusion2 devices must be preprogrammed with the user firmware that calls the ISP
service of the system controller to execute programming.

6.1 Design Implementation
MSS ISP service enables programming SmartFusion2 devices directly in a single step via any of the
dedicated communication ports. As shown in the following figure, the programming bitstream is received
from the remote PC through a USB connection. During programming, the fabric enters into F*F mode.
During ISP, the communication I/O port used to fetch the bitstream must be enabled. This option can be
set in the I/O Attributes menu in the Libero SoC software (see Use of Flash Freeze Mechanism in Device
Programming, page 47). The MSS must continue to operate for the entire duration of the programming
operation. The programming recovery features can be implemented to provide a recovery mechanism in
case a power failure occurs during programming. For more information, see Programming Recovery,
page 37.

The MSS ISP service call has three modes:

• Authentication
• Programming
• Verification
For more information, see In-Application Programming, page 28.

The target board must provide power to the VPP, VPPNVM, VDD, and VDDIOx (where x =
communication port bank number) pins.

For the recommended voltage ranges and pin locations, see the SmartFusion2 and IGLOO2 Datasheet
and the corresponding package pin assignment table.

For information about the I/O states during MSS ISP programming, see State of SmartFusion2 and
IGLOO2 Components During Programming, page 44.
Microchip Proprietary 23

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130717

MSS ISP (SmartFusion2 Only)
Figure 13 • MSS ISP Update Process

The application firmware must be written based on the ISP commands shown in the following table. The
Libero SoC software provides the ISP system services driver that allows reprogramming the device using
the MSS_SYS_start_isp() function. For more information, see the SmartFusion2 MSS System
Services Driver User Guide, which can be download from the Libero SoC firmware catalog.

The following tables list the options and modes.

Table 9 • ISP Programming Service Request

Offset Length (bytes) Field Description
0 1 CMD=21 Command

1 1 OPTIONS See the following table.

2 BSLENGTH BSDATA Bitstream data

Table 10 • ISP Programming Options

7 6 5 4 3 2 1 0

MODE

Table 11 • ISP Programming Modes

Mode Operation
0 AUTHENTICATE

1 PROGRAM

2 VERIFY

System Board

SmartFusion2

System
Controller COMM_BLK Cortex-M3

Processor

Fabric

Peripherals

USB
USB
Port

USB

eNVM
Microchip Proprietary 24

MSS ISP (SmartFusion2 Only)
The following tables describe the ISP response and the corresponding programming service status
codes.

An authentication error might occur in any frame of the bitstream. See Table 19, page 32 and Table 20,
page 32 for details on error codes. If the MODE is PROGRAM, and there is a failure, the device might be
left in an inconsistent and non-operational state. Therefore, the user application must only commit the
bitstream for programming after successful authentication, and thus the integrity of the bitstream is
validated.

After the programming operation is complete, an internal reset is generated for the new design to take
effect, and the completion handler cannot be called by the system services driver. No exit codes are
reported, which is normal and expected. The completion of the programming must be realized by
observing the new design functioning immediately after programming. If there is a problem, and the part
did not reset, then you can observe the completion handler.

Note: The isp_completion_handler function must be implemented by the application program, and it is
called by the system services driver when an ISP operation initiated by a call to
MSS_SYS_start_isp() completes.

Table 12 • ISP Responses

Offset Length (bytes) Field Description
0 1 CMD=21 Command

1 1 STATUS Command status, see the following table

Table 13 • ISP Programming Service Status Codes

Status
Description7 6 5 4 3 2 1 0

0 Success

0 AUTHERRCODE Authentication error

1 0 ERRORCODE Programming error

255 Service protected
Microchip Proprietary 25

MSS ISP (SmartFusion2 Only)
The following figure illustrates the flow of the MSS ISP update.

Figure 14 • MSS ISP Update Flow

The Cortex-M3 processor executes the user application. The user application provides the bitstream
through the communication interface required to authenticate, program, and verify the operations.

During the execution of the ISP service, the system controller receives the entire bitstream as a
continuous stream of bytes through the COMM_BLK. If the Cortex-M3 processor is executing code from
the eNVM, the system controller firmware must avoid a deadlock scenario, if it attempts to program a
region of the eNVM that is used. This is achieved by releasing the eNVM HMASTLOCK between atomic
eNVM operations. If the bitstream reprograms the code region that is used, the Cortex-M3 processor
must copy its code to eSRAM and execute from there. For more information about HMASTLOCK, see
the SmartFusion2 Microcontroller Subsystem User Guide.

Upon completion of programming, the system controller resets the device to ensure that the newly
programmed configuration takes effect and the device operates with the new design. However, the user
application must execute another system reset in addition to system controller reset as soon as the ISP
system service is completed, otherwise the LSRAM block might not be accessible. System reset can be
generated using the tamper macro, which can be instantiated from the Libero SoC Catalog. Immediately
after ISP, user logic (that is, an FSM module) can check LSRAM access. If the access is denied, then the
user logic generates a reset signal that can trigger the tamper macro to execute the system-level reset.
The RESET function in the tamper macro configuration window must be enabled. For detailed
implementation along with a reference design, see the SmartFusion2 SoC FPGA In-System

Start

Pass?

Cortex-M3 calls ISP system service call
“Program” to start programming

Yes

Cortex-M3 call ISP system
service with Verify mode

bits set (Optional)

User application call
fabric digest check

System Controller executes
ISP system service call

End

Cortex-M3 calls ISP system service call
“Authenticate” to authenticate the bitstream

Check if bitstream is corrupted;
regenerate if necessary

No

No

Yes

Programming
pass?

