

AVR054: Run-time calibration of the internal RC
oscillator

Features
• Calibration of internal RC oscillator via UART
• Synchronization/ calibration to within +/-2% of target frequency with a single

synch-byte.
• Alternate run-time synchronization/calibration to within +/-1% of target frequency

with double synch-byte.
• Support for all AVRs with tunable RC oscillator
• 50% duty cycle required for correct synchronization/ calibration.
• Enables robust UART communication with low cost clock sources in varying

operating conditions.

1 Introduction
This application note describes how to calibrate the internal RC oscillator via the
UART. In the method used a slave node is synchronized to a master node at the
beginning of every message frame. This allows a slave node to communicate with
other nodes at baud rates within specified limits, even when running on a low-cost
clock source, such as the internal RC oscillator.

The majority of the present AVR microcontrollers offer the possibility to run from an
internal RC oscillator. The internal RC oscillator frequency can in most AVRs be
calibrated at runtime to within +/-1% of the frequency specified in the datasheet for
the device. This feature is ideal for synchronization purposes, and offers significant
cost savings compared to using an external oscillator.

Note that this implementation uses the synchronization signal to alter the frequency
of the internal RC oscillator, which again alters the baud rate of the UART module.
The terms “synchronization” and “calibration” in this case essentially means the
same, and will be used interchangeably. The choice of expression is merely related
to the objective.

8-bit
Microcontrollers

Application Note

Rev. 2563C-AVR-04/08

2 AVR054
2563C-AVR-04/08

2 Theory of operation – the internal RC oscillator
In production the internal RC is calibrated at either 5V or 3.3V. Refer to the datasheet
of the individual devices for information about the operating voltage used during
calibration. The accuracy of the factory calibration is within +/-3 or +/-10% (refer to the
datasheet). If a design’s need for accuracy is beyond what can be offered by the
standard calibration in factory by Atmel, it is possible to perform a secondary
calibration of the RC oscillator. By doing this it is possible to obtain a frequency
accuracy within +/-1% for the Internal RC Oscillator version 5.0. A secondary
calibration can thus be performed to improve or tailor the accuracy or frequency of the
oscillator.

2.1 Clock selection
The AVR fuse settings control the system clock source being used. To use the
internal RC oscillator, the corresponding fuse setting must be selected. An overview
of the fuses is available in the datasheets.

2.2 Base-frequency
The following sections provide an overview of the internal RC oscillators available in
the AVR microcontrollers.

Some AVRs have one RC oscillator, while others have up to 4 different RC oscillators
to choose from. The frequency ranges from 1MHz to 9.6MHz. To make the internal
RC oscillator sufficiently accurate an Oscillator Calibration register, OSCCAL, is
present in the AVR IO file. The OSCCAL register is one byte wide. The purpose of
this register is to be able to tune the oscillator frequency. This tuning is utilized when
calibrating the RC oscillator.

When Atmel calibrates a device, the calibration byte is stored in the Signature Row of
the device. The calibration byte can vary from one device to the other, as the RC
oscillator frequency is process dependent. If a device has more than one oscillator a
calibration byte for each of the RC oscillators is stored in the Signature Row.

The default RC oscillator calibration byte is in most devices automatically loaded from
the Signature Row and copied into the OSCCAL register at start-up. For example, the
default ATmega8 clock setting is the internal 1MHz RC oscillator; for this device the
calibration byte corresponding to the 1MHz RC oscillator is automatically loaded at
start-up. If the fuses are altered so that the 4MHz oscillator is used instead of the
default setting, the calibration byte must be loaded into the OSCCAL register
manually. A programming tool can be used to read the 4MHz calibration byte from the
Signature Row and store it in a Flash or EEPROM location. The main program reads
this location and copies it into OSCCAL at run-time.

2.3 RC Oscillator overview
The base frequency of an oscillator is defined as the unscaled oscillator frequency.
Different RC oscillators have been utilized in the AVR microcontrollers throughout the
history. An overview of the RC oscillators and example devices is seen in Table 1-1.
The device list is sorted by oscillator type, which is also more or less equivalent to
sorting them by release date. Only devices with tunable oscillators are listed in the
table. For a complete list of supported devices, refer to the “device_specific.h” header
file of the source code.

