MICROCHIP ANS365
SAM L11 Security Reference Guide

Introduction

This document is intended to help the developer to use SAM L11 security features for building secure embedded
applications.

The following application development aspects are covered in this document:

» Single and dual developer approach

» Secure solution development using SAM L11 ecosystem

+ Secure software protection using Arm® TrustZone® for ARMv8®-M and Debug Access Levels
» System root of trust using Secure Boot

The use of key security features is illustrated using bare-metal software examples on the following:
» Using SAM L11 Secure, Non-Secure, and Mix-Secured peripherals

» Using an embedded Cryptographic Accelerator (CRYA) for AES-128, SHA-256, and GCM algorithm

» Using Data Flash and Trust RAM for storing and protecting application secrets using tamper detection,
scrambling, and silent accesses

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 1
and its subsidiaries

ANS365

Table of Contents

a1 0T [8 o3 1] o SRR 1

1. Introduction t0 SAM L11 SeCUrity FEAtUIES........ccvviiiiiieeeie et e 3

1.1, TrustZone fOr ARMUSB-Mooi ittt e i 3

1.2. Peripherals Security AfMDULIONooiiiiii e 9

1.3. Debug Access Level (DAL) and Chip Erase.........cooiuiieiiiieiiiie e 13

L S 1= o TN | = = oo SRR UOTPPRRRNE 17

2. SAM L11 Application Development (Developer A and Developer B)...........cccccoeecviieeiiecciieee e 20

2.1, Single-Developer APPrOACH........coiiii ittt e et e e e e 20

2.2, Dual-Developer APPIrOACK.cc.uuii ittt e 20

2.3. Develop a Secure Solution (DeVEIOPET A)..........uueiieiiiiiiiee et 21

2.4. Develop a Non-Secure Project (Developer B).........cccuveiiiiieiiieeeiee e 39

2.5. Developing Solution with Secure Boot Program (Developer A)........cccccveriieiiee e 55

3. Software Use Case EXAMPIES..........occoiiuiiiiiiiiiie et e e e et e e e e s ear e e e e s enara e e e e e e anees 65

3.1. Non-Secure Peripheral (TCO)........cuiiiiiiieiiie e e e e naes 65

3.2, Secure Peripheral (TCO)........uuiiiiiiiiiieii ettt e et e e e e e e e e e st e e e e s esbeeeaeeeannaeeeeeans 67

3.3, Mix-Secure Peripheral (EIC)..........ou ittt e et e e e e e neeeeneeas 69

B4, TIUSTRAM. .t h e bbbt b et e bt s bt bt e ehb et e e nne e bt eane e ne e 73

3.5. Cryptographic Accelerator (CRYA).......coo ittt 75

B TR I - 1 = T = T o TS 77

4. REVISION HISTOMY ...t ettt e et e e e e bt e et nannes 79

The MICrOChID WED SHtE......uuiiiiiiiiteii e e e e e e et e e e e e e e bt e e e e e eaanbeeeeeesnnaeeaeeaan 81

Customer Change NOtIfiCation SEIVICE.........oouiiiiiiiiiii e 81

(OIS (o] 00 LT RS UT o] oY) o SU OO PPPR 81

Microchip Devices Code Protection Feature.............oooiiiiiiiiiiii e 81

[I=To P 1 N\ o) i o7 T USRS UPRRRRN 82

= Te (=10 0= o G PSP P PP OPPPPPPN 82

Quality Management System Certified DY DNV.........oooiiiiiii e 82

Worldwide Sales @nd SEIVICE.......cciiiiieiiieeeiie ettt et e et e e s e e e snee e e snneeesneeeeanteeeaneeeenneee s 83
© 2022 Microchip Technology Inc. Application Note DS70005365C-page 2

and its subsidiaries

1.1

AN5365
Introduction to SAM L11 Security Features

Introduction to SAM L11 Security Features

TrustZone for ARMv8-M

The central security element for the Microchip SAM L11 microcontroller (MCU) is the implementation of the TrustZone
for an ARMv8-M device. The TrustZone technology is a System-on-Chip (SoC) and MCU system-wide approach to
security that enables Secure and Non-Secure application code to run on a single MCU.

TrustZone for an ARMv8-M device is based on a specific hardware that is implemented in the Cortex-M23 core,
which is combined with a dedicated secure instructions set. It enables creating multiple software security domains
that restricts access to selected memory, peripherals, and 1/O to trusted software without compromising the system
performances.

The main goal of the TrustZone for an ARMv8-M device is to simplify security assessment of a deeply embedded
device. The principle behind the TrustZone for an ARMv8-M embedded software application is illustrated in the figure
below.

Figure 1-1. Standard Interactions Between Secure and Non-Secure States

Non-Secure state Secure state

-

for Cortex-M

In the SAM L11 Cortex-M23 core implementation, the security management is done using the Implementation
Defined Attribution Unit (IDAU). The IDAU interface controls the access to the execution of specific instructions which
are based on the current core security state and the address of the instruction. The figure below illustrates the
Core/Debugger access verification, performed by the system prior to allowing access to specific memory region.

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 3
and its subsidiaries

111

ANS365

Introduction to SAM L11 Security Features

Figure 1-2. IDAU Interface and Memo

ry Accesses

Non-
Secure
MPU

Core/Debugger
access

Address
7

IDAU
Interface

va
| S/NS/NCs

Combine

Secure
MPU

Access to
memory

Cortex-M23

SAM L11

Thanks to this implementation, a simple function call or an interrupt processing results in a branch to a specific
security state as illustrated in the figure below. This allows for efficient calling by avoiding any code and execution

overhead.

Figure 1-3. ARMv8-M with TrustZone

States Transition

Thread
Mode

Non-Secure
Handler

Non-Secure

ARMv8-M with TrustZone

Secure
Thread
Mode

Memory Security Attribution

To differentiate and isolate the Secure code from the Non-Secure code, the SAM L11 memory is divided into ten
memory regions as shown in the figure below. Each region size can be configured using dedicated NVM fuses, such

as BS, BNSC, BOOTPROT, AS, ANSC,

DS, and RS.

© 2022 Microchip Technology Inc.
and its subsidiaries

Application Note

DS70005365C-page 4

AN5365
Introduction to SAM L11 Security Features

Figure 1-4. SAM L11 Memory Regions

0x0000 0000
Secure Flash 0x2000 0000
(BOOT Region) X
BS x 0x100 - BNSC x 0x20 Secure SRAM
Non-Secure Callable Flash 0x2000 0000 + (RS x 0x80)
(BOOT Region) Non-Secure SRAM
BS x 0x100 0x2000 4000
Non-Secure Flash SRAM (Up to 16 KB)
(BOOT Region)
BOOTPROT x 0x100
Secure Flash
(APPLICATION Region)
(BOOTPROT + AS) x 0x100 - ANSC x0x20
Non-Secure Callable Flash
(APPLICATION Region)
0x0040 0000

(BOOTPROT + AS) x 0x100
Secure Data Flash

0x40 0000 + (DS x 0x20)

Non-Secure Data Flash

Non-Secure Callable Flash 0x40 0800
(BOOT Region) Data Flash (2 KB)

0x0001 0000

Flash (Up to 64 KB)

Each memory region is preconfigured in the hardware with one of the following attributes:

* Non-Secure (NS): Non-Secure addresses are used for memory and peripherals, which are accessible by all
software running on the device.

» Secure (S): Secure addresses are used for memory and peripherals, which are accessible only by Secure
software.

* Non-Secure Callable (NSC): NSC is a special type of Secure memory location. It enables software transition
from a Non-Secure to a Secure state.

The security attribute of each region will define the security state of the code stored in this region.

11.2 Secure and Non-Secure Function Call Mechanism

To prevent Secure code and data from being accessed from a Non-Secure state, the Secure code must meet several
requirements. The responsibility for meeting these requirements is shared between the MCU architecture, software
architecture, and the toolchain configuration.

At the core level, a set of Secure instructions dedicated to ARMv8-M devices are used to preserve and protect the
secure register values during the CPU security state transition.

» Secure Gateway (SG): Used for switching from a Non-Secure to a Secure state at the first instruction of a
Secure entry point.

+ Branch with eXchange to Non-Secure State (BXNS): Used by the Secure software to branch, or return to the
Non-Secure program.

» Branch with Link and eXchange to Non-Secure State (BLXNS): Used by the Secure software to call the
Non-Secure functions.

At the toolchain level, a ‘C’ language extension (CMSE) provided by Arm must be used to ensure the use of
ARMv8-M Secure instruction.

At the software architecture level, specific Secure and Non-Secure function call mechanisms must be used to ensure
security, which are described in the following sections:

1.1.2.1 Non-Secure Callable APIs
When working with TrustZone for ARMv8-M, the application developer can define a set of Non-Secure callable APIs
which can be used to access the Secure code from the Non-Secure world. These APls, known as Secure Gateways
(SG) or veneers are in charge of the CPU Security state switch and allow the decoupling of Secure entry points
from the rest of the Secure code. Therefore, limiting the amount of code that can potentially be accessed by the
Non-Secure state.

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 5
and its subsidiaries

1.1.2.2

AN5365
Introduction to SAM L11 Security Features

SG are expected to be placed in NSC memory regions, which are executable only when the CPU is in Non-Secure
state. The rest of the Secure code is expected to be placed in the Secure memory regions which are not accessible
when the CPU is in Non-Secure state, see figure below.

Figure 1-5. Non-Secure Callable APls Mechanism
Non-Secure Non-Secure Callable Secure

2 (, S [
Branch (BLXNS) SG Branch (BLXNS)

|
I
I
|
| .
Non-Secure code | Veneer Secure Function
I
|
|
|

Return (BXNS)

Using Non-Secure callable APIs require the use of specific Cortex-M23 instructions that ensure security during the
core security state switching. A direct API function call from the Non-Secure to the Secure software entry points is
allowed only if the first instruction of the entry point is a SG and is in a Non-Secure callable memory location. The use
of the special instructions (BXNS and BLXNS) are also required to branch to Non-Secure code.

The following code illustrates Secure function and its SG APIs declaration and definition using Arm GCC toolchain
with a ‘C’ language extension (CMSE).

Veneer.h:

/* Non-secure callable functions */
extern int nsc_ funcl (int x);

Veneer.c (linked in the NSC memory region of the device):

/* Non-secure callable (entry) function */
int attribute ((cmse nonsecure entry)) nsc_funcl (int x)

{

return secure funcl (x);

}

Secure_function.c (linked in the secure memory region of the device):

int secure funcl (int x)

{

return x + 3;

}

Non-Secure Software Callbacks

The Secure code can define and use software callbacks to execute functions from the Non-Secure world. This is a
consequence of separating Secure and Non-Secure code into separate executable files. The following figure shows
the software callback approach.

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 6
and its subsidiaries

AN5365
Introduction to SAM L11 Security Features

Figure 1-6. Non-Secure Software Callbacks Flow Chart

Secure
Driver/Handler

Secure peripheral
management or
secure algorithm

Non-Secure
Callback

Secure peripheral
management or
secure algorithm

The management of callback functions can be performed using the BLXNS instruction. The following figure illustrates
the Non-Secure callback mechanism:

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 7
and its subsidiaries

ANS365

Introduction to SAM L11 Security Features

Figure 1-7. Non-Secure Software Callback Mechanism

Non-Secure

Non-Secure code

I
I
I
I
I
I
I
I
I
I
I
I

Non-Secure Callable

Branch (BLXNS)

Secure API

Branch (BXNS)

Secure

Secure Function

Note: The definition of Non-Secure software callback is done through pointer to Non-Secure code location. If not
correctly checked in the Secure application, a wrong use of pointers can lead to security weakness that enables
execution of any Secure functions by the Non-Secure code. To overcome this disadvantages, a set of CMSE

functions based on the new Cortex-M23 Test Target (TT) instructions is provided.

1.1.2.3 Security State and Call Mismatch

Any attempts to access Secure regions from the Non-Secure code, or a mismatch between the code that is executed
and the security state of the system results in a HardFault exception as shown in the following figure.

Figure 1-8. Security State and Call Mismatch

Non-Secure
MOV ro, #10
MOV ri1, #abc
ADD r2, ro, ri

BLX secure_addr

CMP rl1, #result

Secure NSC

MOVS ri1, #0
MOVS r3, #1

Secure
DCD ©OxE97FE97F
MOVS ri1, #0
MOVS r3, #1

BXNS 1r

© 2022 Microchip Technology Inc.
and its subsidiaries

Application Note

DS70005365C-page 8

11.3

1.2

1.21

AN5365
Introduction to SAM L11 Security Features

Secure and Non-Secure Interrupts Handling

The Cortex-M23 (ARMv8-M architecture) uses the same exception stacking mechanism as the ARMv7-M
architecture, where a subset of core registers is stored automatically into the stack (hardware context saving). This
permits immediate execution of the interrupt handler without the need to perform a context save in the software.
ARMv8-M extends this mechanism to provide enhanced security based on two different stack pointers (a Secure
stack pointer and a Non-Secure stack pointer).

According to the priority settings configured in the Nested Vector Interrupt Controller (NVIC), Secure code execution
can interrupt Non-Secure code execution, and Non-Secure code can interrupt Secure code execution. The NVIC
registers at the core level are duplicated. This allows two vector table definitions, one for Secure and another for
Non-Secure.

At product start-up, all interrupts are mapped by default to the Secure world (Secure vector table). Specific CMSIS
functions accessible in the Secure world, allocate each interrupt vector to a Non-Secure handler (declared in Non-
Secure vector table).

As illustrated in the figure below, if the Secure code is running when a higher priority Non-Secure interrupt arrives, the
core pushes all its register content into a dedicated Secure stack. Registers are then zeroed automatically to prevent
any information being read, and the core executes the Non-Secure exception handler. When the Non-Secure handler
execution is finished, the hardware recovers all the registers from the Secure stack automatically. This mechanism is
managed in hardware and does not require any software intervention. This allows a Secure handover from running
Secure code to a Non-Secure interrupt handler and returning to running Secure code.

Figure 1-9. Cortex-M23 Interrupt Mechanism

Run Secure code Non-secure interrupt

Push Core registers

Zero Core registers

Switch to Non-Secure

Pop Core registers

Switch to Secure

Run Non-Secure
Handler

Return from Handler

Peripherals Security Attribution

The SAM L11 family of devices extends the concept of TrustZone to its integrated peripherals and offers the
possibility to allocate a specific peripheral to the Secure and Non-Secure world. The SAM L11 also embeds
peripherals that can share their resourcces between Secure and Non-Secure applications called Mix-Secure
peripherals. The management of each peripheral security attribution is done through the Peripheral Access Controller
(PAC).

Note: The IDAU peripheral is always Secure and the DSU (Device Service Unit) peripheral is always Non-Secure.
Refer to the SAM L10/L11 Family Data Sheet for additional information.

Secure and Non-Secure Peripherals

As shown in the following figure, the PAC controller embeds a set of registers that define the security attribution of
each integrated peripheral of the system. These registers are configured at device startup by the ROM code which
set the PAC.NONSECx registers according to the user configuration stored in the User Row (UROW) fuses.

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 9
and its subsidiaries

1.2.2

1.2.21

AN5365
Introduction to SAM L11 Security Features

Figure 1-10. PAC.NONSECXx Registers Description

7:0 GCLK SUPC OSCSEKCTR OSCCTRL RSTC MCLK PM PAC
NONSECA 15:8 AC PORT FREQM EIC RTC WDT

23:16

31:24

7:0 HMATRIXHS DMAC NVMCTRL DsSU IDAU

15:8

23:16

31:24

7:0 ADC TC2 TCA1 TCO SERCOM2 | SERCOM1 | SERCOMO EVSYS

15:8 TRAM OPAMP CCL TRNG PTC DAC

23:16

31:24

NONSECB

NONSECC

Important: The peripherals security attribution cannot be changed by accessing the PAC.NONSECx
registers during application run-time. Any changes must be done using the User Row fuses and require
a reset of the SAM L11 device. The application can read the PAC.NONSECx register to get the current
attribution of integrated peripherals.

Peripherals can be categorized into two groups depending on their PAC security attribution and their internal secure
partitioning capabilities (standard/mix-secure):

* Non-Secure peripheral: A standard peripheral configured as Non-Secure in the PAC. The security attribution of
the whole peripheral is defined by the associated NONSECx fuse set to one. Secure and Non-Secure accesses
to the peripheral are granted.

» Secure peripheral: A standard peripheral configured as Secure in the PAC. The security attribution of the whole
peripheral is defined by the associated NONSECx fuse set to zero. Secure accesses to the peripheral are
granted where Non-Secure accesses are discarded (Write is ignored, Read 0x0), and a PAC error is triggered.

When a peripheral is allocated to the Secure world, only Secure accesses to its registers are granted, and interrupt
handling should be managed in the Secure world only.

Mix-Secure Integrated Peripherals

The SAM L11 embeds five Mix-Secure peripherals, which allow part of their internal resources to be shared between
Secure and Non-Secure worlds. A complete list of SAM L11 Mix-Secure peripherals and their shared resources are
as follows:

» Peripheral Access Controller (PAC): Manages the peripherals security attribution (Secure or Non- Secure).
* Non-Volatile Memory Controller (NVMCTRL): Handles the Secure and Non-Secure Flash region programming.
» 1/O Pin Controller (PORT): Supports individual allocation of each I/O to the Secure or Non-Secure applications.

» External Interrupt Controller (EIC): Supports individual assignment of each external interrupt to the Secure or
Non-Secure applications.

» Event System (EVSYS): Supports individual assignment of each event channel to the Secure or Non- Secure
applications.

The capability for a Mix-Secure peripheral to share its internal resources depends on the security attribution of that
peripheral in the PAC peripheral (PAC Secured or PAC Non-Secured).

* When a Mix-Secure peripheral is Secured (NONSECx fuse set to zero), the Secure world can allocate internal
peripheral resources to the Non-Secure world using dedicated registers.
* When a Mix-Secure peripheral is Non-Secure (NONSECXx fuse set to one), the peripheral behaves as a

standard Non-Secure peripheral. Secure and Non-Secure accesses to the peripheral register are granted.
Mix-Secure Peripheral (PAC Secured)

When a Mix-Secure peripheral is PAC Secured (associated PAC NONSECx fuses set to 0), the peripheral register is
banked and accessible through two different memory aliases, as shown in the figure below.

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 10
and its subsidiaries

AN5365
Introduction to SAM L11 Security Features

Figure 1-11. PAC Secured Mix-Secure Peripheral Registers Addressing

Peripheral Base Address
(PERIPH->xxx)

Non-Secure Alias

Peripheral Base Address + Offset
(PERIPH_SEC->xxx)

Secure Alias Peripheral Registers

Logical addressing Physical addressing

The Secure world can then independently enable Non-Secure access to the internal peripheral resources using the
NONSEC register, as shown in the following figure for the External Interrupt Controller.