User application execute
system-level reset

Debug
Microchip Proprietary 26

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132487

MSS ISP (SmartFusion2 Only)
Programming Using UART Interface Demo Guide or SmartFusion2 SoC FPGA - In-System
Programming Using USB OTG Controller Interface Demo Guide.

The system controller runs verification as part of programming operation. However, verification can be
executed as a standalone operation to verify the contents of the SmartFusion2 device against the
bitstream.

When a standalone verification is required, execute the fabric digest check before calling the
VERIFICATION system service. A snippet from the firmware code is given below:

if(mode == MSS_SYS_PROG_VERIFY)
 {
 //Check digest before IAP verify
 MSS_SYS_check_digest(MSS_SYS_DIGEST_CHECK_FABRIC);
 }
Microchip Proprietary 27

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132487
https://www.microsemi.com/document-portal/doc_download/132604-dg0471-smartfusion2-soc-fpga-in-system-programming-using-usb-otg-controller-interface-libero-soc-v11-8-demo-guide
https://www.microsemi.com/document-portal/doc_download/132604-dg0471-smartfusion2-soc-fpga-in-system-programming-using-usb-otg-controller-interface-libero-soc-v11-8-demo-guide

In-Application Programming
7 In-Application Programming

In-application programming (IAP) is a two-step process:

1. The first step of the IAP is different for SmartFusion2 and IGLOO2 devices.
SmartFusion2:
The user application in the Cortex-M3 processor receives the new bitstream from any of the dedi-
cated communication ports such as USB, as shown in Figure 16, page 30. The Cortex-M3 processor
writes the new bitstream into the external SPI flash that is attached to the MSS SPI_0 port.

Note: The system controller cannot write to the external SPI flash.

IGLOO2:
The first step can be accomplished in one of these two ways for IGLOO2 devices:
• The user application programs the bitstream into the external SPI flash attached to the HPMS

SPI_0 port using an external programmer such as FTDI.
• The user logic in the FPGA fabric implemented using the soft microcontroller such as CoreABC

pushes the bitstream from the fabric I/O to the SPI_0 port, as shown in the following figure.
Figure 15 • IGLOO2 In-Application Programming Interface

Note: The system controller cannot write to the external SPI flash.

2. In this step, the new bitstream must be verified in the external SPI flash by requesting
AUTHENTICATE from the IAP system service call. The user application then initiates a

FTDI

Port B External SPI Flash

SPI_0
HPMS

Step 1

Step 2

eNVM

System Controller

Fabric

IGLOO2

APB Bus

AHB Bus Matrix

COMM_BLK

User logic to download
bitstream to exit Flash
and/or call IAP service

FIC

Fabric I/O
ALT Step 1
Microchip Proprietary 28

In-Application Programming
programming cycle by requesting the PROGRAM IAP system service call from the system controller.
The system controller fetches the new bitstream from SPI_0 flash and programs the device and
authenticates it on-the-fly. The bitstream must be authenticated before programming to avoid a non-
operational state. The SPI_0 peripheral must be configured before initiating this request.

In SmartFusion2, once the IAP service call is initiated, the Cortex-M3 firmware is no longer involved in
the IAP. During IAP, the fabric is usable during the first step of the IAP service call. However, it is not
usable during the second, which is the programming stage.

7.1 Design Implementation
In IAP, the device must be preprogrammed with an appropriate configuration to fetch data through one of
the MSS/HPMS communication peripherals and to access the data from the external SPI flash that is
connected to the SPI_0 port. During programming, the fabric enters into Flash*Freeze mode. During IAP,
the communication I/O port used to fetch the bitstream must be enabled. This option can be set in the I/O
Attributes menu in the Libero SoC software (see Use of Flash Freeze Mechanism in Device
Programming, page 47). When the IAP system service call is being executed, the system controller
requires exclusive access to the SPI_0 port. During this step, the application must not attempt to access
the SPI_0 port.

Four SPI slave select pins of the SPI_0 interface (SS4, SS5, SS6, and SS7) drive high during
programing (except 005 and 010 devices). The remaining SPI_0 pins are tristated with weak pull up.
These four pins that drive high during programming must not be used as control pins. The I/O level and
drive strength are based on the previous settings programmed into the device.

There is no limitation on the number of bitstreams that can be stored in external SPI flash other than the
density of the SPI flash itself. As part of the IAP command, the starting address of the bitstream must be
given.

The target board must provide power to the VPP, VPPNVM, VDD, and VDDIOx (where x = SPI_0
interface bank number) pins.

For the recommended voltage ranges and pin locations, see the SmartFusion2 and IGLOO2 Datasheet
and the corresponding package pin assignment table.

For information about the I/O states during IAP programming, see State of SmartFusion2 and IGLOO2
Components During Programming, page 44.

The service call has three modes: authenticate, program, and verify.

7.1.1 Authenticate
The FPGA fabric and MSS/HPMS are operational when the bitstream is authenticated.

7.1.2 Verify
When standalone verification is required, call the fabric digest check before calling the VERIFICATION
system service. A snippet from the firmware code is given below:

 if(mode == MSS_SYS_PROG_VERIFY)
 {
 //Check digest before IAP verify
 MSS_SYS_check_digest(MSS_SYS_DIGEST_CHECK_FABRIC);
 }
The device is automatically placed in the F*F state for the duration of the verify operation and
automatically awakened upon completion. F*F entry and exit messages are transmitted before the
service response.
Microchip Proprietary 29

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130717

In-Application Programming
7.1.3 Program
The device is automatically placed in the F*F state before programming commences and the F*F entry
message is transmitted. If the programming operation is successful, the device goes through a power-
on-reset sequence generated by the system controller.

