Altmel

Atmel s

SMART ARM-based Microcontrollers

AT12200: SAM C Divide and Square Root
Accelerator (DIVAS) Driver

APPLICATION NOTE

Introduction

This driver for Atmel® | SMART ARM®-based microcontrollers provides an
interface for the configuration and management of the device's Divide and
Square Root Accelerator functionality.
The following peripherals are used by this module:

* DIVAS (Divide and Square Root Accelerator)

The following devices can use this module:
* Atmel | SMART SAM C20/C21

The outline of this documentation is as follows:
* Prerequisites
* Module Overview
* Special Considerations
» Extra Information
+ Examples
* API Overview

Atmel-42644A-SAM_Divide-and-Square-Root-Accelerator-DIVAS-Driver_AT12200_Application Note-01/2016

Table of Contents

INEFOAUCTION. ... 1
1. SOfWAIE LICENSE.....eiiiiieiiieiee ettt e e et e e e e e e e eeeeeeeeeaannnes 3
B o =T =0 UL (=T 4
3. MOAUIE OVEIVIEW.euiiiiiiie ettt e e e e et e e e e e e e e st e e e e e e e e e e annnnnneeeeeens 5
I Tt I © V7= 1 o7 To @ o T=T = 1o] o 1O UPUPRPN 5
3.2, OPEIrANA SIZE....uueeiieeiiieiee ettt et e e e et e e e e e e e e e e s ——eee e e e et b— et e e e eaaareeaeeaanraneaeeaanres 6

G TR RS 1o g Yo B I 1V o o TSRS 6
3.4, DIVIAE BY ZEIO....eeeiiiiiieeeee ittt e e e 6

3.5, UNSIgNed SQUAIE ROOT........uiiiiiiiiiiiii ittt e et 6

4. Special Considerations..............oouviiiiiiiiiii 7
5. EXtra INfOrmation..........ooo oo 8
LT = 0]][7S 9
T APL OVEIVIEW......iieeeee ettt e e e e e et e e e e e e e st e e e e e e e e s nnnnneneeaaeens 10
7.1, Structure DefinitioNS.oooi it e e e e e e e e e e aaeaa s 10
A% T R S {8 o AV =Y (0 o USRS PTPPUPINt 10

712, SHUCt UIIV_TEIUMNL ...t e e e et ae e e e e e eaees 10

7.2, FUNCHON DEfINIHIONS.ciii ettt e ettt e e e e e e e e e e e nnneeeaeeannees 10
7.2.1. Call the DIVAS API OPeration..........c.cooriiiiiiieiaiiie et 10

7.2.2. DIVAS Overload /" and '%' Operation.............coceieiueeeiiiieeniee e 12

7.2.3. Function divas_disable_dIZ()..........c.ceeriiiriiieeie e 13

7.2.4. Function divas_enable_dIZ()........c.cuuiiriiiiiiiiieeie e 14

8. Extra Information for DIVAS DFiVEI........ccoiiiiiiiiicci e 15
< Tt I Vo] o] 1Y/ o 11 J PP URT S UTPERPN 15
8.2, DEPENUENCIES. ... eeiiiitee ettt e et nanees 15

S TR T = 1 | - J PR 15

S T /[To [N [1] (o] PRSP 15

9. Examples for DIVAS DIiVEL ..., 16
9.1. Quick Start Guide for DIVAS - NO OVerload...........ccooiiiiiiiiiiiiieiieie et 16
SR O O = (U o F PR 16

9.1.2. IMPIEMENTALION.......oeiiiei e a e 18

9.2. Quick Start Guide for DIVAS - OVEMOAQ.coiiiiiieiieeeie et e e sneeeeas 19
0.2, S HUP . ettt e e e e e 19

9.2.2. IMPIEMENTALION.......eiiiiii i a e e e nr e e e e as 22

10. Document Revision HiStOry..........cooiiiiiiiiiiiiiiiie e 23

Atmel

Atmel AT12200: SAM C Divide and Square Root Accelerator (DIVAS) Driver [APPLICATION NOTE]
Atmel-42644A-SAM_Divide-and-Square-Root-Accelerator-DIVAS-Driver_AT12200_Application Note-01/2016

2

1. Software License

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. The name of Atmel may not be used to endorse or promote products derived from this software without
specific prior written permission.

