
 AN5365
 SAM L11 Security Reference Guide

Introduction
This document is intended to help the developer to use SAM L11 security features for building secure embedded
applications.

The following application development aspects are covered in this document:

• Single and dual developer approach
• Secure solution development using SAM L11 ecosystem
• Secure software protection using Arm® TrustZone® for ARMv8®-M and Debug Access Levels
• System root of trust using Secure Boot

The use of key security features is illustrated using bare-metal software examples on the following:

• Using SAM L11 Secure, Non-Secure, and Mix-Secured peripherals
• Using an embedded Cryptographic Accelerator (CRYA) for AES-128, SHA-256, and GCM algorithm
• Using Data Flash and Trust RAM for storing and protecting application secrets using tamper detection,

scrambling, and silent accesses

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 1

Table of Contents

Introduction...1

1. Introduction to SAM L11 Security Features...3

1.1. TrustZone for ARMv8-M ..3
1.2. Peripherals Security Attribution ...9
1.3. Debug Access Level (DAL) and Chip Erase.. 13
1.4. Secure Boot..17

2. SAM L11 Application Development (Developer A and Developer B)..20

2.1. Single-Developer Approach... 20
2.2. Dual-Developer Approach..20
2.3. Develop a Secure Solution (Developer A)..21
2.4. Develop a Non-Secure Project (Developer B)..39
2.5. Developing Solution with Secure Boot Program (Developer A)... 55

3. Software Use Case Examples.. 65

3.1. Non-Secure Peripheral (TC0)...65
3.2. Secure Peripheral (TC0).. 67
3.3. Mix-Secure Peripheral (EIC).. 69
3.4. TrustRAM... 73
3.5. Cryptographic Accelerator (CRYA)...75
3.6. Data Flash..77

4. Revision History.. 79

The Microchip Web Site... 81

Customer Change Notification Service.. 81

Customer Support.. 81

Microchip Devices Code Protection Feature.. 81

Legal Notice... 82

Trademarks.. 82

Quality Management System Certified by DNV... 82

Worldwide Sales and Service...83

 AN5365

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 2

1. Introduction to SAM L11 Security Features

1.1 TrustZone for ARMv8-M
The central security element for the Microchip SAM L11 microcontroller (MCU) is the implementation of the TrustZone
for an ARMv8-M device. The TrustZone technology is a System-on-Chip (SoC) and MCU system-wide approach to
security that enables Secure and Non-Secure application code to run on a single MCU.

TrustZone for an ARMv8-M device is based on a specific hardware that is implemented in the Cortex-M23 core,
which is combined with a dedicated secure instructions set. It enables creating multiple software security domains
that restricts access to selected memory, peripherals, and I/O to trusted software without compromising the system
performances.

The main goal of the TrustZone for an ARMv8-M device is to simplify security assessment of a deeply embedded
device. The principle behind the TrustZone for an ARMv8-M embedded software application is illustrated in the figure
below.

Figure 1-1. Standard Interactions Between Secure and Non-Secure States
DD-M9

In the SAM L11 Cortex-M23 core implementation, the security management is done using the Implementation
Defined Attribution Unit (IDAU). The IDAU interface controls the access to the execution of specific instructions which
are based on the current core security state and the address of the instruction. The figure below illustrates the
Core/Debugger access verification, performed by the system prior to allowing access to specific memory region.

 AN5365
Introduction to SAM L11 Security Features

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 3

Figure 1-2. IDAU Interface and Memory Accesses

Core/Debugger
access

Combine

IDAU
Responder

IDAU
Interface

Non-
Secure
MPU

Secure
MPU

Access to
memory

Cortex-M23

Address

S / NS / NCS

SAM L11

Thanks to this implementation, a simple function call or an interrupt processing results in a branch to a specific
security state as illustrated in the figure below. This allows for efficient calling by avoiding any code and execution
overhead.

Figure 1-3. ARMv8-M with TrustZone States Transition
DD-M10

1.1.1 Memory Security Attribution
To differentiate and isolate the Secure code from the Non-Secure code, the SAM L11 memory is divided into ten
memory regions as shown in the figure below. Each region size can be configured using dedicated NVM fuses, such
as BS, BNSC, BOOTPROT, AS, ANSC, DS, and RS.

 AN5365
Introduction to SAM L11 Security Features

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 4

Figure 1-4. SAM L11 Memory Regions

Secure Flash
(BOOT Region)

Non‐Secure Callable Flash
(BOOT Region)

Secure Flash
(APPLICATION Region)

Non‐Secure Callable Flash
(APPLICATION Region)

Non‐Secure Callable Flash
(BOOT Region)

Secure SRAM

Non‐Secure SRAM

Secure Data Flash

Non‐Secure Data Flash

0x0000 0000

BS 0x100 – BNSC 0x20

BOOTPROT 0x100

BOOTPROT AS 0x100

0x0001 0000

0x0040 0000

0x40 0000 DS 0x20

0x40 0800

0x2000 0000

0x2000 0000 RS 0x80

0x2000 4000
Non‐Secure Flash
(BOOT Region)

BS 0x100

BOOTPROT AS 0x100 – ANSC 0x20

SRAM (Up to 16 KB)

Data Flash (2 KB)

Flash (Up to 64 KB)

DD-M6

Each memory region is preconfigured in the hardware with one of the following attributes:

• Non-Secure (NS): Non-Secure addresses are used for memory and peripherals, which are accessible by all
software running on the device.

• Secure (S): Secure addresses are used for memory and peripherals, which are accessible only by Secure
software.

• Non-Secure Callable (NSC): NSC is a special type of Secure memory location. It enables software transition
from a Non-Secure to a Secure state.

The security attribute of each region will define the security state of the code stored in this region.

1.1.2 Secure and Non-Secure Function Call Mechanism
To prevent Secure code and data from being accessed from a Non-Secure state, the Secure code must meet several
requirements. The responsibility for meeting these requirements is shared between the MCU architecture, software
architecture, and the toolchain configuration.

At the core level, a set of Secure instructions dedicated to ARMv8-M devices are used to preserve and protect the
secure register values during the CPU security state transition.

• Secure Gateway (SG): Used for switching from a Non-Secure to a Secure state at the first instruction of a
Secure entry point.

• Branch with eXchange to Non-Secure State (BXNS): Used by the Secure software to branch, or return to the
Non-Secure program.

• Branch with Link and eXchange to Non-Secure State (BLXNS): Used by the Secure software to call the
Non-Secure functions.

At the toolchain level, a ‘C’ language extension (CMSE) provided by Arm must be used to ensure the use of
ARMv8-M Secure instruction.

At the software architecture level, specific Secure and Non-Secure function call mechanisms must be used to ensure
security, which are described in the following sections:

1.1.2.1 Non-Secure Callable APIs
When working with TrustZone for ARMv8-M, the application developer can define a set of Non-Secure callable APIs
which can be used to access the Secure code from the Non-Secure world. These APIs, known as Secure Gateways
(SG) or veneers are in charge of the CPU Security state switch and allow the decoupling of Secure entry points
from the rest of the Secure code. Therefore, limiting the amount of code that can potentially be accessed by the
Non-Secure state.

 AN5365
Introduction to SAM L11 Security Features

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 5

SG are expected to be placed in NSC memory regions, which are executable only when the CPU is in Non-Secure
state. The rest of the Secure code is expected to be placed in the Secure memory regions which are not accessible
when the CPU is in Non-Secure state, see figure below.

Figure 1-5. Non-Secure Callable APIs Mechanism DD-M

Using Non-Secure callable APIs require the use of specific Cortex-M23 instructions that ensure security during the
core security state switching. A direct API function call from the Non-Secure to the Secure software entry points is
allowed only if the first instruction of the entry point is a SG and is in a Non-Secure callable memory location. The use
of the special instructions (BXNS and BLXNS) are also required to branch to Non-Secure code.

The following code illustrates Secure function and its SG APIs declaration and definition using Arm GCC toolchain
with a ‘C’ language extension (CMSE).

Veneer.h:

/* Non-secure callable functions */
extern int nsc_func1(int x);

Veneer.c (linked in the NSC memory region of the device):

/* Non-secure callable (entry) function */
int __attribute__((cmse_nonsecure_entry)) nsc_func1(int x)
{
 return secure_func1(x);
}

Secure_function.c (linked in the secure memory region of the device):

int secure_func1(int x)
{
 return x + 3;
}

1.1.2.2 Non-Secure Software Callbacks
The Secure code can define and use software callbacks to execute functions from the Non-Secure world. This is a
consequence of separating Secure and Non-Secure code into separate executable files. The following figure shows
the software callback approach.