However, the user application must execute another system reset in addition to system controller reset
as soon as the IAP system service is completed, otherwise the LSRAM block might be inaccessible.
System reset can be generated using the tamper macro, which can be instantiated from the Libero SoC
Catalog. Immediately after IAP, user logic (that is, an FSM module) can check LSRAM access. If the
access is denied, then user logic generates a reset signal that can trigger the tamper macro to execute
the system-level reset. The RESET function in the tamper macro configuration window must be enabled.
For detailed implementation along with reference design, see the SmartFusion2 SoC FPGA In-
Application Programming Using PCIe Interface Demo Guide or Implementing Programming Recovery
and In-Application Programming Features Using Ethernet Interface for SmartFusion2 Devices Demo
Guide.

Figure 16 • SmartFusion2 In-Application Programming

External SPI Flash
(New bitstream)

System
Controller

SPI_0

UART

USB

Cortex-M3
Processor

AHB Switch

APB Bus

Fabric eNVM

USB

Microcontroller Subsystems (MSS)

Pe
ri
ph

er
al

s

SmartFusion2
Microchip Proprietary 30

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134811
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134811
https://www.microsemi.com/document-portal/doc_download/135599-dg0635-implementing-programming-recovery-and-in-application-programming-features-using-ethernet-interface-for-smartfusion2-devices-libero-soc-v11-8-sp1-demo-guide
https://www.microsemi.com/document-portal/doc_download/135599-dg0635-implementing-programming-recovery-and-in-application-programming-features-using-ethernet-interface-for-smartfusion2-devices-libero-soc-v11-8-sp1-demo-guide
https://www.microsemi.com/document-portal/doc_download/135599-dg0635-implementing-programming-recovery-and-in-application-programming-features-using-ethernet-interface-for-smartfusion2-devices-libero-soc-v11-8-sp1-demo-guide

In-Application Programming
The following tables list the IAP command options. For more information about these commands, see the
SmartFusion2 MSS System Services Driver User Guide, which can be downloaded from the Libero SoC
firmware catalog.

The following tables list the IAP service responses, status codes, error codes, and bitstream
authorization error codes receptively.

Table 14 • IAP Service Requests

Offset Length (bytes) Field Description
0 1 CMD=20 Command

1 1 OPTIONS See the following table

2 4 SPIADDR Base address of bitstream in MSS/HPMS SPI 0 (MS byte ignored)

Table 15 • IAP Programming Options

7 6 5 4 3 2 1 0

MODE

Table 16 • IAP Programming Modes

Mode Operation
0 AUTHENTICATE

1 PROGRAM

2 VERIFY

Table 17 • IAP Service Responses

Offset Length (bytes) Field Description
0 1 CMD=20 Command

1 1 STATUS Command status, see Table 13, page 25

Table 18 • IAP Programming Service Status Codes

Status
Description7 6 5 4 3 2 1 0

0 Success

0 AUTHERRCODE Authentication error

1 0 ERRORCODE Programming error

255 Service protected
Microchip Proprietary 31

In-Application Programming
Table 19 • Error Codes

Error Code Description Possible Cause Possible Solution
0 No error/success.

1 Fabric
programming/verification
failed.

Device is programmed with a
different design or the
component is blank.

Unstable voltage level.

Verify if the device is programmed with
the correct data/design.

Monitor the related power supplies that
cause the issue during programming;
check for transients violating Microsemi
specifications. For more information
about transient specifications, see
DS0128: IGLOO2 and SmartFusion2
Datasheet.

2 Device security prevented
the operation.

Current device security
settings prevents
programming.

Security settings can be queried from
the device with a STAPL file by running
action DEVICE_INFO.

Security settings can be changed with a
STAPL file with a passkey (UPK1) that
matches the device.

4 eNVM programming
operation failed.

Unstable voltage level. Monitor the related power supplies that
cause the issue during programming;
check for transients violating Microsemi
specifications. For more information
about transient specifications, see
DS0128: IGLOO2 and SmartFusion2
Datasheet.

5 eNVM verify operation failed. Device is programmed with a
different design.
Unstable voltage level.

Verify if the device is programmed with
the correct data/design.

Monitor the related power supplies that
cause the issue during programming;
check for transients violating Microsemi
specifications. For more information
about transient specifications, see
DS0128: IGLOO2 and SmartFusion2
Datasheet.

Table 20 • IAP Bitstream Authorization Error Codes

AUTHERRCODE Description
0 No error

1, 2, 3, 4, 7, 8, 9 Invalid/corrupted bitstream

5 Design version in the bitstream is earlier than the version
allowed by the BACKLEVEL specified in the device.

10 Incorrect DEVICEID.

11 Bitstream is outdated; must regenerate.

12 Bitstream does not support verification.
Microchip Proprietary 32

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132042
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132042
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132042

In-Application Programming
The following figure summarizes the two-step IAP flow.

Figure 17 • IAP Flow

The Cortex-M3 processor executes the user application. The user application provides the bitstream
through the communication interface required to authenticate, program, and verify the operations.

During the execution of the IAP service, the system controller receives the entire bitstream as a
continuous stream of bytes through the COMM_BLK. If the Cortex-M3 processor is executing code from
the eNVM, the system controller firmware must avoid a deadlock scenario, if it attempts to program a
region of the eNVM that is used. This is achieved by releasing the eNVM HMASTLOCK between atomic
eNVM operations. If the bitstream reprograms the code region that is used, the Cortex-M3 processor
must copy its code to eSRAM and execute from there. For more information about HMASTLOCK, see
the SmartFusion2 Microcontroller Subsystem User Guide.

