Altmel

Atmel SHART

SMART ARM-based Microcontrollers

AT07683: SAM D09/D10/D11/D21/DA1/R/LIC Direct
Memory Access Controller (DMAC) Driver

APPLICATION NOTE

Introduction

This driver for Atmel® | SMART ARM®-based microcontrollers provides an
interface for the configuration and management of the Direct Memory
Access Controller(DMAC) module within the device. The DMAC can transfer
data between memories and peripherals, and thus off-load these tasks from
the CPU. The module supports peripheral to peripheral, peripheral to
memory, memory to peripheral, and memory to memory transfers.

The following peripheral is used by the DMAC Driver:
+ DMAC (Direct Memory Access Controller)

The following devices can use this module:
* Atmel | SMART SAM D21
* Atmel | SMART SAM R21
* Atmel | SMART SAM D09/D10/D11
* Atmel | SMART SAM L21/L22
* Atmel | SMART SAM DA1
* Atmel | SMART SAM C20/C21

The outline of this documentation is as follows:
* Prerequisites
* Module Overview
* Special Considerations
+ Extra Information
+ Examples
* API Overview

Atmel-42257C-SAM-Direct-Memory-Access-Controller-Driver-DMAC_Application Note-12/2015

Table of Contents

L0 [0 Te3 1T o 1
1. SOFWArE LICENSE. ... uuuiiiiii e b aae b aaesaeeaaasaasssassssssansssnnes 3
B o 1= =0 UL (=T 4
3. MOAUIE OVEIVIEW.uuiiiiiiee ettt e e e e e et e e e e e e e e st e e e e e e e e e annnnnneeeeaens 5
3.1. Driver Feature Macro Definition...........ooiuiiiiiiiiii e 6
3.2. Terminology Used in DMAC Transfers.........cocuiiiiiiieiiiie ettt s aeee e 6
R TR I 1Y N 0 4 - T T =Y OSSR 6
S 1Y N I o T[] £ T OO PRSP RPR PP 7
3.5, DIMA Transfer DESCIIPION.vviiieiiiiiiie ettt e ettt e e et e e e e et e e e e e st b eeeeesessssaeeaeeasssbaeeeeeannses 7
3.6, DIMA INTEITUPLS/EVENTS.......uiiiiie ettt ettt e e e e e e e e e e et e e e e e e abeeeeaeessnnbeeeeeesnsreeas 7
4. Special ConSIAErations.........ccoiiiiiiiiiiiie et e e e e aeas 8
5. EXtra INfOrmation...........oooiiiiiiiicee e 9
B. EXAMPIES 10
T APLOVEIVIEW. ... ettt ettt e e e e e e e e e e e e e e e e eeaaaaaans 11
7.1. Variable and Type DefinitioNsS.cocuiiiiiiiiie e 11
7.2, Structure DefiNitiONS.........cuoiiiie e s e e e 11
A R Y/ - Ter (o T D 1= {1 1 1] 1 PR 13
7.4, FUNCHON DEfINITIONS.eiiiiiiiiiee et e et e e e sttt e e e e st aeeeaeeesnnneeaeeeannees 13
7.5. Enumeration DefiNItiONS.ooiiiiiiiiiieiie et e 21
8. Extra Information for DMAC DIiVEL........ccoooiiiiiiiii e, 24
< T B X o] o] 1) 4 1 T PSP PRSP OPPRO 24
S I B 1= o 1= g To [T o Tor = S TSRO ERR 24
T T 1 4 1 = F PRSPPI 24
8.4, MOAUIE HISEOIY......eeiiiiieeeiete ettt e et e s e e e e nnnees 24
9. Examples for DMAQC DIiVEN.....cccco oo 25
9.1. Quick Start Guide for Memory to Memory Data Transfer Using DMAC...........cccocoeieiiveeneennne. 25
10. Document RevViSioN HIiSTOIY........ooouiiiiiiiiicie e 29

Atmel

Atmel AT07683: SAM D09/D10/D11/D21/DA1/R/L/C Direct Memory Access Controller (DMAC) Driver
[APPLICATION NOTE]
Atmel-42257C-SAM-Direct-Memory-Access-Controller-Driver-DMAC_Application Note-12/2015

2

1. Software License

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. The name of Atmel may not be used to endorse or promote products derived from this software without
specific prior written permission.

4. This software may only be redistributed and used in connection with an Atmel microcontroller product.

THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE EXPRESSLY AND SPECIFICALLY
DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

AtmeL Atmel AT07683: SAM D09/D10/D11/D21/DA1/R/L/C Direct Memory Access Controller (DMAC) Driver 3
[APPLICATION NOTE]

Atmel-42257C-SAM-Direct-Memory-Access-Controller-Driver-DMAC_Application Note-12/2015

2. Prerequisites

There are no prerequisites for this module.

Atmel Atmel AT07683: SAM D09/D10/D11/D21/DA1/R/L/C Direct Memory Access Controller (DMAC) Driver 4
[APPLICATION NOTE]
Atmel-42257C-SAM-Direct-Memory-Access-Controller-Driver-DMAC_Application Note-12/2015

Module Overview

SAM devices with DMAC enables high data transfer rates with minimum CPU intervention and frees up
CPU time. With access to all peripherals, the DMAC can handle automatic transfer of data to/from
modules. It supports static and incremental addressing for both source and destination.