 AVR054

 3

2563C-AVR-04/08

Table 1-1. Oscillator frequencies and features of different internal RC oscillator(s),
with example devices.

Oscillator
version

Device RC oscillator frequency
[MHz]

CKDIV PRSCK

1.1 ATtiny12 1.2 - -

1.2 ATtiny15 1.6 - -

2.0 ATmega163 1.0 - -

3.0 ATmega8 1.0, 2.0, 4.0, and 8.0 - -

3.1 ATmega64 1.0, 2.0, 4.0, and 8.0 - XDIV (1)

4.0 ATmega169(2) 8.0 Yes Yes

4.1 ATtiny13 4.8 and 9.6 Yes Yes

4.2 ATtiny2313 4.0 and 8.0 Yes Yes

5.0 ATmega169P 8.0 Yes Yes

Notes: 1. The prescaler register is in these devices are named XDIV
2. ATmega169 revision A-E, ATmega169P use oscillator version 5.0

2.3.1 Version 1.x oscillators

This version is the earliest internal RC for AVR that can be calibrated. It is offered
with frequencies ranging from 1.2MHz to 1.6MHz. The calibration byte is stored in the
Signature Row, but isn’t automatically loaded at start-up. The loading of the OSCCAL
register must be handled at run-time by the firmware. The oscillator frequency is
highly dependent on operating voltage and temperature in this version.

2.3.2 Version 2.x oscillators

This oscillator is offered with a frequency of 1MHz. The dependency between the
oscillator frequency and operating voltage and temperature is reduced significantly
compared to version 1.x.

2.3.3 Version 3.x oscillators

The oscillator system is expanded to offer multiple oscillator frequencies. Four
different RC oscillators with the frequencies 1, 2, 4, and 8MHz are present in the
device. This version features automatic loading of the 1MHz calibration byte from the
Signature Row. Due to the fact that 4 different RC oscillators are present, 4 different
calibration bytes are stored in the Signature Row. If frequencies other than the default
1MHz are desired, the OSCCAL register should be loaded with the corresponding
calibration byte at run-time.

2.3.4 Version 4.x oscillators

A single oscillator frequency of 8MHz is offered in version 4.0. For later 4.x versions,
two frequencies are offered: 4 and 8MHz for ATtiny2313, and 4.8 and 9.6MHz for the
ATtiny13. The OSCCAL register is changed so that only 7 bits are used to tune the
frequency for the selected oscillator. The MSB is not used. Auto loading of the default
calibration value is present and PRSCK is automatically set according to the CKDIV
fuse.

4 AVR054
2563C-AVR-04/08

2.3.5 Version 5.x oscillators

A single oscillator frequency of 8MHz is offered in version 5.0 All 8 bits in the
OSCCAL register are used to tune the oscillator frequency. Auto loading of the default
calibration value and system clock prescaler is present. The OSCCAL register is split
in two parts. The MSB of OSCCAL selects one of two overlapping frequency ranges,
while the 7 least significant bits are used to tune the frequency within this range.

2.4 Oscillator characteristics
The frequency of the internal RC oscillator is depending on the temperature and
operating voltage. An example of this dependency is seen in Figure 1-1. , which
shows the frequency of the 8MHz RC oscillator of the ATmega169 (revision A to E).
As seen from the figure, the frequency increases with increasing temperature, and
decreases slightly with increasing operating voltage. These characteristics will vary
from device to device. For details on a specific device refer to its datasheet.

Figure 1-1. Oscillator frequency and influence by temperature and operating voltage.
ATmega169 (revision A to E) calibrated 8MHz RC oscillator frequency vs. Vcc.

