AtmeL APPLICATION NOTE

Atmel AT03088: Getting Started with SAM4E

Atmel 32-bit Microcontroller

Features

® (Getting started with SAM4E device and tools

e Getting started with SAM4E-EK in Atmel Studio, IAR Embedded Workbench® for
ARM® and SAM-BA®

® Getting started example in Atmel Software Framework (ASF)

Description

This applaiction note provides information on how to get start with the Atmel ARM
Cortex®-M4 based SAM4E microcontroller. It will provide information on how to get
datasheet, tools and software, and give a step-by-step instruction on how to load and
buildup a single example project to SAM4E-EK.

42145A-SAM-06/2013

Table of Contents

1. Getthe Device Datash@etcccuuiiiiiiiiiiiiiiiiee e 3
2. Getthe SAMAE Evaluation Kitcceuviiiiiiiiiiiiiiieeeeee e 3
3. Gt NE TOOIS ..o 3
4. Get Started with Atmel StUdio 6eevviiiiiiiiii, 3
A1 REQUITEMENES ... eteiiiiiiiie ettt ettt ettt e ettt et e e et e e e st e e nnbe e e e atbeeeen 3
4.2 Load the EXamPIE ... 4
5. Get Started with AR EWARMoooviiiiiiiiiiiiiiiiiiiiiieiiivieevevveeeeaeneees 4
Lo A o L= To [0 T¢=T0 0 T=T oL C PO RRPT 4
5.2 Load the EXAMPIEoiiiiiiiieiiiee et 4
6. Get Started With SAM-BAooiiiiiiii e 4
6.1 REQUITEMENES ...iiiiiiiiiei ittt ettt e et 4
6.2 Build the BINAry Filecooiiiiiiiee e 5
6.3 Load the EXAMPIEcooiiiiiei e 5
7. The Getting-started EXampleccoovviiiiiiiiiii e 5
7.1 SPECIFICALION.....eeiiiiii ettt 5
7.2 ON-Chip PeriPNEralSeviiiiiiiieii e 5
7.3 On-board COMPONENTS......c.uuiiiiiieeiiiiee ettt e e e e e e e e e neaeee 6

7.3.1 Buttons 6
7.3.2 LEDs6

7.3.3 COM POrt (DBGU/UART) ...oooereeieeeeeeeeeeeeeeee e en e 6
7.4 IMPIEMENTALION. ... it e e e e e 6
7.4.1 Startup 6
7411 VecCtor Table.........ooiiii e 7
7412 ReSet EXCEPLION.....uuiiiiieeiiiiieii e 9
7.4.2 System Clock INitializationcccuveiiieiiiiiiii e 9
7.4.3 Board INIL@liZatioNcvviiiiiiie e 10
7.4.4 Peripherals Configuration and USageccccovvveeiiiiieiiiiieeiiieeens 10
7.4.4.1 UART 10
7442 SYSTICK 1.ttt 10

7443 TC11
7444 PIO 12

8. REVISION HiSIOMY ...vvveiiiiieeiceeee e 14

AtmeL Atmel AT03088: Getting Started with SAM4E [APPLICATION NOTE] 2

42145A-SAM-06/2013

4.1

Get the Device Datasheet

Web page: www.atmel.com/sam4e

Documents: SAM4E Series Datasheet (Summary, Complete) (.pdf)

- Select the required device (ie. ATSAM4EX) or and get the latest datasheet (.pdf file). There are two versions:
- Complete version (Full datasheet)

- Summary version (short version includes product features, package, pinout and order information)

Get the SAM4E Evaluation Kit

Web page: www.atmel.com/tools/SAM4E-EK.aspx

Get the kit: store.atmel.com

Document/file:

- SAM4E-EK production files: schematics (.pdf), gerber, BOM, test software
- SAM4E-EK User Guide (.pdf)

The SAM4E-EK is an evaluation kit featuring the SAM4E16E device BGA144 package with optional socket footprint, on
board 12MHz and 32.769Hz crystal, a 2.8” TFT color LCD display with touch panel and backlight, One Ethernet
physical transceiver layer with RJ45 connector, CAN port with driver, Mono/stereo headerphone jack output, QTouch®
interfaces, Full speed USB device port, Serial Flash memory, NAND Flash memory, SD/MMC intergace, LEDs, push
buttons, BNC connector for ADC input and DAC output, JTAG/ICE port, UART port with RS232 driver, USART port with
RS232 driver multiplexed with RS485 function with driver.