 AN5365
Introduction to SAM L11 Security Features

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 6

Figure 1-6. Non-Secure Software Callbacks Flow Chart

DD-

The management of callback functions can be performed using the BLXNS instruction. The following figure illustrates
the Non-Secure callback mechanism:

 AN5365
Introduction to SAM L11 Security Features

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 7

Figure 1-7. Non-Secure Software Callback Mechanism
DD-M

Note:  The definition of Non-Secure software callback is done through pointer to Non-Secure code location. If not
correctly checked in the Secure application, a wrong use of pointers can lead to security weakness that enables
execution of any Secure functions by the Non-Secure code. To overcome this disadvantages, a set of CMSE
functions based on the new Cortex-M23 Test Target (TT) instructions is provided.

1.1.2.3 Security State and Call Mismatch
Any attempts to access Secure regions from the Non-Secure code, or a mismatch between the code that is executed
and the security state of the system results in a HardFault exception as shown in the following figure.

Figure 1-8. Security State and Call Mismatch

Non-Secure
…
MOV r0, #10
MOV r1, #abc
ADD r2, r0, r1
…
BLX secure_addr
CMP r1, #result
…

Secure NSC

…
SG
MOVS r1, #0
MOVS r3, #1
…
…

Secure

DCD 0xE97FE97F
MOVS r1, #0
MOVS r3, #1
…
BXNS lr
…

 AN5365
Introduction to SAM L11 Security Features

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 8

1.1.3 Secure and Non-Secure Interrupts Handling
The Cortex-M23 (ARMv8-M architecture) uses the same exception stacking mechanism as the ARMv7-M
architecture, where a subset of core registers is stored automatically into the stack (hardware context saving). This
permits immediate execution of the interrupt handler without the need to perform a context save in the software.
ARMv8-M extends this mechanism to provide enhanced security based on two different stack pointers (a Secure
stack pointer and a Non-Secure stack pointer).

According to the priority settings configured in the Nested Vector Interrupt Controller (NVIC), Secure code execution
can interrupt Non-Secure code execution, and Non-Secure code can interrupt Secure code execution. The NVIC
registers at the core level are duplicated. This allows two vector table definitions, one for Secure and another for
Non-Secure.

At product start-up, all interrupts are mapped by default to the Secure world (Secure vector table). Specific CMSIS
functions accessible in the Secure world, allocate each interrupt vector to a Non-Secure handler (declared in Non-
Secure vector table).

As illustrated in the figure below, if the Secure code is running when a higher priority Non-Secure interrupt arrives, the
core pushes all its register content into a dedicated Secure stack. Registers are then zeroed automatically to prevent
any information being read, and the core executes the Non-Secure exception handler. When the Non-Secure handler
execution is finished, the hardware recovers all the registers from the Secure stack automatically. This mechanism is
managed in hardware and does not require any software intervention. This allows a Secure handover from running
Secure code to a Non-Secure interrupt handler and returning to running Secure code.

Figure 1-9. Cortex-M23 Interrupt Mechanism DD-M

1.2 Peripherals Security Attribution
The SAM L11 family of devices extends the concept of TrustZone to its integrated peripherals and offers the
possibility to allocate a specific peripheral to the Secure and Non-Secure world. The SAM L11 also embeds
peripherals that can share their resourcces between Secure and Non-Secure applications called Mix-Secure
peripherals. The management of each peripheral security attribution is done through the Peripheral Access Controller
(PAC).

Note:  The IDAU peripheral is always Secure and the DSU (Device Service Unit) peripheral is always Non-Secure.
Refer to the SAM L10/L11 Family Data Sheet for additional information.

1.2.1 Secure and Non-Secure Peripherals
As shown in the following figure, the PAC controller embeds a set of registers that define the security attribution of
each integrated peripheral of the system. These registers are configured at device startup by the ROM code which
set the PAC.NONSECx registers according to the user configuration stored in the User Row (UROW) fuses.

 AN5365
Introduction to SAM L11 Security Features

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 9

Figure 1-10. PAC.NONSECx Registers Description

DD-M

Important:  The peripherals security attribution cannot be changed by accessing the PAC.NONSECx
registers during application run-time. Any changes must be done using the User Row fuses and require
a reset of the SAM L11 device. The application can read the PAC.NONSECx register to get the current
attribution of integrated peripherals.

Peripherals can be categorized into two groups depending on their PAC security attribution and their internal secure
partitioning capabilities (standard/mix-secure):

• Non-Secure peripheral: A standard peripheral configured as Non-Secure in the PAC. The security attribution of
the whole peripheral is defined by the associated NONSECx fuse set to one. Secure and Non-Secure accesses
to the peripheral are granted.

• Secure peripheral: A standard peripheral configured as Secure in the PAC. The security attribution of the whole
peripheral is defined by the associated NONSECx fuse set to zero. Secure accesses to the peripheral are
granted where Non-Secure accesses are discarded (Write is ignored, Read 0x0), and a PAC error is triggered.

When a peripheral is allocated to the Secure world, only Secure accesses to its registers are granted, and interrupt
handling should be managed in the Secure world only.

1.2.2 Mix-Secure Integrated Peripherals
The SAM L11 embeds five Mix-Secure peripherals, which allow part of their internal resources to be shared between
Secure and Non-Secure worlds. A complete list of SAM L11 Mix-Secure peripherals and their shared resources are
as follows:

• Peripheral Access Controller (PAC): Manages the peripherals security attribution (Secure or Non- Secure).
• Non-Volatile Memory Controller (NVMCTRL): Handles the Secure and Non-Secure Flash region programming.
• I/O Pin Controller (PORT): Supports individual allocation of each I/O to the Secure or Non-Secure applications.
• External Interrupt Controller (EIC): Supports individual assignment of each external interrupt to the Secure or

Non-Secure applications.
• Event System (EVSYS): Supports individual assignment of each event channel to the Secure or Non- Secure

applications.

The capability for a Mix-Secure peripheral to share its internal resources depends on the security attribution of that
peripheral in the PAC peripheral (PAC Secured or PAC Non-Secured).

• When a Mix-Secure peripheral is Secured (NONSECx fuse set to zero), the Secure world can allocate internal
peripheral resources to the Non-Secure world using dedicated registers.

• When a Mix-Secure peripheral is Non-Secure (NONSECx fuse set to one), the peripheral behaves as a
standard Non-Secure peripheral. Secure and Non-Secure accesses to the peripheral register are granted.

1.2.2.1 Mix-Secure Peripheral (PAC Secured)
When a Mix-Secure peripheral is PAC Secured (associated PAC NONSECx fuses set to 0), the peripheral register is
banked and accessible through two different memory aliases, as shown in the figure below.

 AN5365
Introduction to SAM L11 Security Features

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 10

Figure 1-11. PAC Secured Mix-Secure Peripheral Registers Addressing
DD-M20

The Secure world can then independently enable Non-Secure access to the internal peripheral resources using the
NONSEC register, as shown in the following figure for the External Interrupt Controller.

 AN5365
Introduction to SAM L11 Security Features

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 11

Figure 1-12. External Interrupt Controller NONSEC Register
DD-M19

The NONSEC register content can only be modified by the Secure world through the peripheral register Secure alias
(PERIPH_SEC.NONSEC).

Setting a specific internal feature bit field in the NONSEC register, enables the access to the different bit fields
associated to this feature in the peripheral Non-Secure alias.

1.2.2.2 Mix-Secure Peripheral (PAC Non-Secured)
When a Mix-Secure peripheral is PAC Non-Secured (associated NONSECx fuses set to 1), the peripheral behaves
as a standard Non-Secure peripheral.

Secure and Non-Secure accesses to the peripheral register are granted. The peripheral register mapping is shown in
the figure below:

 AN5365
Introduction to SAM L11 Security Features

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 12

Figure 1-13. PAC Non-Secured Mix-Secure Peripheral Registers AddressingDD-M16

Managing PAC Non-Secured, Mix-Secured peripherals at the application level is similar to managing a standard
Non-Secure peripheral.