CALIBRATED 8MHz RC OSCILLATOR FREQUENCY vs. VCC

6

6.5

7

7.5

8

8.5

9

9.5

10

1.5 2 2.5 3 3.5 4 4.5 5 5.5

VCC (V)

F
R

C
 (

M
H

z)

85°C

25°C

-40°C

All devices with tunable oscillators have an OSCCAL register for tuning the oscillator
frequency. An increasing value in OSCCAL will result in a “pseudo-monotone”
increase in frequency. The reason for calling it pseudo-monotone is that for some
unity increases of the OSCCAL value the frequency will not increase or will decrease
slightly. However, the next unity increase will always increase the frequency again. In
other words, incrementing the OSCCAL register by one may not increase the
frequency, but increasing the OSCCAL value by two will always increase the
frequency. This information is very relevant when searching for the best calibration
value to fit a given frequency. An example of the pseudo-monotone relation between
the OSCCAL value and the oscillator frequency can be seen in Figure 1-2, which is
the 8MHz RC oscillator of ATmega169. Note that since the OSCCAL register only
uses 7 bits for tuning the oscillator in ATmega169 (8 bits in ATmega169P), the
maximum frequency is corresponding to OSCCAL = 128. Version 5.x oscillators differ

 AVR054

 5

2563C-AVR-04/08

a little bit from this description, because the MSB of OSCCAL selects one of two
frequency ranges as shown in Figure 1-3. Within each of the frequency ranges (MSB
constant), version 5.x oscillators exhibit the same pseudo-monotonic characteristics
as other versions of the oscillator.

Figure 1-2. ATmega169 calibrated RC oscillator frequency as a function of the
OSCCAL value.

Figure 1-3. ATmega169P calibrated RC oscillator frequency as a function of the
OSCCAL value.

For all tunable oscillators it is important to notice that it is not recommended to tune
the oscillator more than 10% off the base frequency specified in the datasheet. The
reason for this is that the internal timing in the device is dependent on the RC-
oscillator frequency.

Knowing the fundamental characteristics of the RC oscillators, it is possible to make
an efficient calibration routine that calibrates the RC oscillator to a given frequency,

6 AVR054
2563C-AVR-04/08

within 10% of the base frequency, at any operating voltage and at any temperature
with an accuracy of +/-1%.

2.5 Frequency settling time
When a new OSCCAL value has been set, it can take some time for the internal RC
oscillator to settle at the new frequency. This settling time will vary on the different
versions of the RC oscillator. Generally, the oscillator settles faster for small changes
in OSCCAL, than for large changes. This settling time is under no circumstances any
longer than 5 microseconds. Allow the oscillator to settle at its new frequency before
making any frequency measurements for calibration.

3 The UART synchronization method
Reliable communication is possible even when using low-cost clock sources, such as
the internal RC oscillator. Due to the inherent inaccuracy and environment-dependent
characteristics of such clock sources, synchronization measures must be included in
the synchronization method.

In a network consisting of one master node and several slave nodes, the master node
is responsible for controlling all communication on the bus. Communication occurs by
sending message frames on the bus. Every message frame starts with a frame
header, initiated by the master node. The header starts with a BREAK and SYNCH
pattern, allowing slave nodes to synchronize to the master before any communication
on the bus is initiated. The BREAK/SYNCH pattern consists of:

• BREAK signal: At least 13 bit times of dominant (low) value. See Figure 3-1.
• BREAK DELIMITER: At least 1 bit time of recessive (high) value. See Figure 3-1.
• SYNCH byte: A 0x55 is transmitted. Including the start and stop bits, this results in

a transmitted bit pattern of 0101010101. See Figure 3-2. (Note that the bit-
transmission order is lsb first).

Figure 3-1 BREAK signal.

Figure 3-2 SYNCH byte.

After the SYNCH byte, an identifier is transmitted. The identifier uniquely defines
which slave node is supposed to transmit data on the bus, and what information is
requested from that slave node.

In the following, the signal between two falling edges during SYNCH will be called a
synchronization cycle. Using this terminology, the SYNCH byte consists of five
synchronization cycles.