The SAM4E-EK comes with a preloaded firmware which demonstrates the Ethernet capability of the product.

The SAM4E-EK User Guide introduces the SAM4E-EK and describes its development and debugging capabilities.

Get the Tools

The following tools are necessary for SAM4E development.

Atmel Studio 6.1: www.atmel.com/atmelstudio

IAR Embedded Workbench for ARM 6.50.3: www.iar.com/en/Products/IAR-Embedded-Workbench/ARM/

SAMA4E patch for IAR Embedded Workbench for eariler version of IAR: ewarm add-on v0.1.1.zip (provided with the
application note)

Segger J-Link (v4.62 or above): www.segger.com/download_jlink.html
SAM-BA (v2.12): www.atmel.com/tools/atmelsam-bain-systemprogrammer.aspx
SAMA4E patch for SAM-BA v2.12: sam-ba_2.12 patchsam4e.exe (provided with the application note)

ASF (v3.7.3 or above): www.atmel.com/tools/avrsoftwareframework.aspx

Get Started with Atmel Studio 6

Requirements
e Atmel Studio 6.1 (or above) installed

e Atmel Software Framework (ASF) v3.7.3 or above

AtmeL Atmel AT03088: Getting Started with SAM4E [APPLICATION NOTE] 3

42145A-SAM-06/2013

http://www.atmel.com/sam4e
http://www.atmel.com/tools/SAM4E-EK.aspx
http://store.atmel.com/
http://www.atmel.com/atmelstudio
http://www.iar.com/en/Products/IAR-Embedded-Workbench/ARM/
http://www.segger.com/download_jlink.html
http://www.atmel.com/tools/atmelsam-bain-systemprogrammer.aspx
http://www.atmel.com/tools/avrsoftwareframework.aspx

e Segger J-Link installed
e SAM4E-EK board connected to Atmel Studio through SAM-ICE and powered on

4.2 Load the Example
e Launch Atmel Studio
¢ Open the example selection menu in ASF from Atmel Studio: File->New->Example Project from ASF...
e Select the “Kit” view and select SAM4E-EK in the latest ASF
e Pick a project in the list and then press OK
e Accept the license agreement and press Finish. Then the Atmel Studio will open the example
e Build the project: Build->Build Solution
e Load the code in SAM4E and start debugging: Debug->Start Debugging and Break

Now the application has been programmed and the debugger stops at the beginning of main(). To execute it, click on
Debug->Continue.

5. Get Started with IAR EWARM

5.1 Requirements
e ASF 3.7.3 or above standalone package installed
e |AR Embedded Workbench for ARM 6.50.3 installed
e SAMA4E patch for IAR Embedded Workbench installed if using an earlier version of IAR
e Segger J-Link v.4.62 or above installed

e SAM4E-EK board connected to IAR Embedded Workbench for ARM through SAM-ICE and powered on

5.2 Load the Example
e Open the an example project file for SAM4E-EK
e Build the project: Project->Make
e Load the code in SAM4E and start debugging: Project->Download and Debug

Now the application has been programmed and the debugger stops at the beginning of main(). To execute it, click on
Debug->Go.