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 11
and its subsidiaries

1.2.2.2

AN5365
Introduction to SAM L11 Security Features

Figure 1-12. External Interrupt Controller NONSEC Register

Name: NONSEC
Offset: 0x40
Reset: 0x00000000

Property: PAC Write-Protection, Write-Secure

This register allows to set the NMI or external interrupt control and status registers in non-secure mode, individually
per interrupt pin.

Important: This register is only available for SAM L11 and has no effect for SAM L10.

Bit 31 30 29 28 27 26 25 24
NMI
Access RW/R/RW
Reset 0
Bit 23 22 21 20 19 18 17 16
Access
Reset
Bit 15 14 13 12 1 10 9 8
Access
Reset
Bit 7 6 5 4 3 2 1 0
EXTINT([7:0]
Access RW/R/RW RW/R/RW RW/R/RW RW/R/RW RW/R/RW RW/R/RW RW/R/RW RW/R/RW
Reset 0 0 0 0 0 0 0 0

The NONSEC register content can only be modified by the Secure world through the peripheral register Secure alias
(PERIPH_SEC.NONSEC).

Setting a specific internal feature bit field in the NONSEC register, enables the access to the different bit fields
associated to this feature in the peripheral Non-Secure alias.

Mix-Secure Peripheral (PAC Non-Secured)
When a Mix-Secure peripheral is PAC Non-Secured (associated NONSECx fuses set to 1), the peripheral behaves
as a standard Non-Secure peripheral.

Secure and Non-Secure accesses to the peripheral register are granted. The peripheral register mapping is shown in
the figure below:

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 12
and its subsidiaries

1.3

AN5365
Introduction to SAM L11 Security Features

Figure 1-13. PAC Non-Secured Mix-Secure Peripheral Registers Addressing

Peripheral Base Address
(PERIPH->xxx)

Non-Secure Alias

Peripheral Registers

Logical addressing Physical addressing

Managing PAC Non-Secured, Mix-Secured peripherals at the application level is similar to managing a standard
Non-Secure peripheral.

Debug Access Level (DAL) and Chip Erase
SAM L11 has the following configurable debug access levels (DAL), which restrict programming and debug access to
Secure and Non-Secure resources in the system.

* DAL2: Debug access with no restrictions in terms of memory and peripheral accesses

* DALA1: Access is limited to the Non-Secure memory regions. Secure memory region accesses are forbidden.

» DALDO: No access is authorized except with a debugger using the Boot ROM Interactive mode

Note: For additional information on Boot Interactive mode, refer to the chapter “Boot ROM” in the “SAM L11 Data
Sheet” (DS60001513).

The Debug Access Level is combined with three key-protected Chip Erase commands, which provide three levels of
Non-Volatile Memory erase granularity as shown in the figure below.

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 13

and its subsidiaries

AN5365
Introduction to SAM L11 Security Features

Figure 1-14. Chip Erase Commands

Secure Flash
(BOOT Region)

Non-Secure Callable Flash
(BOOT Region)

Non-Secure Flash
(BOOT Region)

Secure Flash
(APPLICATION Region)

Non-Secure Callable Flash
(APPLICATION Region)

Non-Secure Callable Flash
(BOOT Region)

Secure Data Flash

Non-Secure Data Flash

CMD CEx : 0 1 2

The configuration of the Chip Erase command protection key is done through the BOCOR bit field configuration, as

shown in the following figure.

© 2022 Microchip Technology Inc.
and its subsidiaries

Application Note DS70005365C-page 14

AN5365
Introduction to SAM L11 Security Features

Figure 1-15. SAM L11 Configurable Chip Erase Key Fuses

Bit
Pos.

ik 70 Resened
i 15:8 BS
D2 23:18 Reserved BMNSC
D3 324 BOOTOPT
D4 39:32 BOOTPROT
D05 4740 Reserved
DS 5548 Resanved BCREN BCWEN
D07 83:58 Reserved
Dex0B-Dx0E 05:64 BOCORCRC
Ox0C-0x0F 12786 ROMVERSION
Ox10-0x1F 255:128 CEKEYD
Ox20-0x2F 383:258 CEKEY1
Ox30-0x3F 511:384 CEKEY2
Ooet 0- Ot F 83512 CRCEKEY
0x50-0xGF 385:640 BOOTKEY
OxT0-0xDF 1781:826 Reserved
OxE0-OxFF 20471792 BOCORHASH

The different Chip Erase commands are used to increase the DAL level without compromising the code security.
Therefore, erase the code before changing to a higher DAL level, as illustrated in the figure below.

Figure 1-16. SAM L11 DAL and Chip Erase Mechanism

) 1) Program NVM regions _—
Delivered parts 2) Send SDALO command (NVMCTRL) T
After Reset
1) Program NVM regions ___ After Reset e 1) Program Non-Secure NVM regions . After Reset
2) Send SDAL1 command (NVMCTRL) T 2) Send SDALO command (NVMCTRL) -
» Chipbrasass . . ChipErase_NS
- with CEKEY 1 key if BS ==0 T | T with CEKEYO key
: /
/
f
/
‘."
. v
T ChipErase ALL -

with CEKEY2 key

The Device Programming Ultility provided within Microchip Studio 7 offers the easiest way to set the DAL commands
and Chip Erase commands. It can also be used to access device fuses, as shown in the following figures.

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 15
and its subsidiaries

ANS365

Introduction to SAM L11 Security Features

Figure 1-17. Chip Erase Commands Under Microchip Studio 7 Device Programming

EDBG (ATML3I138031800000522) - Device Programming

? >
Tool Device Interface Device signature Target Voltage
EDBG ~| ATSAMLITEIGA ~ |SwD ~|[Apply| (0x20830100 33V %3]
Interface settings Limiee Tal= 1)

Tool information

ChipErase Monsecure (CED) Erase now

ChipErase Monsecure (CEQ)

Device information ChipErase Secure (CE1)

Read.. |

Memornies ChipErase All (CE2) trpel Studich 7.00\SAM L11 Secure Solution v1.2345AM L11 Secure ! ~ III
Fuses SetDALO :: ;Ig Program | | Verify | |
L Set DAL 1

[-5 T s ——

User Page (256 bytes)

Erase User Page before programming o
Verify User Page after programming —= =

@ Advanced

Reading device ID...0K

[+] ok

Cloze

~

© 2022 Microchip Technology Inc.
and its subsidiaries

Application Note

DS70005365C-page 16

1.4

ANS365

Introduction to SAM L11 Security Features

Figure 1-18. Chip Erase Key Fuses Settings Under Microchip Studio 7 Device Programming

EDBG (ATML3132051200000522) - Device Programming

Tool Device

EDBG + | ATSAMLTTEIGA

-~ [swo_] [Aggi]

Interface

Device signature

0x20830100

Target Voltage

12v [Resd] [

Interface settings Fuse Name Value

Tool infarmation .:Z:. BOCOR_WORD_4.BOOTROM_CEKEYD_D OxEEFFFEEE
(.3! BOCOR_WORD_5.BOOTROM_CEKEYD_1 OxFFFFFFEF

Device information B

) (¥) BOCOR_WORD_6.BOOTROM_CEKEYD_2 OxFEFFFFEF

Memories -

B (;’:I BOCOR_WORD_7.BOOTROM_CEKEYD 3 OxFFFFFFEF

uses .

e (:_f:l BOCOR_WORD_8BOOTROM_CEKEY1_0 OxEEFFFEEE
@':I BOCOR_WORD_9.BCOOTROM_CEKEY1_1 OxFFFFFFEF
|f2l BOCOR_WORD_10.BOCTROM_CEKEY1_2 OxFFFFFFEF

Fuse Register Value
BOCOR_WORD_0 |Ox00C108FF
BOCOR_WORD_1 |OxFFFFFFOS
DACOD WAER A NweECECEEEE

Auto read
Wenfy after programming

PEDLITIY TEYILLED 20N VEUJINL_Z.
Reading register USER_WORD_3..
Reading register USER_WORD_4..
Reading register USER_WORD_5..
Reading register USER_WORD_6..

Read registers...OK

|Z| Read registers..OK

P
0K
LK
QK
K

| Copy to clipboard |

Program | |

Verify || Read |

Close

Secure Boot

The SAM L11 Boot ROM is always executed at product startup. This software is ROM coded into the device and
cannot be bypassed by the user. Depending on the Boot Configuration Row (BOCOR) fuse setting, the Boot ROM
knows if a Secure Boot region is defined in the system.

The Boot ROM can perform an integrity check (SHA-256) or authenticate (SHA-256 + BOOTKEY) the firmware
stored in the Secure Boot region prior to executing it. This verification mechanism is a key element to consider
for ensuring the system root of trust during deployment and execution of the Secure firmware. The following figure
illustrates the Secure Boot process with BS (Secure + NSC BOOT sub-regions) verification.

© 2022 Microchip Technology Inc.

and its subsidiaries

Application Note

DS70005365C-page 17

AN5365
Introduction to SAM L11 Security Features

Figure 1-19. Secure Boot Process with BS Verification

Boot ROM

- Verify Secure Boot
Region (optional)

Secure Flash - Jump at address

(BOOT Region) 0x00000000

0x0000 0000

BS x 0x100 — BNSC x 0x20

Non-Secure Callable Flash
(BOOT Region)

BS x 0x100

0x0001 0000
Flash (Up to 64KB)

To validate the Secure Bootloader code stored in the Device Flash BS memory section, the ROM code computes the
hash of the Flash BS region using the crypto accelerator (CRYA) and compares it to a reference hash (256 bits/32
bytes) stored in the device Secure Flash (BOOT Region) memory section. This reference hash (256 bits) must be
stored in the last 256 bits of the Secure Flash (BOOT Region) as shown in the following figure.

Figure 1-20. Boot Secure Reference Hash Location

0x00000000 ——
A

BS

Reference Digest/MAC : 256bits (32 bytes)

\d

BS x 0x100

If the verification result is equal to the reference hash, the Boot ROM starts the Secure Bootloader execution.

Any mismatch in the value puts the device in an endless reset loop preventing Flash code execution. Only a
ChipErase ALL command allows the recovery from this device state. The ChipErase ALL command erases the
full memory content and resets the fuses to their factory settings.

The following fuses are used in the Secure Boot process configuration:

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 18
and its subsidiaries

AN5365
Introduction to SAM L11 Security Features

« BOOTPROT, BS and BSNC: Defines the configuration of the boot section in product Flash. The size of the
Secure, Non-Secure and Non-Secure-Callable boot sections can be customized according to the application
needs. These fuses are used for security memory allocation in product IDAU and for integrity and authentication
mechanisms when configured in the BOOTOPT fuse. Any change of the fuse setting requires a reset to be
considered by the device as only the Boot ROM can change IDAU setting.

+ BOOTOPT: Defines the type of verification to be performed.
Table 1-1. SAM L11 Secure Boot Verification Method

e BOOTPROT Region BOCOR Row
Verification Method Verification Method

0 Secure Boot Disabled
1 SHA-256 (Integrity check)
20r3 SHA-256 with BOOTKEY(!) (Authentication check)
Notes:

1. BOOTKEY is defined in the BOCOR row.

2. Using the Secure Boot Authentication feature has an impact on the product start up time. Refer to the
"SAM L10/L11 Family Data Sheet” (DS60001513).

Note: Using the Secure Boot Authentication feature has an impact on the product start up time. Refer to the “* SAM
L10/L11 Data Sheet” (DS60001513) for additional information.

BOOTKEY: 256-bit BOOTKEY used for Authentication mechanism.
The figure below highlights the fuses used for configuring the Secure Boot process.

Figure 1-21. Secure Boot Process Fuses

e O B e e
7:0

Reserved Reserved Reserved Reserved

15:8 BS Secure Flash (BS region) Size = BS™0x100 (2) 0x00 IDAU.SCFGB
21:16 BNSC Non-Secure Callable Flash (BOOT region) Size = BNSC*0x20 0x00 IDAU.SCFGB
2322 Reserved Reserved Reserved Reserved
25:24 BOOTOPT Boot Option 0x0 Boot ROM |
31:26 Reserved Rﬁwed Rﬁwed Rﬁnﬂed

| 39:32 BOOTPROT Boot Protection size = BOOTPROT*0x100 0x00 IDAU.SCFGB |
4740 Reserved Reserved Reserved Reserved
48 BCWEN Boot Configuration Write Enable 0x1 NVMCTRL SCFGB
49 BCREN Boot Configuration Read Enable ox1 NVMCTRL SCFGB
63:50 Reserved Reserved Reserved Reserved
95:64 BOCORCRC Boot Configuration CRC for bit §3:0 0xDDE78140(1) Boot ROM
12796 Reserved Reserved Reserved Reserved
255:128 CEKEYO Chip Erase Key 0 All 1s Boot ROM
383:256 CEKEY1 Chip Erase Key 1 All 1s Boot ROM
511:384 CEKEY2 Chip Erase Key 2 All 1s Boot ROM
639:512 CRCKEY CRC Key All 15 Boot ROM

I B895:640 BOOTKEY Secure Boot Key All 1s Boot ROM I
1791:896 Reserved Reserved Reserved Reserved
20471792 | BOCORHASH Boot Configuration Row Hash All 1s Boot ROM

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 19

and its subsidiaries

21

2.2

AN5365
SAM L11 Application Development (Developer A ...

SAM L11 Application Development (Developer A and Developer B)
The combination of the system DAL and Chip Erase with TrustZone for Cortex-M architecture enables the developers
to follow the following development and deployment approaches:
» Single-developer approach (Developer A)
» Dual-developer approach (Developer A + Developer B)
Microchip Studio 7 integrated development platform provides a full set of advanced features to accelerate the

development of a SAM L11 application. The following sections illustrate the approaches to be followed by Developer
A and Developer B to create and customize their application.

Single-Developer Approach

In single-developer approach, the developer (Developer A) is in charge of developing and deploying Secure and
Non-Secure code. The application of Developer A can be protected by using DALO. The figure below illustrates a
single-developer approach on SAM L11.

Figure 2-1. Single-Developer Approach

Developer

A End-User

Microchip

DAL: 2 DAL: O

Dual-Developer Approach

In this approach, the first developer (Developer A) is in charge of developing the Secure application and its
associated Non-Secure callable library (. 1ib/.h), and providing a predefined linker file to the second developer
(Developer B). This Secure application is then loaded in the SAM L11 Flash and protected using the set DAL1
command to prevent further access to the Secure memory region of the device.

A second developer (Developer B) will then start his development on a preprogrammed SAM L11 with limited access
to Secure resources (call to Non-Secure API only). To achieve this, Developer B will use a linker file and the NSC
library provided by Developer A. The figure below illustrates a dual developer approach on SAM L11.

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 20

and its subsidiaries

2.3

ANS365

SAM L11 Application Development (Developer A ...

Figure 2-2. Dual-Developer Approach

Microchip

Developer
A

-

DAL:2

Developer

End-User

DAL:1

DAL: 0

The following sections describe the application development and deployment process to be implemented for

Developer A and Developer B.

Develop a Secure Solution (Developer A)

To help Developer A to start with SAM L11 (regardless of single-developer or dual-developer approaches), Microchip
Studio 7 provides a pre-configured Secure Solution template that illustrates the basic Secure and Non-Secure
application execution as shown in the figure below. This template can be used to evaluate and understand the
TrustZone for ARMv8-M implementation in the device, or as a start-up point for custom solution development.

© 2022 Microchip Technology Inc.
and its subsidiaries

Application Note

DS70005365C-page 21

AN5365
SAM L11 Application Development (Developer A ...

Figure 2-3. Secure Solution Template Overview

Non secure Project

User application

~-7 TrustZone
for Cortex-M

2.31 Creating SAM L11 Secure Solution from Microchip Studio Secure Solution Template
Creating a Secure Solution from the pre-configured template available in Microchip Studio 7 can be done by following
these steps :

1. Open Microchip Studio 7.
2. Select File > New > Project.
3. In the New Project window, perform these actions to create and configure a new solution:
a. Expand Installed and select C/C++ .
b. Select SAM L11 Secure Solution.
c. Enter the details for Name, Location, Solution, and Solution Name (for example see figure below).
d. Click OK.

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 22

and its subsidiaries

AN5365
SAM L11 Application Development (Developer A ...

Figure 2-4. Creating SAM L11 Solution Under Microchip Studio 7

Mew Project ? *
P Recent Sort by: Default R = Search Installed Templates (Ctrl+E) P~
4 |nstalled Type: C/C
GCC C ASF Board Project C/C++ ype: Lil++
C/C++ Creates an Atmel Studio TrustZone-based
Assembler GCC C Executable Project C/Cr Solution which contains a Sgcure project
. . as well as a Non-5ecure project that call
AtmelStudio Solution back into each other
GCC C Static Library Project C/C++
GCC C++ Executable Project C/C++
GCC C++ Static Library Project C/C++

8| SAML11 Secure Solution with Boot v1.0 C/Ce+
Create project from Arduino sketch C/C++
HName: My_SAM_L11_Secure_Solution
Location: C\ -
Solution: Create new sclution -
Solution name: My _SAM_L11_Secure_Solution Create directory for selution
| oK | | Cancel
© 2022 Microchip Technology Inc. Application Note DS70005365C-page 23

and its subsidiaries

AN5365
SAM L11 Application Development (Developer A ...

When created, the SAM L11 Secure Solution should appear in the Microchip Studio 7 IDE, as shown below:
Figure 2-5. SAM L11 Secure Solution Under Microchip Studio 7

[E] My _sam_L11_Secure Solution - AtmelStudio Standard Mede W Quick Launch (Ctrl+0) P - B x
File Edit View VAssistX ASF Project Build Debug Tools Window Help

e - | i3 -8 - | m| X o | - '| ’E‘%| P Ml Debug ~ Debug Browser ~
WE > b6t 2t x T e | @

main.c ¥ X [N

19

g @ o-a@|p =

=1EL]

|/* Copyright (c) 2819 Microchip Technology Inc. Search Solution Explorer (Ctrl+5) P~

* i Solution 'My_SAM_L11_Secure_Solution' {;

* Pl MonSecurefpp

* SPDX-License-Identifier: Apache-2.@ =i| Dependencies

N =d| Output Files

* Licensed under the Apache License, Version 2.8 (the “"License™); you may b [Libraries

* not use this file except in compliance with the License.)