 AVR054

 7

2563C-AVR-04/08

4 Binary and neighbor search
Three different calibration/synchronization methods are described in this application
note. Common to all three is the way the OSCCAL value is calculated.

4.1 The search method
A binary search is used to calculate the OSCCAL value that will make the internal RC
oscillator produce the desired frequency, within specified accuracy limits.

4.1.1 The binary search

The binary search works in the following way:

1. Start with an OSCCAL value in the middle of the search-range.
2. Set step-size to 1/4 of the search range.
3. Decide if the current frequency is too high or too low.
4. If the current frequency is too high, subtract step-size from OSCCAL, or if it is too

low, add step-size to OSCCAL. If frequency is within accuracy limits, do not
change OSCCAL.

5. Divide step-size by 2.
6. If step-size is 0, the search is complete. Abort search, or jump to neighbor search.

(Described later)
7. Jump to step 3
This search method is optimal (when it comes to worst-case run time) when
searching data with a strictly monotone relationship. As we know, the relationship
between OSCCAL and resulting oscillator frequency is not completely monotone.
However, it is close enough for the binary search to be the most efficient way to find a
value in the neighborhood of the optimal OSCCAL value. From this point it is easy to
find the optimal value.

4.1.2 The neighbor search

To do this, the neighbor values have to be examined. Since an increase in clock
frequency is guaranteed when increasing OSCCAL by a value of 2 or more, problems
are only expected at the last iteration of the binary search, when the step-size is 1. In
this case an increased OSCCAL value might result in a decrease in clock frequency,
and vice versa. One more step in the same direction guarantees a frequency change
in the desired direction. This step might however just be large enough to counter the
effect of the last step. Thus, to make sure that the optimal OSCCAL value is found,
even one more step should be taken. The Timer/Counter0 value of each of these
iterations is then saved, and compared to the desired number of clock cycles. The
OSCCAL value that produces the clock frequency closest to the desired frequency is
used. This will be referred to as a neighbor search.

4.1.3 Using the binary search with a synch signal

The SYNCH byte consists of only 5 synchronization cycles. If we were to measure
complete synchronization cycles, calculate a new OSCCAL value and then try again,
only two iterations of the binary search would be possible. After a measurement,
calculations must be performed, a new OSCCAL value must be set, and the oscillator
must be allowed to settle at the new frequency.

Instead, the bit times can be measured when the RXD line is low to calculate the
current oscillator frequency. The time left when the RXD line is high can then be used

8 AVR054
2563C-AVR-04/08

to calculate new OSCCAL values and let the oscillator settle at the new value. The
masters low and high bit times need to be equal in length requiring a 50% duty cycle.
This is the case for most UARTs.

Note that the maximum number of search iterations that can be performed equals the
number of synchronization cycles transmitted on the bus.

4.1.4 Range

Equation 4-1 shows the maximum change of OSCCAL value during a binary search.

Equation 4-1 Maximum change of OSCCAL during binary search.

∑
−

=

−==
1

0
max 122

n

i

nic

Here cmax is the maximum change, and n is the number of iterations. The total range
of one binary search then spans over 1212 1

max −=+= +ncr values.

If the neighbor search is used, 2 synchronization cycles must be reserved for it in the
end of the synchronization. These must be subtracted from the cycles available to the
binary search. To cover the whole range of an 8 bit OSCCAL register, 7 iterations of
the binary search are needed, using 7 synchronization cycles. If neighbor search is
included, 2 more cycles would be needed, giving a total of 9. Corresponding values
for a 7 bit OSCCAL register is 6 without neighbor search, and 8 with neighbor search.

4.1.5 Accuracy

The accuracy of the search depends on the search method used:

If only the binary search is used, the optimal OSCCAL value is not always found.
However, the frequency found should still be within +/-2% of the desired frequency for
parts that can be calibrated to +/-1% of target frequency. When the binary search is
used alone, the search should abort when a system clock frequency within the
required accuracy limits is found. This should be done to avoid problems in the last
step due to the pseudo-monotone relation between OSCCAL and internal RC
oscillator frequency.