The DMAC when used with Event System or peripheral triggers, provides a considerable advantage by
reducing the power consumption and performing data transfer in the background. For example, if the
ADC is configured to generate an event, it can trigger the DMAC to transfer the data into another
peripheral or SRAM. The CPU can remain in sleep during this time to reduce the power consumption.

Device Dma channel number

SAM D21/R21/C20/C21 12
SAM D09/D10/D11 6
SAM L21 16

The DMA channel operation can be suspended at any time by software, by events from event system, or
after selectable descriptor execution. The operation can be resumed by software or by events from the
event system. The DMAC driver for SAM supports four types of transfers such as peripheral to peripheral,
peripheral to memory, memory to peripheral, and memory to memory.

The basic transfer unit is a beat, which is defined as a single bus access. There can be multiple beats in a
single block transfer and multiple block transfers in a DMA transaction. DMA transfer is based on
descriptors, which holds transfer properties such as the source and destination addresses, transfer
counter, and other additional transfer control information. The descriptors can be static or linked. When
static, a single block transfer is performed. When linked, a number of transfer descriptors can be used to
enable multiple block transfers within a single DMA transaction.

The implementation of the DMA driver is based on the idea that the DMA channel is a finite resource of
entities with the same abilities. A DMA channel resource is able to move a defined set of data from a
source address to destination address triggered by a transfer trigger. On the SAM devices there are 12
DMA resources available for allocation. Each of these DMA resources can trigger interrupt callback
routines and peripheral events. The other main features are:

« Selectable transfer trigger source
* Software
* Event System
* Peripheral
« Eventinput and output is supported for the four lower channels
* Four level channel priority
« Optional interrupt generation on transfer complete, channel error, or channel suspend
« Supports multi-buffer or circular buffer mode by linking multiple descriptors
+ Beat size configurable as 8-bit, 16-bit, or 32-bit

A simplified block diagram of the DMA Resource can be seen in Figure 3-1 Module Overview on page
6.

AtmeL Atmel AT07683: SAM D09/D10/D11/D21/DA1/R/L/C Direct Memory Access Controller (DMAC) Driver 5

[APPLICATION NOTE]

Atmel-42257C-SAM-Direct-Memory-Access-Controller-Driver-DMAC_Application Note-12/2015

Figure 3-1. Module Overview

Transfer Descriptor

Interrupt
Transfer Trigger DMA Channel
Events
3.1. Driver Feature Macro Definition
FEATURE_DMA_CHANNEL_STANDBY SAM L21/L22/C20/C21

Note: The specific features are only available in the driver when the selected device supports those
features.

3.2. Terminology Used in DMAC Transfers

Beat It is a single bus access by the DMAC. Configurable as 8-bit, 16-bit, or 32-bit.

Burst It is a transfer of n-beats (n=1,4,8,16). For the DMAC module in SAM, the burst size is
one beat. Arbitration takes place each time a burst transfer is completed.

Block transfer | A single block transfer is a configurable number of (1 to 64k) beat transfers

3.3. DMA Channels

The DMAC in each device consists of several DMA channels, which along with the transfer descriptors
defines the data transfer properties.

« The transfer control descriptor defines the source and destination addresses, source and
destination address increment settings, the block transfer count, and event output condition
selection

« Dedicated channel registers control the peripheral trigger source, trigger mode settings, event input
actions, and channel priority level settings

With a successful DMA resource allocation, a dedicated DMA channel will be assigned. The channel will
be occupied until the DMA resource is freed. A DMA resource handle is used to identify the specific DMA
resource. When there are multiple channels with active requests, the arbiter prioritizes the channels
requesting access to the bus.

AtmeL Atmel AT07683: SAM D09/D10/D11/D21/DA1/R/L/C Direct Memory Access Controller (DMAC) Driver 6
[APPLICATION NOTE]

Atmel-42257C-SAM-Direct-Memory-Access-Controller-Driver-DMAC_Application Note-12/2015

3.4.

3.5.

3.6.

DMA Triggers

DMA transfer can be started only when a DMA transfer request is acknowledged/granted by the arbiter. A
transfer request can be triggered from software, peripheral, or an event. There are dedicated source
trigger selections for each DMA channel usage.

DMA Transfer Descriptor

The transfer descriptor resides in the SRAM and defines these channel properties.

e~ e

Descriptor Next Address 32 bits
Destination Address 32 bits
Source Address 32 bits
Block Transfer Counter 16 bits
Block Transfer Control 16 bits

Before starting a transfer, at least one descriptor should be configured. After a successful allocation of a
DMA channel, the transfer descriptor can be added with a call to dma _add_descriptor(). If there is a
transfer descriptor already allocated to the DMA resource, the descriptor will be linked to the next
descriptor address.

DMA Interrupts/Events

Both an interrupt callback and an peripheral event can be triggered by the DMA transfer. Three types of
callbacks are supported by the DMA driver: transfer complete, channel suspend, and transfer error. Each
of these callback types can be registered and enabled for each channel independently through the DMA
driver API.

The DMAC module can also generate events on transfer complete. Event generation is enabled through
the DMA channel, event channel configuration, and event user multiplexing is done through the events
driver.

The DMAC can generate events in the below cases:

* When a block transfer is complete
* When each beat transfer within a block transfer is complete

AtmeL Atmel AT07683: SAM D09/D10/D11/D21/DA1/R/L/C Direct Memory Access Controller (DMAC) Driver 7

[APPLICATION NOTE]
Atmel-42257C-SAM-Direct-Memory-Access-Controller-Driver-DMAC_Application Note-12/2015

4. Special Considerations

There are no special considerations for this module.