* You may cbtain a copy of the License at 4 '—j De\..rlce_Startup

* < main.c

* http://www.apache.org/licenses/LICENSE-2.8 i veneerh

* 4 SecureApp

* Unless required by applicable law or agreed to in writing, software =d| Dependencies

* distributed under the License is distributed on an AS IS BASIS, WITHOUT =4 Output Files

: 1_IARRAETIE$ OR COﬁDITiEHS OF AﬁY Kil’-lD, either express or :i.mpi!.ied.] b [Libraries

See the License for the specific language governing permissions an -

* limitations under the LicEnse. Bieet E 5 F b Dewca_Startu.p

- I [Secure_Functions

*f © main.c

C| veneer.c

#include “"sam.h” h| veneerh

#include “"veneer.h”

volatile int wvall, val2;

-
100% - 4

Error List
Entire Solution - | €3 0Errors 1 0Warnings | 0 0Messages | Build + IntelliSense Search Error List

Description Project File

Output

Creating project 'My_SAM_L11_Secure_Solution'... project creation successful.

© 2022 Microchip Technology Inc. Application Note DS700053650-page 24
and its subsidiaries

AN5365
SAM L11 Application Development (Developer A ...

2.3.2 Secure Solution Template Description
Any solution created from the SAM L11 Secure Solution Template, provided with Microchip Studio 7, is composed of
preconfigured Non-Secure and Secure projects.
All the configuration aspects related to TrustZone for ARMv8-M implementation are already implemented to facilitate
the development process. The following sections describe the content of the template and the key elements to be
modified to customize the solution according to the application needs.

2.3.21 Secure Project Description

The goal of the Secure project included in the SAM L11 Secure Solution template is to provide a preconfigured
development base for Secure code development on SAM L11. The Secure project is preconfigured to illustrate the
following applicative aspects of a standard Secure application on SAM L11:

» Device resources attribution to Secure and Non-Secure worlds (fuse settings)

+ Initialization of the system security

» Definition and declaration of Secure functions example

» Definition and declaration of Secure gateways with Non-Secure world (veneers)

» Secure call to the Non-Secure application

The following figure describes the file architecture of the preconfigured Secure project:

Figure 2-6. Secure Project Architecture

“ SecureApp . BOCOR/UROW files : Contains fuses setting definition
=d| Dependencies

Secure Linker file : Contains link configuration for the

=d| Output Files
Secure application

[+ [+5 Libraries
4 [=7 Device Startup
h samll1_bocor.h

Secure Startup file : Contains the Secure vector table and
Secure Reset Handler

samli11_urow.h

"
D’ i Telna Tt Contains the initialization functions
=

for the system resources allocated to Secure application

ANANEAN

AN

startup_saml1lel6a.c
system_saml11e16a.c

4 [Secure_Functions Secure .cl.h files : Contains the Secure function examples

€ secure.c | Secure Main File : Contains the secure Application main
h secure.h routine
[¢l main.c | : Contains the definition and declaration
C. veneer.c of the Non-Secure Callable (NSC) gateway to the secure
h| veneer.h functions declared in secure.c/.h

The following figure describes the main routine of the pre-configured Secure project:

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 25

and its subsidiaries

AN5365
SAM L11 Application Development (Developer A ...

Figure 2-7. Secure Project Main Flowchart

chre main routiD

|
Secure System initialization

Set Non-Secure main stack
pointer
|

Start Non-Secure
application

[
>

__NOP

This Secure main. c file must be used as a starting point for any secure applications development.

Note: The provided system init function is empty, therefore system is running 4 MHz (Reset state). This function
should be customized according to the Secure and Non-Secure application requirements.

2.3.2.2 Non-Secure Project Description
The Non-Secure project provided within the SAM L11 Secure Solution Template is a standard application that runs
in a Non-Secure world. This application can use all system resources allocated to the Non-Secure world. It uses
pre-programmed Non-Secure Callable (NSC) functions using the veneer . h file provided by the Secure application.
The Non-Secure project architecture is shown in the figure below.

Figure 2-8. Non-Secure Project Architecture

4 MonSecurefpp Non-Secure Linker file : Contains link configuration for
=d| Dependencies the Non-Secure application.
=d| Output Files Non-Secure Startup file : Contains the Non-Secure
[l Libraries vector table and Non-Secure Reset Handler.

4 |7 Device_Startup

Contains the initialization
D_ e g functions for the system resources allocated to Non-
c startup_samlllelba.c Secure application
system_saml11e16a.c
[¢ mainc {— Non-Secure Main file : Contains the Non-Secure
r veneer.h Application main routine

: Link to the veneer header file containing
the secure gateways to secure project

The Non-Secure main function flowchart from the Secure Solution Template is shown in the figure below.

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 26

and its subsidiaries

23.23

ANS365

SAM L11 Application Development (Developer A ...

Figure 2-9. Non-Secure Project Main Flow Chart

C Mon-secure main >

Secure function 1 call

Secure function 2 call

L

The Non-Secure main function illustrates the call of specific Secure functions through gateways provided by the

Secure application veneer . h file.

This Non-Secure main. c file can be used as a starting point for any Non-Secure applications development.

NVM Rows Configuration

To ease the definition and modification of application fuses, the template embeds two dedicated header files in the

SecureApp project for managing the SAM L11 System NVM rows, as shown in the figure below.

© 2022 Microchip Technology Inc.
and its subsidiaries

Application Note

DS70005365C-page 27

AN5365
SAM L11 Application Development (Developer A ...

Figure 2-10. saml11_bocor.h and saml11_urow.h

My SAM_L11_Secure Solution - AtmelStudio R Rl Cick Launch (Ctrl:Q) a -
File Edit View VAssist{ ASF Project Build Debug Tools Window Help

Bl < | | Sl T | X | - - | >} | P Ml Debug ~ Debug Browser ~ :
o e | e %8| - . . :

Solution Explorer > 0 x

B

/* BOCOR_X: Boot Configuration Row (BOCOR) Word X definitions */ G&| o-a r@ | + ;|
Search Solution Explorer (Ctrl+5) P~

#define BOCOR_BNSC axea /* Non-Secure Callable Flash size (BOOT region) = E = D denci "N

#define BOCOR BS 8360 /* Non-Secure Flash size (BOOT region) = BS*Gx16@ * = Pependencies

#define BOCOR_BOOTOPT exee /* @x@ = no boot verification ; @x1 = SHA256 verifi 4l Output Files

#define BOCOR_BOOTPROT BxBe /* Boot Protection size — BOOTPROT*@x1@e */ b [Libraries

#define BOCOR_BCWEN Bxl /* @x@ = Boot Configuration Write disabled ; 8x1 = b [Device_Startup

#define BOCOR_BCREN axl /* 8x® = Boot Configuration Read disabled ; @x1 = E < main.c
fz veneerh
#define BOCOR_CEKEY® WORD @ OXFFFFFFFF /* Chip erase @ key (128-bits) */
#define BOCOR_CEKEY®_WORD_1 @OxFFFFFFFF /* " */
#define BOCOR_CEKEY@_WORD_2 BxFFFFEFFF /* " */

#define BOCOR_CEKEY®_WORD_3 @xFFFFFFFF /* " */

Pl SecureApp

=d| Dependencies

=d| Output Files
3 TR TaT
| Device Startup
n saml11_bocorh
h' saml11_urow.h
1 saml11el6a_flash.ld
[saml11el6a_sram.ld
c| startup_saml1ielfa.c
¢ system_samlllelfa.c
b [Secure_Functions

c main.c

#define BOCOR_CEKEY1_WORD_@ @xFFFFFFFE /* Chip erase 1 key (128-bits) */
#define BOCOR_CEKEY1 WORD_1 @xFFFEFFFE /* " */
#define BOCOR_CEKEY1 WORD_2 @xFFFEFFFE /* " */
#define BOCOR CEKEY1 WORD 3 @xFFFEFFFE /* " */

#define BOCOR_CEKEY2_WORD_@ @OxFFFFFFFF /* Chip erase 2 key (128-bits) */
#define BOCOR_CEKEYZ_WORD_1 @xFFFFFFFE /* " */
#define BOCOR_CEKEY2_WORD_2 @xFFFEFFFE /* " */
#define BOCOR_CEKEY2_WORD_3 @xFFFFFFFE /* " =/
#define BOCOR_BOOTKEY WORD_® @xFFFFFFFF /* BOOTKEY (256-bits) */ c| veneer.c
#define RIWNR RONTKFY WIRN 1 AvFFFFFFFF /* ™ */

- 4

n! weneer h

Error List
Entire Soluticn - | €3 OErrors 1 0Warnings | O 0 Messages Build + IntelliSense Search Error List

Description Project File

Cutput

Ready

These fuses define the configuration of Boot modes, Chip Erases, system peripherals (BOD and watchdog), IDAU
(Memory security attribution), and PAC (Peripheral security attribution) and must be modified according to application
needs.

Note: The description of the different NVM rows and bit fields can be found in the “NVM Rows" chapter of the “ SAM
L10/L11 Data Sheet” (DS60001513).

Any change to the fuse configuration requires a restart of the device, as fuses are handled by the Boot ROM
executed at device start-up. The Boot ROM is responsible for copying the configuration of the fuses in the different
peripheral registers, and then locking the configuration to any users (including Developer A) until the next boot.

Note: The description of the SAM L11 Boot ROM can be found in the “Boot ROM “ chapter of the “ SAM L10/L11
Data Sheet” (DS60001513).

The UROW and BOCOR templates configuration is similar to the device default fuse configuration, and its associated
memory mapping is as shown in the figure below.

© 2022 Microchip Technology Inc. Application Note DS700053650-page 28
and its subsidiaries

AN5365
SAM L11 Application Development (Developer A ...

Figure 2-11. SAM L11 Secure Template Memory Attribution

0x0000 0000

Secure Flash
(APPLICATION Region)

0x0000 7C00

Non-Secure Callable Flash
(APPLICATION Region)

0x0000 8000

Non-Secure Flash
(APPLICATION Region)

0x0001 0000
Flash (Up to 64 KB)

0x2000 0000
Secure SRAM

0x2000 2000
Non-Secure SRAM

0x2000 4000 SRAM (Up to 16 KB)

R
0x40 0800

Data Flash (2 KB)

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 29
and its subsidiaries

23.24

ANS365

SAM L11 Application Development (Developer A ...

Secure and Non-Secure Projects Linker Files
Secure and Non-Secure projects have their own pre-configured linker files which are available in their Device_Startup
directory. The content of these files is aligned to the memory mapping defined by the sam/11_urow.h and

saml11_bocor.h as shown in the figure below.

It is important, in case of Fuse modification to ensure that the memory section definitions are in line with the new fuse
settings and no overlapping is present between the Non-Secure memory space definitions and the Secure memory
space definitions. The figure below illustrates the Secure memory space definition.

Figure 2-12. Secure Memory Space Definitions

90 %o

Boor o=

@ o

X ¥ Y TR Y]
Fa = @ D8~ -

B
e

1y

'
un

* Linker script for running in internal FLASH on the ATSAMLI1E16A =+
e e e m e e e e m e mmm i mm = = == = ——_—————————————— $J|' -
OUTPUT_FORMAT("elf32-1littlearm”, “elf32-littlearm", "elf32-littlearm")
OUTPUT_ARCH{arm)
SEARCH_DIR(.)
/* Memory Spaces Definitions based on Memories Security Attribution: AS = 8xB8@, ANSC
MEMORY
rom (rx} : ORIGIN = @xe D@, LENGTH = @xdepa7Ced
rom_nsc (rx) : ORIGIN = @xP@087C80, LENGTH = @xd0088408
ram (rwx) @ ORIGIN = @x2 , LENGTH = aee
USerron g : ORIGIN = ox B = Bx
bocor (rw) : ORIGIN = @xP950C28e, LENGTH = @xd0eRe808
bocorcekey (rw) : ORIGIN = @x®838Ce18, LENGTH = @x@902883@
bocorbootkey (rw) : ORIGIN = @x@888C85@, LENGTH = @x20020828
¥
/* The stack size used by the application. MOTE: you need to adjust according to your
STACK_SIZE = DEFINED{STACK_SIZE) ? STACK_SIZE : DEFINED(_ stack_size) ? _ stack_siz
-
- 4 »

samll1elfa_flashld + X

Search Solution Explorer (Ctrl+8) P~
i Selution 'My_SAM_L11_Sclutien’ (2 projects)
3 MNenSecurefpp
4 SecureApp

4

Solution Explorer * X

W o-am p =

=d| Dependencies
=d| DOutput Files
3] Libraries
|5 Device_Startup

| saml11_bocor.h
saml11_urow.h
saml11el6a_flash.ld
startup_saml11elfa.c

o, L=,

c| system_saml11el6a.c
1 Secure_Functions
© main.c
€| veneer.c

h veneer.h

The figure below illustrates the Non-Secure memory space definitions

Figure 2-13. Non-Secure Memory Space Definitions

90 %

o R W R R

R R ET R NT R WY NT R FTR TRy Y]

.

= @ D oea

saml11e16a_flash.ld = > EZTOIRNEGER{EE N saml11_urow.h saml11_bocor.h

* Linker script for running in internal FLASH on the ATSAMLI1E16A

[

OUTPUT_FORMAT{"e1¥32-1ittlearm”, "elf32-littlearm”, "elf32-littlearm") —
OUTPUT_ARCH{arm)
SEARCH_DIR(.)

/* Memory Spaces Definitions based on Memories Security Attribution: AS = @x88, ANSC
MEMORY

rom {(rx) : ORIGIN
ram {rwx) : ORIGIN

Ax0@d83008, LENGTH
ax2e082008, LEMGTH

Beeaaza08
Baeae 2008

T

/* The stack size used by the application. MOTE: you need to adjust according to your
STACK_SIZE = DEFINED{STACK_SIZE) ? STACK_SIZE : DEFIMED(_ stack size_) ? _ stack_siz

/* The heapsize used by the application. NOTE: you need to adjust according to your a
HEAP_SIZE = DEFINED(HEAP_SIZE) ? HEAP_SIZE : DEFINED{_ heap_size_)} ? _ heap _size_ :
b

4 4

Solution Explorer v I x

Search Solution Explorer (Ctrl+5) P~
ﬂ Solution 'My_5AM_L11_Solution’ (2 projects)

F

4

Fi

& o-am| F =]

MNonSecureApp

=d| Dependencies

=d| Output Files

+d] Libraries

| Device_Startup
[saml11el6a_flash.ld
c| startup_samlllelfa.c
c systern_saml11el6a.c

©| main.c

I veneer.h

SecureApp

© 2022 Microchip Technology Inc.

Application Note

and its subsidiaries

DS70005365C-page 30

AN5365
SAM L11 Application Development (Developer A ...

233 Debugging the Secure Solution
When the device is in DAL = 2, the debugging of the full Solution (Secure + Non-Secure projects) is allowed. The
following steps provide the debug capabilities of the Microchip Studio 7 integrated development environment for
debugging the TrustZone application.

1. Build the solution under Microchip Studio 7.
Note: As the solution is composed of two projects, it is important to re-build and load the full solution to
ensure that the memory content of the device is align with both the project’s source code.

[l
2. Ensure that the debugger is connected to a computer and SAM L11. Click (Alt+F5) to start debugging
and automatically break on the Secure main function.

Figure 2-14. Debugging and Break on Secure Main Function

My_SAM_L11_Secure_Solution (Debugging) - AtmelStudio Standard Mode X Quick Launch (Ctrl+ Q) Pl = = B 4
Eile Edit View VAssist{ ASF Project Build Debug Tools Window Help
EN - | = - 20 W E | ‘ = = | a, | Debug Browser = | A ; -
(> u b6t Tl B|R-iEme G E k|8 warsamness |

main.c main.c H > SAM L11 Xplained Pro - 0522 saml11_bocorh 3 Solutien Explorer 1 X

2 C:A\My_SAM_L11_Secure_Selution\My_SAM_L11_Secure_Solution\l ~ | Q‘ o-d B | » _.‘
typedef void (*funcptr_void) (veid) _ attribute_ ((cmse_nonsecure_call)); = - . P .
e Search Selution Explorer (Ctrl+§) el
=/* i Solution 'My_SAM_L11_Secure_Solution' (2 projects)
The Secure Application: Pl MNonSecureApp
* Sets the non-secure main stack (MSP_NS) b [Dependencies
* @ets the non-secure reset handler b = Output Files
* Jumps to the non-secure software application b = ler:nes
*/
b 3 Device_Startup
/* secure main() */ ¢l main.c
Slint main(veid) Iz veneer.h

4] - SecureApp
funcptr_veid NenSecure_ResetHandler; b [=d Dependencies
L b [=d Output Files
/* Initialize the SAM system */ .
X b [:5] Libraries
SystemInit(); .
b [Device_Startup
/* Set non-secure main stack (MSP_NS) */ L Secre_FunctiDns
_ TZ set MSP NS(*((uint32 t *)(TZ START NS))); main.c
C. veneer.c
/* Get non-secure reset handler */ h| veneer.h
NonSecure_ResetHandler = (funcptr_wold)(*((uint32 t *){(TZ_START_NS) + 4U}));
/* Start non-secure state software application */ =
100% - 4 = = » Solution Explorer JEGHETES

OQutput

Show cutput from: Debug

Autos Locale Watch1 Watch2 Call Stack Breakpoints Command Window Immediate Window [Sihsild Memory 4

© 2022 Microchip Technology Inc. Application Note DS700053650-page 31
and its subsidiaries

AN5365
SAM L11 Application Development (Developer A ...

Add a breakpoint on the return line of secure_func1 in the Secure project veneer. c file.
Figure 2-15. Breakpoint on secure_func1 Return (Secure Project)

EE] wy_sam_L11_Secure Solution (Debugging) - AtmelStudio Standard Mode ¥ Quick Launch (Ctrl+Q) Pl o B x
File Edit View VAssistX ASF Project Build Debug TJools Window Help

| X o ‘ - - | &, | Debug Browser =
" > Ple v Aty T He B % U ATSAMLITETGA o

Solution Explorer
@l o-ad@|Fp =
Search Solution Explorer (Ctrl+§) R~

i Solution 'My_SAM_L11_Secure_Solution' (2 projects)
4 NonSecureApp

* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

* See the License for the specific language governing permissions and

*

*

limitations under the License. b [Dependencies
y P [=d Output Files
[[:5] Libraries
#include "secure.h” /* Header file with secure interface API */ 4 L] Dev.rice_Startup
S main.c
/* Non-secure callable (entry) function */ " veneerh

Zlint _ attribute_ ((cmse_nonsecure_entry)) secure_funcl{int x) Fl SecureApp

{
.
1

= Dependencies
= Output Files

g Libraries

[Device_Startup
[Secure_Functions
< main.c

C wveneer.c

n veneer.h

v v v v v

/* Non-secure callable (entry) function */
Zlint _ attribute_ ((cmse_nonsecure_entry)) secure_func2(int x)

{
1

return func2(x);

Solution Explorer

Properties

Output

Show output from: Debug

Autos Locals Watch1 Watch2 Call Stack Breakpoints Command Window |Immediate Window [Slielid Memory 4

Col1

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 32

and its subsidiaries

AN5365
SAM L11 Application Development (Developer A ...