1.3 Debug Access Level (DAL) and Chip Erase
SAM L11 has the following configurable debug access levels (DAL), which restrict programming and debug access to
Secure and Non-Secure resources in the system.

• DAL2: Debug access with no restrictions in terms of memory and peripheral accesses
• DAL1: Access is limited to the Non-Secure memory regions. Secure memory region accesses are forbidden.
• DAL0: No access is authorized except with a debugger using the Boot ROM Interactive mode

Note:  For additional information on Boot Interactive mode, refer to the chapter “Boot ROM” in the “SAM L11 Data
Sheet” (DS60001513).

The Debug Access Level is combined with three key-protected Chip Erase commands, which provide three levels of
Non-Volatile Memory erase granularity as shown in the figure below.

 AN5365
Introduction to SAM L11 Security Features

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 13

Figure 1-14. Chip Erase Commands

Secure Flash
(BOOT Region)

Non‐Secure Callable Flash
(BOOT Region)

Secure Flash
(APPLICATION Region)

Non‐Secure Callable Flash
(APPLICATION Region)

Non‐Secure Callable Flash
(BOOT Region)

Secure Data Flash

Non‐Secure Data Flash

CMD CEx :

CMD CEx :

0 1 2

0 1 2

Ch
ip
Er
as
e_
N
S

Ch
ip
Er
as
e_
S

Ch
ip
Er
as
e_
AL
L

Non‐Secure Flash
(BOOT Region)

DD-M7

The configuration of the Chip Erase command protection key is done through the BOCOR bit field configuration, as
shown in the following figure.

 AN5365
Introduction to SAM L11 Security Features

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 14

Figure 1-15. SAM L11 Configurable Chip Erase Key Fuses

The different Chip Erase commands are used to increase the DAL level without compromising the code security.
Therefore, erase the code before changing to a higher DAL level, as illustrated in the figure below.

Figure 1-16. SAM L11 DAL and Chip Erase Mechanism

DD-M5

The Device Programming Utility provided within Microchip Studio 7 offers the easiest way to set the DAL commands
and Chip Erase commands. It can also be used to access device fuses, as shown in the following figures.

 AN5365
Introduction to SAM L11 Security Features

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 15

Figure 1-17. Chip Erase Commands Under Microchip Studio 7 Device Programming

 AN5365
Introduction to SAM L11 Security Features

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 16

Figure 1-18. Chip Erase Key Fuses Settings Under Microchip Studio 7 Device Programming

1.4 Secure Boot
The SAM L11 Boot ROM is always executed at product startup. This software is ROM coded into the device and
cannot be bypassed by the user. Depending on the Boot Configuration Row (BOCOR) fuse setting, the Boot ROM
knows if a Secure Boot region is defined in the system.

The Boot ROM can perform an integrity check (SHA-256) or authenticate (SHA-256 + BOOTKEY) the firmware
stored in the Secure Boot region prior to executing it. This verification mechanism is a key element to consider
for ensuring the system root of trust during deployment and execution of the Secure firmware. The following figure
illustrates the Secure Boot process with BS (Secure + NSC BOOT sub-regions) verification.

 AN5365
Introduction to SAM L11 Security Features

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 17

Figure 1-19. Secure Boot Process with BS Verification

Secure Flash
(BOOT Region)

Non‐Secure Callable Flash
(BOOT Region)

Non‐Secure Flash
(BOOT Region)

Secure Flash
(APPLICATION Region)

Non‐Secure Callable Flash
(APPLICATION Region)

Non‐Secure Flash
(APPLICATION Region)

0x0000 0000

BS x 0x100 – BNSC x 0x20

BS x 0x100

0x0001 0000
Flash (Up to 64KB)

Boot ROM

ROM ‐ Verify Secure Boot
Region (optional)

‐ Jump at address
0x00000000

To validate the Secure Bootloader code stored in the Device Flash BS memory section, the ROM code computes the
hash of the Flash BS region using the crypto accelerator (CRYA) and compares it to a reference hash (256 bits/32
bytes) stored in the device Secure Flash (BOOT Region) memory section. This reference hash (256 bits) must be
stored in the last 256 bits of the Secure Flash (BOOT Region) as shown in the following figure.

Figure 1-20. Boot Secure Reference Hash Location

BS

BS × 0x100

DD-M21

If the verification result is equal to the reference hash, the Boot ROM starts the Secure Bootloader execution.
Any mismatch in the value puts the device in an endless reset loop preventing Flash code execution. Only a
ChipErase_ALL command allows the recovery from this device state. The ChipErase_ALL command erases the
full memory content and resets the fuses to their factory settings.

The following fuses are used in the Secure Boot process configuration:

 AN5365
Introduction to SAM L11 Security Features

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 18

• BOOTPROT, BS and BSNC: Defines the configuration of the boot section in product Flash. The size of the
Secure, Non-Secure and Non-Secure-Callable boot sections can be customized according to the application
needs. These fuses are used for security memory allocation in product IDAU and for integrity and authentication
mechanisms when configured in the BOOTOPT fuse. Any change of the fuse setting requires a reset to be
considered by the device as only the Boot ROM can change IDAU setting.

• BOOTOPT: Defines the type of verification to be performed.
Table 1-1. SAM L11 Secure Boot Verification Method

BOOTOPT
BOOTPROT Region
Verification Method

BOCOR Row
Verification Method

0 Secure Boot Disabled

1 SHA-256 (Integrity check)

2 or 3 SHA-256 with BOOTKEY(1) (Authentication check)

Notes: 
1. BOOTKEY is defined in the BOCOR row.
2. Using the Secure Boot Authentication feature has an impact on the product start up time. Refer to the

"SAM L10/L11 Family Data Sheet” (DS60001513).

Note:  Using the Secure Boot Authentication feature has an impact on the product start up time. Refer to the “ SAM
L10/L11 Data Sheet” (DS60001513) for additional information.

BOOTKEY: 256-bit BOOTKEY used for Authentication mechanism.

The figure below highlights the fuses used for configuring the Secure Boot process.

Figure 1-21. Secure Boot Process Fuses

 AN5365
Introduction to SAM L11 Security Features

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 19

2. SAM L11 Application Development (Developer A and Developer B)
The combination of the system DAL and Chip Erase with TrustZone for Cortex-M architecture enables the developers
to follow the following development and deployment approaches:

• Single-developer approach (Developer A)
• Dual-developer approach (Developer A + Developer B)

Microchip Studio 7 integrated development platform provides a full set of advanced features to accelerate the
development of a SAM L11 application. The following sections illustrate the approaches to be followed by Developer
A and Developer B to create and customize their application.

2.1 Single-Developer Approach
In single-developer approach, the developer (Developer A) is in charge of developing and deploying Secure and
Non-Secure code. The application of Developer A can be protected by using DAL0. The figure below illustrates a
single-developer approach on SAM L11.

Figure 2-1. Single-Developer Approach

Microchip Developer
A End‐User

Blank SAM L11

DAL : 2 DAL : 0

Final
Application

DD-M17

2.2 Dual-Developer Approach
In this approach, the first developer (Developer A) is in charge of developing the Secure application and its
associated Non-Secure callable library (.lib/.h), and providing a predefined linker file to the second developer
(Developer B). This Secure application is then loaded in the SAM L11 Flash and protected using the set DAL1
command to prevent further access to the Secure memory region of the device.

A second developer (Developer B) will then start his development on a preprogrammed SAM L11 with limited access
to Secure resources (call to Non-Secure API only). To achieve this, Developer B will use a linker file and the NSC
library provided by Developer A. The figure below illustrates a dual developer approach on SAM L11.

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 20

Figure 2-2. Dual-Developer Approach

Microchip Developer
A

Blank SAM L11

DAL : 2 DAL : 1

Secure pre‐
programmed SAM L11

modules

DAL : 0

End‐User
Developer

B

Final
Application

Non‐Secure Project
+

NSC library (.lib/.h)

DD-M18

The following sections describe the application development and deployment process to be implemented for
Developer A and Developer B.

2.3 Develop a Secure Solution (Developer A)
To help Developer A to start with SAM L11 (regardless of single-developer or dual-developer approaches), Microchip
Studio 7 provides a pre-configured Secure Solution template that illustrates the basic Secure and Non-Secure
application execution as shown in the figure below. This template can be used to evaluate and understand the
TrustZone for ARMv8-M implementation in the device, or as a start-up point for custom solution development.