Atmel Atmel AT07683: SAM D09/D10/D11/D21/DA1/R/L/C Direct Memory Access Controller (DMAC) Driver 8
[APPLICATION NOTE]
Atmel-42257C-SAM-Direct-Memory-Access-Controller-Driver-DMAC_Application Note-12/2015

5. Extra Information

For extra information, see Extra Information for DMAC Driver. This includes:

Atmel

Acronyms
Dependencies
Errata

Module History

Atmel AT07683: SAM D09/D10/D11/D21/DA1/R/L/C Direct Memory Access Controller (DMAC) Driver

[APPLICATION NOTE]
Atmel-42257C-SAM-Direct-Memory-Access-Controller-Driver-DMAC_Application Note-12/2015

9

6. Examples

For a list of examples related to this driver, see Examples for DMAC Driver.

Atmel Atmel AT07683: SAM D09/D10/D11/D21/DA1/R/L/C Direct Memory Access Controller (DMAC) Driver 10
[APPLICATION NOTE]
Atmel-42257C-SAM-Direct-Memory-Access-Controller-Driver-DMAC_Application Note-12/2015

71.

71.1.

7.1.2.

7.1.3.

7.2.

7.21.

API Overview

Variable and Type Definitions
Type dma_callback_t

typedef void(* dma callback t) (struct dma resource *const resource)

Type definition for a DMA resource callback function.

Variable descriptor_section

DmacDescriptor descriptor section

ExInitial description section.

Variable g_chan_interrupt_flag

uint8 t g chan interrupt flag

Structure Definitions

Struct dma_descriptor_config

DMA transfer descriptor configuration. When the source or destination address increment is enabled, the
addresses stored into the configuration structure must correspond to the end of the transfer.

Table 7-1. Members

e e oo

enum dma_beat_size beat_size Beat size is configurable as 8-bit, 16-
bit, or 32-bit

enum dma_block_action block_action Action taken when a block transfer is
completed

uint16_t block_transfer_count It is the number of beats in a block.

This count value is decremented by
one after each beat data transfer.

bool descriptor_valid Descriptor valid flag used to identify
whether a descriptor is valid or not

uint32_t destination_address Transfer destination address

AtmeL Atmel AT07683: SAM D09/D10/D11/D21/DA1/R/L/C Direct Memory Access Controller (DMAC) Driver 1"

[APPLICATION NOTE]
Atmel-42257C-SAM-Direct-Memory-Access-Controller-Driver-DMAC_Application Note-12/2015

N S

bool dst_increment_enable

enum dma_event_output_selection event_output_selection

uint32_t next_descriptor_address
uint32_t source_address

bool src_increment_enable
enum dma_step_selection step_selection

enum step_size

dma_address_increment_stepsize

7.2.2. Struct dma_events_config

Configurations for DMA events.

Table 7-2. Members

Used for enabling the destination
address increment

This is used to generate an event on
specific transfer action in a channel.
Supported only in four lower
channels.

Set to zero for static descriptors. This
must have a valid memory address
for linked descriptors.

Transfer source address

Used for enabling the source address
increment

This bit selects whether the source or
destination address is using the step
size settings

The step size for source/destination
address increment. The next address
is calculated as next_addr = addr +
(27step_size * beat size).

e e oo

bool event_output_enable

enum dma_event_input_action input_action

7.2.3. Struct dma_resource

Structure for DMA transfer resource.

Table 7-3. Members

Enable DMA event output

Event input actions

e e oo

dma_callback t callback]] Array of callback functions for DMA transfer job
uint8_t callback_enable Bit mask for enabled callbacks

uint8_t channel_id Allocated DMA channel ID

DmacDescriptor * descriptor DMA transfer descriptor

AtmeL Atmel AT07683: SAM D09/D10/D11/D21/DA1/R/L/C Direct Memory Access Controller (DMAC) Driver 12

[APPLICATION NOTE]

Atmel-42257C-SAM-Direct-Memory-Access-Controller-Driver-DMAC_Application Note-12/2015

7.24.

7.3.

7.3.1.

7.3.2.

7.4.

7.41.

o e oo

enum status_code job_status Status of the last job

uint32_t transfered_size Transferred data size

Struct dma_resource_config

DMA configurations for transfer.

Table 7-4. Members

e heme oo

struct dma_events_config event_config DMA events configurations

uint8_t peripheral_trigger DMA peripheral trigger index

enum dma_priority _level priority DMA transfer priority

bool run_in_standby Keep DMA channel enabled in standby sleep
mode if true

enum dma_transfer trigger action | trigger_action DMA trigger action

Macro Definitions
Macro DMA_INVALID_CHANNEL
#define DMA INVALID CHANNEL
DMA invalid channel number.
Macro FEATURE_DMA_CHANNEL_STANDBY

#define FEATURE DMA CHANNEL STANDBY

Function Definitions

Function dma_abort_job()
Abort a DMA transfer.

void dma abort job(
struct dma resource * resource)

This function will abort a DMA transfer. The DMA channel used for the DMA resource will be disabled.
The block transfer count will also be calculated and written to the DMA resource structure.

Note: The DMA resource will not be freed after calling this function. The function dma_free() can be
used to free an allocated resource.