4. Add a breakpoint on the return line of func1 in the Secure project Secure Functions/secure.c file.
Figure 2-16. Breakpoint on func1 Return (Secure Project)

3 sAM L11 Secure Solution v1.21 - Atmelstudio Standard Mode | ¥ || Quick Launch (Ctrl+Q) P - & x
Fle Edit View VAssistX ASF Project Buld Debug Tools Window Help
©-0|H-@u-URSH|XTA|[9-C-[ER| > W pebug -] Debug Browser ~ | 5% _arm_rFeATURE CMSE BN R
W e ey 2 | Hex 28| &1 - . & . WWATSAMLITEI6A 7§ SWDonEDBG

amlite Solution Explorer & X
2 funct ~ |2 intfunci(intx) ~|@Go BN o-ad| s =
* See the License for the specific language governing permissions and e

B Search Solution Explorer (Ctrl+$) P~
* limitations under the License. .
" ‘@l Solution 'SAM L11 Secure Solution v1.21' (2 projects)
3
i LI NonSecureApp
4 [secureApp

b [Dependencies
#include "secure.h" /* Header file with secure interface API */ b [Zd Output Files
b [Libraries
> [Device Startup
4

[Secure_Functions

-1int funcl(int x)

21
{ B
® Do
} ¢! mainc
< veneer.c
Zlint func2(int x) b] st
4
return x - 2;
}
128% ~ 4 »
;
Show output from: | Debug - [[£z

The program ‘[@x5] SecureApp.elf' has exited with code @ (€xe).

4»

When debugging the Secure application veneers, only hardware breakpoints must be used to stop
code execution on an Secure Gateway (SG) instruction. Using software breakpoints implies the
addition of a Breakpoint (BKP) instruction before SG instruction, which triggers a Secure fault during
code execution. This behavior is normal as the first instruction to be executed when accessing the
NSC region must be an SG.

A\ CAUTION

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 33
and its subsidiaries

AN5365
SAM L11 Application Development (Developer A ...

5. Continue debugging by clicking > or press <F5>.
As a result, the debugger must stop successively on:

— The Secure function veneer (Secure project)
— The Secure function (Secure project)

Figure 2-17. Break on secure_func1 Return

E My_SAM_L11_Secure_Solution (Debugging) - AtmelStudio Standard Mode = X | Quick Launch (Ctrl+) Pl = B x
File Edit View VAssist{ ASF Project Build Debug Tools Window Help
"

B < IR | - -2 Hf‘%ﬁ] | - -| Q| Debug Browser ~
B> 0 b6t 2tk T|Ha B | @i E e W E & o o amsamnieea 2

= secure_funcl NS ES int _attribute_ {{cmse_nonsecure_entry)) secure_func(int x) = @’Go m| "@ - &g @ | > _-| [n]
=3 4 :

i) Pr T
* distributed under the License is distributed on an A5 IS BASIS, WITHOUT = B Search Solution Explorer (Ctrl+5) Fe
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - . . .
- . e ’ p. . p. i Solution 'My_SAM_L11_Secure_Solution' (2 projects)
See the License for the specific language governing permissions and
* limitations under the License. 4 NonSecureApp
*

P [=d| Dependencies
*f P =d Output Files
B -=i Libraries
#include "secure.h” /* Header file with secure interface API */ P [J Device_Startup
© main.c
/* Non-secure callable (entry) function */ ré veneerh

Slint _ attribute_ ((cmse_nonsecure_entry)) secure_funcl(int x)

©

}

4 SecureApp

=d| Dependencies
=d Output Files

3] Libraries

3 Device_Startup
| Secure_Functions

{ © securec
return func2(x);

/* Non-secure callable (entry) function */
—lint _ attribute ((cmse_nonsecure_entry)) secure_func2(int x)

[

3 h secureh
c main.c
© veneer.c
h veneer.h
-
BUE I | » Solution Explorer [R5
p 0
Show output from: General < | | | §| *a

112915/ |WAKNLNG| UNKNOWN DFeakpolnT N1T at: exz/u
11:33:43: [WARNING] Unknown breakpoint hit at: 8x27C

Autos Locals Watch 1 Watch2 Call Stack Breakpoints Command Window Immediate Window glUiJnd Memory 4

Stopped Col1

© 2022 Microchip Technology Inc. Application Note DS700053650-page 34
and its subsidiaries

234

AN5365
SAM L11 Application Development (Developer A ...

Note: A code Disassembly window with step-by-step debug capabilities is available by selecting the Debug >
Windows > disassembly or press <Alt+8>.

Figure 2-18. Microchip Studio 7 Disassembly Window

My_SAM_L11_Secure_Selution (Debugging) - AtmelStudio Standard Mode ¥ Quick Launch (Ctrl+0) Pl - o x
File Edit View VAssist{ ASF Project Build Debug Tools Window Help
':'0- | - -2 Hf|%|:’|—-|ﬁj‘ = '| '915| Debug Browser = |P : € 3= | _
B u b (et 2ty TR B EEeRE K| arsameea D

Disassembly + X secure.c m X

Address: funcl -
®Viewing Options

Solution Explorer
W o-a@m| g -
Search Solution Explorer (Ctrl+§) P~

@@RRTBEEA PP Unknown instruction - , ,
BOBATEEC 227 Unknown instruction _i Solution 'My_SAM_L11_Secure_Sclution’ (2 projects)
BOBBTBEE ??? Unknown instruction “ NU”SECU’EAW_

@e@a7BEFG PPP Unknown instruction P [=d Dependencies

BR@ATBF2 PP Unknown instruction b =4 Output Files

BBBA7BF4 PP Unknown instruction b (.5l Libraries

@@@a7BFE P27 Unknown instruction b [Device Startup

BR@ATBFE PP? Unknown instruction < main.c

BRRRTBFA PPP Unknown instruction r: veneerh

@@@a7BFC 227 Unknown instruction p SE‘ A '

@@RR7BFE PP Unknown instruction ecurefipp

=d| Dependencies
=] Output Files

g Libraries

3 Device_Startup
| Secure_Functions

© eooa7(00 =g
Bepa7Ce4 b.w #-31476
BepaTCes sg
Bepa7CaCc b.w #-31516
aaaa7CLe movs r@, ré@
\eee7Cl12 movs r@, ré

AT Y YT

c| secure.c
BeBa7C14 movs ré, ré u
h secureh
epaa7C1e6 movs r8, ré &)
20ea7C18 movs r@, ré ! main.c
@aaaTC1A movs ré, ré C| veneer.c
n| veneer.h

2paa7Cc1C movs r8, ré
BeBB7C1E movs r@, ré -

Solution Explorer ST

Qutput

Show output from: General 2 |
11:29:37: [WARNING] Unknown breakpoint hit at: 8x27C

Autos Locals Watch1 Watch2 Call Stack Breakpoints Command Window Immediate Window [8lGINE Memory 4

Protecting the Secure Project Using Debug Access Levels
In a dual-developer deployment approach, it is important to protect the Secure memory regions (Secure Application)
from further debugger accesses prior to delivering preprogrammed devices to Developer B

This can be done by changing the debug access level (DAL) to DAL1. Changing the debug access level can be done
using the Device Programing Tool. Follow these steps to change the debug access level:

1. Close the debug session (if running).

2. Open the Device Programming tool by selecting Tools > Device Programming.

3. Send the DAL1 command to the target SAM L11 device as shown in the following figure:

a. Select the EDBG Device Programming tool, and then click Apply.
b. Under Device Signature, Click Read.
c. Select Memories.
d. Under Device, Select “Set DAL 1.
e. Click Change DAL.
f. Verify that no problem is reported by the Device Programing tool.
© 2022 Microchip Technology Inc. Application Note DS70005365C-page 35

and its subsidiaries

AN5365
SAM L11 Application Development (Developer A ...

Figure 2-19. Changing DAL Using the Microchip Studio 7 Device Programming Tool

EDBEG [(ATML3138031800000522) - Device Programming ? >
Tool Device Interface 3.1 Device signature Target Violtage 3.2

EDBG ~ | ATsamL1iElea ~ |swD v | [Apply| | ox2os3mioo 33V @

Interface settings | 3,4 Device (DAL=2) 3.5

Tool infarmation Change DAL

Device information Flash (66 KE)
Memories 3.3 CMy_SAM_L11_Secure_Solution\My_SAM_L11_Secure_Solution\SecureApp'\Debug\SecureApp.e ~ III

Erase Flash before pregramming
Verify Flash after programming

Security @ Advanced

User Page (256 bytes)

Fuses Program | | Verify | | Read... |

Erase User Page before programming S
Verify User Page after programming S-=

@ Advanced

Reading device ID..OK 3.6

[+] ok

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 36
and its subsidiaries

ANS365

SAM L11 Application Development (Developer A ...

As a result, setting DAL1 prevents any future debug access to the Secure memory region of the device, as

shown in the figure below.

Figure 2-20. DAL Protected Device Memory Region

ot o o P B S B
St atete ettt

535

pislelels

ielele

’

feetele]

Setateatele wtetetetete!

252505

‘

¢¢¢¢¢¢¢¢¢1
oleleteletel Tatetetetels
ASETATTeTy SNt Ta !

% Selatetelels

P00
e dodiodid
B

A

0x0000 0000

BS x 0x100 — BNSC x 0x20

BS x 0x100

<
(7]
L
L
v
S
S
o
@
L@
c
o
2

PO e L e
At a ettt ettt

ettt ta e ettty

L (P

K
letateletelatelolelelel otetatetele!
Kaletetelateletoteleti Sotetetetete

Bt e e et 2t
ATttt ta Y ettt

atetetels

(BOOT Region)

K
e
P

s ten et
o]
25252585

Iotetetelis itetels!
[
ielelede Natetetetelidyl
Ielelels = Noteteteteti 20
eTaTater o tetatatetel o2

1
TSTOTOTTOTH $T0TH eI

OLerate Ietatetereti Tt L%t

S

—

250505 2525

S
it ¢
AR D

TETEIOIN T8,
ad et
o B
-4

(e o A o o ey
s e
v¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢

Ietetstatatotatotoratsl satetetete!
Kaletetelatelotateleti Satetetelete

BN a S ta et
N PR 0o SO0t
Ioteletetoleletototole! stetelotele!
et e et e et Sete e tetede
et e et e et Sete e tetedy
?f?f?ff?&?&?f&?&?

BOOTPROT x 0x100

ANSC x 0x20

(BOOTPROT + AS) x 0x100 —

]

¢

¢

b o
e Teatetede
olels oati Satatetate%s
Kaseleteatetaterates tetatatote%y

¢

R]
(CRTRTRTRTOTE, o TN
SRR b T 53]
ST OO LE, S e
AR L IPLARL

o

]

¢

¢

(BOOTPROT + AS) x 0x100

Non-Secure Flash

(APPLICATION Region)

0x0001 0000

Flash (Up to 64KB)

0x40 0000

=
<
oc
7
o
S
S
(8}
@
9
c
o
2

0x40 0000 + (RS*0x20)

0x40 0800

SRAM (Up to 16KB)

0x2000 0000

0x2000 0000 + (DS*0x80)

i =
(%)
e
L
©
)
©
(]
()
S
=
(8}
()}
s
c
(@]
2

—
[a4]
4
(a2l
—
L
[72)
£
Ll
(1]
-
O
(]
o
o
o
=+
o
o
o
Q)]
x
o

DS70005365C-page 37

Application Note

© 2022 Microchip Technology Inc.

and its subsidiaries

AN5365
SAM L11 Application Development (Developer A ...

Any future debug access to the Secure memory region will be refused by the device and reported as follows
by Microchip Studio 7, as shown in the following figure.

Figure 2-21. Launch Failed error on DAL Protected Area

E My_SAM_L11_Secure_Selution (Running) - AtmelStudic Standard Mode | ¥ | Quick Launch (Ctrl+Q) P o O x
File Edit View VAssist{ ASF Project Build Debug Tools Window Help
: | - -2 | X | - - | a, ‘ Debug Browser ~ | 5 : :

i O ﬁﬁlm;ﬂlﬂ\ ; Launching :

veneer.c . X ~ | Solution Explorer

W o-am| &=
Search Solution Explorer (Ctrl+5) P~

= =zecure_funcl ==

=» int _attribute_ ((cmse_nonsecure_entry]) secure_funcl(int x) - {'GD
T o o =TT o =

T ToqTTTTTT oo TrrTITEY

PP
* distributed under the License is distributed on an AS IS BASIS, WITHOUT =
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -
* See the License for the specific language governing permissions and

ﬂ Solution 'My_SAM_L11_Secure_Solution’ (2 projects)
4 MonSecurefpp
b (=4 Dependencies

limitations under the License.

*/ * ut Files
Launch Failed x B
#include “secure.h” /4 1e_Startup
0 . 4
/* lNon-secure callable (ef , Failed to launch program. |
“lint _ attribute_ {(cmse_mnt X X . I
7 Error: Loading executable to device failed. Error Error downloading changestothe ipp
L] device at 00D00DD0-0000040 00D07<00-00D070D DCEO4000- 00804100 ndencies
- 0080c000-D080¢ 100 ut Files
}
ries
/* MNon-secure callable (et 1e_Startup
—lint _ attribute_ ((cmse_n¢ re_Functions
1 = =CUME.C
return func2(x); ~
) h secureh
€ main.c

| veneer.c

| veneer.h

Solution Explorer WEGTIE RS

Output
Show cutput from: Debug

Autos Locals Watch 1 Watch2 Call Stack Breakpoints Command Window Immediate Window [SI0{IN8 Memaory 4

Important: Further development with the device requires the use of a standalone Non-Secure
project. Refer to the Create and Configure a Non-Secure Project (Developer B).

To re-enable debug access on the Secure memory regions, a ChipErase ALL command (CE2)
must be issued using the device programming tool. The whole device memory and fuse settings are
erased, and the Secure application must be reprogrammed in the device.

© 2022 Microchip Technology Inc. Application Note DS700053650-page 38
and its subsidiaries

2.4

2.41

AN5365
SAM L11 Application Development (Developer A ...

Develop a Non-Secure Project (Developer B)

In the Developer B context, the development starts with a preprogrammed SAM L11 device that contains a DAL1
protected Secure project with predefined veneers. Refer to the previous chapter for additional information.

Figure 2-22. Develop a Non-Secure Project (Developer B)

Developer Developer

A ‘ B

Microchip End-User

DAL: 2 DAL:1 DAL:0

In this context it is mandatory for Developer A to provide Non-Secure resource attribution descriptions, and Non-
Secure callable function API library to Developer B.

Ideally, the approach should be for Developer A to provide a Non-Secure project template to Developer B. The
following sections describe how to create and configure a Non-Secure project for a SAM L11 device embedding a
pre-programmed DAL protected Secure application.

Creating a Non-Secure Project
Follow these steps to create a Non-Secure project using Microchip Studio 7:

1. Open Microchip Studio 7.
2. Select File > New > Project.
3. In the New Project window, perform these actions to create and configure a new solution:
a. Expand Installed and select C/C++ .
b. Select GCC C Executable Project.
c. Enter the details for Name, Location, and Solution Name (for example see figure below).
d. Click OK.

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 39

and its subsidiaries

AN5365
SAM L11 Application Development (Developer A ...

Figure 2-23. Creating SAM L11 Standalone Non-Secure Project Using Microchip Studio 7

New Project ? x
b Recent Sort by: Default - Search Installed Termplates (Ctrl+E) P
4 |nstalled Type: C/C
GCC C ASF Board Project C/C++ ype: L+
C/C++ Creates an AVR 8-bit or AVR/ARM 32-bit C
Assembler GCC C Executable Project C/C++ project
AtmelStudie Solution
GCC C Static Library Project C/C++
GCC C++ Executable Project CfC++
#ingy. “-~..
GCC C++ Static Library Project CfC++ T Clyp g,
¢ rasp, Mg
1 - ; { Yoig)
rE SAM L11 Secure Solution v1.2 C/C++ ~
Frintg,.,
(Y]
47 .
| SAML11Secure Solution with Boat v1.0 C/C+= ‘
Create project from Arduino sketch C/C++ ‘ﬁ-ﬁ
Mame: |My_SAM_L11_Pr0jecﬂ |
Location: Cih -
Solution name: My_SAM_L11_Project Create directory for solution
| QK ‘ Cancel

4. Select the ATSAML11E16A device in the Device Selection window, and then click OK.
Figure 2-24. SAM L11 Product Selection for New SAM L11 Standalone Non-Secure Project

Device Selection x

Device Family: All = SAMLIT
MName App./Boot Memory (Kbytes) Data Memory (bytes)EEPROM (bytes) | Device Info:
ATSAML1ID14A 18 8192 N/A Device Name: ATSAN
ATSAMLITDT5A 34 g1z MSA Speed: N/A
oo s ey wa Ve A
ATCAR 11E150 1 0107 TN Family: SAMLI
ATSAMLI1ET16A 66 16384 N/A Device page for ATSAMLI1E16A

Datasheet

Supported Tools
= Atmel-ICE

X EDEG

X EDBG MSD
B JTAGICE3
Ml mEDBG

A Power Debugger
& J-Link

o | e |

The Non-Secure project will be displayed in Microchip Studio 7 IDE, as shown in the following figure.

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 40
and its subsidiaries

AN5365
SAM L11 Application Development (Developer A ...

Figure 2-25. Standalone SAM L11 Non-Secure Project

EJ My Sam L1 Project - AtmelStudio Standard Mode | ¥ | Quick Launch (Ctrl+Q) P -
File Edit View VAssist{ ASF Project Build Debug Tools Window Help
i - | 3 -3 -8 WM | | ~ - | q, | P Ml Debug - Debug Browser = | A :

o | (I |He B | -2 i

Sy | Y o ATSAMLIEIGA 7§ Nomeon -

Solution Explorer

&l o-0@| 5

0/ ey
s = i (Ctrl+§ =
= My SEM_L11_Project.c = || Search Solution Explorer (Ctrl+5) P
* b1 ﬂ Selution 'My_SAM_L11_Project’ (1 project)

* Created: 2/28/2819 11:51:55 AM Fl My_SAM_L11_Project
*JAUthC’ 1 M43472 =i Dependencies
! =4 Output Files
B 3 Libraries
#include "sam.h” 4 ‘—J Device Startup
< main.c

—lint main{wvoid)

{
/* Initialize the SAM system */
SystemInit();
/* Replace with your application code */
while (1)
i
¥

}

Qutput v AaXx

fa

Show output from:

Output

Ready

24.2 Project Configuration
After creating a Non-Secure project, follow these steps to configure it according to the pre-programed Secure project

mapping and Secure gateway APlIs:
Configure the project by aligning its linker file to the Secure and Non-Secure memories attribution predefined by

Developer A.
Link the Secure gateway library to the project and add veneer header file to the project.