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 21

Figure 2-3. Secure Solution Template Overview

Secure Project

System Start

Secure function 1

Secure function 2

Non secure Project

User application

TrustZone
for Cortex‐M

Start

Function call

Function call

2.3.1 Creating SAM L11 Secure Solution from Microchip Studio Secure Solution Template
Creating a Secure Solution from the pre-configured template available in Microchip Studio 7 can be done by following
these steps :

1. Open Microchip Studio 7.
2. Select File > New > Project.
3. In the New Project window, perform these actions to create and configure a new solution:

a. Expand Installed and select C/C++ .
b. Select SAM L11 Secure Solution.
c. Enter the details for Name, Location, Solution, and Solution Name (for example see figure below).
d. Click OK.

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 22

Figure 2-4. Creating SAM L11 Solution Under Microchip Studio 7

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 23

When created, the SAM L11 Secure Solution should appear in the Microchip Studio 7 IDE, as shown below:

Figure 2-5. SAM L11 Secure Solution Under Microchip Studio 7

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 24

2.3.2 Secure Solution Template Description
Any solution created from the SAM L11 Secure Solution Template, provided with Microchip Studio 7, is composed of
preconfigured Non-Secure and Secure projects.

All the configuration aspects related to TrustZone for ARMv8-M implementation are already implemented to facilitate
the development process. The following sections describe the content of the template and the key elements to be
modified to customize the solution according to the application needs.

2.3.2.1 Secure Project Description
The goal of the Secure project included in the SAM L11 Secure Solution template is to provide a preconfigured
development base for Secure code development on SAM L11. The Secure project is preconfigured to illustrate the
following applicative aspects of a standard Secure application on SAM L11:

• Device resources attribution to Secure and Non-Secure worlds (fuse settings)
• Initialization of the system security
• Definition and declaration of Secure functions example
• Definition and declaration of Secure gateways with Non-Secure world (veneers)
• Secure call to the Non-Secure application

The following figure describes the file architecture of the preconfigured Secure project:

Figure 2-6. Secure Project Architecture

BOCOR/UROW files : Contains fuses setting definition

Secure Linker file : Contains link configuration for the
Secure application

Secure Startup file : Contains the Secure vector table and
Secure Reset Handler

Secure System file : Contains the initialization functions
for the system resources allocated to Secure application

Secure .c/.h files : Contains the Secure function examples

Secure Main File : Contains the secure Application main
routine
Veneer .c/.h files : Contains the definition and declaration
of the Non-Secure Callable (NSC) gateway to the secure
functions declared in secure.c/.h

The following figure describes the main routine of the pre-configured Secure project:

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 25

Figure 2-7. Secure Project Main Flowchart

This Secure main.c file must be used as a starting point for any secure applications development.

Note:  The provided system_init function is empty, therefore system is running 4 MHz (Reset state). This function
should be customized according to the Secure and Non-Secure application requirements.

2.3.2.2 Non-Secure Project Description
The Non-Secure project provided within the SAM L11 Secure Solution Template is a standard application that runs
in a Non-Secure world. This application can use all system resources allocated to the Non-Secure world. It uses
pre-programmed Non-Secure Callable (NSC) functions using the veneer.h file provided by the Secure application.
The Non-Secure project architecture is shown in the figure below.

Figure 2-8. Non-Secure Project Architecture

Non-Secure Linker file : Contains link configuration for
the Non-Secure application.

Non-Secure Startup file : Contains the Non-Secure
vector table and Non-Secure Reset Handler.

Non-Secure System file : Contains the initialization
functions for the system resources allocated to Non-
Secure application

Non-Secure Main file : Contains the Non-Secure
Application main routine
Veneer .h file : Link to the veneer header file containing
the secure gateways to secure project

The Non-Secure main function flowchart from the Secure Solution Template is shown in the figure below.

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 26

Figure 2-9. Non-Secure Project Main Flow Chart

The Non-Secure main function illustrates the call of specific Secure functions through gateways provided by the
Secure application veneer.h file.

This Non-Secure main.c file can be used as a starting point for any Non-Secure applications development.

2.3.2.3 NVM Rows Configuration
To ease the definition and modification of application fuses, the template embeds two dedicated header files in the
SecureApp project for managing the SAM L11 System NVM rows, as shown in the figure below.

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 27

Figure 2-10. saml11_bocor.h and saml11_urow.h

These fuses define the configuration of Boot modes, Chip Erases, system peripherals (BOD and watchdog), IDAU
(Memory security attribution), and PAC (Peripheral security attribution) and must be modified according to application
needs.

Note:  The description of the different NVM rows and bit fields can be found in the “NVM Rows“ chapter of the “ SAM
L10/L11 Data Sheet” (DS60001513).

Any change to the fuse configuration requires a restart of the device, as fuses are handled by the Boot ROM
executed at device start-up. The Boot ROM is responsible for copying the configuration of the fuses in the different
peripheral registers, and then locking the configuration to any users (including Developer A) until the next boot.

Note:  The description of the SAM L11 Boot ROM can be found in the “Boot ROM “ chapter of the “ SAM L10/L11
Data Sheet” (DS60001513).

The UROW and BOCOR templates configuration is similar to the device default fuse configuration, and its associated
memory mapping is as shown in the figure below.

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 28

Figure 2-11. SAM L11 Secure Template Memory Attribution

Secure Flash
(APPLICATION Region)

Non‐Secure Callable Flash
(APPLICATION Region)

Non‐Secure Flash
(APPLICATION Region)

Secure SRAM

Non‐Secure SRAM

Secure Data Flash

Flash (Up to 64 KB)

SRAM (Up to 16 KB)

Data Flash (2 KB)

0x0000 0000

0x0000 7C00

0x0000 8000

0x0001 0000

0x2000 0000

0x2000 2000

0x2000 4000

0x40 0000
0x40 0800

DD-M1

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 29

2.3.2.4 Secure and Non-Secure Projects Linker Files
Secure and Non-Secure projects have their own pre-configured linker files which are available in their Device_Startup
directory. The content of these files is aligned to the memory mapping defined by the saml11_urow.h and
saml11_bocor.h as shown in the figure below.

It is important, in case of Fuse modification to ensure that the memory section definitions are in line with the new fuse
settings and no overlapping is present between the Non-Secure memory space definitions and the Secure memory
space definitions. The figure below illustrates the Secure memory space definition.

Figure 2-12. Secure Memory Space Definitions

The figure below illustrates the Non-Secure memory space definitions

Figure 2-13. Non-Secure Memory Space Definitions

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 30

2.3.3 Debugging the Secure Solution
When the device is in DAL = 2, the debugging of the full Solution (Secure + Non-Secure projects) is allowed. The
following steps provide the debug capabilities of the Microchip Studio 7 integrated development environment for
debugging the TrustZone application.

1. Build the solution under Microchip Studio 7.
Note:  As the solution is composed of two projects, it is important to re-build and load the full solution to
ensure that the memory content of the device is align with both the project’s source code.

2. Ensure that the debugger is connected to a computer and SAM L11. Click (Alt+F5) to start debugging
and automatically break on the Secure main function.
Figure 2-14. Debugging and Break on Secure Main Function

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 31

3. Add a breakpoint on the return line of secure_func1 in the Secure project veneer.c file.
Figure 2-15. Breakpoint on secure_func1 Return (Secure Project)

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 32

4. Add a breakpoint on the return line of func1 in the Secure project Secure_Functions/secure.c file.
Figure 2-16. Breakpoint on func1 Return (Secure Project)

DD-M8

CAUTION
When debugging the Secure application veneers, only hardware breakpoints must be used to stop
code execution on an Secure Gateway (SG) instruction. Using software breakpoints implies the
addition of a Breakpoint (BKP) instruction before SG instruction, which triggers a Secure fault during
code execution. This behavior is normal as the first instruction to be executed when accessing the
NSC region must be an SG.

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 33

5. Continue debugging by clicking or press <F5>.
As a result, the debugger must stop successively on:

– The Secure function veneer (Secure project)
– The Secure function (Secure project)

Figure 2-17. Break on secure_func1 Return

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 34

Note:  A code Disassembly window with step-by-step debug capabilities is available by selecting the Debug >
Windows > disassembly or press <Alt+8>.