6. Get Started with SAM-BA

6.1 Requirements
e Atmel Studio 6.1 (or above) installed
e ASF 3.7.3 or above standalone package installed
e SAM-BA v2.12 and SAM4E patch for it installed
e Segger J-Link v4.62 or above installed
e SAM4E-EK board connected to SAM-BA through SAM-ICE and powered on

AtmeL Atmel AT03088: Getting Started with SAM4E [APPLICATION NOTE] 4

42145A-SAM-06/2013

6.2

6.3

7.1

7.2

Build the Binary File

e Open the Atmel Studio command line: Start->All Programs->Atmel->Atmel Studio 6.1 Command Prompt
e Change the directory where the a SAM4E-EK example makefile is

o Type “make” and enter. Then the binary file (getting-started_flash.bin) will be generated in the directory

e The binary file generated by IAR can be programmed by SAM-BA as well. About how to generate binary files by
IAR, please refer to IAR C/C++ Development Guide for ARM provided by IAR Embedded Workbench for ARM.

Load the Example

e Open SAM-BA

e Select \jlinklARMO (could be ARM1, 2 or other number) as the connection

e Select at91sam4el6-ek as the target board. Then press Connect

¢ In SAM-BA GUI, choose Flash tab

e For Send File Name, choose the binary file (getting-started_flash.bin) generated previously
e Specify the address (0x400000), then press Send File

e For Scripts, select Boot from Flash (GPNVM1), then press Execute

Now the application has been programmed. To execute it, reset the board.

Besides J-Link, UART and USB can be used for the communication between SAM-BA and SAM4E, please refer to the
chapter “SAM-BA Boot Program for SAM4E Microcontrollers” in SAM4E datasheet for the details.

The Getting-started Example

This section describes a simple example project that uses several important features present on SAM4E device, .
There are four main parts in this section:

e The specification of the getting-started example

e The introduction about relevant on-chip peripherals

e The introduction about relevant on-board components

e The implementation of the example

Specification
The getting-started example makes two LEDs on the board blink at a fixed rate. This rate is generated by using a timer

for the first LED, and a Wait function based on a 1 ms tick for the second LED. The blinking can be stopped using two
buttons - one for each LED.

On-chip Peripherals

In order to perform the operations described previously, the getting-started example uses the following set of
peripherals:

- Parallel Input/Output (P10O) controller
- Timer Counter (TC)
- System Tick Timer (SysTick)

- Nested Vectored Interrupt Controller (NVIC)

Atmel Atmel AT03088: Getting Started with SAM4E [APPLICATION NOTE] °

42145A-SAM-06/2013

- Universal asynchronous Receiver Transmitter (UART)
- Power Management Controller (PMC)

LEDs and buttons on the board are connected to standard input/output pins on the chip. The pins are managed by a
P1O controller. In addition, it is possible to have the controller generate an interrupt when the status of one of its pins
changes; buttons are configured to have this behavior.

The TC and SysTick are used to generate two timebases, in order to obtain the LED blinking rates. They are both used
in interrupt mode:

- The TC triggers an interrupt at a fixed rate, each time toggling the LED state (on/off).

- The SysTick triggers an interrupt every millisecond, incrementing a variable by one tick. The Wait function monitors
this variable to provide a precise delay for toggling the second LED state.

Using the NVIC is required to manage interrupts. It allows the configuration of a separate interrupt handler for each
source. Three different functions are used to handle PIO, TC and SysTick interrupts.

Finally, an additional peripheral is used to output debug traces on a serial line: the UART. Having the firmware send
debug traces at key points of the code can greatly help the debugging process.

7.3 On-board Components

7.3.1 Buttons

The SAM4E-EK features five push-buttons, NRST, WAKU9, TAMP, SCROLL-UP and SCROLL-DOWN, connected to
pins nRST, PA19, PA20, PA1 and PA2 respectively.

The NRST is used to reset the MCU usually, while the other four are used for general purpose, which can force a logical
low level on the corresponding PIO line when pressed.

The Getting-started example uses WAKU9 and TAMPS buttons with the internal hardware debouncing circuitry
embedded in the SAM4E.

7.3.2 LEDs

There are 4 LEDs on the SAM4E Evaluation Kit. D2, D3, D4 are used for general purpose, which are connected to PAO,
PD20, and PD21 respectively. D5 is the power LED but can be controlled by software as well because it is connected to
PD22.