Start

Pass?

Cortex-M32 calls the Program IAP system
service to start programming from MSS SPIO

Yes

Cortex-M32 calls IAP system
service with Verify mode

bits set (Optional)

User application call
fabric digest check

System Controller executes
IAP system service request

End

Cortex-M32 calls the Authenticate IAP
system service to authenticate the bitstream

Check if bitstream is corrupted;
regenerate if necessary

No

No

Yes

1For IGLOO2 device, either external programmer or user logic in the fabric loads the bitstream into the
external SPI flash in the SPI_0 port.
2For IGLOO2 device, user logic calls IAP system service.

Programming
pass?

User application execute
system-level reset

Debug

Cortex-M31 loads bitstream into
the external SPI flash in the SPI_O port
Microchip Proprietary 33

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918

In-Application Programming
Upon completion of programming, the system controller resets the device to ensure that the newly
programmed configuration takes effect and the device operates with the new design. However, the user
application must execute another system reset in addition to system controller reset as soon as the IAP
system service is completed, otherwise the LSRAM block might not be accessible. System reset can be
generated using the tamper macro, which can be instantiated from the Libero SoC Catalog. Immediately
after ISP, user logic (that is, an FSM module) can check LSRAM access. If the access is denied, then the
user logic generates a reset signal that can trigger the tamper macro to execute the system-level reset.
The RESET function in the tamper macro configuration window must be enabled. For detailed
implementation along with a reference design, see the SmartFusion2 SoC FPGA In-System
Programming Using UART Interface Demo Guide or SmartFusion2 SoC FPGA - In-System
Programming Using USB OTG Controller Interface Demo Guide.

The system controller runs verification as part of programming operation. However, verification can be
executed as a standalone operation to verify the contents of the SmartFusion2 device against the
bitstream.

When a standalone verification is required, execute the fabric digest check before calling the
VERIFICATION system service. A snippet from the firmware code is given below:

if(mode == MSS_SYS_PROG_VERIFY)
 {
 //Check digest before IAP verify
 MSS_SYS_check_digest(MSS_SYS_DIGEST_CHECK_FABRIC);
 }
Microchip Proprietary 34

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132487
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132487
https://www.microsemi.com/document-portal/doc_download/132604-dg0471-smartfusion2-soc-fpga-in-system-programming-using-usb-otg-controller-interface-libero-soc-v11-8-demo-guide
https://www.microsemi.com/document-portal/doc_download/132604-dg0471-smartfusion2-soc-fpga-in-system-programming-using-usb-otg-controller-interface-libero-soc-v11-8-demo-guide

Auto Update
8 Auto Update

In auto update programming mode, a device is auto programmed with an update image on power up or
at the assertion of DEVRSTn. The update image is stored in an external flash connected to the
MSS/HPMS SPI_0 port of the device. The design version of the update image must be greater than the
image version already programmed in the device.

When auto update is enabled, SmartFusion2/IGLOO2 MSS/HPMS SPI_0 can be configured to share the
SPI_0 pin with an SPI controller implemented in the FPGA fabric. To share the SPI_0 port, a multiplexer
needs to be implemented in the FPGA fabric to switch the SPI_0 pins between MSS/HPMS SPI_0 and
the fabric SPI controller. For more information, see DG0636: Implementing Auto Update and
Programming Recovery Features (Using Ethernet Interface) for SmartFusion2 Devices Demo Guide.
Auto update is not supported in M2S/M2GL050 devices.

Figure 18 • Auto Update Programming Ports

Auto update mode needs to be turned on in Libero SoC (see Configuring the Device for Auto Update,
page 36), and the device needs to be programmed first with the exported bitstream. The SPI flash can be
preprogrammed and installed on the board or it can be programmed remotely using the update image
and the SPI directory. The FPGA can be programmed with only one update image version at a time.
Every time auto update of a new update image is desired:

• the SPI flash needs to be reprogrammed with that new update image.
• the SPI directory corresponding to the new update image needs to be programmed into the SPI

flash before starting the auto update.
During auto update, the system controller reads the version and address of the image from the SPI
directory and programs the device with the update image if it is a higher version of the image already
programmed in the FPGA.

If auto update is enabled, and the SPI flash is blank or does not contain the SPI directory, the device
attempts auto update but fails bitstream authentication and aborts programming. However, the state of

FPGA Fabric
Micro SRAM

(64x18)

Micro SRAM
(64x18)

Large SRAM
(1024x18)

Large SRAM
(1024x18)

Math Block
MACC (18x18)

Math Block
MACC (18x18)

DDR
Bridge

MSS
DDR Controller

+ PHY

Instruction
Cache

eSRAMTSE MAC HPDMAFIC_1FIC_0COMM_BLK

SYSREG eNVM
HS USB

OTG ULPI
PDMAAPB

SRAM-PUF

JTAG I/O DDR User I/OSPI I/O

M
u

lt
i-

S
ta

n
d

a
rd

 U
s
e

r
I/

O
 (

M
IS

O
)

SHA256AES256

In-Application
Programming

NRBGECC

Flash*Freeze

FIIC

RTC

WDT

CAN

SPI x 2
MMUART x 2

I2C x 2
Timer x 2

AHB Bus Matrix (ABM)

MPU

ARM® Cortex™-M3
Microcontroller

Subsystem (MSS)System Controller ETM
S

D

AHB SMC_FIC AXI/AHBConfigAHB AHBInterupts

I

FPGA Fabric
Micro

a
n

d
a

rd
 U

s
e

r
I/

O
 (

M
IS

O
) M

u
lti-S

ta
n

d
a

rd
 U

s
e

r I/O
 (M

IS
O

)

Standard Cell /
SEU Immune

Flash Based /
SEU Immune

Remote Update

Update Image
Versions

MSS SPI_0 Port

SPI Flash
Vn
.
.
.
.
.
.