AtmeL Atmel AT07683: SAM D09/D10/D11/D21/DA1/R/L/C Direct Memory Access Controller (DMAC) Driver 13

[APPLICATION NOTE]
Atmel-42257C-SAM-Direct-Memory-Access-Controller-Driver-DMAC_Application Note-12/2015

7.4.2.

7.4.3.

Table 7-5. Parameters

[in, out] resource Pointer to the DMA resource

Function dma_add_descriptor()

Add a DMA transfer descriptor to a DMA resource.

enum status code dma add descriptor(
struct dma resource * resource,
DmacDescriptor * descriptor)

This function will add a DMA transfer descriptor to a DMA resource. If there was a transfer descriptor
already allocated to the DMA resource, the descriptor will be linked to the next descriptor address.

Table 7-6. Parameters

[in] resource Pointer to the DMA resource

[in] descriptor Pointer to the transfer descriptor

Table 7-7. Return Values

STATUS_OK The descriptor is added to the DMA resource

STATUS_BUSY The DMA resource was busy and the descriptor is not added

Function dma_allocate()

Allocate a DMA with configurations.

enum status code dma allocate(
struct dma resource * resource,
struct dma resource config * config)

This function will allocate a proper channel for a DMA transfer request.

Table 7-8. Parameters

[in, out] dma_resource Pointer to a DMA resource instance
[in] transfer_config Configurations of the DMA transfer
Returns

Status of the allocation procedure.

AtmeL Atmel AT07683: SAM D09/D10/D11/D21/DA1/R/L/C Direct Memory Access Controller (DMAC) Driver 14

[APPLICATION NOTE]
Atmel-42257C-SAM-Direct-Memory-Access-Controller-Driver-DMAC_Application Note-12/2015

7.4.4.

7.4.5.

Table 7-9. Return Values

STATUS OK The DMA resource was allocated successfully

STATUS ERR_NOT_FOUND DMA resource allocation failed

Function dma_descriptor_create()

Create a DMA transfer descriptor with configurations.

void dma descriptor create(
DmacDescriptor * descriptor,
struct dma descriptor config * config)

This function will set the transfer configurations to the DMA transfer descriptor.

Table 7-10. Parameters

[in] descriptor Pointer to the DMA transfer descriptor

[in] config Pointer to the descriptor configuration structure

Function dma_descriptor_get_config_defaults()

Initializes DMA transfer configuration with predefined default values.

void dma descriptor get config defaults(
struct dma descriptor config * config)

This function will initialize a given DMA descriptor configuration structure to a set of known default values.
This function should be called on any new instance of the configuration structure before being modified by
the user application.

The default configuration is as follows:
« Set the descriptor as valid
* Disable event output
* No block action
+ Set beat size as byte
« Enable source increment
* Enable destination increment
« Step size is applied to the destination address
* Address increment is beat size multiplied by 1
« Default transfer size is set to 0
+ Default source address is set to NULL
* Default destination address is set to NULL
« Default next descriptor not available

AtmeL Atmel AT07683: SAM D09/D10/D11/D21/DA1/R/L/C Direct Memory Access Controller (DMAC) Driver 15

[APPLICATION NOTE]
Atmel-42257C-SAM-Direct-Memory-Access-Controller-Driver-DMAC_Application Note-12/2015

7.4.6.

7.4.7.

7.4.8.

Table 7-11. Parameters

[out] config Pointer to the configuration

Function dma_disable_callback()

Disable a callback function for a dedicated DMA resource.

void dma disable callback(
struct dma resource * resource,
enum dma callback type type)

Table 7-12. Parameters

[in] resource Pointer to the DMA resource

[in] type Callback function type

Function dma_enable_callback()

Enable a callback function for a dedicated DMA resource.

void dma enable callback(
struct dma resource * resource,
enum dma callback type type)

Table 7-13. Parameters

[in] resource Pointer to the DMA resource

[in] type Callback function type

Function dma_free()

Free an allocated DMA resource.

enum status code dma free(
struct dma resource * resource)

This function will free an allocated DMA resource.

Table 7-14. Parameters

[in, out] resource Pointer to the DMA resource

Returns
Status of the free procedure.

AtmeL Atmel AT07683: SAM D09/D10/D11/D21/DA1/R/L/C Direct Memory Access Controller (DMAC) Driver 16

[APPLICATION NOTE]
Atmel-42257C-SAM-Direct-Memory-Access-Controller-Driver-DMAC_Application Note-12/2015

7.4.9.

7.4.10.

Table 7-15. Return Values

STATUS OK The DMA resource was freed successfully
STATUS_BUSY The DMA resource was busy and can't be freed
STATUS _ERR_NOT _INITIALIZED DMA resource was not initialized

Function dma_get_config_defaults()

Initializes config with predefined default values.

void dma get config defaults(
struct dma resource config * config)

This function will initialize a given DMA configuration structure to a set of known default values. This
function should be called on any new instance of the configuration structure before being modified by the
user application.
The default configuration is as follows:

« Software trigger is used as the transfer trigger

e Priority level 0

* Only software/event trigger

* Requires a trigger for each transaction

* No event input /output

* DMA channel is disabled during sleep mode (if has the feature)
Table 7-16. Parameters

[out] config Pointer to the configuration

Function dma_get_job_status()

Get DMA resource status.

enum status code dma get job status(
struct dma resource * resource)

Table 7-17. Parameters

[in] resource Pointer to the DMA resource

Returns
Status of the DMA resource.