Application Note DS70005365C-page 41

© 2022 Microchip Technology Inc.
and its subsidiaries

2421

AN5365
SAM L11 Application Development (Developer A ...

Align Project Linker File to the SAM L11 Non-Secure Memories Attribution

Follow these steps to modify the Non-Secure solution project linker file according to the Secure and Non-Secure
memory space allocation as illustrated in the following figure.

Figure 2-26. Secure and Non-Secure Memory Space

0x0000 0000

Secure Flash
(APPLICATION Region)

0x0000 7C00

Non-Secure Callable Flash

(APPLICATION Region)

0x0000 8000

Non-Secure Flash
(APPLICATION Region)

0x0001 0000
Flash (Up to 64KB)
0x2000 0000
Secure SRAM

0x2000 2000

Non-Secure SRAM
0x2000 4000

SRAM (Up to 16KB)

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 42

and its subsidiaries

AN5365
SAM L11 Application Development (Developer A ...

1. Open the project linker file: Device Startup/samlllelé6a flash.ld.
Figure 2-27. Non-Secure Project Linker File Location

E] My sAM_L11 Project - AtmelStudio Standard Mode | ¥ | Quick Launch (Ctrl+0) P - A x
File Edit View VAssist{ ASF Project Build Debug Tools Window Help
(- | H -8 - 20 W ‘ & o | ~ ~ | D} | P Ml Debug ~| Debug Browser - | Alime|l

P o | Pt @t h T He B R-E .

o) _ i W ATSAMLUIEIGA T Nonmeon -

saml11elfa_flashld + > gEETiNe ~ | Solution Explorer
* =
! = @lo-a@|p=|"
a
i e e T Search Solution Explorer (Ctrl+5) P

i Solution 'My_SAM_L11_Project’ (1 project’
4 My_SAM_L11_Project
=d| Dependencies
=d Qutput Files
I |.gj Libraries
Pl 15' Device_Startup
[samll1el16a_flash.ld

OUTPUT_FORMAT("elf32-littlearm”, "elf32-littlearm”, "elf32-littlearm")
OUTPUT_ARCH(arm)
SEARCH DIR(.)

/* Memory Spaces Definitions */

?EMDRY [saml11el6a_sram.ld
Start TTelta.
rom (rx) : ORIGIN = Bx@000A880, LENGTH = Gx@8010088 /* rom, 65536K */ ¢} startup_samlllelba.c
ram (rwx) : ORIGIN = ©x20000080, LENGTH = OxB0004000 /* ram, 16384K */ (€] system sam(1e16a.c

} © main.c

/* The stack size used by the application. NOTE: you need to adjust according to your appli
STACK_SIZE = DEFINED(STACK_SIZE) ? STACK_SIZE : DEFINED(_ stack_size_) ? _ stack_size_ :

/* The heapsize used by the application. NOTE: you need to adjust according to your applica
HEAP_SIZE = DEFINED(HEAP_SIZE) ? HEAP_SIZE : DEFINED(_ heap size_) ? _ heap size : @x828

/* Section Definitions */
SECTIONS

Error List
Entire Solution ~/| €@ 0Enors || 1 0Wamings | @ 0Messages | Build + IntelliSense Search Error List

Description Project File

Qutput

Ready

2. Update the linker file memory space definitions according to the SAM L11 Non-Secure memory attribution.

/* Memory Spaces Definitions */

MEMORY
{
rom (rx) : ORIGIN = 0x00008000, LENGTH = 0x00008000
ram (rwx) : ORIGIN = 0x20002000, LENGTH = 0x00002000
}
© 2022 Microchip Technology Inc. Application Note DS70005365C-page 43

and its subsidiaries

AN5365
SAM L11 Application Development (Developer A ...

Figure 2-28. Non-Secure Memory Address and Size Definition

E3 My.sam.u11 project - Atmelstudio Standard Mode ¥ Pl B x
File Edit View VAssistX ASF Project Buid Debug Tools Window Help
0-0|H-@ -4 RMP| XF|2-C-| I[P W Dby - | B8 nsc puts | RreBBEE- iE]
W@ e >] A He B &~ 1. S 2 < WBATSAML1EIGA T Noneon
sami11e16a_flashld ~ | Solution Explorer >3 x
/*""'"j'""'"f"""'""f"'f"j """""""""""""""""""""" f @ o~ p =]
> Linker script for running in internal FLASH on the ATSAML11E16A - e T
0 T A T B W B S B S S B B S T O B S L */
‘@ Solution 'My_SAM_L11_Project’ (1 project)
My_SAM L11_Proj
OUTPUT_FORMAT("elf32-littlearm”, "elf32-littlearm”, "elf32-littlearm") —4 = "’Dse‘w':mi':’““
OUTPUT_ARCH(arm) “a Output Files
SEARCH_DIR(.) b [Libraries
4 [Device_Startup
/* Memory Spaces Definitions */ D sami1te16a flashid
MEMORY D saml11e16a sram.ld
€ startup_sami11el6a.c
{ € system_sami11e16a.c
rom (rx) * ORIGIN = ©x00008008, LENGTH = ©x0000800@ /* rom, 32768K */I s
ram (rwx) : ORIGIN = ©x20002000, LENGTH = 0x00002000 /* ram, 8192K */
}
/* The stack size used by the application. NOTE: you need to adjust according to your application. */
STACK_SIZE = DEFINED(STACK_SIZE) > STACK_SIZE : DEFINED(_ stack_size_) > _ stack_size_ : ©x0400;
/* The heapsize used by the application. NOTE: you need to adjust according to your application. */
HEAP_SIZE = DEFINED(HEAP_SIZE) > HEAP_SIZE : DEFINED(_ heap_size_) > _ heap_size__ : 0x0200;
128% - 4 »
Error List -8 x
Entire Solution -| @ okrors | 4 0Wamings | @ 0Messages | Build + IntelliSense - t p-
" Description = Project File Line
Error List (SN
Ready n27 Col2 Ch2 INS

24.2.2 Adding and Linking Secure Gateway Library to Non-Secure Project

Follow these steps to adding and linking the Secure gateway library generated during Secure application
development provided by Developer A:

1. Copy the Secure project imp1ib to the Non-Secure project.
Figure 2-29. Adding Secure Gateway Library File to a Non-Secure Project Sources

I & = | My_SAM_L11_Project — [m] >
Home Share View (7]
« ad 1‘I » ThisPC » Local Disk (C) » My_SAM_L11_Project > My_SAM_L11_Project I v O Search My_SAM_L11_Project 2

-
a Box) MName Date modified Type Size
. . Debug /207201 File folder
& OneDrive - Microchip Technology, Inc
Device_Startup File folder
[This PC] main C Source File 1KB
“J 3D Objects [] My_SAM_L11_Project.componentinfo XML Document 2KE
I Desktop My SAM L11 Project ATMEL Studio N 2 KB
B b . I |] secureapp-cmse-implib.lib LIB File 1KB I
%] Documents
v

6items 1item selected 316 bytes =]

© 2022 Microchip Technology Inc. Application Note DS700053650-page 44
and its subsidiaries

AN5365
SAM L11 Application Development (Developer A ...

2.
Figure 2-30. Accessing to Non-Secure Project Properties

In Microchip Studio 7, right-click on the Non-Secure project and select Properties.

E3 MySAM_L11_Project - AtmelStudio

File Edit View VAssistX ASF Projet Buld Debug Tools Window Help

‘e-o|B-Ap-AEME| XA <R[b M oDebug -] Debugr | B nsc puts
W ‘ » B % ‘ Hex (% | @1 - . <] @ ATSAMLI1EI6A T Noneon _

OUTPUT_FORMAT ("elf32-littlearm", "elf32-littlearm", "elf32-littlearm") &
QUTPUT_ARCH(arm)
SEARCH_DIR(.)
4
/* Memory Spaces Definitions */ =
MEMORY
{ @
rom (rx) : ORIGIN = Bx80008000, LENGTH = 0x00008800 /* rom, 32768K */
ram (rwx) : ORIGIN = ©x20002000, LENGTH = 0x0800200@ /* ram, 8192K */
} -
o]

/* The stack size used by the application. NOTE:
STACK_SIZE = DEFINED(STACK_SIZE) ? STACK_SIZE :

you need to adjust according to your applicatiifg
DEFINED(__stack_size__) ? __stack_size__ : exe4l

/* The heapsize used by the application. NOTE: you need to adjust according to your application

Standard Mode

¥ | Quick Launct

P - B X
| RrecEswD-
Solutien Explorer v 3 X

B o-a@ &=
Search Solution E Ctr+§ P~

(@l Solution 'My_SAM_L11_Project’ (1 project)

Build
Rebuild

Clean

Copy Full Path

Collapse

Scope to This

New Solution Explorer View
Add

Add Library

Set as StartUp Project

Add Arduino Library

View Example Project Help
Expor i
Cut

Remove

Rename

Unload Project

Ctrl+X
Del
F2

HEAP_SIZE = DEFINED(HEAP_SIZE) ? HEAP_SIZE : DEFINED(_ heap_size_) ? _ heap_size__ : 0x0200;

128% - 4 %
x
Entire Solution - || @ 0knors | 4 0Wamings | @ 0Messages | Buid + Intellisense - Search Error
")))

Description = Project I
2

Properties

Error List

Output

This item does not support previewing

ip
a_flashld
a_sram.Id
ml11e16a.c
it 1e16a.c

© 2022 Microchip Technology Inc. Application Note

and its subsidiaries

DS70005365C-page 45

AN5365
SAM L11 Application Development (Developer A ...

3. To add the Secure Project library, select ToolChain and expand ARM/GNU Linker, and select Libraries.

4. Click E (Add Item button).
Figure 2-31. Add New Library to the Link Option

@ My _SAM L11 Project

My SAM_L11 Project & X

Build

Lonfiguration: | Active (Debug) ~ Platform: Active (ARM) e
Build Events
Toolchain ’ Confiquration Manager...
Device
. 4 [E] ARM/GNU Common [ARM/GNU Linker = Libraries
& General

Packs jOutput Files |Lihraries - h | 5;'.. ‘i-‘ JL

4 [Z] ARM/GNU C Compiler
Advanced & General libm Add ltem

jPreprocessor
g Symbols

& Directories
j(}ptlmizatl:nn
= Debugging
& Warnings

A Misgellanso

Library search path (-L) B[S ‘u-‘

${ProjectDir)\Device_Startup

ETERon
jMemory Settings
& Miscellaneous
4 [F] ARM/GNU Assembler
& General
& Debugging
4 ﬂARMHGNU Preprocessing Assen
& General
& Symbols
& Debuaging

5. In the Add Libraries dialog box, enter the library name as shown below, and then click OK.
Figure 2-32. Adding Secure Gateway Library Name

Add Libraries (-1) *

Libraries (-I)

|secureapp-cmse-implib.lih| |

[8].4 Cancel

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 46

and its subsidiaries

AN5365
SAM L11 Application Development (Developer A ...

6. To add the Secure Project library path, select Toolchain > ARM/GNU Linker > Libraries.

7. Click E (Add Item button).
Figure 2-33. Add New Library Search Path

\M_L11_Project

My_SAM_L11_Project*™ = X

Build
Lonfiguration: | Active (Debug) ~ Platform: | Active (ARM) ~

Build Events

Configuration Manager...

Device

Tool # [E] ARM/GNU Common [ARM/GNU Linker = Libraries
& General —
Packs & Cutput Files |Libraries &) "’LHH 1“ i-‘-."w_- |
o : 4 [@ arMsGNU € Compiler | b0morro— — —

vanes [General libm

j’Preprocessor secureapp-cmse-implib.lib

jS}fmboIs

& Directories
[Optimization
{Debugglng

_JfWammgs I 1 ==
= Miscellaneous Library search path (-L) k IRSHEEE &

4 ﬂARM"GNU Linker $(ProjectDin\Device_Startu __
& General ' B P fedliem

= Libraries
& Optimization

B Memory Settings
=’ Miscellaneous
4 [E] ARM/GNU Assembler
& General
& Debugging
- ﬂARI\-‘IHGNU Preprocessing Assen
& General
& Symbols
& Debuaaing

8. Inthe Add Library search path dialogue box, choose the location of the Secure project implib.
9. Select Relative Path to ensure project portability.
10. Click OK.

Figure 2-34. Enter Relative Path to the Secure Gateway Library

Add Library search path (-L) >
Library search path (-L)
| CaMy_SAM_L11_Project'My_SAM_L11_Project E
Relative Path
QK Cancel
© 2022 Microchip Technology Inc. Application Note DS70005365C-page 47

and its subsidiaries

ANS365

SAM L11 Application Development (Developer A ...

11. The Linker Library properties will be displayed as shown in the following figure:

Figure 2-35. Non-Secure Project Linker Libraries Configuration

Build

Build Events

Device
Tool
Packs
Advanced

V_L11_Project

My SAM_L11_Project & X

Lonfiguration:

Configuration Manager...

Active (Debug)

~ Platform: | Active (ARM)

4 & ARM/GNU Common
& General
j[}utput Files

4 & ARM/GNU C Compiler
& General
jPrepmcessor
= Symbols
& Directories
& Optimization
& Debugging
& Warnings
& Miscellaneous

4 [ARM/GNU Linker
& General
& Libraries
& Optimization
& Memory Settings
& Miscellaneous

4 [ARM/GNU Assembler

|ARI\-13'GNU Linker = Libraries

| Libraries {-I)

12

libm

secureapp-cmse-implib.lib

Library search path (-L)

$(ProjectDir)\Device_Startup

12. Click

(Save button) to save the project settings.

24.2.3 Adding and Including Secure Gateway Header File
To add and include a secure gateway header file, perform these actions:

1. Copy the Secure gateway header file from the Secure project to the Non-Secure project.
Figure 2-36. Including Secure Gateway Header File in Non-Secure Project Sources

| 1 = My_SAM_L11_Project

€ - v

Share Wiew

& OneDrive - Microchip Technelogy, Inc

[This PC
) 3D Objects
[Desktop
| Documents
3 Downloads
J’! Music
&=| Pictures

B videos
7 items

1item selected 843 bytes

» ThisPC » Local Disk (C) » My_SAM_L11_Project » My SAM_L11_Project »

O X
(7]
v 0 Search My_SAM_L11_Project o
Name Date modified Type Size
Debug File folder
Device_Startup File folder
Q main C Source File 1KB
|| My_SAM_L11_Project.componentinfo XML Document 3KB
My_SAM_L11_Project ATMEL Studio 7.0... 3KB
Lsacy ik ik Loooiaddog ans e el 1iD
E veneer 2/20/201911:04 AM H File 1KB

2. Right-click Non-Secure project in the Solution Explorer, and then select Add > Existing Item.

© 2022 Microchip Technology Inc.

and its subsidiaries

Application Note

DS70005365C-page 48

ANS365

SAM L11 Application Development (Developer A ...

Figure 2-37. Including Secure Gateway Header File in Microchip Studio 7 Solution Explorer

Solution Explorer

@ o-d@ L=

Search Solution Explorer (Ctrl+5)

- 0 x

Rebuild

Clean

Copy Full Path
Collapse

Scope to This

Mew Solution Explorer Yiew

B

Export Project as Extension
Cut
Remaove

Rename
Unload Project

Properties

Chrl+X
Del
F2

3. Select the Secure gateway header file, and then click Add.

|-J Add * | i) New ltem.. Ctrl+Shift+A
‘0 Add Library *3 Existing ltem... Shift+Alt+A
£} Set as StartUp Project T New Folder
Add Arduino Library Reference...
ASE Wizard Add Mew Class
Board Wizard
View Example Project Help k

© 2022 Microchip Technology Inc.

and its subsidiaries

Application Note

DS70005365C-page 49

AN5365
SAM L11 Application Development (Developer A ...

Figure 2-38. Including Secure Gateway Header File in Non-Secure Project

E Add Existing Item - My_SAM_L11_Project =
UK <« My_SAM_L11_Project » My_SAM_L11_Project » v Search ['..'1';.'_5."_'['»'1_L'| 1_|3|'cject o
Organize * Mew folder =~ @ @
ol
_J 3D Objects " MNarme Date modified Type Size
¥p
I Desktop Debug 2/20/2019 11:51 AM File folder
|z Documents Device_Startup 2/20/2019 2:47 PM File folder
* Downloads 51 main 2720/201911:51 AM € Source File 1KB
J, Music |:] My_SAM_L11_Project.componentinfo 2/20/201911:51 AM XML Decument SKB
= Pictures MWy _SAM_L11_Project 2/20/2019 2:42 PM ATMEL Studio 7.0 ... 3KB
m vid a secureapp-cmse-implib.lib 22072019 11:22 AM __LIB File 1 KB
ideos
E veneer 2/20/201911:04 AM H File 1KB
im Local Disk (C:)

Eiliname |veneer «| | AllFiles 1) v

Add |+ Cancel

4. Right-click Non-Secure project in the Solution explorer, and then select Properties.
Figure 2-39. Accessing Non-Secure Project Properties Under Microchip Studio 7

EJ MySAM_L11_Project - AtmelStudio Standard Mode ¥ Quick Lou (P - B x
Fle Edit View VAssistX ASF Projet Buld Debug Tools Window Help

o-o|lu-An-tEdxd -Q || Woebug | DebugBrowser - | 5 nsc puts R reH=ED-
W o > G | o % | @ - B, | o] ATSAMLIIEIGA T Noneon
saml11e16a flashld* & X main.c Solution Explorer v X
@ o-a@| &=
Solution Explorer (Ctrl+$§ o-

@ Solution "My SAM L11_Project’ (1 project)

OUTPUT_FORMAT("elf32-littlearm”, "elf32-littlearm", "elf32-littlearm") & puld
OQUTPUT_ARCH(arm) Rebuild
SEARCH_DIR(.) Clean
42 Copy Full Path p
/* Memory Spaces Definitions */ [f] Ccollapse aj\ash,II:
a_sram
MEMORY Scope to This i 1et6a.c
{ B} New Solution Explorer View mi1 1e16a.c
rom (rx) : ORIGIN = BxB8@@8000, LENGTH = 8x08088800 /* rom, 32768K */ = N
ram (rwx) : ORIGIN = 8x20002000, LENGTH = @x@eee2eee /* ram, 8192K */
} S Add Library

4 Set as StartUp Project
/* The stack size used by the application. NOTE: you need to adjust according to your applicatiiB§ Add Arduino Library

STACK_SIZE = DEFINED(STACK_SIZE) ? STACK_SIZE : DEFINED(_ stack_size_) ? _ stack_size_ : Ox@4l
/* The heapsize used by the application. NOTE: you need to adjust according to your application
" . View Example Project Help v
HEAP_SIZE = DEFINED(HEAP_SIZE) ? HEAP_SIZE : DEFINED(__heap_size__) ? __heap_size__ : 0x0280;
¥
128% <« 4 * Cut Cirl+X
X I
O Rename F2
Entire Solution -/| @ 0nors | 4 0Wamings | @ 0Messages | Build + IntelliSense - Search Err
o Unload Project
Description = Project i

& Properties

Output

support previewing

© 2022 Microchip Technology Inc. Application Note DS700053650-page 50
and its subsidiaries

AN5365
SAM L11 Application Development (Developer A ...