When the neighbor search is used in addition to the binary search, the optimal
OSCCAL value, at the time of synchronization, will always be found if it lies inside the
search range. The resulting clock frequency will then be within +/-1% of the desired
frequency, for parts that can be calibrated to within this accuracy. To accomplish this,
the search is only aborted if a perfect match is found, i.e. the measured number of
CPU cycles during synchronization signal low periods exactly matches the desired
number of CPU clock cycles. Even if there is an OSCCAL value that produces a clock
frequency closer to the desired one, we will not be able to measure the difference.
Further search is thus not necessary.

4.2 Single SYNCH byte synchronization method
The synchronization byte consists of 5 synchronization cycles, which equals 5
iterations of the binary search. The maximum OSCCAL range that can be searched
during synchronization is then r = 26-1 = 63 values. It is not recommended to use a
neighbor search when the single SYNCH byte synchronization method is used, since
the resulting search range will be very limited. The 63 OSCCAL values covered by

 AVR054

 9

2563C-AVR-04/08

the binary search, however, is a significant portion of the possible values, and it is
possible to calibrate to within +/-2% of desired frequency.

OSCCAL should be set to the default value before every synchronization.

4.3 Double SYNCH byte synchronization
To search the full range of an 8 bit OSCCAL register, with neighbor search, 7
synchronization cycles are needed for the binary search, in additions to 2
synchronization cycles for the neighbor search. This equals 9 synchronization cycles,
almost 2 synchronization bytes. (Including start and stop bits), and is capable of
performing a search of the full OSCCAL register, allowing the part to operate in the
full temperature and voltage range specified in the data sheet. To be able to search
the full range of OSCCAL values, OSCCAL should be loaded with the maximum
OSCCAL value divided by 2 before every synchronization.

To use this method, the single SYNCH byte must be replaced with two consecutive
synch bytes All bit times during the dual SYNCH byte must be equal.

4.4 Repeated frame synchronization
This synchronization procedure is very similar to the single SYNCH byte
synchronization procedure. The difference is that the slave node does not guarantee
that it can synchronize to the master in one attempt. If the first synchronization
attempt is not sufficient, the master node will not be able to receive data from the
slave correctly. In this case, the master will issue a new BREAK/SYNCH on the bus
during the message frame. If the identifier following this repeated BREAK/SYNCH
signal equals the identifier of the interrupted message frame, this is a signal to the
slave that the last synchronization failed. In this case the slave will start a new
synchronization without loading the default OSCCAL value, and then try to transmit
again. The default OSCCAL value should only be loaded when the last transmission
was successful.

The repeated frame synchronization method allows the full OSCCAL range to be
searched, but it can require several attempts when searching for OSCCAL values far
from the default.

4.5 How to chose calibration / synchronization method?
The singe SYNCH byte synchronization method is well suited for real-time
applications, since worst-case time taken to perform synchronization is well defined.

If the increased accuracy is needed, the double SYNCH byte synchronization method
is recommended. This method also possesses the same real-time properties as the
single SYNCH byte synchronization method.

If the application must handle large variations in temperature and supply voltage, but
operates in constant conditions most of the time, the Repeated frame synchronization
can be a good alternative. It is not, however, recommended for real-time applications,
since the worst-case synchronization time is much longer than the average
synchronization time.

Since additional code is required to implement the neighbor search, this should only
be used when the added accuracy is really needed.

10 AVR054
2563C-AVR-04/08

5 Implementation
This section describes how the run-time calibration can be implemented on an AVR.

5.1 Hardware
The UART module makes a good choice for a single SYNCH byte implementation.
This application note uses the UART to implement it; however any general I/O pin can
be used.

External interrupt 0 (INT0) is used to detect edges to facilitate timing. The UART RXD
pin must therefore be connected to the INT0 pin, to facilitate the synchronization
timing.

5.2 Software
In the following sections the firmware needed to do run-time calibration is described.

5.2.1 Initialization

When the AVR is reset, it must be configured in the following way:

• Initialize the UART.
• Configure INT0 pin.
• Read default OSCCAL value from EEPROM or flash, if needed.