Figure 2-18. Microchip Studio 7 Disassembly Window

2.3.4 Protecting the Secure Project Using Debug Access Levels
In a dual-developer deployment approach, it is important to protect the Secure memory regions (Secure Application)
from further debugger accesses prior to delivering preprogrammed devices to Developer B

This can be done by changing the debug access level (DAL) to DAL1. Changing the debug access level can be done
using the Device Programing Tool. Follow these steps to change the debug access level:

1. Close the debug session (if running).
2. Open the Device Programming tool by selecting Tools > Device Programming.
3. Send the DAL1 command to the target SAM L11 device as shown in the following figure:

a. Select the EDBG Device Programming tool, and then click Apply.
b. Under Device Signature, Click Read.
c. Select Memories.
d. Under Device, Select “Set DAL 1”.
e. Click Change DAL.
f. Verify that no problem is reported by the Device Programing tool.

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 35

Figure 2-19. Changing DAL Using the Microchip Studio 7 Device Programming Tool

3.1 3.2

3.3

3.4 3.5

3.6

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 36

As a result, setting DAL1 prevents any future debug access to the Secure memory region of the device, as
shown in the figure below.

Figure 2-20. DAL Protected Device Memory Region

Not accessible

Not accessible

Non‐Secure Flash
(BOOT Region)

Not accessible

Not accessible

Non‐Secure Flash
(APPLICATION Region)

0x0000 0000

BS x 0x100 – BNSC x 0x20

BOOTPROT x 0x100

BS x 0x100

(BOOTPROT + AS) x 0x100 –
ANSC x 0x20

(BOOTPROT + AS) x 0x100

0x0001 0000
Flash (Up to 64KB)

Not accessible

Non‐Secure SRAM

SRAM (Up to 16KB)

Not accessible

Non‐Secure Data Flash

Data Flash (2KB)

0x40 0000

0x40 0000 + (RS*0x20)

0x40 0800

0x2000 0000

0x2000 0000 + (DS*0x80)

0x2000 4000

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 37

Any future debug access to the Secure memory region will be refused by the device and reported as follows
by Microchip Studio 7, as shown in the following figure.

Figure 2-21. Launch Failed error on DAL Protected Area

Important:  Further development with the device requires the use of a standalone Non-Secure
project. Refer to the Create and Configure a Non-Secure Project (Developer B).
To re-enable debug access on the Secure memory regions, a ChipErase_ALL command (CE2)
must be issued using the device programming tool. The whole device memory and fuse settings are
erased, and the Secure application must be reprogrammed in the device.

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 38

2.4 Develop a Non-Secure Project (Developer B)
In the Developer B context, the development starts with a preprogrammed SAM L11 device that contains a DAL1
protected Secure project with predefined veneers. Refer to the previous chapter for additional information.

Figure 2-22. Develop a Non-Secure Project (Developer B)

Microchip Developer
A

Blank SAM L11

DAL : 2 DAL : 1

Secure pre‐
programmed SAM L11

modules

DAL : 0

End‐User
Developer

B

Final
Application

Non‐Secure Project
+

NSC library (.lib/.h)

DD-M18

In this context it is mandatory for Developer A to provide Non-Secure resource attribution descriptions, and Non-
Secure callable function API library to Developer B.

Ideally, the approach should be for Developer A to provide a Non-Secure project template to Developer B. The
following sections describe how to create and configure a Non-Secure project for a SAM L11 device embedding a
pre-programmed DAL1 protected Secure application.

2.4.1 Creating a Non-Secure Project
Follow these steps to create a Non-Secure project using Microchip Studio 7:

1. Open Microchip Studio 7.
2. Select File > New > Project.
3. In the New Project window, perform these actions to create and configure a new solution:

a. Expand Installed and select C/C++ .
b. Select GCC C Executable Project.
c. Enter the details for Name, Location, and Solution Name (for example see figure below).
d. Click OK.

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 39

Figure 2-23. Creating SAM L11 Standalone Non-Secure Project Using Microchip Studio 7

4. Select the ATSAML11E16A device in the Device Selection window, and then click OK.
Figure 2-24. SAM L11 Product Selection for New SAM L11 Standalone Non-Secure Project

The Non-Secure project will be displayed in Microchip Studio 7 IDE, as shown in the following figure.

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 40

Figure 2-25. Standalone SAM L11 Non-Secure Project

2.4.2 Project Configuration
After creating a Non-Secure project, follow these steps to configure it according to the pre-programed Secure project
mapping and Secure gateway APIs:

• Configure the project by aligning its linker file to the Secure and Non-Secure memories attribution predefined by
Developer A.

• Link the Secure gateway library to the project and add veneer header file to the project.

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 41

2.4.2.1 Align Project Linker File to the SAM L11 Non-Secure Memories Attribution
Follow these steps to modify the Non-Secure solution project linker file according to the Secure and Non-Secure
memory space allocation as illustrated in the following figure.

Figure 2-26. Secure and Non-Secure Memory Space

Secure Flash
(APPLICATION Region)

Non‐Secure Callable Flash
(APPLICATION Region)

Non‐Secure Flash
(APPLICATION Region)

0x0000 0000

0x0000 7C00

0x0001 0000
Flash (Up to 64KB)

Secure SRAM

Non‐Secure SRAM

SRAM (Up to 16KB)

0x2000 0000

0x2000 2000

0x2000 4000

0x0000 8000

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 42

1. Open the project linker file: Device Startup/saml11e16a_flash.ld.
Figure 2-27. Non-Secure Project Linker File Location

2. Update the linker file memory space definitions according to the SAM L11 Non-Secure memory attribution.

/* Memory Spaces Definitions */
MEMORY
{
rom (rx) : ORIGIN = 0x00008000, LENGTH = 0x00008000
ram (rwx) : ORIGIN = 0x20002000, LENGTH = 0x00002000
}

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 43

Figure 2-28. Non-Secure Memory Address and Size Definition

DD-M2

2.4.2.2 Adding and Linking Secure Gateway Library to Non-Secure Project
Follow these steps to adding and linking the Secure gateway library generated during Secure application
development provided by Developer A:

1. Copy the Secure project implib to the Non-Secure project.
Figure 2-29. Adding Secure Gateway Library File to a Non-Secure Project Sources

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 44

2. In Microchip Studio 7, right-click on the Non-Secure project and select Properties.
Figure 2-30. Accessing to Non-Secure Project Properties

DD-M3
DD-M4

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 45

3. To add the Secure Project library, select ToolChain and expand ARM/GNU Linker, and select Libraries.

4. Click (Add Item button).
Figure 2-31. Add New Library to the Link Option

5. In the Add Libraries dialog box, enter the library name as shown below, and then click OK.
Figure 2-32. Adding Secure Gateway Library Name

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 46

6. To add the Secure Project library path, select Toolchain > ARM/GNU Linker > Libraries.

7. Click (Add Item button).
Figure 2-33. Add New Library Search Path

8. In the Add Library search path dialogue box, choose the location of the Secure project implib.
9. Select Relative Path to ensure project portability.
10. Click OK.

Figure 2-34. Enter Relative Path to the Secure Gateway Library

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 47

11. The Linker Library properties will be displayed as shown in the following figure:
Figure 2-35. Non-Secure Project Linker Libraries Configuration

12. Click (Save button) to save the project settings.

2.4.2.3 Adding and Including Secure Gateway Header File
To add and include a secure gateway header file, perform these actions:

1. Copy the Secure gateway header file from the Secure project to the Non-Secure project.
Figure 2-36. Including Secure Gateway Header File in Non-Secure Project Sources

2. Right-click Non-Secure project in the Solution Explorer, and then select Add > Existing Item.

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 48

Figure 2-37. Including Secure Gateway Header File in Microchip Studio 7 Solution Explorer

3. Select the Secure gateway header file, and then click Add.

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 49

Figure 2-38. Including Secure Gateway Header File in Non-Secure Project

4. Right-click Non-Secure project in the Solution explorer, and then select Properties.
Figure 2-39. Accessing Non-Secure Project Properties Under Microchip Studio 7

DD-M3
DD-M4

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 50

5. In the Non-Secure project window, select Toolchain > ARM/GNU C Compiler > Directories, and then click
(Add Item button).
Figure 2-40. Adding New Compiler Directory to Non-Secure Project

6. In the Add Include Paths dialogue box, select the location of the veneer.h file.
7. Select Relative Path to ensure project portability, and then click OK.