5. In the Non-Secure project window, select Toolchain > ARM/GNU C Compiler > Directories, and then click E
(Add Item button).

Figure 2-40. Adding New Compiler Directory to Non-Secure Project

@

My _SAM_L11_Project += X

My_SAM_L11_Project - My_SAM_L11_Project

Build
Configuration: | Active (Debug) W Platform: | Active (ARM) w
Build Events
Configuration Manager...
Device
Tool PNE | ARM/GNU Common [ARM/GNU C Compiler = Directories
& General
Packs S AT T | P Include Device Support Header Path (-1)
|« [armranu ¢ compiter | =
Advanced — T ||nclude Paths (-) BINF)EEE R
gpreprocessor ${PackRepGDir}\arm\cm5i5\5.0.1\CMSIS‘\IncIude\
I@I §(PackRepoDirAtmeNSAMLT 1_DFPY1,0.106\include
plimization
jDebugging
jWarnings
) ;;rl\f'liscellaneous
4 [Z] ARM/GNU Linker
;;rGeneral
A Libraries

6. Inthe Add Include Paths dialogue box, select the location of the veneer . h file.
7. Select Relative Path to ensure project portability, and then click OK.
Figure 2-41. Including Secure Gateway Library Path in Compiler Directory

Add Include Paths (-1) >
Include Paths (-1)

| C:\My_SAM_L11_Project\My_SAM_L11_Project [..]

Relative Path
QK ||| Cancel

8. The Non-Secure project Compiler Directories properties will be displayed.

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 51
and its subsidiaries

AN5365
SAM L11 Application Development (Developer A ...

Figure 2-42. Non-Secure Project Compiler Directories Parameters

M_L11_Project - M AM_L11_Project

My_SAM_L11_Project + X
Build
Configuration: | Active (Debug) w Platform: | Active (ARM) w
Build Events
Configuration Manager...
Device
Tool “ Iﬁghé-’@“ulc‘jmmo“ [ARM/GNU C Compiler = Directories
o Genera
Packs = Output Files Include Device Support Header Path (-I)
4 [Z] ARM/GNU € Compiler == -
i = Foeneral T |Include Paths (-1) e
E;F Preprocessor $(PackRepoDirf\armicmsis\5.0. \CMSIS Includel,
= %{:‘;Eﬂ:es ${PackRepGDir}-\Atm el SAMLT1_DFPY1.0.106\include
jcptimizati:-n
jDebugging
jWarnings
) = Miscellaneous
4 [Z] ARM/GNU Linker
& General
 Libraries
9. Press (Save button) to save the project settings.
© 2022 Microchip Technology Inc. Application Note DS70005365C-page 52

and its subsidiaries

AN5365
SAM L11 Application Development (Developer A ...

10. To add the Secure gateway library, add the highlighted code at the beginning of the main. c file.

Figure 2-43. Including veneer.h in Non-Secure Project main.c File
E My_SAM_L11_Project - AtmelStudio Standard Mode | ™ | Quick Launch (Ctrl+Q) Pl - (m] x

File Edit View VAssistX ASF Project Build Debug Tools Window Help

Bl < I | F = | -2 WM ‘ & ‘ 2 - -| a ‘ P Ml Debug ~| Debug Browser ~ | A ;

S {om | > | v o A | He B . B _F | 0 ZF ewATSAMLITEISA § Moneon

Solution Explorer
@ o-a@m| p =]

Search Solution Explorer (Ctrl+5) P~
_a Solution 'My_SAM_L11_Project’ (1 project)

Pl My_SAM_L11_Project
=d| Dependencies

h CAMy_SAM_L11_Project\My_SAM_L11_Project\veneer.h
o/ +
* My_SAM_L11_Project.c -
* Created: 2/20/2019 11:51:55 AM
* Author : Ma3472

1] veneerh |5

Y =d| Output Files
I g Libraries
EPS PR L B [Device Startup
I #include "veneer.h" I < main.c
h| veneerh

=lint main(void)
i
/* Initialize the SAM system */
SystemInit();

/* Replace with your application code */
while (1)

i
}

Error List
Entire Solution - | €3 0 Errors 1 0'Warnings | O 0 Messages Build + IntelliSense Search Error List

Description Project File

OQutput

Ready

11. Click (Save button) to save the modification to the main. c file.

12. Click & (Build Project button).
13. Verify that no error is reported by the build process.

Important: Prior to loading the project on the target SAM L11 device, it is important to check
Project Properties> Tools> Programing settings and ensure that the programming process does not
execute a ChipErase All command prior to loading the application. The Ideal configuration is
“Erase only Program area” as shown in the following figure.

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 53
and its subsidiaries

AN5365
SAM L11 Application Development (Developer A ...

Figure 2-44. Project Program Settings

My_SAM_L11_Project - AtmelStudio Standard Mode | X Quick Launch (Ctrl+Q) P - o x
File Edit View VAssist{ ASF Project Build Debug Tools Window Help

fo-o B -@A -2 | |9 - @ -] i@ b Wi Debug B o e - |z ”
i om | Ple [He | &~ i+ T T 0 ATSAMLTIETGA =

My SAM_L11 Project + X BN ERRRCIET i p e Solution Explorer

Build @ o-I@|F=|
N/A NfA
Build Events Search Solution Explorer (Ctri+5) o~
Toolchain L@l Solution 'My_SAM_L11_Project' (1 project]
. a My_SAM_L11_Project
Device

=d| Dependencies
P = Qutput Files

SWD Clock r i
Packs [=] ler.anes
2 MHz b [Device_Startup
Advanced © main.c
n veneer.h

The clock frequency should not exceed target CPU speed * 10

Programming settings

‘Erase only program area ¥ Reset strategy| Normal ~

Debug settings
[] Override Vector Table Offset Register |exception_table
Cache all flash memary except

Error List

Entire Solution - | €3 OErrors | 1 0 Wamings | @ 0Messages | Build + IntelliSense - Search Error List P~

Description Project File Line

Qutput

Ready

Figure 2-45. Non-Secure Project Successful Build

Output = 4
fa

Show cutput from: Build - | | = | §
LUUNE EXELULLIE LdSK KUNLOMPLLEr dsK . .
Using "RunQutputFileVerifyTask" task from assembly "C:\Program Files (x86)%Atmel\Studio\7.@\Extensions\Application\AvrGCC.d1l"
Task "RunQutputFileVerifyTask"

Program Memory Usage E 2163 bytes 3.2 % Full

Data Memory Usage 3 2688 bytes 16.4 % Full

Warning: Memory Usage estimation may not be accurate if there are sections other than .text sections in ELF file
Done executing task "RunOutputFileVerifyTask”.

Done building target "CoreBuild" in project "My_SAM_L11_Project.cproj”.

Target "PostBuildEvent" skipped, due to false condition; ('$(PostBuildEvent)' != '') was evaluated as ("' != "').

Target "Build" in file “"C:\Program Files (x86)%Atmel\Studie\7.@\Vs\Avr.common.targets" from project “C:\My_SAM_L11_Project\My_SAM_

Done building target "Build"™ in project "My_SAM_L11_Project.cproj”.

Done building project "My_SAM_L11 Project.cproj”.

Build succeeded.
========== Rebuild All: 1 succeeded, @ failed, ® skipped ==========

14. Launch the debug session and verify whether the project is working or not.

Important: Debugging the Non-Secure project requires a compatible preprogrammed Secure
application that configures and starts the Non-Secure execution. If this Secure application is not
available on the MCU, the debug process will hang.

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 54
and its subsidiaries

AN5365
SAM L11 Application Development (Developer A ...

2.5 Developing Solution with Secure Boot Program (Developer A)

The SAM L11 device offers two configurable memory sections for storing the Secure and Non-Secure boot programs.
These two sections are protected against ChipErase_S and ChipErase_NS offering possibilities to store Secure and
Non-Secure Bootloader code as shown in the following figure.

Figure 2-46. Application with Secure and Non-Secure Boot Programs

0x0000 0000 tT-————"—--
Secure Flash (BOOT Region)
BS x 0x100 — BNSC x 0x20

BS x 0x100
BOOTPROT x 0x100

Non-Secure Callable Flash (BOOT Region)

Non-Secure Flash (BOOT Region)

Secure Flash
(APPLICATION Region)

(BOOTPROT + AS) x
0x100 — ANSC x 0x20

Non-Secure Callable Flash
(APPLICATION Region)

(BOOTPROT + AS) x 0x100
Non-Secure Flash @) @)
Flash (Up to 64KB) (APPLICATION Region) -;D-' S -¢:3r‘
|£ § |t£
A A 2
0x0001 0000 - -
Flash (Up to 64KB) ChipErase

In addition to ChipErase protection, the product Boot ROM offers the possibility to perform an integrity check or
authenticate the firmware stored in the Secure Boot section prior to executing it. This verification mechanism is a key
element to consider for ensuring the system root of trust during deployment and execution of the Secure firmware.

251 Creating a Secure Solution with Boot Program

To ease the development of an application with the Secure Boot program, Microchip Studio 7 provides a predefined
Secure Solution with a Boot template. This template can be used to evaluate and understand the solution
architecture and start the development of a custom application featuring a Secure Boot project. The following figure
shows the template content and interactions between preconfigured projects.

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 55
and its subsidiaries

AN5365
SAM L11 Application Development (Developer A ...

Figure 2-47. Secure Solution Template Content

7
I \

Function call

"N
1
Function call

A e e e e T

User application

TrustZone for
Cortex-M

Follow these steps to create a Secure solution with a Boot program using Microchip Studio 7.

1. Open Microchip Studio 7.
2. From File > New > Project.
3. Inthe New Project window, perform these actions to create and configure a new secure solution:
a. Expand Installed and select C/C++ .
b. Select SAM L11 Secure Solution with Boot.
c. Enter the details for Name, Location, and Solution Name (for example see figure below).
d. Click OK.

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 56
and its subsidiaries

AN5365
SAM L11 Application Development (Developer A ...

Figure 2-48. Secure Solution with Boot Creation

MNew Project ? X
I Recent Sort by: Default - i i= Search Installed Templates (Ctrl+E) P -
4 |nstalled Type: C/C
GCC C ASF Board Project C/C++ ype: i+
3 + 3 Creates an Atmel Studio TrustZone-based
Q GCC C Executable Project C/C++ Solution which contains a Secure project,
AtmelStudio Soluti a Mon-Secure project as well as a Secure
MEtutio Selution Boot project that call back into each other.
GCC C Static Library Project CfC++
GCC C++ Executable Project CAC++
GCC C++ Static Library Project CfC++
.!
78| SAM L11 Secure Solution v1.2 C/C++
“c
I8 | SAML11 Secure Solution with Bootv1.0 C/C++ 4
Create project from Arduine sketch C/C++
MName: My_Secure_Solution_with_Boot 5
Location: o\ = Browse...
Solution name: My_Secure_Solution_with_Boot | Create directory for solution
6 | oK | | Cancel
© 2022 Microchip Technology Inc. Application Note DS70005365C-page 57

and its subsidiaries

AN5365
SAM L11 Application Development (Developer A ...

When created, the solution appears in Microchip Studio 7 IDE as shown in the following figure:

Figure 2-49. Secure Solution with Boot

E My_Secure_Solution_with_Boot - AtmelStudio Standard Mode ¥ Quick Launch (Ctrl+0) Al - a x
Fle Edit View VAssist{ ASF Project Build Debug Tools Window Help

N - |?ﬁ'@*ﬂ"’ Hf|a{, H | - '| ‘5‘3@| P Ml Debug ~ Debug Browser ~
LRI IR [He | @~

main.c

Fy | o Z e ATSAMUITETEA -

> main.c

main.c Solution Explorer

@ o-ad@|F, =

P~

/* typedef for non-secure callback functions */
27 typedef woid (*funcptr_void) (void);

$S i *
29 /* Secure main() */ NenSecurefpp

38 —int main(void}

31 |¢ SecureApp

32 funcptr_vold Secure_Application_ResetHandler; =i Dependencies
33 =d Output Files
34 /* Initialize the SAM system */ b [Libraries

= SystemInit(); P [Device_Startup
36 - |
37 /* Get non-secure reset handler */ 4 '—j Secure_Functions
38 Secure_Application_ResetHandler = (funcptr_woid)(*((uint32_t #=){(TZ_START_AS) + 4U)) €| as_veneer.c
39 h| as_veneer.h
48 /* Start non-secure state software application */ ¢ main.c

41 Secure_Application_ResetHandler(); '

42

43 /* Replace with your SECURE application code */

44 while (1)

90 %% 4 4
OQutput

Show output from: = | | | | 1

oIVl ErrorList Find Results 1

© 2022 Microchip Technology Inc. Application Note DS700053650-page 58
and its subsidiaries

2.5.2

2521

AN5365
SAM L11 Application Development (Developer A ...

Secure Solution Template with Boot Description

The SAM L11 Secure solution template with boot code provided within Microchip Studio 7 is similar to the SAM L11
Secure solution template as described in previous chapters, but it embeds a Secure Boot program (stored in BS
memory region of the device).

Template Secure Boot Project Description

The goal of the Secure Boot project included in the solution template is to provide a preconfigured development
base for Secure boot code development on SAM L11 . The Secure project is preconfigured to illustrate the following
aspects of a standard Secure application on the SAM L11:

» Definition and declaration of Secure boot functions example
» Definition and declaration of Secure boot gateways with Non-Secure world (veeners)
» Secure call to the Secure application

The following figure illustrates the file architecture of the pre-configured Secure Project:

Figure 2-50. Secure Boot Project Architecture

4 BootSecurefpp
=d| Dependencies
=d| Output Files
[+ +3] Libraries
4 |7 Device_Startup
h! saml11_bocor.h
h| saml11_urow.h

BOCOR/UROW : files : Contains fuses setting definition

Secure Linker file : Contains link configuration for the
Secure boot application

Secure Startup file : Contains the Secure boot vector
table and Secure Reset Handler

saml11el6a_flash.ld

c startup_samlllelba.c

¢, system_samll1elba.c
| = Secure_Functions

C| secure.c
h| secure.h

TN

Cc bnsc_veneer.c
h bnsc veneer.h

T

Contains the initialization functions
for the system resources allocated to Secure application

Secure .cl.h files : Contains the Secure function examples

: Contains the definition and declaration
of the Non-Secure Callable (NSC) gateway to the secure
functions declared in secure.c/.h

Secure Main File : Contains the secure Application main

Ic' main.c

routine

© 2022 Microchip Technology Inc. Application Note

and its subsidiaries

DS70005365C-page 59

2.5.2.2

ANS365

SAM L11 Application Development (Developer A ...

Template NVM Fuses Configuration
The default USERROW and BOCOR template settings and associated memory mapping are described in the

following figure.

Figure 2-51. Default Secure Solution with Boot Code Mapping

0x0000 0000

0x0000 0AQO

0x0000 1000

0x0000 1A00

0x0000 D000

0x0001 0000

0x2000 0000

0x2000 2000

0x2000 4000

0x0040 0000

Secure Flash
(BOOT Region)

Non-Secure Callable Flash
(BOOT Region)

Secure Flash
(APPLICATION Region)

Non-Secure Callable Flash
(APPLICATION Region)

Non-Secure Flash
(APPLICATION Region)

Flash (Up to 64KB)

Secure SRAM
Non-Secure SRAM

SRAM (Up to 16KB)

0x0040 0400 Secure Data Flash

0x0040 0800

Data Flash (2KB)

The table below provides the BOCOR Fuse settings.
Table 2-1. BOCOR Fuse Settings

Fuses ‘ values | Configuration

BNSC 0x30 Boot Flash Non-Secure Callable Size = BNSC*0x20 = 0x600
BS 0x10 Boot Flash Secure Size = BS*0x100 = 0x1000

BOOTOPT 0x00 No secure boot verification

BOOTPROT 0x10 Boot Protection size = BOOTPROT*0x100 = 0x1000

© 2022 Microchip Technology Inc.
and its subsidiaries

Application Note

DS70005365C-page 60

ANS365

SAM L11 Application Development (Developer A ...

........... continued

m values | Configuration

BCWEN
BCREN
CEKEY0
CEKEY1
CEKEY2
BOOTKEY

0x01 Boot Configuration Write Enabled
0x01 Boot Configuration Read Enabled
All1s | CEOkey = All 1s
All1s CE1key=All1s
All1s | CE2key = All 1s
All 1s Boot key = All 1s

The table below provides the UROW Fuse settings.
Table 2-2. UROW Fuse Settings

SULCK_BS
SULCK_AS
SULCK_DS
NSULCK_BNS
NSULCK_ANS
NSULCK_DNS
BOD33_LEVEL
BOD33_DISABLE
BOD33_ACTION
WDT_RUNSTDBY
WDT_ENABLE
WDT_ALWAYS_ON
WDT_PER
WDT_WINDOW
WDT_EWOFFSET
WDT_WEN
BOD33_HYST
RXN

DXN

AS

ANSC

DS

RS

URWEN
NONSECA

0x1
0x1
0x1
0x1
0x1
0x1
0x6
0x0
0x1
0x0
0x0
0x0
0xB
0xB
0xB
0x0
0x0
0x1
0x1
0x10
0x30
0x08
0x40
0x1

BS region is not locked

AS region is not locked

DS region is not locked

BNS region is not locked

ANS region is not locked

DNS region is not locked

BOD33 threshold level = 0x6

BOD33 enabled

BOD Action = RESET

WDT disabled during standby sleep

WDT disabled

WDT enabled/disabled through ENABLE bit
WDT Time-Out Period = 0xB

Window Mode Time-Out Period = 0xB
Early Warning Interrupt Time Offset = 0xB
WDT windows disabled

No BOD33 Hysteresis

RAM is not executable

Data Flash is not executable

Flash Application Secure Size = AS*0x100 = 0x1000

Flash Application Non-Secure Callable Size = ANSC*0x20 = 0x600

Data Flash Secure Size = DS*0x100 = 0x800
RAM Secure Size = RS*0x80 = 0x2000
User Row Write Enabled

0x0000 0000 | Peripherals are secured

© 2022 Microchip Technology Inc.

and its subsidiaries

Application Note

DS70005365C-page 61

ANS365

SAM L11 Application Development (Developer A ...