AtmeL Atmel AT07683: SAM D09/D10/D11/D21/DA1/R/L/C Direct Memory Access Controller (DMAC) Driver 17

[APPLICATION NOTE]
Atmel-42257C-SAM-Direct-Memory-Access-Controller-Driver-DMAC_Application Note-12/2015

7.4.11.

7.412.

7.413.

Function dma_is_busy()

Check if the given DMA resource is busy.

bool dma is busy (
struct dma resource * resource)

Table 7-18. Parameters

[in] resource Pointer to the DMA resource

Returns
Status which indicates whether the DMA resource is busy.

Table 7-19. Return Values

true The DMA resource has an on-going transfer

false The DMA resource is not busy

Function dma_register_callback()

Register a callback function for a dedicated DMA resource.

void dma register callback(
struct dma resource * resource,
dma callback t callback,
enum dma callback type type)

There are three types of callback functions, which can be registered:
* Callback for transfer complete
« Callback for transfer error
* Callback for channel suspend

Table 7-20. Parameters

[in] resource Pointer to the DMA resource
[in] callback Pointer to the callback function
[in] type Callback function type

Function dma_reset_descriptor()

Reset DMA descriptor.

void dma reset descriptor (
struct dma resource * resource)

This function will clear the DESCADDR register of an allocated DMA resource.

AtmeL Atmel AT07683: SAM D09/D10/D11/D21/DA1/R/L/C Direct Memory Access Controller (DMAC) Driver 18

[APPLICATION NOTE]
Atmel-42257C-SAM-Direct-Memory-Access-Controller-Driver-DMAC_Application Note-12/2015

7.4.14.

7.4.15.

7.4.16.

Function dma_resume_job()

Resume a suspended DMA transfer.

void dma resume job (
struct dma resource * resource)

This function try to resume a suspended transfer of a DMA resource.

Table 7-21. Parameters

[in] resource Pointer to the DMA resource

Function dma_start_transfer_job()

Start a DMA transfer.

enum status code dma start transfer job(
struct dma resource * resource)

This function will start a DMA transfer through an allocated DMA resource.

Table 7-22. Parameters

[in, out] resource Pointer to the DMA resource

Returns
Status of the transfer start procedure.

Table 7-23. Return Values

STATUS_OK The transfer was started successfully
STATUS_BUSY The DMA resource was busy and the transfer was not started

STATUS_ERR_INVALID_ARG Transfer size is 0 and transfer was not started

Function dma_suspend_job()

Suspend a DMA transfer.

void dma suspend job(
struct dma_resource * resource)

This function will request to suspend the transfer of the DMA resource. The channel is kept enabled, can
receive transfer triggers (the transfer pending bit will be set), but will be removed from the arbitration
scheme. The channel operation can be resumed by calling dma_resume_job().

Note: This function sets the command to suspend the DMA channel associated with a DMA resource.
The channel suspend interrupt flag indicates whether the transfer is truly suspended.

AtmeL Atmel AT07683: SAM D09/D10/D11/D21/DA1/R/L/C Direct Memory Access Controller (DMAC) Driver 19

[APPLICATION NOTE]
Atmel-42257C-SAM-Direct-Memory-Access-Controller-Driver-DMAC_Application Note-12/2015

7.417.

7.4.18.

7.4.19.

Table 7-24. Parameters

[in] resource Pointer to the DMA resource

Function dma_trigger_transfer()

Will set a software trigger for resource.

void dma trigger transfer (
struct dma resource * resource)

This function is used to set a software trigger on the DMA channel associated with resource. If a trigger is
already pending no new trigger will be generated for the channel.

Table 7-25. Parameters

[in] resource Pointer to the DMA resource

Function dma_unregister_callback()

Unregister a callback function for a dedicated DMA resource.

void dma unregister callback(
struct dma resource * resource,
enum dma callback type type)

There are three types of callback functions:
* Callback for transfer complete
« Callback for transfer error
* Callback for channel suspend

The application can unregister any of the callback functions which are already registered and are no
longer needed.

Table 7-26. Parameters

[in] resource Pointer to the DMA resource

[in] type Callback function type

Function dma_update_descriptor()

Update DMA descriptor.

void dma update descriptor(
struct dma resource * resource,
DmacDescriptor * descriptor)

This function can update the descriptor of an allocated DMA resource.

AtmeL Atmel AT07683: SAM D09/D10/D11/D21/DA1/R/L/C Direct Memory Access Controller (DMAC) Driver 20

[APPLICATION NOTE]
Atmel-42257C-SAM-Direct-Memory-Access-Controller-Driver-DMAC_Application Note-12/2015

7.5.

7.5.1.

7.5.2.

7.5.3.

Enumeration Definitions

Enum dma_address_increment_stepsize

Address increment step size. These bits select the address increment step size. The setting apply to
source or destination address, depending on STEPSEL setting.

Table 7-27. Members

Enum value Description

DMA_ADDRESS_INCREMENT_STEP_SIZE 1 The address is incremented by (beat size * 1).
DMA_ADDRESS_INCREMENT_STEP_SIZE_2 The address is incremented by (beat size * 2).
DMA_ADDRESS INCREMENT_STEP_SIZE 4 The address is incremented by (beat size * 4).
DMA ADDRESS INCREMENT_STEP_SIZE 8 The address is incremented by (beat size * 8).
DMA_ADDRESS_INCREMENT_STEP_SIZE_16 The address is incremented by (beat size * 16).
DMA ADDRESS INCREMENT_STEP_SIZE 32 The address is incremented by (beat size * 32).
DMA _ADDRESS INCREMENT_STEP_SIZE 64 The address is incremented by (beat size * 64).