5.2.2 Detection of the break signal

The BREAK signal can be detected in two ways:

When the AVR is in sleep mode, INT0 must be set up to trigger on low level. The
BREAK signal is of sufficient length to wake up the AVR before the SYNCH byte is
issued on the bus. Since the UART RXD pin is connected to the INT0 pin, the UART
receiver should be disabled before entering sleep to ensure that the BREAK is
handled by the INT0 Interrupt Service Routine (ISR).

When the AVR is running, the “RX Complete Interrupt” must be enabled to detect the
BREAK signal. The UART will try to interpret the BREAK signal as a byte being
transmitted on the bus, but the length of the BREAK signal will cause a frame error
because no stop bit is detected in time. This will cause the “Frame Error” (FE) and
“UART Receive Complete” flags in the UART Control and Status registers to be set.
Since “RX Complete Interrupt” is enabled, this will cause the UART Receive
Complete (RXC) ISR to be run. The FE flag then indicates that a BREAK signal was
issued.

This configuration ensures that either the INT0 ISR or the UART RXC ISR, is run as
soon as a break signal is detected, see Figure 5-1. The “Process character” and
“Perform synchronization” blocks refer to functionality that should be included in these
ISRs, but are not relevant to the break detection. The “Perform synchronization” block
is where the actual calibration/synchronization will take place. This block is covered in
the next section. The “Prepare for synch” block is shown in Figure 5-2. It is common
to both interrupt routines, and is implemented as a macro to avoid function calls within
interrupt service routines.

 AVR054

 11

2563C-AVR-04/08

Figure 5-1. BREAK detection in UART RXC and INT0 Interrupt Service Routines

UART RXC ISR

Frame error?

Yes

No

Process
character

Return

INT0 ISR

Check
breakDetected

Return

Yes

No

Perform
synchronization

Prepare for
SYNCH

Prepare for
SYNCH

Figure 5-2. “Prepare for SYNCH” macro
Prepare for SYNCH

macro
Set breakDetected

= True
Set calStep =

INITIAL_STEP
Set nextSyncState =

M

Enable INT0, trigger
on falling edge End of macroLoad default

OSCCAL value
Disable UART

receiver

5.2.3 Synchronization

Flowcharts for the single SYNCH byte synchronization method and the Double
SYNCH byte method are shown in Figure 5-3 and Figure 5-4. The Repeated frame
synchronization method is not shown here, since it requires only a small modification
to the single SYNCH byte synchronization method.

The synchronization algorithm described in this document measures the baud rate on
the RXD line during the SYNCH signal, and changes the frequency of the internal RC
oscillator to obtain the desired clock frequency and/or baud rate. The UART Baud
Rate Register is never changed during synchronization.

After the BREAK signal is detected, the device should be ready to process the
SYNCH byte. The synchronization is performed in the INT0 ISR. It is vital to the
synchronization algorithm that the timing is absolutely correct. All ISRs with higher
priority should therefore be disabled during synchronization, and the “Global Interrupt
Enable” flag must be set at all times during synchronization except during execution
of ISRs, where interrupts are disabled by default by the AVR.

The 8 bit Timer/Counter0 is used to count the number of clock cycles per bit time on
the bus. When running at high clock frequency to baud rate ratio, 8 bits might not be
enough to count the clock cycles during one bit time. The Timer/Counter0 overflow
flag can then be used as a 9th bit.

Since the INT0 ISR performs both BREAK signal detection and synchronization
timing, a global flag, “breakDetected” is set after a break is detected. This flag is then
cleared when the synchronization procedure is finished.

12 AVR054
2563C-AVR-04/08

A second global flag, nextSynchState, is used to control the actual synchronization.
The value of this flag determines which synchronization state to enter when the next
edge is detected on the bus. Three states are used: Measuring (M), Binary search (B)
and Neighbor Search (N).