Figure 2-41. Including Secure Gateway Library Path in Compiler Directory

8. The Non-Secure project Compiler Directories properties will be displayed.

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 51

Figure 2-42. Non-Secure Project Compiler Directories Parameters

9. Press (Save button) to save the project settings.

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 52

10. To add the Secure gateway library, add the highlighted code at the beginning of the main.c file.
Figure 2-43. Including veneer.h in Non-Secure Project main.c File

11. Click (Save button) to save the modification to the main.c file.

12. Click (Build Project button).
13. Verify that no error is reported by the build process.

Important:  Prior to loading the project on the target SAM L11 device, it is important to check
Project Properties> Tools> Programing settings and ensure that the programming process does not
execute a ChipErase_All command prior to loading the application. The Ideal configuration is
“Erase only Program area” as shown in the following figure.

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 53

Figure 2-44. Project Program Settings

Figure 2-45. Non-Secure Project Successful Build

14. Launch the debug session and verify whether the project is working or not.

Important:  Debugging the Non-Secure project requires a compatible preprogrammed Secure
application that configures and starts the Non-Secure execution. If this Secure application is not
available on the MCU, the debug process will hang.

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 54

2.5 Developing Solution with Secure Boot Program (Developer A)
The SAM L11 device offers two configurable memory sections for storing the Secure and Non-Secure boot programs.
These two sections are protected against ChipErase_S and ChipErase_NS offering possibilities to store Secure and
Non-Secure Bootloader code as shown in the following figure.

Figure 2-46. Application with Secure and Non-Secure Boot Programs

Secure Flash (BOOT Region)

Non‐Secure Callable Flash (BOOT Region)

Non‐Secure Flash (BOOT Region)

Secure Flash
(APPLICATION Region)

Non‐Secure Callable Flash
(APPLICATION Region)

Non‐Secure Flash
(APPLICATION Region)

0x0000 0000
BS x 0x100 – BNSC x 0x20

BOOTPROT x 0x100
BS x 0x100

(BOOTPROT + AS) x
0x100 – ANSC x 0x20

(BOOTPROT + AS) x 0x100

0x0001 0000
Flash (Up to 64KB)

Chiperase_N
S

Chiperase_S

Chiperase_All

ChipErase

Flash (Up to 64KB)

In addition to ChipErase protection, the product Boot ROM offers the possibility to perform an integrity check or
authenticate the firmware stored in the Secure Boot section prior to executing it. This verification mechanism is a key
element to consider for ensuring the system root of trust during deployment and execution of the Secure firmware.

2.5.1 Creating a Secure Solution with Boot Program
To ease the development of an application with the Secure Boot program, Microchip Studio 7 provides a predefined
Secure Solution with a Boot template. This template can be used to evaluate and understand the solution
architecture and start the development of a custom application featuring a Secure Boot project. The following figure
shows the template content and interactions between preconfigured projects.

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 55

Figure 2-47. Secure Solution Template Content

Secure Project

System Start

Secure function 1

Secure function 2

Non secure Project

User application

TrustZone for
Cortex‐M

Function call

Function call

Secure Boot Project

System Start

Secure boot function
1

Secure boot function
2

Function call

Function call

Start

Start

Follow these steps to create a Secure solution with a Boot program using Microchip Studio 7.

1. Open Microchip Studio 7.
2. From File > New > Project.
3. In the New Project window, perform these actions to create and configure a new secure solution:

a. Expand Installed and select C/C++ .
b. Select SAM L11 Secure Solution with Boot.
c. Enter the details for Name, Location, and Solution Name (for example see figure below).
d. Click OK.

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 56

Figure 2-48. Secure Solution with Boot Creation

3

4

5

6

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 57

When created, the solution appears in Microchip Studio 7 IDE as shown in the following figure:

Figure 2-49. Secure Solution with Boot

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 58

2.5.2 Secure Solution Template with Boot Description
The SAM L11 Secure solution template with boot code provided within Microchip Studio 7 is similar to the SAM L11
Secure solution template as described in previous chapters, but it embeds a Secure Boot program (stored in BS
memory region of the device).

2.5.2.1 Template Secure Boot Project Description
The goal of the Secure Boot project included in the solution template is to provide a preconfigured development
base for Secure boot code development on SAM L11 . The Secure project is preconfigured to illustrate the following
aspects of a standard Secure application on the SAM L11:

• Definition and declaration of Secure boot functions example
• Definition and declaration of Secure boot gateways with Non-Secure world (veeners)
• Secure call to the Secure application

The following figure illustrates the file architecture of the pre-configured Secure Project:

Figure 2-50. Secure Boot Project Architecture

Secure Linker file : Contains link configuration for the
Secure boot application

Secure Startup file : Contains the Secure boot vector
table and Secure Reset Handler

Secure System file : Contains the initialization functions
for the system resources allocated to Secure application

Secure .c/.h files : Contains the Secure function examples

Secure Main File : Contains the secure Application main
routine

Veneer .c/.h files : Contains the definition and declaration
of the Non-Secure Callable (NSC) gateway to the secure
functions declared in secure.c/.h

BOCOR/UROW files : Contains fuses setting definition

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 59

2.5.2.2 Template NVM Fuses Configuration
The default USERROW and BOCOR template settings and associated memory mapping are described in the
following figure.

Figure 2-51. Default Secure Solution with Boot Code Mapping

Secure Flash
(BOOT Region)

Non‐Secure Callable Flash
(BOOT Region)

Secure Flash
(APPLICATION Region)

Non‐Secure Callable Flash
(APPLICATION Region)

Non‐Secure Flash
(APPLICATION Region)

0x0000 0000

0x0000 0A00

0x0000 1A00

0x0000 1000

0x0000 D000

0x0001 0000
Flash (Up to 64KB)

Secure SRAM

Non‐Secure SRAM

SRAM (Up to 16KB)

Secure Data Flash

Data Flash (2KB)

0x2000 0000

0x2000 2000

0x2000 4000

0x0040 0000

0x0040 0400

0x0040 0800

The table below provides the BOCOR Fuse settings.

Table 2-1. BOCOR Fuse Settings

Fuses values Configuration

BNSC 0x30 Boot Flash Non-Secure Callable Size = BNSC*0x20 = 0x600

BS 0x10 Boot Flash Secure Size = BS*0x100 = 0x1000

BOOTOPT 0x00 No secure boot verification

BOOTPROT 0x10 Boot Protection size = BOOTPROT*0x100 = 0x1000

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 60

...........continued
Fuses values Configuration

BCWEN 0x01 Boot Configuration Write Enabled

BCREN 0x01 Boot Configuration Read Enabled

CEKEY0 All 1s CE0 key = All 1s

CEKEY1 All 1s CE1 key = All 1s

CEKEY2 All 1s CE2 key = All 1s

BOOTKEY All 1s Boot key = All 1s

The table below provides the UROW Fuse settings.

Table 2-2. UROW Fuse Settings

Fuses values Configuration

SULCK_BS 0x1 BS region is not locked

SULCK_AS 0x1 AS region is not locked

SULCK_DS 0x1 DS region is not locked

NSULCK_BNS 0x1 BNS region is not locked

NSULCK_ANS 0x1 ANS region is not locked

NSULCK_DNS 0x1 DNS region is not locked

BOD33_LEVEL 0x6 BOD33 threshold level = 0x6

BOD33_DISABLE 0x0 BOD33 enabled

BOD33_ACTION 0x1 BOD Action = RESET

WDT_RUNSTDBY 0x0 WDT disabled during standby sleep

WDT_ENABLE 0x0 WDT disabled

WDT_ALWAYS_ON 0x0 WDT enabled/disabled through ENABLE bit

WDT_PER 0xB WDT Time-Out Period = 0xB

WDT_WINDOW 0xB Window Mode Time-Out Period = 0xB

WDT_EWOFFSET 0xB Early Warning Interrupt Time Offset = 0xB

WDT_WEN 0x0 WDT windows disabled

BOD33_HYST 0x0 No BOD33 Hysteresis

RXN 0x1 RAM is not executable

DXN 0x1 Data Flash is not executable

AS 0x10 Flash Application Secure Size = AS*0x100 = 0x1000

ANSC 0x30 Flash Application Non-Secure Callable Size = ANSC*0x20 = 0x600

DS 0x08 Data Flash Secure Size = DS*0x100 = 0x800

RS 0x40 RAM Secure Size = RS*0x80 = 0x2000

URWEN 0x1 User Row Write Enabled

NONSECA 0x0000 0000 Peripherals are secured

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 61

...........continued
Fuses values Configuration

NONSECB 0x0000 0000 Peripherals are secured

NONSECC 0x0000 0000 Peripherals are secured

To ease the definition and modification of application fuses, all fuse values are defined in saml11_bocor.h and
saml11_urow.h as shown in the following figure. These fuse values can be modified according to the requirement
of the application.