DMA ADDRESS INCREMENT_STEP_SIZE 128 The address is incremented by (beat size * 128).

Enum dma_beat_size

The basic transfer unit in DMAC is a beat, which is defined as a single bus access. Its size is configurable
and applies to both read and write.

Table 7-28. Members

Enum value Description

DMA_BEAT_SIZE_BYTE 8-bit access.
DMA_BEAT_SIZE_HWORD 16-bit access.
DMA_BEAT_SIZE_WORD 32-bit access.

Enum dma_block_action

Block action definitions.

Table 7-29. Members

Enum value Description

DMA_BLOCK_ACTION_NOACT No action.

DMA BLOCK_ ACTION_INT Channel in normal operation and sets transfer complete interrupt
flag after block transfer.

AtmeL Atmel AT07683: SAM D09/D10/D11/D21/DA1/R/L/C Direct Memory Access Controller (DMAC) Driver 21

[APPLICATION NOTE]
Atmel-42257C-SAM-Direct-Memory-Access-Controller-Driver-DMAC_Application Note-12/2015

7.5.4.

7.5.5.

7.5.6.

Enum value Description

DMA_BLOCK_ACTION_SUSPEND | Trigger channel suspend after block transfer and sets channel
suspend interrupt flag once the channel is suspended.

DMA BLOCK_ACTION_BOTH Sets transfer complete interrupt flag after a block transfer and
trigger channel suspend. The channel suspend interrupt flag will
be set once the channel is suspended.

Enum dma_callback_type

Callback types for DMA callback driver.
Table 7-30. Members

Enum value Description

DMA_CALLBACK_TRANSFER_ERROR | Callback for any of transfer errors. A transfer error is flagged
if a bus error is detected during an AHB access or when the
DMAC fetches an invalid descriptor.

DMA CALLBACK TRANSFER DONE Callback for transfer complete.
DMA_CALLBACK_CHANNEL_SUSPEND | Callback for channel suspend.

DMA_CALLBACK_N Number of available callbacks.

Enum dma_event_input_action

DMA input actions.
Table 7-31. Members

Enum value Description

DMA_EVENT_INPUT_NOACT No action.

DMA EVENT_INPUT_TRIG Normal transfer and periodic transfer trigger.
DMA_EVENT_INPUT_CTRIG Conditional transfer trigger.
DMA_EVENT_INPUT_CBLOCK Conditional block transfer.
DMA_EVENT_INPUT_SUSPEND Channel suspend operation.

DMA EVENT_INPUT_RESUME Channel resume operation.
DMA_EVENT_INPUT_SSKIP Skip next block suspend action.

Enum dma_event_output_selection

Event output selection.

AtmeL Atmel AT07683: SAM D09/D10/D11/D21/DA1/R/L/C Direct Memory Access Controller (DMAC) Driver 22

[APPLICATION NOTE]
Atmel-42257C-SAM-Direct-Memory-Access-Controller-Driver-DMAC_Application Note-12/2015

7.5.7.

7.5.8.

7.5.9.

Table 7-32. Members

Enum value Description

DMA_EVENT_OUTPUT_DISABLE Event generation disable.

DMA EVENT_OUTPUT_BLOCK Event strobe when block transfer complete.
DMA_EVENT_OUTPUT_RESERVED Event output reserved.
DMA_EVENT_OUTPUT_BEAT Event strobe when beat transfer complete.

Enum dma_priority_level

DMA priority level.
Table 7-33. Members

Enum value Description

DMA_PRIORITY_LEVEL 0 Priority level O.
DMA PRIORITY_LEVEL 1 Priority level 1.
DMA_PRIORITY_LEVEL 2 Priority level 2.
DMA_PRIORITY_LEVEL 3 Priority level 3.

Enum dma_step_selection

DMA step selection. This bit determines whether the step size setting is applied to source or destination
address.

Table 7-34. Members

Enum value Description

DMA_STEPSEL DST Step size settings apply to the destination address.

DMA_STEPSEL_SRC Step size settings apply to the source address.

Enum dma_transfer_trigger_action

DMA trigger action type.
Table 7-35. Members

Enum value Description

DMA_ TRIGGER_ACTON_BLOCK Perform a block transfer when triggered.
DMA_TRIGGER_ACTON_BEAT Perform a beat transfer when triggered.
DMA_TRIGGER_ACTON_TRANSACTION Perform a transaction when triggered.

AtmeL Atmel AT07683: SAM D09/D10/D11/D21/DA1/R/L/C Direct Memory Access Controller (DMAC) Driver 23

[APPLICATION NOTE]
Atmel-42257C-SAM-Direct-Memory-Access-Controller-Driver-DMAC_Application Note-12/2015

8.1.

8.2.

8.3.

8.4.

Extra Information for DMAC Driver

Acronyms

Below is a table listing the acronyms used in this module, along with their intended meanings.

DMA Direct Memory Access
DMAC Direct Memory Access Controller
CPU Central Processing Unit

Dependencies

This driver has the following dependencies:

« System Clock Driver

Errata

There are no errata related to this driver.

Module History

An overview of the module history is presented in the table below, with details on the enhancements and
fixes made to the module since its first release. The current version of this corresponds to the newest
version in the table.