4. This software may only be redistributed and used in connection with an Atmel microcontroller product.

THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE EXPRESSLY AND SPECIFICALLY
DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

AtmeL Atmel AT12200: SAM C Divide and Square Root Accelerator (DIVAS) Driver [APPLICATION NOTE] 3

Atmel-42644A-SAM_Divide-and-Square-Root-Accelerator-DIVAS-Driver_AT12200_Application Note-01/2016

2. Prerequisites

There are no prerequisites for this module.

Atmel Atmel AT12200: SAM C Divide and Square Root Accelerator (DIVAS) Driver [APPLICATION NOTE] 4
Atmel-42644A-SAM_Divide-and-Square-Root-Accelerator-DIVAS-Driver_AT12200_Application Note-01/2016

3.1.

Module Overview

This driver provides an interface for the Divide and Square Root Accelerator on the device.

The DIVAS is a programmable 32-bit signed or unsigned hardware divider and a 32-bit unsigned square
root hardware engine. When running signed division, both the input and the result will be in two's
complement format. The result of signed division is that the remainder has the same sign as the dividend
and the quotient is negative if the dividend and divisor have opposite signs. When the square root input
register is programmed, the square root function starts and the result will be stored in the Remainder
register.

There are two ways to calculate the results:
« Call the DIVAS API

* Overload "/" and "%" operation
Note: Square root operation can't implement overload operation.

Overload Operation

The operation is implemented automatically by EABI (Enhanced Application Binary Interface). EABI is a
standard calling convention, which is defined by ARM. The four functions interface can implement division
and mod operation in EABI.

The following prototypes for EABI division operation in ICCARM tool chain:

int aeabi idiv(int numerator, int denominator);

unsigned aeabi uidiv (unsigned numerator, unsigned denominator);

_ _value in regs idiv return aeabi idivmod(int numerator, int

denominator) ;

~_value in regs uidiv _return aeabi uidivmod(unsigned numerator,
unsigned denominator) ;

The following prototypes for EABI division operation in GNUC tool chain:

int aeabi idiv (int numerator, int denominator);

unsigned aeabi uidiv (unsigned numerator, unsigned denominator);

uint64 t aeabi idivmod(int numerator, int denominator);

uint64 t uidiv_return aeabi uidivmod(unsigned numerator,
unsigned denominator) ;

No matter what kind of tool chain, by using DIVAS module in the four functions body, the user can
transparently access the DIVAS module when writing normal C code. For example:

void division (int32 t b, int32 t c)
{

int32 t a;

a=>b/ c;

return ay;

}

Similarly, the user can use the "a = b % c;" symbol to implement the operation with DIVAS, and needn't to
care about the internal operation process.

AtmeL Atmel AT12200: SAM C Divide and Square Root Accelerator (DIVAS) Driver [APPLICATION NOTE] 5

Atmel-42644A-SAM_Divide-and-Square-Root-Accelerator-DIVAS-Driver_AT12200_Application Note-01/2016

3.2 Operand Size
« Divide: The DIVAS can perform 32-bit signed and unsigned division.
» Square Root: The DIVAS can perform 32-bit unsigned division.

3.3. Signed Division
When the signed flag is one, both the input and the result will be in two's complement format. The result
of signed division is that the remainder has the same sign as the dividend and the quotient is negative if
the dividend and divisor have opposite signs.
Note: When the maximum negative number is divided by the minimum negative number, the resulting
quotient overflows the signed integer range and will return the maximum negative number with no
indication of the overflow. This occurs for 0x80000000 / OxFFFFFFFF in 32-bit operation and 0x8000 /
OxFFFF in 16-bit operation.

3.4. Divide By Zero
A divide by zero will cause a fault if the DIVISOR is programmed to zero. The result is that the quotient is
zero and the reminder is equal to the dividend.

3.5. Unsigned Square Root
When the square root input register is programmed, the square root function starts and the result will be
stored in the Result and Remainder registers.
Note: The square root function can't overload.

Atmel AT12200: SAM C Divide and Square Root Accelerator (DIVAS) Driver [APPLICATION NOTE]
me °

Atmel-42644A-SAM_Divide-and-Square-Root-Accelerator-DIVAS-Driver_AT12200_Application Note-01/2016

4. Special Considerations

There are no special considerations for this module.