V2
V1

FLASH_GOLDEN_N Pin

DEVEREST_N Pin
Microchip Proprietary 35

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=135518
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=135518

Auto Update
the device is not changed, therefore the device boot sequence continues, and the existing user design
powers up.

Four SPI slave select pins of the SPI_0 interface (SS4, SS5, SS6, and SS7) drive high during auto
programing (except 005, 010 devices). The remaining SPI_0 pins are tristated with weak pull up. These
four pins that drive high during auto update must not be used as control pins. The I/O level and drive
strength are based on the previous settings programmed into the device.

The target board must provide power to the VPP, VPPNVM, VDD, and VDDIOx (where x = SPI_0
interface bank number) pins.

For the recommended voltage ranges and pin locations, see the SmartFusion2 and IGLOO2 Datasheet
and the corresponding package pin assignment table.

For information about the I/O states during auto update, see State of SmartFusion2 and IGLOO2
Components During Programming, page 44.

8.1 Configuring the Device for Auto Update
There are two ways to configure the FPGA for auto update:

• Generate a bitstream with the auto update configuration in the Libero SoC software and program the
device to enable this programming mode, as shown in the following figure. For more information on
configuring the auto update, see the Libero SoC User Guide.

Figure 19 • Enabling Auto Update

• Factory preconfigures the device before shipping. It can be either of the following:
• In house programming (IHP) at the factory.
• Programmed with a preconfigured image using a standalone Silicon Sculptor 3 programmer.
Microchip Proprietary 36

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130717
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130850

Programming Recovery
9 Programming Recovery

Programming recovery, if enabled, allows the device to automatically recover from a power failure during
a programming operation. Programming recovery requires an external SPI flash to be connected to
SPI_0 within the MSS/HPMS.

Programming recovery is supported for MSS ISP and IAP and is not intended for recovery from the
following events:

• SPI flash error
• Authentication error of programming bitstream
• Loss of communications link during ISP
If there is loss of communications link during programming, the system controller does not time out, but
keeps waiting for more data indefinitely. In this case, the communications link must be reestablished.

Programming recovery details:

• If power fails, recovery occurs during power up where neither the FPGA fabric nor the Cortex-M3
processor is active.

• After the recovery is successful, the device is enabled automatically.
• If recovery fails, the device needs to be powered up again.
• If the golden image is corrupted, the recovery occurs each time the device reboots but eventually it

fails and the device goes to idle state.
Programming recovery is not supported in M2S/M2GL050 devices.

9.1 Programming Recovery Implementation
Programming recovery works through the MSS/HPMS SPI_0 port. An external SPI flash device needs to
be programmed with the golden image and the corresponding SPI directory and connected to the SPI_0
port.

Four SPI slave select pins of the SPI_0 interface (SS4, SS5, SS6, and SS7) drive high during
programing (except 005 and 010 devices). The remaining SPI_0 pins are tristated with weak pull up.
These four pins that drive high during programming must not be used as control pins. The I/O level and
drive strength are based on the previous settings programmed into the device.

SmartFusion2 and IGLOO2 devices need to be programmed with programming recovery settings in
Libero SoC to enable programming recovery during manufacturing flow, as shown in the following figure.
The required security settings are also programmed at that time. After the recovery settings are
programmed, they must not be changed or modified during remote updates. The remote update of
security or recovery setting in the field poses a risk because if power fails in the middle of the update, the
recovery setting might get corrupted. If the recovery setting gets corrupted, the recovery does not take
place when power comes back. For more information, see the Libero SoC User Guide.

The system controller is unable to change the oscillator frequency after a successful Programming
Recovery. The oscillator frequency remains at 25 MHz instead of 50 MHz. Refer to one the following
demo guides for a workaround.

For implementation details, see the following documents:

• Implementing Auto Update and Programming Recovery Features Using Ethernet Interface for
SmartFusion2 Devices Demo Guide

• Implementing Programming Recovery and In-Application Programming Features Using Ethernet
Interface for SmartFusion2 Devices Demo Guide
Microchip Proprietary 37

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130850
https://www.microsemi.com/document-portal/doc_download/135518-dg0636-implementing-auto-update-and-programming-recovery-features-using-ethernet-interface-for-smartfusion2-devices-libero-soc-v11-8-sp1-demo-guide
https://www.microsemi.com/document-portal/doc_download/135599-dg0635-implementing-programming-recovery-and-in-application-programming-features-using-ethernet-interface-for-smartfusion2-devices-libero-soc-v11-8-sp1-demo-guide
https://www.microsemi.com/document-portal/doc_download/135599-dg0635-implementing-programming-recovery-and-in-application-programming-features-using-ethernet-interface-for-smartfusion2-devices-libero-soc-v11-8-sp1-demo-guide

Programming Recovery
Figure 20 • Enabling Programming Recovery

There are four user-selectable configuration settings for programming recovery, as shown in the
following table. These settings are provided as an illustration, actual setting is done through the Libero
SoC GUI.

For information about the I/O states during programming recovery, see State of SmartFusion2 and
IGLOO2 Components During Programming, page 44.