Both D2 and D3 are used in the getting-started example.

7.3.3 COM Port (DBGU/UART)
UARTO of the SAMAE is connected to the COM port (DBGU/UART) on the SAM4E-EK.

7.4 Implementation

7.4.1 Startup

Most of the code in this program is written in C, which makes it easier to understand, more portable and modular. The
C-startup code must:

- Provide vector table
- Initialize critical peripherals
- Initialize stacks

- Initialize memory segments

Atmel Atmel AT03088: Getting Started with SAM4E [APPLICATION NOTE] 6

42145A-SAM-06/2013

74.1.1

- Locate Vector Table Offset

These steps are described in the following paragraphs.

Note that there are two versions of c-startup code in Atmel Software Framework. One is for the IAR Embedded
Workbench for ARM compiler and the other is for GNU GCC compiler. This application note will focus on the details of
the GCC one.

Vector Table

The vector table contains the initialization value for the stack pointer (see “Initializing Stacks”) on reset, and the entry
point addressed for all exception handlers. The exception numbers (see Table 7-1) define the order of entries in the
vector table associated with the exception handler entries (see Table 7-2).

Table 7-1. Excetpion Numbers

Exception Number

1 Reset

2 Non-maskable Interrupt
3 Hard Fault

4 Memory Management
5 Bus Fault

6 Usage Fault

7-10 Reserved

11 SVCall

12 Debug Monitor

13 Reserved

14 PendSV

15 SysTick

16 External Interrupt O
16 + N External Interrupt N

Table 7-2. Vector Table Format
0 Initial Stack Pointer
Exception Number | Exception using that Exception Number

On reset, the vector table is located at CODE partition. The table’s current location can be determined or relocated in
the CODE or SRAM patrtitions of the memory map using the Vector Table Offset Register (VTOR). Details on the
register can be found in the "Cortex-M4 TechnicalRef-erence Manual".

In the getting-started example, a full vector table looks like this:

The Full Vector Table in the getting-started example
const DeviceVectors exception_table = {

/* Configure Initial Stack Pointer, using linker-generated symbols */
(void*) (& _estack),

AtmeL Atmel AT03088: Getting Started with SAM4E [APPLICATION NOTE] 7

42145A-SAM-06/2013

(void®)
(void®)
(void®)
(void®)
(void®)
(void®)
(void®)
(void®)
(void®)
(void®)
(void®)
(void®)
(void®)
(void®)
(void*)

(void*)
(void*)
(void*)
(void*)
(void*)
(void*)
(void*)
(void*)
(void*)
(void*)
(void*)
(void*)
(void*)
(void*)
(void*)
(void*)
(void*)

Reset Handler,
NM1_Handler,
HardFault_Handler,
MemManage_Handler,
BusFault_Handler,
UsageFault_Handler,
(0uUL), /*
(0uUL), /*
(0uL), /*
(0uL), /*
SVC_Handler,
DebugMon_Handler,
(0uL), /*

PendSV_Handler,
SysTick _Handler,
/* Configurable interrupts
SUPC_Handler, />
RSTC_Handler, /*
RTC Handler, /*
RTT _Handler, /*
WDT_Handler, />
PMC_Handler, />
EFC_Handler, />
UARTO_Handler, /*
SMC_Handler, /*
PIOA_Handler, /*
PI0OB_Handler, />
PI10C_Handler, /=
PIOD_Handler, /™
PIOE_Handler, /*
USARTO_Handler, /*
USART1 Handler, /*
HSMCI_Handler, /*
TWIO_Handler, /*

(void*)
(void*)
(void*)
(void*)
(void*)
(void*)
(void*)
(void*)
(void*)
(void®)
(void®)
(void®)
(void¥®)
(void®)
(void¥®)
(void®)
(void®)
(void®)
FPDZC, FPIDC,
(void®)
(void¥®)
(void®)
(void®)
(void*)
(void®)
(void*)
(void®)