Atmel Atmel AT12200: SAM C Divide and Square Root Accelerator (DIVAS) Driver [APPLICATION NOTE] 7
Atmel-42644A-SAM_Divide-and-Square-Root-Accelerator-DIVAS-Driver_AT12200_Application Note-01/2016

5. Extra Information

For extra information, see Extra Information for DIVAS Driver. This includes:

Atmel

Acronyms
Dependencies
Errata

Module History

Atmel AT12200: SAM C Divide and Square Root Accelerator (DIVAS) Driver [APPLICATION NOTE]
Atmel-42644A-SAM_Divide-and-Square-Root-Accelerator-DIVAS-Driver_AT12200_Application Note-01/2016

8

6. Examples

For a list of examples related to this driver, see Examples for DIVAS Driver.

Atmel Atmel AT12200: SAM C Divide and Square Root Accelerator (DIVAS) Driver [APPLICATION NOTE] 9
Atmel-42644A-SAM_Divide-and-Square-Root-Accelerator-DIVAS-Driver_AT12200_Application Note-01/2016

7. API Overview
71. Structure Definitions
71.1. Structidiv_return
DIVAS signed division operator output data structure.
Table 7-1. Members
Type [Name [Descripton
int32_t quotient Signed division operator result: quotient
int32_t remainder Signed division operator result: remainder
7.1.2. Struct uidiv_return
DIVAS unsigned division operator output data structure.
Table 7-2. Members
o Name demaipion |
uint32_t quotient Unsigned division operator result: quotient
uint32_t remainder Unsigned division operator result: remainder
7.2, Function Definitions
7.21. Call the DIVAS API Operation
In this mode, the way that directly call the DIVAS API implement division or mod operation.
7.2.1.1. Function divas_idiv()
Signed division operation.
int32 t divas idiv(
int32_t numerator,
int32 t denominator)
Run the signed division operation and return the quotient.
Table 7-3. Parameters
[in] numerator The dividend of the signed division operation
[in] denominator The divisor of the signed division operation
Returns
The quotient of the DIVAS signed division operation.
Atmel AT12200: SAM C Divide and Square Root Accelerator (DIVAS) Driver [APPLICATION NOTE] 10
me

Atmel-42644A-SAM_Divide-and-Square-Root-Accelerator-DIVAS-Driver_AT12200_Application Note-01/2016

7.2.1.2. Function divas_uidiv()
Unsigned division operation.
uint32 t divas_uidiv(
uint32 t numerator,
uint32 t denominator)
Run the unsigned division operation and return the results.
Table 7-4. Parameters
[in] numerator The dividend of the unsigned division operation
[in] denominator The divisor of the unsigned division operation
Returns
The quotient of the DIVAS unsigned division operation.
7.2.1.3. Function divas_idivmod()
Signed division remainder operation.
int32 t divas_idivmod (
int32 t numerator,
int32 t denominator)
Run the signed division operation and return the remainder.
Table 7-5. Parameters
[in] numerator The dividend of the signed division operation
[in] denominator The divisor of the signed division operation
Returns
The remainder of the DIVAS signed division operation.
7.2.1.4. Function divas_uidivmod()
Unsigned division remainder operation.
uint32 t divas_ uidivmod (
uint32 t numerator,
uint32 t denominator)
Run the unsigned division operation and return the remainder.
Table 7-6. Parameters
[in] numerator The dividend of the unsigned division operation
[in] denominator The divisor of the unsigned division operation
Atmel AT12200: SAM C Divide and Square Root Accelerator (DIVAS) Driver [APPLICATION NOTE] 1
me

Atmel-42644A-SAM_Divide-and-Square-Root-Accelerator-DIVAS-Driver_AT12200_Application Note-01/2016

Returns
The remainder of the DIVAS unsigned division operation.

7.2.1.5. Function divas_sqrt()
Square root operation.
uint32 t divas_sqgrt(
uint32 t radicand)
Run the square root operation and return the results.
Table 7-7. Parameters
[in] radicand The radicand of the square root operation
Returns
The result of the DIVAS square root operation.
7.2.2. DIVAS Overload 'I" and '%' Operation
In this mode, the user can transparently access the DIVAS module when writing normal C code. E.g. "a =
b/c;" or"a=Db % c;" will be translated to a subroutine call, which uses the DIVAS.
7.2.21. Function __aeabi_idiv()
Signed division operation overload.
int32 t aeabi idiv(
int32 t numerator,
int32 t denominator)
Run the signed division operation and return the results.
Table 7-8. Parameters
[in] numerator The dividend of the signed division operation
[in] denominator The divisor of the signed division operation
Returns
The quotient of the DIVAS signed division operation.
7.2.2.2. Function __aeabi_uidiv()
Unsigned division operation overload.
uint32 t aeabi uidiv(
uint32 t numerator,
uint32 t denominator)
Run the unsigned division operation and return the results.
AtmeL Atmel AT12200: SAM C Divide and Square Root Accelerator (DIVAS) Driver [APPLICATION NOTE] 12