Table 21 • Programming Recovery Configuration Settings (UCNFG[16:12])

Configuration Settings Description
IAPRECOVERY_ENABLE 0: Enables programming recovery

1: Disables programming recovery [Default]

IAPRECOVERY_PORT_GOLDEN Specifies the SPI port being used for the golden image.
1: SPI_0: The MSS/HPMS SPI instance 0 [Default and only option]

IAPRECOVERY_IMAGE Selects the image to be used in recovery.
1: Golden image [Default]

IAPRECOVERY_UPDATE Turns on the automatic update mode.
0: Checks the update image version on power up, and if the update image
version is newer than the design version programmed in the device, performs
the update.
1: No action [Default]
Microchip Proprietary 38

Programming Recovery
9.2 SPI Flash Configuration and Image Selection
The image needs to be written to the external SPI flash connected to SPI_0. The SPI directory contains
the addresses of the programming bitstreams stored in the SPI flash. Libero SoC creates the SPI
directory (<file_name>.spidir) as part of the bitstream based on user preference. The following table
describes the SPI directory. For more information, see the Libero SoC User Guide.

9.2.1 MSS/HPMS SPI_0 Port Configuration
The SPI_0 port must be configured while enabling programming recovery and/or auto update in the
Libero SoC software. Set the SPI clock and SPI data transfer mode in the Libero SoC software in the
Configure Programming Recovery window.

Note: SPI mode of a blank device is set to 3 (SPO=SPH=1). To operate the SPI bus in other modes, configure
them in the Libero SoC software. For more information, see the Libero SoC User Guide.

Note: SPS is set to 1.

Table 22 • SPI Directory

Offset Name Description
0 GOLDEN_IMAGE_ADDRESS[3:0] Contains the address where the golden image starts.

4 GOLDEN_IMAGE_DESIGNVER[1:0] Contains the design version of the golden image.

6 UPDATE_IMAGE_ADDRESS[3:0] Contains the address where the update image starts.

10 UPDATE_IMAGE_DESIGNVER[1:0] Contains the design version of the update image.

Table 23 • User Lock Row Strobe Bits for Programming Recovery

Name Description
U_IAPRECOVERY_CLKRATE[7:0] Sets the SPI clock frequency.

U_IAPRECOVERY_CLKMODE 0: Sets SPICLK using 1/(2**(CLKRATE+1))
 Where, CLKRATE = 0 to 15
1: Sets SPICLK using 1/(2*(CLKRATE+1)
 Where, CLKRATE = 0 to 255

U_IAPRECOVERY_SPO Control SPI signal polarity. See Table 24, page 39.

U_IAPRECOVERY_SPH Control SPI signal polarity. See Table 24, page 39.

U_IAPRECOVERY_DPC[9:0] These set the SPI port I/Os settings.

Table 24 • SPI Signal Polarity Modes

SPO SPH

SPI
Clock in
Idle

Sample
Edge

Shift
Edge

SPI
Select in
Idle SPI Select Between Frames

0 0 Low Rising Falling High Stays active until all the frames set by frame
counter are transmitted.0 1 Low Falling Rising High

1 0 High Falling Rising High

1 1 High Falling Falling High
Microchip Proprietary 39

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130850
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130850

Programming Recovery
The following table lists the truth table to describe different mechanisms of the programming recovery
operation.

The following figure shows the programming recovery configuration for the SmartFusion2 device as
described in previous sections. The same settings are applicable for IGLOO2 devices.

Figure 21 • Programming Recovery Configuration for SmartFusion2

Table 25 • Programming Recovery and Auto Update Truth1

1. If back-level protection is enabled in the FPGA's security settings, back-level protection check and control applies to golden
image during recovery process. Therefore, if back-level protection is enabled, it is recommended to enable back-level
protection bypass when generating golden image.

Configuration
Setting

Events During Assertion of
FLASH_GOLDEN_N Events During Recovery Events During Power-up

R
ec

ov
er

y

Au
to

 U
pd

at
e

Enable Enable Golden image is programmed Golden image is programmed Update image is
programmed

Enable Disable Golden image is programmed Golden image is programmed Do nothing

Disable Disable Golden image is programmed Do nothing Do nothing

External SPI Flash

SmartFusion2

System Controller

Peripherals

SPI_0

UART

USB

Fabric eNVM

FLASH_GOLDER_N Pin

DEVRST_N Pin

User Data

Update Image

Golden Image

SPI Directory

IAPRECOVERY_PORT_GOLDEN
Microchip Proprietary 40

Programming Recovery
9.3 Back Level Protection
Bitstream replay protection is provided when back level protection is enabled. It limits the bitstream
version that can be programmed into the device. Only programming bitstreams with Designer Version
greater than the back level version are allowed for programming. Libero SoC tool's SPM (Security Policy
Manager) configures back level protection as shown in the following figure. When enabled, a design
being programmed must have its Design version higher than the back level version value already
programmed in the device.

Figure 22 • Back Level Protection

Note: Back Level Bypass (if selected, design is programmed irrespective of back level version) should be set if
you allow programming recover with recovery image lower than the back level version selected.
Alternatively, you should update the design version of the recovery image so that it is always greater than
the back level version.
Microchip Proprietary 41

Programming Recovery
The following flow chart explains how back level protection works during Auto Update and Programming
Recovery mode.

Figure 23 • Flow Chart of Back Level Protection during Auto-Update and Programming Recovery Mode

FPGA
Enabled?

DVH > DVD?No Update

BLED and
BLBI?

DVI > BLVD?

Update Image

Update Image

No Update

BLED and
BLBI?

DVI > BLVD?

Gold Image

No Recovery

Gold Image

Auto-Update Path

Yes

Yes

Yes

Yes

No

No

No

No

No

Yes

Yes

Recovery Path

Power On/
DEVRSTn

It is recommended to select back level bypass
during golden bitstream generation to assure
golden image update is successful.