Atmel

TWI1_Handler, /™
SPI1_Handler, /*
DMAC_Handler, /*
TCO_Handler, /*

TC1 Handler, /*
TC2_Handler, /*
TC3_Handler, /™
TC4_Handler, /*
TC5_Handler, /*
TC6_Handler, /*
TC7_Handler, /*
TC8 Handler, /*
AFECO_Handler, /*
AFEC1_Handler, /*
DACC_Handler, /*
ACC_Handler, /*
ARM_Handler, /*
FPIXC */

UDP_Handler, /*
PWM_Handler, /*
CANO_Handler, /*
CAN1 Handler, /*
AES Handler, /*

Dummy_Handler,
Dummy_Handler,
Dummy_Handler,

Reserved */
Reserved */
Reserved */
Reserved */

Reserved */

*
N

OCoOoO~NOUIAhWNEO

Supply Controller */

Reset Controller */

Real Time Clock */

Real Time Timer */

Watchdog/Dual Watchdog Timer */

Power Management Controller */

Enhanced Embedded Flash Controller */

UART 0 */

Static Memory Controller */

Parallel 1/0 Controller A */

Parallel 1/0 Controller B */

Parallel 1/0 Controller C */

Parallel 1/0 Controller D */
E

Parallel 1/0 Controller */
USART 0 */
USART 1 */
Multimedia Card Interface */

Two Wire Interface 0 */
Two Wire Interface 1 */
Serial Peripheral Interface */

DMAC */
Timer/Counter 0 */
Timer/Counter 1 */
Timer/Counter 2 */
Timer/Counter 3 */
Timer/Counter 4 */
Timer/Counter 5 */
Timer/Counter 6 */
Timer/Counter 7 */
Timer/Counter 8 */
Analog Front End 0 */

Analog Front End 1 */

Digital To Analog Converter */

Analog Comparator */

FPU signals : FPIXC, FPOFC, FPUFC, FPIOC,

USB DEVICE */
PWM */
CANO */
CAN1 */
AES */

Atmel AT03088: Getting Started with SAM4E [APPLICATION NOTE]

42145A-SAM-06/2013

(void*) Dummy_Handler,
(void*) GMAC_Handler, /* 44 EMAC */
(void*) UART1 _Handler /* 45 UART */

7.4.1.2 Reset Exception

7.4.2

The handler of reset exception is responsible for starting up the application by performing the following actions:

Table 7-3. Reset Exception Actions

Initialize variables Any global/static variables must be setup. This includes initializing the BSS
variable to 0, and copying initial values from ROM to RAM for non-constant
variables.

Set vector table Optionally change vector table from Code area, value 0, to a location in SRAM.
This is normally done to enable dynamic changes.

Enable FPU Optionally enable FPU if __ FPU_USED is defined

Branch to main() Branch to the main() application.

System Clock Initialization

At the very beginning of the getting-started example main(), sysclk_init() is called to initialized the system clock of
SAM4E. In this function, Power Management Controller (PMC) is set according to the clock configuration file,
conf_clock.h.

In the conf_clock.h, the system clock source (CONFIG_SYSCLK_SOURCE) and system clock prescaler
(CONFIG_SYSCLK_PRES) must be defined. In the case of the getting-started example, since the Phase Lock Loop
block (PLLA) is used to multiply the frequency of the system clock, PLLA source, factor and divider are defined.

Clock Configuration

// ===== System Clock (MCK) Source Options

#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_PLLACK
// ===== System Clock (MCK) Prescaler Options

#define CONFIG_SYSCLK_PRES SYSCLK_PRES_2

// ===== PLLO (A) Options

// Use mul and div effective values here.

#define CONFIG_PLLO_SOURCE PLL_SRC_MAINCK_XTAL
#define CONFIG_PLLO_MUL 20

#define CONFIG_PLLO DIV 1

As shown in the code above, the exteneral crystal oscillator (PLL_SRC_MAINCK_XTAL) is selected as the PLLA
source (CONFIG_PLLO_SOURCE). The factor (CONFIG_PLLO_MUL) and divider (CONFIG_PLLO_DIV) are defined as
20 and 1 respectively. PLLA (SYSCLK_SRC_PLLACK) is chosen as the system clock source
(CONFIG_SYSCLK_SOURCE), the prescaler of which (CONFIG_SYSCLK_PRES) is defined as 2.