Changelog

Add SAM C21 support
Add SAM L21 support

Initial Release

AtmeL Atmel AT07683: SAM D09/D10/D11/D21/DA1/R/L/C Direct Memory Access Controller (DMAC) Driver 24

[APPLICATION NOTE]
Atmel-42257C-SAM-Direct-Memory-Access-Controller-Driver-DMAC_Application Note-12/2015

9.1.

9.1.1.

9.1.1.1.

9.1.1.2.

Examples for DMAC Driver

This is a list of the available Quick Start Guides (QSGs) and example applications for SAM Direct
Memory Access Controller (DMAC) Driver. QSGs are simple examples with step-by-step instructions to
configure and use this driver in a selection of use cases. Note that a QSG can be compiled as a
standalone application or be added to the user application.

* Quick Start Guide for Memory to Memory Data Transfer Using DMAC

Note: More DMA usage examples are available in peripheral QSGs. A quick start guide for TC/TCC
shows the usage of DMA event trigger; SERCOM SPI/USART/I2C has example for DMA transfer from
peripheral to memory or from memory to peripheral; ADC/DAC shows peripheral to peripheral transfer.

Quick Start Guide for Memory to Memory Data Transfer Using DMAC

The supported board list:
SAM D21 Xplained Pro
+ SAM R21 Xplained Pro
« SAM D11 Xplained Pro
+ SAM L21 Xplained Pro
« SAM L22 Xplained Pro
SAM DA1 Xplained Pro

In this use case, the DMAC is configured for:
* Moving data from memory to memory
* Using software trigger
* Using DMA priority level 0
« Transaction as DMA trigger action
* No action on input events
e Output event not enabled

Setup
Prerequisites
There are no special setup requirements for this use-case.

Code

Copy-paste the following setup code to your user application:
#define DATA LENGTH (512)

static uint8 t source memory[DATA LENGTH];
static uint8 t destination memory[DATA LENGTH];
static volatile bool transfer is done = false;

COMPILER ALIGNED(16)
DmacDescriptor example descriptor SECTION DMAC DESCRIPTOR;

static void transfer done(struct dma resource* const resource)

{

AtmeL Atmel AT07683: SAM D09/D10/D11/D21/DA1/R/L/C Direct Memory Access Controller (DMAC) Driver 25

[APPLICATION NOTE]
Atmel-42257C-SAM-Direct-Memory-Access-Controller-Driver-DMAC_Application Note-12/2015

transfer is done = true;

}

static void configure dma resource (struct dma resource *resource)

{

struct dma_ resource_ config config;
dma get config defaults(&config);

dma allocate (resource, &config);

}

static void setup transfer descriptor (DmacDescriptor *descriptor)

{

struct dma descriptor config descriptor config;

dma descriptor get config defaults (&descriptor config);

descriptor config.block transfer count = sizeof (source memory) ;
descriptor config.source address = (uint32 t)source memory +

sizeof (source memory) ;
descriptor config.destination address = (uint32 t)destination memory +

sizeof (source memory) ;

dma descriptor create(descriptor, &descriptor config);

Add the below section to user application initialization (typically the start of main ()):

configure dma resource (&example resource);
setup transfer descriptor (&éexample descriptor);
dma add descriptor (&example resource, &example descriptor);

dma register callback (&example resource, transfer done,
DMA CALLBACK TRANSFER DONE) ;

dma enable callback (&example resource, DMA CALLBACK TRANSFER DONE) ;

for (uint32_t i=0; 1< DATA_LENGTH; i+4+) |
source memory[i] = i;

}

9.1.1.3. Workflow

1. Create a DMA resource configuration structure, which can be filled out to adjust the configuration of
a single DMA transfer.

struct dma resource config config;

2. Initialize the DMA resource configuration struct with the module's default values.

dma get config defaults(&config);

Note: This should always be performed before using the configuration struct to ensure that all
values are initialized to known default settings.

3. Allocate a DMA resource with the configurations.

dma allocate (resource, &config);

AtmeL Atmel AT07683: SAM D09/D10/D11/D21/DA1/R/L/C Direct Memory Access Controller (DMAC) Driver 26
[APPLICATION NOTE]
Atmel-42257C-SAM-Direct-Memory-Access-Controller-Driver-DMAC_Application Note-12/2015

9.1.2,

9.1.2.1.

4. Declare a DMA transfer descriptor configuration structure, which can be filled out to adjust the
configuration of a single DMA transfer.

struct dma descriptor config descriptor config;

5. Initialize the DMA transfer descriptor configuration struct with the module's default values.

dma_descriptor get config defaults (&descriptor config);

Note: This should always be performed before using the configuration struct to ensure that all
values are initialized to known default settings.