Atmel-42644A-SAM_Divide-and-Square-Root-Accelerator-DIVAS-Driver_AT12200_Application Note-01/2016

Table 7-9. Parameters

[in] numerator The dividend of the unsigned division operation
[in] denominator The divisor of the unsigned division operation
Returns

The quotient of the DIVAS unsigned division operation.

7.2.2.3. Function __aeabi_idivmod()
Signed division remainder operation overload.
uint64 t aeabi idivmod (
int32 t numerator,
int32 t denominator)
Run the signed division operation and return the remainder.
Table 7-10. Parameters
[in] numerator The dividend of the signed division operation
[in] denominator The divisor of the signed division operation
Returns
The remainder of the DIVAS signed division operation.
7.2.2.4. Function __aeabi_uidivmod()
Unsigned division remainder operation overload.
uint64 t aeabi uidivmod/(
uint32 t numerator,
uint32 t denominator)
Run the unsigned division operation and return the remainder.
Table 7-11. Parameters
[in] numerator The dividend of the unsigned division operation
[in] denominator The divisor of the unsigned division operation
Returns
The remainder of the DIVAS unsigned division operation.
7.2.3. Function divas_disable_diz()
Disables DIVAS leading zero optimization.
void divas disable dlz(void)
AtmeL Atmel AT12200: SAM C Divide and Square Root Accelerator (DIVAS) Driver [APPLICATION NOTE] 13

Atmel-42644A-SAM_Divide-and-Square-Root-Accelerator-DIVAS-Driver_AT12200_Application Note-01/2016

Disable leading zero optimization from the Divide and Square Root Accelerator module. When leading
zero optimization is disable, 16-bit division completes in 8 cycles and 32-bit division completes in 16
cycles.

7.2.4. Function divas_enable_diz()

Enables DIVAS leading zero optimization.

void divas_enable dlz(void)

Enable leading zero optimization from the Divide and Square Root Accelerator module. When leading
zero optimization is enable, 16-bit division completes in 2-8 cycles and 32-bit division completes in 2-16
cycles.

AtmeL Atmel AT12200: SAM C Divide and Square Root Accelerator (DIVAS) Driver [APPLICATION NOTE] 14
Atmel-42644A-SAM_Divide-and-Square-Root-Accelerator-DIVAS-Driver_AT12200_Application Note-01/2016

8. Extra Information for DIVAS Driver
8.1. Acronyms
DIVAS Divide and Square Root Accelerator
EABI Enhanced Application Binary Interface
8.2. Dependencies
This driver has no dependencies.
8.3. Errata
There are no errata related to this driver.
8.4. Module History
An overview of the module history is presented in the table below, with details on the enhancements and
fixes made to the module since its first release. The current version of this corresponds to the newest
version in the table.
Changelog
Initial Release
AtmeL Atmel AT12200: SAM C Divide and Square Root Accelerator (DIVAS) Driver [APPLICATION NOTE] 15

Atmel-42644A-SAM_Divide-and-Square-Root-Accelerator-DIVAS-Driver_AT12200_Application Note-01/2016

9. Examples for DIVAS Driver

This is a list of the available Quick Start guides (QSGs) and example applications for SAM Divide and
Square Root Accelerator (DIVAS) Driver. QSGs are simple examples with step-by-step instructions to
configure and use this driver in a selection of use cases. Note that a QSG can be compiled as a
standalone application or be added to the user application.

. Quick Start Guide for DIVAS - No Overload
. Quick Start Guide for DIVAS - Overload

9.1. Quick Start Guide for DIVAS - No Overload

In this use case, the Divide and Square Root Accelerator (DIVAS) module is used.

This use case will calculate the data in No Overload mode. If all the calculation results are the same as
the desired results, the board LED will be lighted. Otherwise, the board LED will be flashing. The variable
"result" can indicate which calculation is wrong.