So after calling sysclk_init() with this configuration, the system clock frequency (SYSCLK) is
SYSCLK = XTAL * MUL / DIV / PRES = 12MHz *20/1/ 2 = 120MHz
Note that on the SAM4E-EK, 12MHz crystal oscillator is connected to XIN and XOUT pins.

Atmel Atmel AT03088: Getting Started with SAM4E [APPLICATION NOTE] 9

42145A-SAM-06/2013

7.4.3

7.4.4
74.4.1

7.4.4.2

Board Initialization

To contol the on-board components, buttons, LEDs and COM port in the case of the getting-started example,
board_init() is called in the main(). With the conf_board.h, the corresponding pins are configured in the appropriate
mode.

Board Configuration

/** Enable Com Port. */
#define CONF_BOARD_UART_CONSOLE

In board_init(), the pins connected to buttons are configured as input ports and the pins connected to LEDs are
configured as output ports.

In the getting-started example, CONF_BOARD_UART_CONSOLE is predefined as above, which enables the COM port
by configuring PA9 and PA10 as URXDO and UTXDO respectively.

Peripherals Configuration and Usage

UART
UART outputs the debug information via the COM port in the getting-started example. To display characters on PC
terminal software correctly, several parameters must be configured before calling puts() and printf().

In SAM4E, the UART peripheral operates in asynchronous mode only and supports only 8-bit character handling (with
parity) and 1 stop bit. No flow control is supported. So there are the baudrate and parity left to be configured.

UART Parameters

/** Baudrate setting */

#define CONF_UART_BAUDRATE 115200

/** Parity setting */

#define CONF_UART_PARITY UART_MR_PAR_NO

In conf_uart_serial.h, the baudrate is set as 115200bps and no parity is used.

UART Configuration

const usart_serial_options_t uart_serial_options = {
-baudrate = CONF_UART_BAUDRATE,
.paritytype = CONF_UART_PARITY
}:
/* Configure console UART. */
sysclk_enable_peripheral_clock(1D_UARTO);
stdio_serial_init(UARTO, &uart_serial_options);
In the above code, the peripheral clock for UARTO is enabled by calling sysclk_enable_peripheral_clock(). Then
stdio_serial_init() configures the baudrate and the parity type.

SysTick
SysTick can be easily configured by calling SysTick_Config(). To generate 1ms period, the only parameter of this
function should be system clock frequency / 1000.

SysTick Configuration

Atmel Atmel AT03088: Getting Started with SAM4E [APPLICATION NOTE] 10

42145A-SAM-06/2013

7.4.4.3

SysTick_Config(sysclk _get_cpu_hz() / 1000)
sysclk_get_cpu_hz() returns the current system clock frequency in Hz.

Then the SysTick interrupt will be triggered every 1ms. In the getting-started example, the SysTick interrupt handler
SysTick_Handler() simply increases a global counter by 1 every time, which is used by the wait function to generate a
specified period delay.

SysTick Interrupt Handler
volatile uint32_t g ul_ms_ticks = 0;
void SysTick_Handler(void)
{

}

g_ul_ms_ticks++;

Wait Function

static void mdelay(uint32_t ul_dly_ticks)

{

uint32_t ul_cur_ticks;

ul_cur_ticks = g_ul_ms_ticks;

while ((g_ul_ms_ticks - ul_cur_ticks) < ul_dly_ticks);
}

Note that the global counter, g_ul_ms_ticks, is declared as a volatile variable. It prevents the compiler from optimizing
the code casuing that the wait function does not work.

TC

SAMA4E provides nine 32-bit TC channels, which could be used to measure frequency, count event, generate PWM
wave and so on.

In the getting-started example, the TC channel 0 is configured to generate an interrupt per a quarter of a second.