.continued

NONSECB
NONSECC

0x0000 0000 Peripherals are secured
0x0000 0000 | Peripherals are secured

To ease the definition and modification of application fuses, all fuse values are defined in sam111 bocor.h and
samlll urow.h as shown in the following figure. These fuse values can be modified according to the requirement

of the application.
Figure 2-52. SAM L11 Fuses Definition

W ATSAMLITET6A 7§ SWD on EDBG (ATMLODODODDOD0D00202)

SAML11_BS_AS_ANS_template - AtmelStudio Standard Mode

Edit Miew VAssistX ASF Project Build Debug TJools Window Help

- |?ﬁ'ﬂ - % Hf|§{|jj |9' -| Q|>Dﬂﬂ Debug = Debug Browser ~
dm@ o I T T S T A

saml11_urow.h™ + X
me ~|&Go

38 —#ifndef SAMLI1 UROW_H_ =

31 | #define SAMLI1_UROW_H_

32

33 | #define UROW_SULCK_BS el /* 8x8@ = BS region is locked ; @x1 = BS region is not locked */

34 | #define UROW_SULCK_AS Bl /* @x@ = AS region is locked ; Bx1 = AS region is not locked */

35 | #define UROW_SULCK_DS Bl /* @x® = D5 region is locked ; Bx1 = DS region is not locked */

36 |#define UROW_NSULCK_BNS Bl /* @x@ = BNS region is locked ; @x1 = BNS region is not locked =/

37 | #define UROW_NSULCK_ANS exl /* @x@ = ANS region is locked ; @x1 = ANS region is not locked =/

38 | #define UROW_NSULCK_DNS exl /* @x@ = DNS region is locked ; @x1 = DNS region is not locked =/

39 | #define UROW_BOD33_LEVEL exe /* @x@ to @x1F = BOD33 threshold level */

49 | #define UROW_BOD33 DISABLE [/* @x@ = BOD33 enabled ; @x1 = BOD33 disabled */

41 | #define UROW_BOD33_ACTION Bxl /% 8x8@ = NOMNE ; @x1 = RESET ; @x2 = INT */

42 | #define UROW_BOD12_CALIB_PARAMS 8x88F /* (Do not change) */

43 | #define UROW_WDT_RUNSTDBY] /* Bx@ = WDT disabled during standby sleep ; 8x1 = WDT enabled durinj—]

44 | #define UROW _WDT_EMNABLE [/* @x@ = WDT disabled ; ©@x1 = WDT enabled */

45 | #define UROW_WDT_ALWAYS_ON [/* @x@ = WDT enabled/disabled through ENABLE bit ; @x1 WDT can only

46 | #define UROW_WDT_PER @xB /* @x@ to @xB = WDT Time-Out Period */

47 | #define UROW_WDT_WINDOW @xB /* 8x@ to @xB = Window Mode Time-Out Period */

48 | #define UROW_WDT_EWOFFSET @xB /% 8x8 to @xA = Early Warning Interrupt Time Offset */

49 | #define UROW_WDT_MWEN] /* 8x8@ = WDT windows disabled ; @x1 = WDT windows enabled */

5@ | #define UROW_BOD33_HYST] /* @x@ = BOD33 hysteresis enabled ; @x1 = BOD33 hysteresis disabled * o
o<l S - . - P .- R
Error List

Entire Solution - | €3 D Erors | 1. 0Warnings | O 0 Messages | Build + IntelliSense -
Description «
2R Find Results 1

Output

Ready

¥ Quick Launch {Ctrl+Q) Pl - 0 x

| 5% sECTION_DMAC_ DESCRIPTOR ~ | [2

p
@ o-d@|l s -]
Search Solution Explorer (Ctrl+§) P~

i Solution 'SAML1TT_BS_AS_ANS_template’ (3 pro =
3 BootSecureApp
3 NonSecureApp
4 SecureApp
=d| Dependencies
=4 QOutput Files
b [Libraries

L1 samlTTeTba_tlash.ld
c| startup_samlllelfa.c
c| system_samlllelfa.c
b [Secure_Functions
© as_veneer.c

h as_veneerh

Search Error List

Project File

Col 100

© 2022 Microchip Technology Inc. Application Note

and its subsidiaries

DS70005365C-page 62

AN5365
SAM L11 Application Development (Developer A ...

2.5.2.3 Enabling Secure Boot Process with BS Verification
Follow these steps to enable Secure Boot process verification when working with Microchip Studio 7:

1. PerformachipErase ALL command using device programming.
2. Build the Boot application using Microchip Studio IDE.
3. Change BOOTOPT fuse to 0x01 or 0x02 using the device programing tool.

Figure 2-53. Secure Boot Process with BS Verification

EDBEG (ATMLODDOO00000000202) - Device Programming ? by
Tool Device Interface Device signature Target Voltage
EDBG ~| ATSAMLITEIGA ~ |SWD ~|[Apply] |0x20830000 33V %3]
Interface settings Fuse Name Value
Tool information (¥ BOCOR_WORD_0.IDAU_BS 0x10
{¥) EOCOR_WORD_0.IDAU_BNSC 0x30
Device information -
"] () BOCOR_WORD_0.BOOTROM_BOOTOPT 0301
EMOTIES
= (¥) BOCOR_WORD_1.IDAU_BOOCTPROT 0x10
Uses o
Security () BOCOR_WORD_1.NVMCTRL_BCWEN
(,,:/:l BOCOR_WORD_1.NVMCTRL_BCREN
rApiY:alalal- RATaT: N et e A= L ER=TaT KT LY
Fuse Register Value

BOCOR_WORD_0 [0x00301000
BOCOR_WORD_1 [0x00030010
BOCOR_WORD_3 [0x0000003A

Copy to clipboard
Auto read By P
Verify after programming Program | | Verify | | Read |

I'\.CdLIIfIH ICHIELC[UOER_WWUInU L. 0
Reading register USER_WORD_3...0K
Reading register USER_WORD_4...OK
Reading register USER_WORD_5...0K
Reading register USER_WORD_6...OK
Read registers...OK

E Read registers...OK

Close

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 63
and its subsidiaries

AN5365
SAM L11 Application Development (Developer A ...

The reference hash will be computed and written in memory automatically by the device programming tool when the
step, shown in the figure below, is executed.

Figure 2-54. Secure Boot Application Reference Hash

Memory 1 * A X

Memory: base FLASH ~ | Address: 0x00DD030 - &

oxo0000930 Ff Ff £f Ff £f £f £f £f £f £f £f £f £f £f FF FF S59995955595999y .

0x00000040 TF Tf Tf Tf FF £f £f Ff FFf ¥F £f Tf fF FF FF £F Jyy9999999yyvivy

ox00eeeose FF Tf Tf Tf £ £f £f Tf TFf FF £f £f TF FF FF £F Jyy999999yyyvivy

ox00000960 FF Ff Ff Ff £f Ff £f Ff Ff Ff Ff Ff Ff Ff FF FF Gy99yyyvyvvvvvy

ox00000970 Ff £f £f £f £f £f £f £f £f £f £f £f £f £f FF FF 5559559959955y

ox0peeeose TF Tf Tf Tf Ff Ff £f Tf TFf ¥F £f Tf TF FF FF £F Jyy999999yyyvivy

ox00eea08 TF £f Tf Ff £f Ff £f Tf Ff TF Ff £f ff fF FF £F §Y95999999yyviy

oxo0000950 Ff Ff £f £f £f £f £f £f £f £f £f £f £f £f FF FF 555995995995999y

0x0B0EE0EE TF Tf Tf Ff FF £f £f Tf FFf ¥ £f Tf ff FF FF £F Jyy9999999yyvivy

oxooeeeace FF Tf Tf Tf F £f £f Tf TFf FF £f Tf TF FF FF £F Jyyy99999yvyvvy

gxpeaaeope ff £f £f ff £ff £ff £ ff £ff ff ff £ff £ff £ ff ff AR

BxPEEEEIEe b4 @1 3a 14 2c d2 57 88 7f 16 3e a2 34 f5 95 42

BxPEEEE0FE B9 1d c5 B8 48 ea 83 ec 57 B8 7f 2f 8d 82 3c 23 Ref HaSh

BNSC

axwaeeeesse ff ff ff ff £ff £f £ ff £f £ £ £f £F £F ff T §yyyvyvyveesgy

axaeeeasts ff fFf ff ff £f £f £F ff £f £ ff £ff £Ff £ ff ff iy

Gw@eeeasse £ £ £ £f £f £Ff £F £f £f £ £F £f £F £ Ff £ §yyyvyviiiieeegy

gweeeeesse ff ff £ ff ff £f £ £f £f £ £ £f £F £F ff T §yyyvvviiveesy

Gxwaeeeesye ff ff ff ff £ff £ £ ff £F £ £ ff £fF £F F T §yyyvyviivvvesy

gxeeeeassze ff ff ff ff £ff £f £ ff £f £ ff £f £fF £ FFf FF ey

axeeeeesoe ff ff £ £f £ff £f £ £f £f £ £ £f £f £F ff T §yyyvvvveeswy

Gwaeeeasse ff fF £ £f £ff £ £ ff £f £ £ £f £fF £ fF T §yyyvyvyivvyesy

awoeeeesse ff ff ff ff £ff £f £ ff £f £ ff £f £f £ Ff ff iy -
© 2022 Microchip Technology Inc. Application Note DS70005365C-page 64

and its subsidiaries

31

ANS365

Software Use Case Examples

Software Use Case Examples

Non-Secure Peripheral (TC0)

This Use Case example describes how to configure a SAM L11 integrated peripheral (TCO) as a Non-Secure

peripheral.

In this example, the Secure project is in charge of allocating PORT and TC peripherals to the Non-Secure world,
setting system clocks, and then jumping to the Non-Secure application.

The Non-Secure application uses the TCO to generate a PWM signal on PAQ7.

The figure below illustrate the execution flow of Secure main routines.

Figure 3-1. Secure Main Routine Flow Chart

Secure

Secure
Main routine

Initialize System clock

I
Configure TCO
peripheral clock
channel
]
Allocate PAOY (LED pin)
to Non-Secure world

]
Allocate TCO interrupt
to Non-Secure world

|
Prepare and jump to
Non-Secure Reset
handler

e
L

Secure main.c

The figure below illustrate the execution flow of Non-Secure main routines.

© 2022 Microchip Technology Inc.
and its subsidiaries

Application Note

DS70005365C-page 65

ANS365

Software Use Case Examples

Figure 3-2. Non-Secure Main Routine Flow Chart

Non-Secure
Non-Secure
Main routine Get interrupt status
Initialize PAD7
as output
1
Initialize and enable TCO
Set PAO7 output
» level to 1
Increment TCO Compare <
0 Value
] Status = OVF

Set PAO7output
levelto O

|«
-

Nen-Secure main.c

The following code examples provide the key Secure world function calls and declaration used for allocating TCO and

associated system features to the Non-Secure world.

+ TCO allocation to the Non-Secure world in fuses definition (sam111 urow.h)

#define UROW NONSECC SERCOMO 0x0 /* SERCOMO is secured */
#define UROW NONSECC SERCOM1 0x0 /* SERCOM1 is secured */
#define UROW_ NONSECC SERCOM2 0x0 /* SERCOM2 1is secured */

0x1 /* TCO is Non-secured */
0x0 /* TCl is secured */
0x0 /* TC2 is secured */

#define UROW_NONSECC_TCO
#define UROW_NONSECC_ TC1
#define UROW_NONSECC_TC2

» TCO peripheral clock configuration and interrupt allocation to the Non-Secure world (Secure application)

int main (void)

{

uint32 t ret;

funcptr void NonSecure ResetHandler;

/* Initialize the SAM system */
SystemInit () ;
/* Configure TCO peripheral clock channel */
GCLK->PCHCTRL[14] .reg =(GCLK_PCHCTRL GEN(0) | GCLK PCHCTRL CHEN) ;
/* Allocate PAO7 (LED pin) to Non Secure world */

© 2022 Microchip Technology Inc. Application Note

and its subsidiaries

DS70005365C-page 66

ANS365

Software Use Case Examples

PORT SEC->Group[0] .NONSEC.reg = (PORT PAQ07) ;
/* Allocate TCO interrupt to Non-Secure world */

NVIC SetTargetState (TCO_IRQn) ;
/* Set Non-Secure main stack (MSP NS) */

TZ set MSP NS (* ((uint32 t *) (Tz START NS)));

/* Get Non-Secure reset handler */

NonSecure ResetHandler = (funcptr void) (* ((uint32 t *) ((TZ START NS) +
4U))) ;
/* Start Non-Secure state software application */

NonSecure ResetHandler () ;

while (1)

{

NOP () ;
}

Secure Peripheral (TCO0)

This use case example demonstrates how to configure a SAM L11 integrated peripheral (TCO) as a Secure
peripheral.

In this use case, the Secure project is in charge of configuring system resources and managing the TC peripheral. It
also provides specific TCO APIs and Non-Secure callbacks to the Non-Secure world. The figure below illustrates the
secure main function:

Figure 3-3. Secure Main Routine Flow Chart

Secure

Secure
Main routine

Initialize System clock

I
Configure TCO
peripheral clock
channel
]
Allocate PAO7 (LED pin)
to Non-Secure world

|
Prepare and jump to
Non-Secure Reset
handler

[
»

Secure main.c

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 67
and its subsidiaries

ANS365

Software Use Case Examples

The following APIs or veneers are provided to Non-Secure world to drive TCO peripheral from Non- Secure world:
» tc0_compare_0_interrupt_callback_register(secure_void_cb_t pfunction);
» tc0_overflow_interrupt_callback_register(secure_void_cb_t pfunction);
* tcO_init(void);
» tcO_set_duty_cycle(uint8_t duty_cycle);
The Non-Secure world use the Secured TCO through APIls and veneers provided by the Secure world and generates

a PWM signal on the PAQO7 pin. The following figures display the flowcharts of the application and the interaction with
the Secure world.

Figure 3-4. Non-Secure Main Routine Flow Chart

Non-secure Non-secure callable Secure

Initialize PA7 as
output
L 4
Register “LED_on” Register TCO CMO Register TCO CMO
as TCO CMOsecure | Iyl secure callback secure callback
callback veneer
|
v
Register “LED_off” Register TCO MC0 Register TCO OVF
as TCOOVF secure |—1p] secure callback secure callback
callback veneer
|
v
Initialize TCO »| Initialize TCO Initialize TCO
veneer
. I
Y
Decrease TCO duty 2 : —]
cycles from 100% Set TCO duty cycle Set TCO duty cycle
to 0% veneer veneer
|
Non-Secure main.c veneer.c/.h Secure_tc.c

The figure below illustrates the Secure TC handler.

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 68
and its subsidiaries

3.3

ANS365

Software Use Case Examples

Figure 3-5. Secure TC Handler Flow Chart

Nen-secure

Secure

Secure TCO
interrupt handler

LED On

CMO interrupt?

LED Off

we rmu pt ?

Y

Non-Secure main.c

returm

Secure_tc.c

Mix-Secure Peripheral (EIC)

This use case example describes how to configure and use a SAM L11 Mix-Secure peripheral (EIC). Using this
example, the user can configure two interrupt lines, EXTIN 1 and EXTIN2, and then allocate them to the Non-Secure
and Secure world. This results in the execution of a Non-Secure handler when EXTIN 1 interrupt is detected and a
Secure Handler when the EXTIN 2 is detected, as shown in the figure below.

© 2022 Microchip Technology Inc.
and its subsidiaries

Application Note DS70005365C-page 69

ANS365

Software Use Case Examples

Figure 3-6. Mix-Secure Peripheral Use Case Example Output

T COM3 - Tera Term VT
File Edit Setup Control Window Help

=uxx SAM L1l — Mix—Secure EIC example eeee

MON-SECURE : EXNTIN 1 interrupt Handler
SECURE : EXTIMN2Z interrupt Handler

In the example, the Secure project is in charge of configuring system resources, allocating EIC interrupt line 1 to the

Non-Secure world, and managing the external interrupt on Secured interrupt line 2. The figure below illustrates the
Secure main function flowchart.

© 2022 Microchip Technology Inc. Application Note

DS70005365C-page 70
and its subsidiaries

ANS365

Software Use Case Examples

Figure 3-7. Secure Application Flow Chart

Secure

Secure
Main routine

Initialize System clock Clear EXTINT 2
I Interrupt Flag

Allocate EIC EXTINT 1 |
to Non-Secure world Print information on
console

Allocate EXTINT 1
interrupt to Non-Secure

world

|
Configure EIC
EXTINT 2
1
Prepare and jump to
Non-Secure reset
handler

Secure main.c

In the example, the Non-Secure project is in charge of configuring and handling the EIC interrupt line 1, which is
allocated to the Non-Secure world by the Secure application. The figure below illustrates this process:

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 71
and its subsidiaries

ANS365

Software Use Case Examples

Figure 3-8. Non-Secure Application Flow Chart

Secure
Main routine

Initialize System clock

Configure EIC
EXTINT 1

A A

Non-secure

Clear EXTINT 1
Interrupt Flag

Print information on
console

Non-Secure main.c

© 2022 Microchip Technology Inc.
and its subsidiaries

Application Note

DS70005365C-page 72

3.4

ANS365

Software Use Case Examples

TrustRAM

The TrustRAM (TRAM) embedded in the SAM L11 offers these advanced security features for Secure information
storage:

Address and data scrambling

Silent access

Data remanence

Active shielding and tamper detection

Full erasure of scramble key and RAM data on tamper detection

The TrustRAM example, provided with this document, illustrates the configuration of TrustRAM with the following
security features:

Address and data scrambling activated with key: 0xCAFE

Silent access enabled

Data remanence enabled

RTC static tamper detection enabled on PA8

Full erasure of scramble key and RAM data on tamper detection enabled

In this example, the TrustRAM content is displayed and refreshed every second on a Secure console (USARTO),
allowing users to experiment with static and dynamic tamper detections coupled with a TrustRAM Full Erase.

Figure 3-9. TRAM Use Case Application Output

-

.