Figure 2-52. SAM L11 Fuses Definition

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 62

2.5.2.3 Enabling Secure Boot Process with BS Verification
Follow these steps to enable Secure Boot process verification when working with Microchip Studio 7:

1. Perform a ChipErase_ALL command using device programming.
2. Build the Boot application using Microchip Studio IDE.
3. Change BOOTOPT fuse to 0x01 or 0x02 using the device programing tool.

Figure 2-53. Secure Boot Process with BS Verification

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 63

The reference hash will be computed and written in memory automatically by the device programming tool when the
step, shown in the figure below, is executed.

Figure 2-54. Secure Boot Application Reference Hash

Ref. Hash

BNSC

 AN5365
SAM L11 Application Development (Developer A ...

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 64

3. Software Use Case Examples

3.1 Non-Secure Peripheral (TC0)
This Use Case example describes how to configure a SAM L11 integrated peripheral (TC0) as a Non-Secure
peripheral.

In this example, the Secure project is in charge of allocating PORT and TC peripherals to the Non-Secure world,
setting system clocks, and then jumping to the Non-Secure application.

The Non-Secure application uses the TC0 to generate a PWM signal on PA07.

The figure below illustrate the execution flow of Secure main routines.

Figure 3-1. Secure Main Routine Flow Chart

The figure below illustrate the execution flow of Non-Secure main routines.

 AN5365
Software Use Case Examples

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 65

Figure 3-2. Non-Secure Main Routine Flow Chart

The following code examples provide the key Secure world function calls and declaration used for allocating TC0 and
associated system features to the Non-Secure world.

• TC0 allocation to the Non-Secure world in fuses definition (saml11_urow.h)

…
#define UROW_NONSECC_SERCOM0 0x0 /* SERCOM0 is secured */
#define UROW_NONSECC_SERCOM1 0x0 /* SERCOM1 is secured */
#define UROW_NONSECC_SERCOM2 0x0 /* SERCOM2 is secured */
#define UROW_NONSECC_TC0 0x1 /* TC0 is Non-secured */
#define UROW_NONSECC_TC1 0x0 /* TC1 is secured */
#define UROW_NONSECC_TC2 0x0 /* TC2 is secured */
…

• TC0 peripheral clock configuration and interrupt allocation to the Non-Secure world (Secure application)

int main(void)
{
uint32_t ret;
funcptr_void NonSecure_ResetHandler;

/* Initialize the SAM system */
 SystemInit();
/* Configure TC0 peripheral clock channel */
GCLK->PCHCTRL[14].reg =(GCLK_PCHCTRL_GEN(0) | GCLK_PCHCTRL_CHEN);
/* Allocate PA07 (LED pin) to Non Secure world */

 AN5365
Software Use Case Examples

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 66

 PORT_SEC->Group[0].NONSEC.reg = (PORT_PA07);
/* Allocate TC0 interrupt to Non-Secure world */
 NVIC_SetTargetState(TC0_IRQn);
/* Set Non-Secure main stack (MSP_NS) */
 TZ_set_MSP_NS(*((uint32_t *)(TZ_START_NS)));
/* Get Non-Secure reset handler */
 NonSecure_ResetHandler = (funcptr_void)(*((uint32_t *)((TZ_START_NS) +
4U)));
/* Start Non-Secure state software application */
 NonSecure_ResetHandler();
 while (1)
 {
 NOP();
 }
}

3.2 Secure Peripheral (TC0)
This use case example demonstrates how to configure a SAM L11 integrated peripheral (TC0) as a Secure
peripheral.

In this use case, the Secure project is in charge of configuring system resources and managing the TC peripheral. It
also provides specific TC0 APIs and Non-Secure callbacks to the Non-Secure world. The figure below illustrates the
secure main function:

Figure 3-3. Secure Main Routine Flow Chart

 AN5365
Software Use Case Examples

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 67

The following APIs or veneers are provided to Non-Secure world to drive TC0 peripheral from Non- Secure world:

• tc0_compare_0_interrupt_callback_register(secure_void_cb_t pfunction);
• tc0_overflow_interrupt_callback_register(secure_void_cb_t pfunction);
• tc0_init(void);
• tc0_set_duty_cycle(uint8_t duty_cycle);

The Non-Secure world use the Secured TC0 through APIs and veneers provided by the Secure world and generates
a PWM signal on the PA07 pin. The following figures display the flowcharts of the application and the interaction with
the Secure world.

Figure 3-4. Non-Secure Main Routine Flow Chart

The figure below illustrates the Secure TC handler.

 AN5365
Software Use Case Examples

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 68

Figure 3-5. Secure TC Handler Flow Chart

3.3 Mix-Secure Peripheral (EIC)
This use case example describes how to configure and use a SAM L11 Mix-Secure peripheral (EIC). Using this
example, the user can configure two interrupt lines, EXTIN 1 and EXTIN2, and then allocate them to the Non-Secure
and Secure world. This results in the execution of a Non-Secure handler when EXTIN 1 interrupt is detected and a
Secure Handler when the EXTIN 2 is detected, as shown in the figure below.

 AN5365
Software Use Case Examples

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 69

Figure 3-6. Mix-Secure Peripheral Use Case Example Output

In the example, the Secure project is in charge of configuring system resources, allocating EIC interrupt line 1 to the
Non-Secure world, and managing the external interrupt on Secured interrupt line 2. The figure below illustrates the
Secure main function flowchart.

 AN5365
Software Use Case Examples

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 70

Figure 3-7. Secure Application Flow Chart

In the example, the Non-Secure project is in charge of configuring and handling the EIC interrupt line 1, which is
allocated to the Non-Secure world by the Secure application. The figure below illustrates this process:

 AN5365
Software Use Case Examples

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 71

Figure 3-8. Non-Secure Application Flow Chart

 AN5365
Software Use Case Examples

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 72

3.4 TrustRAM
The TrustRAM (TRAM) embedded in the SAM L11 offers these advanced security features for Secure information
storage:

• Address and data scrambling
• Silent access
• Data remanence
• Active shielding and tamper detection
• Full erasure of scramble key and RAM data on tamper detection

The TrustRAM example, provided with this document, illustrates the configuration of TrustRAM with the following
security features:

• Address and data scrambling activated with key: 0xCAFE
• Silent access enabled
• Data remanence enabled
• RTC static tamper detection enabled on PA8
• Full erasure of scramble key and RAM data on tamper detection enabled

In this example, the TrustRAM content is displayed and refreshed every second on a Secure console (USART0),
allowing users to experiment with static and dynamic tamper detections coupled with a TrustRAM Full Erase.

Figure 3-9. TRAM Use Case Application Output

The figure below illustrates the Secure main function with TRAM.

 AN5365
Software Use Case Examples

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 73

Figure 3-10. TRAM Use Case Application Flow Chart

 AN5365
Software Use Case Examples

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 74

3.5 Cryptographic Accelerator (CRYA)
SAM L11 embeds a hardware Cryptographic Accelerator (CRYA) with associated software functions stored in Boot
ROM, which provide the hardware acceleration for the following:

• Advanced Encryption Standard (AES-128) encryption and decryption
• Secure Hash Algorithm 2 (SHA-256) authentication
• Galois Counter Mode (GCM) encryption and authentication

The below CRYA example shows the use of CRYA for AES 128-bit key length and the SHA-256 cryptographic
algorithm.