NextSynchState is set to M when waiting for a falling edge on the bus. When entering
INT0 ISR in this state Timer/Counter0 is reset and INT0 is set up to trigger on rising
edge. The nextSynchState flag is then changed to either B or N state.

NextSynchState is changed to B or N when waiting for a rising edge on the bus.
When entering INT0 ISR in these states the value of Timer/Counter0 is read, and one
iteration of the search corresponding to the nextSynchState flag is performed. This
results in a new OSCCAL value to test. Unless this is the last iteration of the search,
the nextSynchState flag is set to M and INT0 is set up to trigger on falling edge.

In this way, the algorithm alternates between the states until the synchronization is
finished.

5.2.4 Timing accuracy

It can be seen from the flowcharts in Figure 5-3 and Figure 5-4 that Timer/Counter0 is
both read and reset every time INT0 ISR is run. It would maybe be more intuitive to
reset the timer in the beginning of every measurement iteration and read it in the
beginning of every computational iteration. This would however add to the complexity
of the code, making it larger, slower and giving it less predictable timing. It is
extremely important that the number of cycles between the read statement and the
reset statement can be found exactly, to make sure that the synchronization is
correct.

It is not really necessary to stop and start the counter in the INT0 ISR if
Timer/Counter0 is used in 8-bit mode. In this case the counter must be started at
initialization time. However, if the overflow flag is used as a ninth bit, the counter must
be stopped while the counter register and the overflow flag is reset to ensure reading
of the nine-bit value as an atomic operation.

 AVR054

 13

2563C-AVR-04/08

Figure 5-3. The single SYNCH byte synchronization method – Flowchart

Check
nextSynchState

INT0 ISR

Reset Timer0

Start Timer0 B

M

Return

Compare
 Timer0 to target

count

Decrease OSCCAL
by calStep

Increase OSCCAL by
calStep

Too many ticks Too few ticks

Divide calStep by 2
Set INT0 to trigger on

rising edge

calStep = 0?

Set nextSynchState
= M

No

Return

Set nextSynchState
= B

Set INT0 to trigger on
falling edge

Yes

Disable INT0

Within
limits

Check
breakDetected

Yes

No

Return

Set breakDetected =
False

Prepare for
SYNCH

Read Timer0

Stop Timer0

Enable UART
receiver

Disable sleep
flag

14 AVR054
2563C-AVR-04/08

Figure 5-4. Double SYNCH byte method – Flowchart, part 1

Check
nextSynchState

INT0 ISR

B

M

Return

Set INT0 to trigger on
rising edge

Set
nextSynchState

= B

Check
breakDetected

Yes

No

Return

N

Disable INT0

Set breakDetected =
False

Calibration cycles
left?

No

Increase
neighborsSearched by

1

calStep = 0?
No Yes

Set
nextSynchState

= N

Add sign to
OSCCAL

No

Yes

Set OSCCAL =
bestOSCCAL

Return

Prepare for
SYNCH

Reset Timer0

Start Timer0

Read Timer0

Stop Timer0

Enable UART receiver

abs(Timer0 -
targetCount) <

bestCount?

Store OSCCAL as
bestOSCCAL

Store abs(Timer0-
targetCount) as
bestCountDiff

Yes

Disable sleep
flag

A B

(The flowchart continues on the next page.)

 AVR054

 15

2563C-AVR-04/08

Figure 5-5. Double SYNCH byte method - Flowchart, part 2
A B

Compare Timer0
 to targetCountToo many

 ticks
Too few

ticks

Divide calStep by
2

calStep = 0?

Set
nextSynchState =

M

No

Return

Set INT0 to trigger
on falling edge

Yes

Set
neighborsSearched=0

Set sign = -1 Set sign = 1

Store abs(Timer0-
targetCount) as
bestCountDiff

Store OSCCAL as
bestOSCCAL

Add calStep
to OSCCAL

Subtract
calStep from

OSCCAL

Perfect match

6 Conditions for successful operation
The following section lists some important guidelines that should be followed to obtain
the desired accuracy of the calibration.