9.1.1. Setup

9.1.1.1. Prerequisites
There are no special setup requirements for this use-case.

9.1.1.2. Code
The following must be added to the user application source file, outside any function:
The signed and unsigned dividend:

#define BUF_LEN 8

const int32 t numerator s[BUF LEN] = {

2046, 415, 26, 1, -1, -255, -3798, -65535};

const int32 t excepted s[BUF LEN] = ({

2046, 207, 8, 0, 0, -42, -542, -8191};

const int32 t excepted s m[BUF LEN]
o, 1, 2, 1, -1, -3, -4, -7};

{

const uint32 t numerator u[BUF LEN] = ({
0x00000001,
0x0000005A,
0x000007AB,
0x00006ARC,
0x0004567D,
0x0093846E,
0x20781945,
Ox7FFFFFFF,
i

const uint32 t excepted u[BUF LEN] = {
0x00000001,
0x00000024d,
0x0000028E,
0x00001AAF,
0x0000DE19,

AtmeL Atmel AT12200: SAM C Divide and Square Root Accelerator (DIVAS) Driver [APPLICATION NOTE] 16
Atmel-42644A-SAM_Divide-and-Square-Root-Accelerator-DIVAS-Driver_AT12200_Application Note-01/2016

0x00189612,
0x04A37153,
OxOFFFFFFF,

}s

const uint32 t excepted u m[BUF LEN] = ({
6, 0, 1, 0, 0, 2, 0, 7};

const uint32 t excepted r[BUF LEN] = ({
0x00000001,
0x00000009,
0x0000002C,
0x000000A5,
0x00000215,
0x00000C25,
0x00005B2B,
0x0000B504,
}:

static int32 t result s[BUF LEN], result s m[BUF LEN];
static uint32 t result u[BUF LEN], result u m[BUF LEN];
static uint32 t result r[BUF LEN];

static uint8 t result = 0;

Copy-paste the following function code to your user application:

static void signed division (void)

{
int32 t numerator, denominator;
uint8 t i;

for (i = 0; i < BUF_LEN; i++) {

numerator = numerator s[i];
denominator = i + 1;
result s[i] = divas idiv(numerator, denominator);
if (result s[i] != excepted s[i]) {
result |= 0x01;

}
}
static void unsigned division (void)
{ uint32 t numerator, denominator;

uint8 t i;

for (1 = 0; i < BUF_LEN; i++) {

numerator = numerator uli];
denominator = i + 1;
result uf[i] = divas uidiv (numerator, denominator);
if (result uf[i] != excepted ufli]) {
result |= 0x02;

}
}

static void signed division mod (void)
{
int32 t numerator, denominator;
uint8 t 1i;

for (1 = 0; 1 < BUF_LEN; i++) {
numerator = numerator s[i];

AtmeL Atmel AT12200: SAM C Divide and Square Root Accelerator (DIVAS) Driver [APPLICATION NOTE]

Atmel-42644A-SAM_Divide-and-Square-Root-Accelerator-DIVAS-Driver_AT12200_Application Note-01/2016

denominator =
result s m[i]

divas idivmod (numerator, denominator);
i] != excepted s m[i]) {
0x04;
}

}

static void unsigned division mod (void)

{
uint32 t numerator, denominator;
uint8 t i;

for (i = 0; i < BUF_LEN; i++) ({
numerator = numerator ufli];

denominator = i + 1;
result u m[i] = divas uidivmod (numerator, denominator);
if (result u m[i] != excepted u m[i]) {

result |= 0x08;

}
}

static void squart root (void)
{
uint32 t operator;
uint8 t i;

for (1 = 0; 1 < BUF LEN; i+4+) |
operator = numerator uli];
result r[i] = divas_sqrt (operator) ;
if (result r[i] != excepted r[i]) {
result |= 0x10;
}

}

Add to user application initialization (typically the start of main ()):

system init();

9.1.2. Implementation

9.1.21. Code

Copy-paste the following code to your user application:

signed division();
unsigned division() ;
signed division mod() ;
unsigned division mod() ;
squart root();

while (true) {

if (result) {
port pin toggle output level (LED 0 PIN);
/* Add a short delay to see LED toggle */
volatile uint32 t delay = 50000;
while (delay--) {
}

} else {
port pin set output level (LED O PIN, LED 0 ACTIVE);

AtmeL Atmel AT12200: SAM C Divide and Square Root Accelerator (DIVAS) Driver [APPLICATION NOTE]
Atmel-42644A-SAM_Divide-and-Square-Root-Accelerator-DIVAS-Driver_AT12200_Application Note-01/2016