Timer Counter Configuration

uint32_t ul_div;
uint32_t ul_tcclks;
uint32_t ul_sysclk = sysclk _get _cpu_hz(Q);

/* Configure PMC */
pmc_enable_periph_clk(ID_TCO);

/** Configure TC for a 4Hz frequency and trigger on RC compare. */
tc_find_mck_divisor(4, ul_sysclk, &ul_div, &ul_tcclks, ul_sysclk);
tc_init(TCO, 0, ul_tcclks | TC_CMR_CPCTRG);

tc_write_rc(TCO, 0, (ul_sysclk 7/ ul_div) /7 4);

/* Configure and enable interrupt on RC compare */
NVIC_EnablelRQ((IRQNn_Type) I1D_TCO);
tc_enable_interrupt(TCO, 0, TC_IER_CPCS);

/** Start the counter if LED1 is enabled. */
if (g_b_ledl_active) {

tc_start(TCO, 0);
}

Atmel Atmel AT03088: Getting Started with SAM4E [APPLICATION NOTE] 11

42145A-SAM-06/2013

Before any configuration, TC peripheral clock is enabled. 2 necessary parameters, the TC divider, the tick value for the
compare register (RC is used in the example), must be calculated to initialize the TC and the compare register. Then
the program enables the TC channel O interrupt and the compare interrupt. In the end, it starts TC channel 0 and the
counter starts ticking.

In the TC channel O interrupt handler, the LED status is toggled every time.

Interrupt Handler for TC Channel 0
volatile uint32_t ul_dummy;

/* Clear status bit to acknowledge interrupt */
ul_dummy = tc_get _status(TCO, 0);

/** Toggle LED state. */
ioport_toggle pin_level (LED1_GPIO);

7.4.4.4 PIO

Besides toggling LEDs, in the getting-started example, P1O retrieves the button input. When a button is pressed, the
level of the corresponding pin is changed. PIO detects the change and triggers an interrupt.

P10 Configuration for one button (one pin)

/* Configure Pushbutton 1 */
pmc_enable_periph_clk(PIN_PUSHBUTTON_1 ID);
pio_set_debounce_filter(PIN_PUSHBUTTON_1 PIO, PIN_PUSHBUTTON_1 MASK, 10);
/* Interrupt on rising edge */
pio_handler_set(PIN_PUSHBUTTON_1_P10, PIN_PUSHBUTTON_1_ID,
PIN_PUSHBUTTON_1_MASK, PIN_PUSHBUTTON_1 ATTR, Buttonl_ Handler);
NVIC_EnablelRQ((IRQn_Type) PIN_PUSHBUTTON_1_1D);
pio_handler_set_priority(PIN_PUSHBUTTON_1 PIO,
(IRQN_Type) PIN_PUSHBUTTON_1 ID, IRQ_PRIOR_PI0);
pio_enable_interrupt(PIN_PUSHBUTTON_1 P10, PIN_PUSHBUTTON_1 MASK);

The PIO peripheral clock is enabled at first so that the configuration below can take effect.

Usually in an application with the button inputs, there are some glitches on the input lines of the buttons. In PIO of
SAMA4E, the debouncing filter can be set to reject these unwanted pulses. In the getting-started example, if the period of
a glitch is less than 10 slow clock cycles (slow clock frequency is 32768Hz in this case), the glitch will be ignored by PIO.

Pressing different button leads to different action, so there should be a specified handler for a specified button pressing.
Before enabling the PIO interrupt and any pin interrupt, a handler, Button1_Handler, is set by calling pio_handler_set().
Also the condition to trigger a pin interrupt is chosen here.

In the getting-started example, two buttons control two LEDs in two ways. When WAKU button is pressed, the pin
connected to LED D2 toggles its output. When TAMP button is pressed, the TC channel is stopped or restarted. In both
ways, two LEDs stop or start blinking.