6.1 Timing accuracy
Since Timer/counter0 only counts integer numbers, a truncation error is introduced.
The inaccuracy introduced by this truncation is limited by the baud rate to clock
frequency ratio. Decreasing this ratio will result in more accurate timing. To obtain a

16 AVR054
2563C-AVR-04/08

frequency accuracy of 1%, this ratio must be less than 0.01. This means that a baud
rate of 19200kbps will require a clock frequency of minimum 2MHz.

6.2 OSCCAL overflow
No measures have been made to ensure that an overflow does not occur when the
OSCCAL register is modified during calibration. This is done on purpose, since it is
not necessary to do overflow checking at run-time. Instead it is recommended to test
the default OSCCAL value at programming time, when it is stored to EEPROM or
flash. If the search range is large enough to risk OSCCAL overflow, change the
default OSCCAL value stored in EEPROM accordingly, so an overflow cannot occur.
This applies only to the single SYNCH byte synchronization method.

6.3 UART Baud rate generation
Using the UART module for communications, it is not always possible to match the
desired baud rate at all clock frequencies. To eliminate this inaccuracy, make sure the
desired baud rate can be exactly generated at the calibration target frequency. For
instance, when running at a clock frequency of exactly 2MHz, it is impossible to
obtain a UART baud rate of 19.2kbps with less than 7% error. At a clock frequency of
exactly 2.150.400Hz, a baud rate of 19.2kbps can be exactly generated. In this case,
calibrating towards 2MHz would be useless if the intention is to communicate at
19.2kbps.

6.4 Timer/counter resolution
It is extremely important that the selected timer/counter resolution is sufficient to
count all the clock cycles during the low cycle of the synchronization signal. The
needed resolution is dictated by the max clock frequency/baud rate ratio. Make sure
that the counter resolution is sufficient even when the clock frequency reaches the
highest value during synchronization.

6.5 Version 5.0 oscillators
Since the OSCCAL register on version 5.0 oscillators is split in two parts, the binary
search method is not suited to search the whole range. The included source code
supports searching of only one half of the OSCCAL register. The active half must be
decided at compile time. If the whole range needs to be searched, one search for
each half of the register must be performed, and the results must be compared to
choose the optimal OSCCAL value. This method is not implemented in the included
source code, but could be done with small changes to the included source code.

7 Getting started and code documentation.
The doxygen documentation included with the source contains a quick start guide,
info about compiler and project setup and device support. The source can be
downloaded from www.atmel.com/products/avr/. The documentation is accessed by
opening the ‘readme.html’ file.

http://www.atmel.com/products/avr/

2563C-AVR-04/08

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof AVR®, and others, are the registered trademarks or
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

	1 Introduction
	2.1 Clock selection
	2.2 Base-frequency
	2.3 RC Oscillator overview
	2.3.1 Version 1.x oscillators
	2.3.2 Version 2.x oscillators
	2.3.3 Version 3.x oscillators
	2.3.4 Version 4.x oscillators
	2.3.5 Version 5.x oscillators

	2.4 Oscillator characteristics
	2.5 Frequency settling time

	3 The UART synchronization method
	4 Binary and neighbor search
	4.1 The search method
	4.1.1 The binary search
	4.1.2 The neighbor search
	4.1.3 Using the binary search with a synch signal
	4.1.4 Range
	4.1.5 Accuracy

	4.2 Single SYNCH byte synchronization method
	4.3 Double SYNCH byte synchronization
	4.4 Repeated frame synchronization
	4.5 How to chose calibration / synchronization method?

	5 Implementation
	5.1 Hardware
	5.2 Software
	5.2.1 Initialization
	5.2.2 Detection of the break signal
	5.2.3 Synchronization
	5.2.4 Timing accuracy

	6 Conditions for successful operation
	6.1 Timing accuracy
	6.2 OSCCAL overflow
	6.3 UART Baud rate generation
	6.4 Timer/counter resolution
	6.5 Version 5.0 oscillators

	7 Getting started and code documentation.