If Auto Update/Recovery is successful, the
device will contain the design version and back
level version from the programmed bitstream.

DVH = Design Version in Header
DVD = Design Version in Device
DVI = Design Version in update bitstream
BLVD = Back-Level Version in Device
BLBI = Back-Level Bypass in update bitstream
BLED = Back-Level Enable in Device

No
Microchip Proprietary 42

Production Programming

Microchip Proprietary 43

10 Production Programming

The SmartFusion2 and IGLOO2 devices can be programmed before board assembly using Silicon
Sculptor 3. The SmartFusion2 or IGLOO2 device is inserted in an FPGA package specific adapter
module, which is then plugged into Silicon Sculptor 3.

Microsemi provides Silicon Sculptor 3 software or Sculptw that is used to run the programmer. For more
information, see the following web page: http://www.microsemi.com/products/fpga-soc/design-
resources/programming/silicon-sculptor-3

SmartFusion2 and IGLOO2 devices can also be programmed by automatic test equipment (ATE). The
Libero SoC software generates a serial vector format (SVF) file that is used for ATE programming.
Support for SVF format will be added in a future release. Contact the technical support team if you need
support for the SVF file format.

As part of production programming, serialization feature can be used. SmartFusion2 and IGLOO2
devices support serialization. For more information, see the Libero SoC or FlashPro Express Online
Help.

http://www.microsemi.com/index.php?option=com_content&view=article&id=1794&catid=1647&Itemid=3114
http://www.microsemi.com/index.php?option=com_content&view=article&id=1794&catid=1647&Itemid=3114
https://soc.microsemi.com/Portal/Default.aspx

State of SmartFusion2 and IGLOO2 Components During Programming
11 State of SmartFusion2 and IGLOO2
Components During Programming

The following table lists the state of each ASIC block and I/O during the programming modes described
in this user guide. You can configure the I/O state during JTAG programing in Libero SoC, see Figure 24,
page 46. For more information, see the Libero SoC User Guide.

Note: I/O state of a blank device is tristated with weak pull up. During reset, the I/Os are floating even if pull up
is enabled or I/O has a default pull up. However, for the SC_SPI and JTAG pins, the pull up is active
during reset because they are hardwired. I/O weak pull-up is around 10K.

Table 26 • ASIC Block and I/O State During Programming

Component
Programming Method
JTAG/SPI Slave IAP/MSS ISP Auto Programming

Cortex-M3
processor

Held in reset Operational, running user
firmware

Held in reset

MSS/HPMS
(without Cortex-
M3)

Active during programming to
allow programming access to
eNVM.

Active Active during programming to
allow programming access to
eNVM.

MDDR
controller

DDR I/O calibration block held
in reset.

DDR I/O calibration block held in
reset.

DDR I/O calibration block held
in reset.

Shared I/O
(fabric/MSS/HP
MS) except
SPI_0

I/Os are tristated with a weak
pull-up by default during JTAG
programming, but can be
configured to user-selectable
states in Libero SoC (see
Figure 24, page 46). During SPI
slave programming of a blank
device, I/Os are tristated with
weak pull up. If the device is
already programmed, then the
I/O state will be according to the
user-configured F*F state. 1

The device has been
programmed already once,
therefore, I/O state will be
according to the user-configured
F*F state. 1

Tristated with weak pull up.
Microchip Proprietary 44

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130850

State of SmartFusion2 and IGLOO2 Components During Programming
SPI_0 Same as above Same as above for MSS ISP.
For IAP, slave select pins (SS4,
SS5, SS6, and SS7) of the SPI_0
port will drive high (except 005
and 010 devices). The I/O level
and drive strength are based on
the previous settings
programmed into the device. All
other SPI_0 I/O will be tristated
with weak pull up.

Slave select pins (SS4, SS5,
SS6, and SS7) of SPI_0 the
port will drive high (except 005
and 010 devices). The I/O level
will be the same as bank
voltage used for SPI_0 bank
and the drive strength will be
maximum for this I/O level. For
example, if the SPI_0 bank was
powered by 1.8 V, then the
drive strength will be the
maximum value allowed for 1.8
V LVCMOS I/O. For the
maximum drive strength
allowed for LVCMOS 1.8 V
transmitter, see the
SmartFusion2 and IGLOO2
Datasheet. All other SPI_0 I/O
will be tristated with weak pull
up.

Shared I/O
(Fabric/MDDR)

Same as above The device has been
programmed already once,
therefore, I/O state will be
according to the user-configured
F*F state.1

Tristated with weak pull up

Shared I/O
(fabric/FDDR)

Tristated with weak pull up

Dedicated fabric
I/O

Tristated with weak pull up

SERDES I/O Unaffected by programming Unaffected by programming Unaffected by programming

FDDR block Fabric interfaces to this block
are gated off. So no
transactions can occur at
configuring APB, AHB/AXI
interfaces to the fabric.

Fabric interfaces to this block are
gated off. So no transactions can
occur at configuring APB,
AHB/AXI interfaces to the fabric.

Fabric interfaces to this block
are gated off. So no
transactions can occur at
configuring APB, AHB/AXI
interfaces to the fabric.

SERDESIF
block

Fabric interfaces to this block
are gated off. So no
transactions can occur at
configuring APB, AHB/AXI
interfaces to the fabric.

Fabric interfaces to this block are
gated off. So no transactions can
occur at configuring APB,
AHB/AXI interfaces to the fabric.

Fabric interfaces to this block
are gated off. So no
transactions can occur at
configuring APB, AHB/AXI
interfaces to the fabric.