Figure 3-11. CRYA Use Case Application Output

The figure below illustrates the CRYA use case application flowchart:

 AN5365
Software Use Case Examples

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 75

Figure 3-12. CRYA Use Case Application Flow Chart

 AN5365
Software Use Case Examples

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 76

3.6 Data Flash
The Data Flash embedded in SAM L11 offers the following advanced security features for the secure information
storage:

• Data scrambling
• Silent access to selected row (TEROW)
• Tamper erase of selected row (TEROW) on tamper detection

The Data Flash use case shown in the figure below, illustrates the configuration of NVMCTRL for Secure Data Flash
management:

• Data scrambling activated with key: 0x1234
• Silent access enabled on the first Data Flash ROW

Figure 3-13. Data Flash Use Case Application Output

The figure below illustrates Data Flash use case application flowchart:

 AN5365
Software Use Case Examples

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 77

Figure 3-14. Data Flash Use Case Application Flow Chart

 AN5365
Software Use Case Examples

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 78

4. Revision History

Revision C - July 2022
The following updates were performed for this revision:

• Updated all references for Atmel in the document to Microchip, and all references to AS7 and Atmel Studio 7 to
Microchip Studio 7

• Updated all references of Customer to read Developer in the document
• Updated the labeling for ARMv8 in the Introduction
• Updated Figure 1-1, Figure 1-3, and ARMv8 labeling in TrustZone for ARMv8-M
• Updated Figure 1-4 in Memory Security Attribution
• Updated naming and terminology in Secure and Non-Secure Function Call Mechanism
• Replaced the image for Figure 1-5 in Non-Secure Callable APIs
• Replaced the images for Figures 1-6 and 1-7 in Non-Secure Software Callbacks
• Replaced Figure 1-9 and retitled it in Secure and Non-Secure Interrupts Handling
• Restructured Secure and Non-Secure Peripherals and added in a new image for figure 1-10
• Added a new topic: Peripherals Security Attribution
• Replaced the images for Figures 1-11 and 1-12 in Mix-Secure Peripheral (PAC Secured)
• Replaced the image for Figure 1-13 in Mix-Secure Peripheral (PAC Non-Secured)
• Replaced the images for Figures 1-14 and 1-15 in Debug Access Level (DAL) and Chip Erase
• Replaced the image for Figure 1-20 in Secure Boot and added a new table SAML11 Secure Boot Verification

Method
• Added new notes for BOOTKEY in Secure Boot
• Replaced the image for Figure 2-1 in Single-Developer Approach
• Replaced the image for Figure 2-2 in Dual-Developer Approach
• Replaced the image for Figure 2-11 in NVM Rows Configuration
• Updated the title and replaced the image for Figure 2-16 in Debugging the Secure Solution
• Replaced the image for Figure 2-17 in Debugging the Secure Solution
• Replaced the image for Figure 2-22 in Develop a Non-Secure Project (Developer B)
• Replaced the image for Figure 2-28 in Align Project Linker File to the SAM L11 Non-Secure Memories Attribution
• Replaced the image for Figure 2-30 in Adding and Linking Secure Gateway Library to Non-Secure Project
• Replaced the image for Figure 2-39 in Adding and Including Secure Gateway Header File

Revision B - April 2019
Document restructuring:

• A new section is added for developing a Secure application: Develop a Solution with a Secure Boot Program
(Customer A)

• The topic Application Deployment with Secure and Non-Secure Bootloaders was removed and the content
incorporated into Introduction to SAM L11 Security Features

• The topic How to Define and Use Secure and Non-Secure Peripherals was removed and the content
incorporated into Software Use Case Examples

• Introduction was rewritten to reflect updates to the document.

The following sections were updated:
• TrustZone for ARMv8-M updated with new images
• Secure and Non-Secure Peripheralsupdated with new images
• Mix-Secure Integrated Peripheralsupdated with new images
• Debug Access Level (DAL) and Chip Eraseupdated with new diagrams
• Secure Bootupdated with new images
• Single Developer Approachupdated with new images

 AN5365
Revision History

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 79

• Dual Developer Approachupdated with new images
• Develop a Secure Solution (Customer A)updated with new images
• Develop a Non-Secure Project (Customer B)updated with new images
• Non-Secure Peripheralsupdated with new diagrams and code blocks
• Secure Peripheralsupdated with new diagrams
• Mix-Secure Peripheralsupdated with new diagrams
• TrustRAM (TRAM)updated with new images
• Cryptographic Accelerator (CRYA)updated with new images
• DATA Flashupdated with new images

Revision A - June 2018
Initial release of this document.

 AN5365
Revision History

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 80

The Microchip Web Site

Microchip provides online support via our web site at www.microchip.com/. This web site is used as a means to make
files and information easily available to customers. Accessible by using your favorite Internet browser, the web site
contains the following information:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQ), technical support requests, online discussion
groups, Microchip consultant program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Customer Change Notification Service

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will
receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, access the Microchip web site at www.microchip.com/. Under “Support”, click on “Customer Change
Notification” and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales
offices are also available to help customers. A listing of sales offices and locations is included in the back of this
document.

Technical support is available through the web site at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is one of the most secure families of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of

these methods, to our knowledge, require using the Microchip products in a manner outside the operating
specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of
intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code

protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection
features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital
Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you
may have a right to sue for relief under that Act.

 AN5365

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 81

http://www.microchip.com/
http://www.microchip.com/
http://www.microchip.com/support

Legal Notice

Information contained in this publication regarding device applications and the like is provided only for your
convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with
your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER
EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such
use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless
otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud,
CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck,
LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower,
PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash,
tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and
other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load,
IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated
in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT,
chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net,
Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip
Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified
logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail,
PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S.,
SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock,
Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2018, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-6683-0799-1

Quality Management System Certified by DNV

ISO/TS 16949
Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication
facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The
Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ®

code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition,
Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

 AN5365

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 82

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-67-3636
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7289-7561
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2022 Microchip Technology Inc.
and its subsidiaries

 Application Note DS70005365C-page 83

	Introduction
	Table of Contents
	1. Introduction to SAM L11 Security Features
	1.1. TrustZone for ARMv8-M
	1.1.1. Memory Security Attribution
	1.1.2. Secure and Non-Secure Function Call Mechanism
	1.1.2.1. Non-Secure Callable APIs
	1.1.2.2. Non-Secure Software Callbacks
	1.1.2.3. Security State and Call Mismatch

	1.1.3. Secure and Non-Secure Interrupts Handling

	1.2. Peripherals Security Attribution
	1.2.1. Secure and Non-Secure Peripherals
	1.2.2. Mix-Secure Integrated Peripherals
	1.2.2.1. Mix-Secure Peripheral (PAC Secured)
	1.2.2.2. Mix-Secure Peripheral (PAC Non-Secured)

	1.3. Debug Access Level (DAL) and Chip Erase
	1.4. Secure Boot

	2. SAM L11 Application Development (Developer A and Developer B)
	2.1. Single-Developer Approach
	2.2. Dual-Developer Approach
	2.3. Develop a Secure Solution (Developer A)
	2.3.1. Creating SAM L11 Secure Solution from Microchip Studio Secure Solution Template
	2.3.2. Secure Solution Template Description
	2.3.2.1. Secure Project Description
	2.3.2.2. Non-Secure Project Description
	2.3.2.3. NVM Rows Configuration
	2.3.2.4. Secure and Non-Secure Projects Linker Files

	2.3.3. Debugging the Secure Solution
	2.3.4. Protecting the Secure Project Using Debug Access Levels

	2.4. Develop a Non-Secure Project (Developer B)
	2.4.1. Creating a Non-Secure Project
	2.4.2. Project Configuration
	2.4.2.1. Align Project Linker File to the SAM L11 Non-Secure Memories Attribution
	2.4.2.2. Adding and Linking Secure Gateway Library to Non-Secure Project
	2.4.2.3. Adding and Including Secure Gateway Header File

	2.5. Developing Solution with Secure Boot Program (Developer A)
	2.5.1. Creating a Secure Solution with Boot Program
	2.5.2. Secure Solution Template with Boot Description
	2.5.2.1. Template Secure Boot Project Description
	2.5.2.2. Template NVM Fuses Configuration
	2.5.2.3. Enabling Secure Boot Process with BS Verification

	3. Software Use Case Examples
	3.1. Non-Secure Peripheral (TC0)
	3.2. Secure Peripheral (TC0)
	3.3. Mix-Secure Peripheral (EIC)
	3.4. TrustRAM
	3.5. Cryptographic Accelerator (CRYA)
	3.6. Data Flash

	4. Revision History
	The Microchip Web Site
	Customer Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System Certified by DNV
	Worldwide Sales and Service