18

9.1.2.2. Workflow

1. Signed division calculation.
signed division();

2. Unsigned division calculation.
unsigned division();

3. Signed reminder calculation.
signed division mod();

4. Unsigned reminder calculation.
unsigned division mod() ;

5. Square root calculation.
squart root();

6. Infinite loop.

while (true) {
if (result) {
port pin toggle output level (LED 0 PIN);
/* Add a short delay to see LED toggle */
volatile uint32 t delay = 50000;
while (delay--) {

}
} else {

port pin set output level (LED O PIN, LED 0 ACTIVE);
}

9.2. Quick Start Guide for DIVAS - Overload

In this use case, the Divide and Square Root Accelerator (DIVAS) module is used.

This use case will calculate the data in overload mode. If all the calculation results are the same as the
desired results, the board LED will be lighted. Otherwise, the board LED will be flashing. The variable
"result" can indicate which calculation is wrong.

9.21. Setup

9.2.1.1. Prerequisites
There are no special setup requirements for this use-case.

9.2.1.2. Code
The following must be added to the user application source file, outside any function:
The signed and unsigned dividend:

#define BUF_LEN 8

const int32 t numerator s[BUF LEN] = {

2046, 415, 26, 1, -1, -255, -3798, -65535};

AtmeL Atmel AT12200: SAM C Divide and Square Root Accelerator (DIVAS) Driver [APPLICATION NOTE] 19
Atmel-42644A-SAM_Divide-and-Square-Root-Accelerator-DIVAS-Driver_AT12200_Application Note-01/2016

const int32 t excepted s[BUF LEN] = {

2046, 207, 8, 0, 0, -42, -542, -8191};

const int32 t excepted s m[BUF LEN]
o, 1, 2, 1, -1, -3, -4, -T7};

{

const uint32 t numerator u[BUF LEN]
0x00000001,
0x0000005A,
0x000007AB,
0x00006ABC,
0x0004567D,
0x0093846E,
0x20781945,
0x7FFFEFFEE,

1
-

)i

const uint32 t excepted ul[BUF LEN] = {
0x00000001,
0x0000002d,
0x0000028E,
0x00001AAF,
0x0000DE19,
0x00189612,
0x04A37153,
O0xOFFFFFFF,
}s

const uint32 t excepted u m[BUF LEN] = ({
6, 0, 1, 0, 0, 2, 0, 7};

const uint32 t excepted r[BUF LEN] = ({
0x00000001,
0x00000009,
0x0000002C,
0x000000A5,
0x00000215,
0x00000C25,
0x00005B2B,
0x0000B504,
}:

static int32 t result s[BUF LEN], result s m[BUF LEN];
static uint32 t result u[BUF LEN], result u m[BUF LEN];
static uint32 t result r[BUF LEN];

static uint8 t result = 0;

Copy-paste the following function code to your user application:

static void signed division (void)

{
int32 t numerator, denominator;
uint8 t i;

for (i = 0; i < BUF_LEN; i++) ({
numerator = numerator s[i];
denominator = i + 1;
result s[i] = numerator / denominator;
if (result s[i] != excepted s[i]) {
result |= 0x01;
}

AtmeL Atmel AT12200: SAM C Divide and Square Root Accelerator (DIVAS) Driver [APPLICATION NOTE]
Atmel-42644A-SAM_Divide-and-Square-Root-Accelerator-DIVAS-Driver_AT12200_Application Note-01/2016

20

}

static void unsigned division (void)

{

uint32 t numerator, denominator;
uint8 t i;

for (i = 0; i < BUF_LEN; i++) {

numerator = numerator uf[i];

denominator = i + 1;

result u[i] = numerator / denominator;

if (result u[i] != excepted ufli]) {
result |= 0x02;

}
}

static void signed division mod (void)

{

int32 t numerator, denominator;
uint8 t i;

for (i = 0; i < BUF_LEN; i++) {

numerator = numerator s[i];

denominator = i + 1;

result s m[i] = numerator % denominator;

if (result s m[i] != excepted s m[i]) {
result |= 0x04;

}
}

static void unsigned division mod (void)

{

uint32 t numerator, denominator;
uint8 t i;

for (i = 0; i < BUF_LEN; i++) {

numerator = numerator ufli];

denominator = i + 1;

result u m[i] = numerator % denominator;

if (result u m[i] != excepted u m[i]) {
result |= 0x08;

}
}

static void squart root (void)