Button Pressing Process

static void ProcessButtonEvt(uint8_t uc_button)
{
if (uc_button == 0) {
g_b _led0_active = Ig b ledO_active;
if (Ig_b_led0_active) {
ioport_set_pin_level (LEDO_GPIO, IOPORT_PIN_LEVEL_HIGH);

Atmel Atmel AT03088: Getting Started with SAM4E [APPLICATION NOTE] 12

42145A-SAM-06/2013

}
} else {

Atmel

g_b _ledl_active = g b ledl_active;

/* Enable LED#2 and TC if they were enabled */

if (g_b_ledl_active) {
ioport_set_pin_Jlevel (LED1_GPIO, IOPORT_PIN_LEVEL_LOW);
tc_start(TCO, 0);

}

/* Disable LED#2 and TC if they were disabled */

else {
ioport_set_pin_level (LED1_GP10, IOPORT_PIN_LEVEL_HIGH);
tc_stop(TCO, 0);

¥

static void Buttonl_Handler(uint32_t id, uint32_t mask)

if (PIN_PUSHBUTTON_1_ID == id && PIN_PUSHBUTTON_ 1_MASK == mask) {

}
}
{

}
}

ProcessButtonEvt(0);

static void Button2_Handler(uint32_t id, uint32_t mask)

if (PIN_PUSHBUTTON 2_ID == id && PIN_PUSHBUTTON_2_MASK == mask) {

}

ProcessButtonEvt(1);

Atmel AT03088: Getting Started with SAM4E [APPLICATION NOTE] 13

42145A-SAM-06/2013

8. Revision History

Doc. Rev. Date Comments

42145A 06/2013 Initial release

Atmel Atmel AT03088: Getting Started with SAM4E [APPLICATION NOTE] 14

42145A-SAM-06/2013

/ltmeL Enabling Unlimited Possibilities’

Atmel Corporation Atmel Asia Limited Atmel Munich GmbH Atmel Japan G.K.

1600 Technology Drive Unit 01-5 & 16, 19F Business Campus 16F Shin-Osaki Kangyo Building
San Jose, CA 95110 BEA Tower, Millennium City 5 Parkring 4 1-6-4 Osaki

USA 418 Kwun Tong Road D-85748 Garching b. Munich Shinagawa-ku, Tokyo 141-0032
Tel: (+1)(408) 441-0311 Kwun Tong, Kowloon GERMANY JAPAN

Fax: (+1)(408) 487-2600 HONG KONG Tel: (+49) 89-31970-0 Tel: (+81)(3) 6417-0300
www.atmel.com Tel: (+852) 2245-6100 Fax: (+49) 89-3194621 Fax: (+81)(3) 6417-0370

Fax: (+852) 2722-1369

© 2013 Atmel Corporation. All rights reserved. / Rev.: 42145A-SAM-06/2013

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, SAM-BA®, and others are registered trademarks or trademarks of Atmel
Corporation or its subsidiaries. ARM® and Cortex® are registered trademarks of ARM Ltd. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

http://www.atmel.com/

	1. Get the Device Datasheet
	2. Get the SAM4E Evaluation Kit
	3. Get the Tools
	4. Get Started with Atmel Studio 6
	4.1 Requirements
	4.2 Load the Example

	5. Get Started with IAR EWARM
	5.1 Requirements
	5.2 Load the Example

	6. Get Started with SAM-BA
	6.1 Requirements
	6.2 Build the Binary File
	6.3 Load the Example

	7. The Getting-started Example
	7.1 Specification
	7.2 On-chip Peripherals
	7.3 On-board Components
	7.3.1 Buttons
	7.3.2 LEDs
	7.3.3 COM Port (DBGU/UART)

	7.4 Implementation
	7.4.1 Startup
	7.4.1.1 Vector Table
	7.4.1.2 Reset Exception

	7.4.2 System Clock Initialization
	7.4.3 Board Initialization
	7.4.4 Peripherals Configuration and Usage
	7.4.4.1 UART
	7.4.4.2 SysTick
	7.4.4.3 TC
	7.4.4.4 PIO

	8. Revision History