1. I/O state during JTAG programming can be configured differently, see Figure 24, page 46. I/0 states during SPI slave
programming, MSS ISP, Auto Update, and IAP follow user-configured F*F state (see Use of Flash Freeze Mechanism in Device
Programming, page 47).

Table 26 • ASIC Block and I/O State During Programming (continued)

Component
Programming Method
JTAG/SPI Slave IAP/MSS ISP Auto Programming
Microchip Proprietary 45

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130717
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130717

State of SmartFusion2 and IGLOO2 Components During Programming
The following table lists the state of each ASIC block and each I/O during programming recovery.

Figure 24 • I/O States During JTAG Programming

Table 27 • ASIC Block and I/O State During Programming Recovery/Auto Update

Components Programming Recovery/Auto Update
Cortex-M3 processor Held in reset.

MSS/HPMS (without
Cortex-M3)

Active during programming to permit programming access to eNVM.

MDDR controller DDR I/O calibration block held in reset.

Shared I/O
(fabric/MSS/HPMS except
SPI_0)

Tristated with weak pull up (during programming recovery).
User configured I/O state in Flash Freeze mode (during Auto Update).

SPI_0 Slave select pins (SS4, SS5, SS6, and SS7) of the SPI_0 port will drive high (except
005 and 010 devices). The I/O level and drive strength are based on the previous
settings programmed into the device. All other SPI_0 I/O will be tristated with weak pull
up.

Shared I/O (fabric/MDDR) Tristated with weak pull up (during programming recovery).
User configured I/O state in Flash*Freeze mode (during Auto Update).

Shared I/O (fabric/FDDR) Tristated with weak pull up (during programming recovery).
User configured I/O state in Flash*Freeze mode (during Auto Update).

Dedicated fabric I/O Tristated with weak pull up (during programming recovery).
User configured I/O state in Flash*Freeze mode (during Auto Update).

SERDES I/O Unaffected by programming.

FDDR block Fabric interfaces to this block are gated off. So no transactions can occur at config APB,
AHB/AXI interfaces to fabric.

SERDESIF block Fabric interfaces to this block are gated off. So no transactions can occur at config APB,
AHB/AXI interfaces to fabric.
Microchip Proprietary 46

State of SmartFusion2 and IGLOO2 Components During Programming
11.1 Use of Flash Freeze Mechanism in Device Programming
The SPI slave, IAP, Auto Update, and MSS ISP (SmartFusion2 only) programming modes involve the
device being put into F*F mode. In this mode, the I/Os are disabled and the fabric is powered down.
However, the I/O state can be set using the I/O Editor of the Libero SoC software, as shown in the
following figure. There are two options to select—Tristate and Last known value. Tristate option is
actually implemented with weak pull up and Last know value is implemented with weak pull up or down.
For example, if the IO is driving high before programming, then it will be tristated with weak pull up during
programming when Last Known state is selected for that IO. Similarly, if the IO was driving low, it will be
tristated with weak pull down. As part of the entry into Flash Freeze, the system controller switches the
clock source of the MSS/HPMS over to the standby clock (options are: 1MHz or 50MHz MSS clock
source in the Configure Flash Freeze menu in Libero SoC). To ensure that the MSS is clocked at a
consistent speed during IAP/MSS ISP in SmartFusion2, the Cortex-M3 firmware must manually switch
the MSS clock source to 50 MHz (if 1MHz is selected in the Configure Flash Freeze menu in Libero SoC)
before requesting the IAP/MSS ISP through a system service request.

Figure 25 • Setting I/O States

The system controller, in suspend mode or avionics mode, is held in a reset state and cannot provide
system services such as F*F, security, or IAP programming. The device can only program using the
JTAG port. For more information on suspend mode, see the SmartFusion2 System Controller User
Guide.
Microchip Proprietary 47

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130927
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130927

	1 Revision History
	1.1 Revision 10.0
	1.2 Revision 9.0
	1.3 Revision 8.0
	1.4 Revision 7.0
	1.5 Revision 6.0
	1.6 Revision 5.0
	1.7 Revision 4.0
	1.8 Revision 3.0
	1.9 Revision 2.0
	1.10 Revision 1.0
	1.11 Revision 0
	1.12 SmartFusion2 List of Changes Table for Reference

	2 Programming Overview
	2.1 Programming Interface
	2.2 Programming Bitstream Generation
	2.2.1 Programming Bitstream

	2.3 Programming Flow

	3 JTAG Programming
	3.1 Programming Interface Overview
	3.1.1 JTAG Timing Diagram
	3.1.2 Design Implementation

	3.2 Programming Using an External Programmer
	3.2.1 Power Supply Requirements for Programming

	3.3 Programming Using an External Microprocessor

	4 SPI Slave Programming
	4.1 Programming Interface Overview
	4.1.1 Design Implementation

	5 Auto Programming
	5.1 Programming Interface Overview
	5.1.1 Design Implementation
	5.1.2 Auto Programming of M2S/M2GL050 Device

	6 MSS ISP (SmartFusion2 Only)
	6.1 Design Implementation

	7 In-Application Programming
	7.1 Design Implementation
	7.1.1 Authenticate
	7.1.2 Verify
	7.1.3 Program

	8 Auto Update
	8.1 Configuring the Device for Auto Update

	9 Programming Recovery
	9.1 Programming Recovery Implementation
	9.2 SPI Flash Configuration and Image Selection
	9.2.1 MSS/HPMS SPI_0 Port Configuration

	9.3 Back Level Protection

	10 Production Programming
	11 State of SmartFusion2 and IGLOO2 Components During Programming
	11.1 Use of Flash Freeze Mechanism in Device Programming