{
uint32 t operator;
uint8 t i;

for (i = 0; 1 < BUF LEN; i+4+) |
operator = numerator uli];
result r[i] = divas_sqrt (operator);
if (result r[i] != excepted r[i]) {
result |= 0x10;
}

AtmeL Atmel AT12200: SAM C Divide and Square Root Accelerator (DIVAS) Driver [APPLICATION NOTE]
Atmel-42644A-SAM_Divide-and-Square-Root-Accelerator-DIVAS-Driver_AT12200_Application Note-01/2016

21

Add to user application initialization (typically the start of main ()):

system init();

9.2.2. Implementation

9.2.2.1. Code

Copy-paste the following code to your user application:

signed division();
unsigned division() ;
signed division mod();
unsigned division mod() ;
squart root();

while (true) {
if (result) {
port pin toggle output level (LED 0 PIN);
/* Add a short delay to see LED toggle */
volatile uint32 t delay = 50000;
while (delay--) {

}
} else {

port pin set output level (LED 0 PIN, LED O ACTIVE);
}

9.2.2.2. Workflow

1. Signed division calculation.
signed division();
2. Unsigned division calculation.

unsigned division();

3. Signed reminder calculation.
signed division mod() ;

4. Unsigned reminder calculation.

unsigned division mod() ;

5. Square root calculation.

squart root();

6. Infinite loop.

while (true) {

if (result) {
port pin toggle output level (LED 0 PIN);
/* Add a short delay to see LED toggle */
volatile uint32 t delay = 50000;
while (delay--) {
}

} else {
port pin set output level (LED O PIN, LED 0 ACTIVE);

}

AtmeL Atmel AT12200: SAM C Divide and Square Root Accelerator (DIVAS) Driver [APPLICATION NOTE] 22
Atmel-42644A-SAM_Divide-and-Square-Root-Accelerator-DIVAS-Driver_AT12200_Application Note-01/2016

10. Document Revision History

Doc. Rev. Comments
42644A 01/2016 Initial document release
Atmel Atmel AT12200: SAM C Divide and Square Root Accelerator (DIVAS) Driver [APPLICATION NOTE] 23

Atmel-42644A-SAM_Divide-and-Square-Root-Accelerator-DIVAS-Driver_AT12200_Application Note-01/2016

Atmel | Enabiing Unlimited Possibilities’ fl¥lin]3[o]w
Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-42644A-SAM_Divide-and-Square-Root-Accelerator-DIVAS-Driver_AT12200_Application Note-01/2016

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected® logo, and others are registered trademarks of ARM Ltd. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Table of Contents
	1. Software License
	2. Prerequisites
	3. Module Overview
	3.1. Overload Operation
	3.2. Operand Size
	3.3. Signed Division
	3.4. Divide By Zero
	3.5. Unsigned Square Root

	4. Special Considerations
	5. Extra Information
	6. Examples
	7. API Overview
	7.1. Structure Definitions
	7.1.1. Struct idiv_return
	7.1.2. Struct uidiv_return

	7.2. Function Definitions
	7.2.1. Call the DIVAS API Operation
	7.2.1.1. Function divas_idiv()
	7.2.1.2. Function divas_uidiv()
	7.2.1.3. Function divas_idivmod()
	7.2.1.4. Function divas_uidivmod()
	7.2.1.5. Function divas_sqrt()

	7.2.2. DIVAS Overload '/' and '%' Operation
	7.2.2.1. Function __aeabi_idiv()
	7.2.2.2. Function __aeabi_uidiv()
	7.2.2.3. Function __aeabi_idivmod()
	7.2.2.4. Function __aeabi_uidivmod()

	7.2.3. Function divas_disable_dlz()
	7.2.4. Function divas_enable_dlz()

	8. Extra Information for DIVAS Driver
	8.1. Acronyms
	8.2. Dependencies
	8.3. Errata
	8.4. Module History

	9. Examples for DIVAS Driver
	9.1. Quick Start Guide for DIVAS - No Overload
	9.1.1. Setup
	9.1.1.1. Prerequisites
	9.1.1.2. Code

	9.1.2. Implementation
	9.1.2.1. Code
	9.1.2.2. Workflow

	9.2. Quick Start Guide for DIVAS - Overload
	9.2.1. Setup
	9.2.1.1. Prerequisites
	9.2.1.2. Code

	9.2.2. Implementation
	9.2.2.1. Code
	9.2.2.2. Workflow

	10. Document Revision History