. COM23:115200baud - Tera Term PPN

File Edit Setup Control Window Help

Truzt HAM content (1 refreshd

Bxabab Bxabab Bxabab Bxabab Bxabab Bxab5ab Bxabab Bxabab
Axabhabh Axababh Axabab BAxabab Axabab Axaba5 Bxabab BAxabasb
Bxabab Bxabab Bxabab Bxabab Bxabab Bxab5ab Bxabab Bxabab

Axabhabh Axababh Axabab BAxabab Axabab Axaba5 Bxabab BAxabasb
Bxabab Bxabab Bxabab Bxabab Bxabab Bxa5ab Bxabab Bxabab
Bxabab Axabab Bxabab Bxab%ab BAxab%ab Bxa5ab Bxabab Bxabab
Bxabab Bxabab Bxabab Bxabab Bxabab Bxa5ab Bxabab Bxabab
Bxabab Axabab Bxabab BAxab%ab BAxabab BxaS5ab Bxabab Bxabab

Truzt RAM content {1z refreshd

Bx0000 Ax0000 BxB0A8 AxB0AA O:A000 Bx0000 Bx0000 Bx0B00

BxA000 AxBARE BxBABA AxBEAR BxP0AR BxPEPE BxEBER BxERBE

Bx0000 Ax0000 BxB0A8 AxB0AA O:A000 Bx0000 Bx0000 Bx0B00

BxA000 AxBARE BxBABA AxBEAR BxP0AR BxPEPE BxEBER BxERBE

Bx0000 Ax0000 BxB0A8 AxB0AA O:A000 Bx0000 Bx0000 Bx0B00

BxA000 AxAAA0 BxBABA AxBEAR AxA0A0 BxPEPE BxABER BxPRBE

Bx0000 Ax0A00 BxBOAA AxBEAR OxB000 Bx0000 Bx0B060 BxBE00

Ax0000 BxAA0A BxARAA BxPARA AxAOAE PxPEAE BxPERR BxPEeHE i X

l

Bxabab Bxabab Bxa%ab Bxabab Bxabab Bxabab Bxabab -
Bxaba5 Bxabab BAxab%ab Bxabab Bxabab Bxabab Bxab5ab
Bxabab Bxabab Bxa%ab Bxabab Bxabab Bxabab Bxab5ab
Bxaba5 Bxabab Bxab%ab Bxabab Bxabab Bxabab Bxabab
Bxabab Bxabab Bxa%ab Bxabab Bxabab Bxabab Bxab5ab
Bxaba5 Bxabab Bxab%ab Bxabab Bxabab Bxabab Bxabab
Bxabab Bxabab Bxa%ab Bxabab Bxabab Bxabab Bxabab

The figure below illustrates the Secure main function with TRAM.

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 73
and its subsidiaries

ANS365

Software Use Case Examples

Figure 3-10. TRAM Use Case Application Flow Chart

Secure

System Initialize

Secure console init

Secure delay mmt

Secure RTC 1t

Securs TRAM it

Fill TRAM with “OxAS”
pattern

>

Wait 1s

Display TRAM content
on secure console

Secure main.c

© 2022 Microchip Technology Inc.
and its subsidiaries

Application Note DS70005365C-page 74

ANS365

Software Use Case Examples

Cryptographic Accelerator (CRYA)
SAM L11 embeds a hardware Cryptographic Accelerator (CRYA) with associated software functions stored in Boot
ROM, which provide the hardware acceleration for the following:

* Advanced Encryption Standard (AES-128) encryption and decryption

» Secure Hash Algorithm 2 (SHA-256) authentication

» Galois Counter Mode (GCM) encryption and authentication

The below CRYA example shows the use of CRYA for AES 128-bit key length and the SHA-256 cryptographic
algorithm.

Figure 3-11. CRYA Use Case Application Output

W COMS3 - Tera Term VT — O X
File Edit Setup Control Window Help

AES—128
Key : Bx@8 BxB1 BxB2 BxB3 Bx@4 BxB5 BxB6 Ax@7 BxB8 BxB? BxBa BxBh BxBc BxBd BxBe BxBf
Plain text = BxB8 Bxll Bx22 Bx33 Bx44 Bx5H5 Bx66 Bx77 Bx88 Bx?? Bxaa Bxbb Bxcc Bxdd Bxee Bxff
Ciphered text : Bx6? Bxcd BxeB BxdB Bxba Bx7h BxB4 Bx30 Bxd8 Bxcd Bxb? Bx880 Bx7@ Bxb4 @xch Bxbha
Deciphered text : BxBBA Bxl1l Bx22 Bx33 Bx44 Bx55 Bx66 Bx77 BxB8 Bx?? Oxaa Bxbb Bxcc Bxdd Bxee Bxff

SHA-256
8HA-256 Plain text = "hello world"
S8HA-256 Digest : Bxh74d27h? Bx?34d3eBB Bxab2e52d7 Bxda?dabfa Bxc484efed Bx7ab38Pee Bx?088f7ac BxeZefcde?

GC ain H (] Bx22 Bx33 Bx44 Bx55 Bx66 Bx77 Bx88 Bx?? Bxaa Bxbb Bxcc Bxdd Bxee Bxff

GCHM Key : Bxcf BxB6 Bx3a Bx34 Bxd4 Bxa? Bxa? Bxbc Bx2c Bx86 Bx78 Bx7d Bx3f Bx76 Bxdb Bx71

GCHM Ciphered text : BxcB BxBa Bx14 Bx84 Bxdl Bx3b Bxel Bxel Bx?3 Bx37 Bx67 Bxld Bx?3 Bxc3 Bxch Bxac
GCHM Encrypt Tag = Bx42 Bx3b Bx3a BxB5 Bx65 BxBa Bxdc Bx74 Bx42 Bx15 Bxld Bx51 Bx54 Bx78 Bxba BxBa
GCHM Deciphered text : BxB8 Bxll Bx22 Bx33 Bx44 Bx55 Bx66 Bx77 Bx88 Bx9? Bxaa Bxbb Bxcc Bxdd Bxee Bxff
GCHM Decrypt Tag = Bx42 Bx3b Bx3a BxB5 Bx65 BxBa Bxdc Bx9?4 Bx42 Bx1S Bxid Bx51 Bx54 Bx78 Bxha BxBa Ji

The figure below illustrates the CRYA use case application flowchart:

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 75
and its subsidiaries

ANS365

Software Use Case Examples

Figure 3-12. CRYA Use Case Application Flow Chart

Secure

System Initialize

Secure console init

Print AES 128-bit Key
and 1nput text

Cypher text

Print cyphered text

Decrypt cyphered text

Print decrypted text

Print SHA-256
message

Print message digest

Secure main.c

© 2022 Microchip Technology Inc.
and its subsidiaries

Application Note

DS70005365C-page 76

3.6

ANS365

Software Use Case Examples

Data Flash

The Data Flash embedded in SAM L11 offers the following advanced security features for the secure information
storage:

» Data scrambling
» Silent access to selected row (TEROW)
» Tamper erase of selected row (TEROW) on tamper detection

The Data Flash use case shown in the figure below, illustrates the configuration of NVMCTRL for Secure Data Flash
management:

» Data scrambling activated with key: 0x1234
« Silent access enabled on the first Data Flash ROW

Figure 3-13. Data Flash Use Case Application Output

[\ COM43:115200baud - Tera Term VT 'Y) s M~ EEREERT

File Edit Setup Control Window Help

G HEHHHEHHHHHE I H I HEE
i DataFlash uszse—-case example #
##ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ##ﬂﬂ##ﬂﬂﬂ#ﬂﬂﬂ################

— Enable DataFlash security feature

— Erase TEROW

— Print TERO

Page
| Page
Page
Page

Page AAARBANA ARBBARARE

Page AAARBAAA ARAERRARE

Page AAARBANA ARBBARARE

Page AAARBAAA ARAERRARE

Page AAARBANA ARBBARARE

Page HEARBAAA ARBERREE

Page AEAREARA ARBEARAAE

HEARBAAA ARBERREE

AEAREARA ARBEARAAE

HEARBAAA ARBERREE

AEARBAAA ARBEAREE

H3ARBRAA BRBERREE

6
Ax480088
Ax488680
Ax4886
A:4886
Ax48868
A:48868
Ax48868
Ax488046
Ax488048
Ax4886840
Ax488604C
Ax48804E

Page
Page
Page
Page

ol el ol ol ol ol ol Bt B B By B Runficn]
EEONR RN RN RN NE NN NN NN NN NE NN NN NN NN NN
AR ER OEE RN RN EE NN NN NN NN EE RN RN RN EE R

Page
— Write BxCAFEDECA Pattern in TEROW
Print TEHOU co

x4 CAFEDECA CAFEDECA
B4 5] CAFEDECA CAFEDECA
x4 CAFEDECA CAFEDECA
B4 CAFEDECA CAFEDECA
Bx CAFEDECA CAFEDECA
Bx CAFEDECA CAFEDECAH
B4 CAFEDECA CAFEDECA
Ax48AAAE CAFEDECA CAFEDECA
Ax41886040 CAFEDECA CAFEDECA
Ax480042 CAFEDECA CAFEDECA
Ax4188H044 CAFEDECA CAFEDECA
Bx‘lﬂﬂﬂi CAFEDECA CAFEDECA

Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page
Page

A:48868 CAFEDECA CAFEDECA
Ax48868 CAFEDECA CAFEDECA
A:48868 CAFEDECA CAFEDECA
Ax48804E CAFEDECA CAFEDECA

P ke ke ke ek ek ek))) D

h i i
The figure below illustrates Data Flash use case application flowchart:

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 77

and its subsidiaries

ANS365

Software Use Case Examples

Figure 3-14. Data Flash Use Case Application Flow Chart

Secure

System Initialize

Enable Dataflash
Security features

Erase TEROW
(Dataflash ROWO)

Print TEROW content
(Dataflash ROWO0)

Write 0OxCAFEDECA
pattern in TEROW

Print TEROW content
(Dataflash ROWOQ)

Secure main.c

© 2022 Microchip Technology Inc.
and its subsidiaries

Application Note

DS70005365C-page 78

ANS365

Revision History

4. Revision History

Revision C - July 2022
The following updates were performed for this revision:

Updated all references for Atmel in the document to Microchip, and all references to AS7 and Atmel Studio 7 to
Microchip Studio 7

Updated all references of Customer to read Developer in the document

Updated the labeling for ARMvS in the Introduction

Updated Figure 1-1, Figure 1-3, and ARMv8 labeling in TrustZone for ARMv8-M

Updated Figure 1-4 in Memory Security Attribution

Updated naming and terminology in Secure and Non-Secure Function Call Mechanism
Replaced the image for Figure 1-5 in Non-Secure Callable APIs

Replaced the images for Figures 1-6 and 1-7 in Non-Secure Software Callbacks

Replaced Figure 1-9 and retitled it in Secure and Non-Secure Interrupts Handling
Restructured Secure and Non-Secure Peripherals and added in a new image for figure 1-10
Added a new topic: Peripherals Security Attribution

Replaced the images for Figures 1-11 and 1-12 in Mix-Secure Peripheral (PAC Secured)
Replaced the image for Figure 1-13 in Mix-Secure Peripheral (PAC Non-Secured)

Replaced the images for Figures 1-14 and 1-15 in Debug Access Level (DAL) and Chip Erase

Replaced the image for Figure 1-20 in Secure Boot and added a new table SAML11 Secure Boot Verification
Method

Added new notes for BOOTKEY in Secure Boot

Replaced the image for Figure 2-1 in Single-Developer Approach

Replaced the image for Figure 2-2 in Dual-Developer Approach

Replaced the image for Figure 2-11 in NVM Rows Configuration

Updated the title and replaced the image for Figure 2-16 in Debugging the Secure Solution

Replaced the image for Figure 2-17 in Debugging the Secure Solution

Replaced the image for Figure 2-22 in Develop a Non-Secure Project (Developer B)

Replaced the image for Figure 2-28 in Align Project Linker File to the SAM L11 Non-Secure Memories Attribution
Replaced the image for Figure 2-30 in Adding and Linking Secure Gateway Library to Non-Secure Project
Replaced the image for Figure 2-39 in Adding and Including Secure Gateway Header File

Revision B - April 2019
Document restructuring:

A new section is added for developing a Secure application: Develop a Solution with a Secure Boot Program
(Customer A)

The topic Application Deployment with Secure and Non-Secure Bootloaders was removed and the content
incorporated into Introduction to SAM L11 Security Features

The topic How to Define and Use Secure and Non-Secure Peripherals was removed and the content
incorporated into Software Use Case Examples

Introduction was rewritten to reflect updates to the document.

The following sections were updated:

TrustZone for ARMv8-M updated with new images

Secure and Non-Secure Peripheralsupdated with new images
Mix-Secure Integrated Peripheralsupdated with new images

Debug Access Level (DAL) and Chip Eraseupdated with new diagrams
Secure Bootupdated with new images

Single Developer Approachupdated with new images

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 79

and its subsidiaries

ANS365

Revision History

» Dual Developer Approachupdated with new images

» Develop a Secure Solution (Customer A)updated with new images

» Develop a Non-Secure Project (Customer B)updated with new images
» Non-Secure Peripheralsupdated with new diagrams and code blocks
» Secure Peripheralsupdated with new diagrams

* Mix-Secure Peripheralsupdated with new diagrams

* TrustRAM (TRAM)updated with new images

» Cryptographic Accelerator (CRYA)updated with new images

» DATA Flashupdated with new images

Revision A - June 2018
Initial release of this document.

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 80
and its subsidiaries

ANS365

The Microchip Web Site

Microchip provides online support via our web site at www.microchip.com/. This web site is used as a means to make
files and information easily available to customers. Accessible by using your favorite Internet browser, the web site
contains the following information:

* Product Support — Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

* General Technical Support — Frequently Asked Questions (FAQ), technical support requests, online discussion
groups, Microchip consultant program member listing

» Business of Microchip — Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will
receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, access the Microchip web site at www.microchip.com/. Under “Support”, click on “Customer Change
Notification” and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

» Distributor or Representative
* Local Sales Office
* Field Application Engineer (FAE)
» Technical Support
Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales

offices are also available to help customers. A listing of sales offices and locations is included in the back of this
document.

Technical support is available through the web site at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

* Microchip products meet the specification contained in their particular Microchip Data Sheet.

* Microchip believes that its family of products is one of the most secure families of its kind on the market today,
when used in the intended manner and under normal conditions.

» There are dishonest and possibly illegal methods used to breach the code protection feature. All of
these methods, to our knowledge, require using the Microchip products in a manner outside the operating
specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of
intellectual property.

» Microchip is willing to work with the customer who is concerned about the integrity of their code.

» Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code
protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection
features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital
Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you
may have a right to sue for relief under that Act.

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 81
and its subsidiaries

http://www.microchip.com/
http://www.microchip.com/
http://www.microchip.com/support

ANS365

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your
convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with
your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER
EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such
use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless
otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud,
CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck,
LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower,
PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash,
tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and
other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load,
IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated
in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom, chipKIT,
chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net,
Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip
Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified

logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail,
PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad 1/0, SMART-I.S.,

SQl, SuperSwitcher, SuperSwitcher Il, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock,
Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany || GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2018, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
ISBN: 978-1-6683-0799-1

Quality Management System Certified by DNV

ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication
facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The
Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ®
code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition,
Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

© 2022 Microchip Technology Inc. Application Note DS70005365C-page 82
and its subsidiaries

MICROCHIP

Worldwide Sales and Service

AMERICAS ASIA/PACIFIC ASIA/PACIFIC [EUROPE |

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support

Web Address:
www.microchip.com
Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX

Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075
Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924
Detroit

Novi, Ml

Tel: 248-848-4000
Houston, TX

Tel: 281-894-5983
Indianapolis
Noblesville, IN

Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC

Tel: 919-844-7510
New York, NY

Tel: 631-435-6000
San Jose, CA

Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

© 2022 Microchip Technology Inc.

and its subsidiaries

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing

Tel: 86-10-8569-7000
China - Chengdu

Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing

Tel: 86-25-8473-2460
China - Qingdao

Tel: 86-532-8502-7355
China - Shanghai

Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou

Tel: 86-186-6233-1526
China - Wuhan

Tel: 86-27-5980-5300
China - Xian

Tel: 86-29-8833-7252
China - Xiamen

Tel: 86-592-2388138
China - Zhuhai

Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune

Tel: 91-20-4121-0141
Japan - Osaka

Tel: 81-6-6152-7160
Japan - Tokyo

Tel: 81-3-6880- 3770
Korea - Daegu

Tel: 82-53-744-4301
Korea - Seoul

Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore

Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei

Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Application Note

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo

Tel: 358-9-4520-820
France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan

Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana

Tel: 972-9-744-7705
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova

Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7289-7561
Poland - Warsaw

Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham

Tel: 44-118-921-5800
Fax: 44-118-921-5820

DS70005365C-page 83

	Introduction
	Table of Contents
	1. Introduction to SAM L11 Security Features
	1.1. TrustZone for ARMv8-M
	1.1.1. Memory Security Attribution
	1.1.2. Secure and Non-Secure Function Call Mechanism
	1.1.2.1. Non-Secure Callable APIs
	1.1.2.2. Non-Secure Software Callbacks
	1.1.2.3. Security State and Call Mismatch

	1.1.3. Secure and Non-Secure Interrupts Handling

	1.2. Peripherals Security Attribution
	1.2.1. Secure and Non-Secure Peripherals
	1.2.2. Mix-Secure Integrated Peripherals
	1.2.2.1. Mix-Secure Peripheral (PAC Secured)
	1.2.2.2. Mix-Secure Peripheral (PAC Non-Secured)

	1.3. Debug Access Level (DAL) and Chip Erase
	1.4. Secure Boot

	2. SAM L11 Application Development (Developer A and Developer B)
	2.1. Single-Developer Approach
	2.2. Dual-Developer Approach
	2.3. Develop a Secure Solution (Developer A)
	2.3.1. Creating SAM L11 Secure Solution from Microchip Studio Secure Solution Template
	2.3.2. Secure Solution Template Description
	2.3.2.1. Secure Project Description
	2.3.2.2. Non-Secure Project Description
	2.3.2.3. NVM Rows Configuration
	2.3.2.4. Secure and Non-Secure Projects Linker Files

	2.3.3. Debugging the Secure Solution
	2.3.4. Protecting the Secure Project Using Debug Access Levels

	2.4. Develop a Non-Secure Project (Developer B)
	2.4.1. Creating a Non-Secure Project
	2.4.2. Project Configuration
	2.4.2.1. Align Project Linker File to the SAM L11 Non-Secure Memories Attribution
	2.4.2.2. Adding and Linking Secure Gateway Library to Non-Secure Project
	2.4.2.3. Adding and Including Secure Gateway Header File

	2.5. Developing Solution with Secure Boot Program (Developer A)
	2.5.1. Creating a Secure Solution with Boot Program
	2.5.2. Secure Solution Template with Boot Description
	2.5.2.1. Template Secure Boot Project Description
	2.5.2.2. Template NVM Fuses Configuration
	2.5.2.3. Enabling Secure Boot Process with BS Verification

	3. Software Use Case Examples
	3.1. Non-Secure Peripheral (TC0)
	3.2. Secure Peripheral (TC0)
	3.3. Mix-Secure Peripheral (EIC)
	3.4. TrustRAM
	3.5. Cryptographic Accelerator (CRYA)
	3.6. Data Flash

	4. Revision History
	The Microchip Web Site
	Customer Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System Certified by DNV
	Worldwide Sales and Service