6. Set the specific parameters for a DMA transfer with transfer size, source address, and destination
address. In this example, we have enabled the source and destination address increment. The
source and destination addresses to be stored into descriptor_config must correspond to the end of
the transfer.

descriptor config.block transfer count = sizeof (source memory) ;
descriptor config.source address = (uint32 t)source memory +

sizeof (source memory) ;
descriptor config.destination address = (uint32 t)destination memory +

sizeof (source memory) ;

7. Create the DMA transfer descriptor.

dma_descriptor create(descriptor, &descriptor config);

8. Add the DMA transfer descriptor to the allocated DMA resource.

dma add descriptor (&example resource, &example descriptor);

9. Register a callback to indicate transfer status.

dma register callback (&example resource, transfer done,
DMA CALLBACK TRANSFER DONE) ;

10. Set the transfer done flag in the registered callback function.

static void transfer done (struct dma resource* const resource)

{

transfer is done = true;

}

11. Enable the registered callbacks.
dma enable callback (&example resource, DMA CALLBACK TRANSFER DONE) ;

Use Case

Code

Add the following code at the start of main ():

struct dma resource example resource;

Copy the following code to your user application:

dma start transfer job (&example resource);
dma trigger transfer (&example resource);

while (!transfer is done) {
/* Wait for transfer done */

}

AtmeL Atmel AT07683: SAM D09/D10/D11/D21/DA1/R/L/C Direct Memory Access Controller (DMAC) Driver 27

[APPLICATION NOTE]

Atmel-42257C-SAM-Direct-Memory-Access-Controller-Driver-DMAC_Application Note-12/2015

while (true) {
/* Nothing to do */

}

9.1.2.2. Workflow

1. Start the DMA transfer job with the allocated DMA resource and transfer descriptor.
dma start transfer job (&example resource);
2. Set the software trigger for the DMA channel. This can be done before or after the DMA job is
started. Note that all transfers needs a trigger to start.

dma trigger transfer (&example resource);

3. Waiting for the setting of the transfer done flag.

while (!transfer is done) {
/* Wait for transfer done */

}

AtmeL Atmel AT07683: SAM D09/D10/D11/D21/DA1/R/L/C Direct Memory Access Controller (DMAC) Driver 28
[APPLICATION NOTE]
Atmel-42257C-SAM-Direct-Memory-Access-Controller-Driver-DMAC_Application Note-12/2015

10. Document Revision History

Doc. Rev. ‘ Date ‘ Comments

42257C 12/2015 | Added suppport for SAM L21/L22, SAM C21, SAM D09, and SAM DA1

42257B 12/2014 Added support for SAM R21 and SAM D10/D11

42257A 02/2014 | Initial release

AtmeL Atmel AT07683: SAM D09/D10/D11/D21/DA1/R/L/C Direct Memory Access Controller (DMAC) Driver 29
[APPLICATION NOTE]

Atmel-42257C-SAM-Direct-Memory-Access-Controller-Driver-DMAC_Application Note-12/2015

Atmel | Enabiing Unlimited Possibilities’ fl¥lin]3[o]w
Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2015 Atmel Corporation. / Rev.: Atmel-42257C-SAM-Direct-Memory-Access-Controller-Driver-DMAC_Application Note-12/2015

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected® logo, and others are registered trademarks of ARM Ltd. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Table of Contents
	1. Software License
	2. Prerequisites
	3. Module Overview
	3.1. Driver Feature Macro Definition
	3.2. Terminology Used in DMAC Transfers
	3.3. DMA Channels
	3.4. DMA Triggers
	3.5. DMA Transfer Descriptor
	3.6. DMA Interrupts/Events

	4. Special Considerations
	5. Extra Information
	6. Examples
	7. API Overview
	7.1. Variable and Type Definitions
	7.1.1. Type dma_callback_t
	7.1.2. Variable descriptor_section
	7.1.3. Variable g_chan_interrupt_flag

	7.2. Structure Definitions
	7.2.1. Struct dma_descriptor_config
	7.2.2. Struct dma_events_config
	7.2.3. Struct dma_resource
	7.2.4. Struct dma_resource_config

	7.3. Macro Definitions
	7.3.1. Macro DMA_INVALID_CHANNEL
	7.3.2. Macro FEATURE_DMA_CHANNEL_STANDBY

	7.4. Function Definitions
	7.4.1. Function dma_abort_job()
	7.4.2. Function dma_add_descriptor()
	7.4.3. Function dma_allocate()
	7.4.4. Function dma_descriptor_create()
	7.4.5. Function dma_descriptor_get_config_defaults()
	7.4.6. Function dma_disable_callback()
	7.4.7. Function dma_enable_callback()
	7.4.8. Function dma_free()
	7.4.9. Function dma_get_config_defaults()
	7.4.10. Function dma_get_job_status()
	7.4.11. Function dma_is_busy()
	7.4.12. Function dma_register_callback()
	7.4.13. Function dma_reset_descriptor()
	7.4.14. Function dma_resume_job()
	7.4.15. Function dma_start_transfer_job()
	7.4.16. Function dma_suspend_job()
	7.4.17. Function dma_trigger_transfer()
	7.4.18. Function dma_unregister_callback()
	7.4.19. Function dma_update_descriptor()

	7.5. Enumeration Definitions
	7.5.1. Enum dma_address_increment_stepsize
	7.5.2. Enum dma_beat_size
	7.5.3. Enum dma_block_action
	7.5.4. Enum dma_callback_type
	7.5.5. Enum dma_event_input_action
	7.5.6. Enum dma_event_output_selection
	7.5.7. Enum dma_priority_level
	7.5.8. Enum dma_step_selection
	7.5.9. Enum dma_transfer_trigger_action

	8. Extra Information for DMAC Driver
	8.1. Acronyms
	8.2. Dependencies
	8.3. Errata
	8.4. Module History

	9. Examples for DMAC Driver
	9.1. Quick Start Guide for Memory to Memory Data Transfer Using DMAC
	9.1.1. Setup
	9.1.1.1. Prerequisites
	9.1.1.2. Code
	9.1.1.3. Workflow

	9.1.2. Use Case
	9.1.2.1. Code
	9.1.2.2. Workflow

	10. Document Revision History

