®
A t l I IeL SMART ARM-based Microcontrollers

AT12874: Getting Started with SAM S70/E70

APPLICATION NOTE

Introduction

This application note provides information on how to get started with the
Atmel® | SMART SAM S/E series, Atmel ARM® Cortex®-M7 based
microcontroller. The application note will provide information on how to get
datasheet, tools, and software, and give a step-by-step instruction on how to
load and build a single example project with Xplained Ultra Evaluation Kit.

Glossary

ACC - Analog Comparator

ADC - Analog to digital converter

AFEC - Analog Front-End Controllers

BOD - Brown-out Detector

CAN - Controller Area Networks

DAC - Digital-to-Analog Controller

DMA - Direct Memory Access

EDBG - Embedded Debugger

HSMCI - High-speed Multimedia Card Interface
I2C - Inter-Integrated Circuit

ICM - Integrity Check Monitor

IDE - Integrated Development Environment
ISI - Image Sensor Interface

MPU - Memory Protection Unit

NVIC - Nested Vectored Interrupt Controller
P10 - Parallel Input/Output (PIO) controller
POR - Power-on-Reset

QSPI - Quad I/O Serial Peripheral Interface
RASR - Region Attribute and Size Register

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

Atmel SHART

Atmel

RBAR - Region Base Address Register
SCL - Serial Clock Line
SDA - Serial Data Line

SPI - Serial communication interface

SSC - Serial Synchronous Controller

SysTick - System Tick Timer

TC - Timer Counter (TC)

TCM - Tightly Coupled Memory

TRNG - True Random Number Generator

TWI - Two-Wire Interfaces

USART - Universal asynchronous receiver/transmitter

WDT - Watchdog Timer

Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE]

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

2

Table of Contents

INEFOAUCTION. ... 1
(€110 1ET= T2 PP PPRPPPRP 1
R o (5T =T [0S =S 5
2. Getthe Device Datash@et............oooiiiiiiiiiiii e 6
3. Getthe SAMSTO/ETO Kitooiieieiiiiieiii et e e e e e e e e e 7
4, Gt the TOOIS. ..o e e e e e e e e e e e et e e 1
5. The Getting-started EXample.......coooiiiiiiii e 12
LT IS o1 =Yoo= 11 [] o SRS PRP SO 12
5.1.1. Atmel StUdIO Program.........ooooieeiiiie ettt e see e s e e e e s e e s neeeenneeeennee 12

5.2, TAR @Nd Keil PrOGram.......cccuuiiiiiiiiiiiie ettt e s ne e 12

Lo T O g Eor o 1T o B =Y o 1T = PR 13
5.4, ON-b0ard COMPONENTS.........uuiiieiiiiiiiee e ee ettt e et e e e e et e e e e e e st e e e e e setbeeeeessasbsaeeaeeassnsseeeeeannnnes 13
S I = 10 |1 (o 3 - T PPN 13

B2, LEDS. ..ot ettt b e bttt b e b e naeeeanas 13

54.3. COM POrt (DBGU/UART).....ioiieiiieiiet ettt 14

ST = oo} (1o Vo T PSRRI 14

5.4.5. Erasing FIash ... 14

5.5, IMPIEMENTALION......ooiiiiiii e 16
5.5.1. Initialization Before ‘Main’ccoooiiiiiiii e 16

5.5.2. Generic Peripheral USage...........cciiiuiiiiiiiiiiii ettt 19

5.5.3. Disabling or Reprogramming Watchdog Timer (WDT)........ccccevriereriiieeeriee e 19

5.5.4. Enabling Cache If NECESSArY.........coiiiiiiiiiiiic et 20

5.5.5. Using the Nested Vectored Interrupt Controller (NVIC)........ccccoovivieriiiiiciiiiee e, 21

5.5.6. Using the Timer Counter (TC).....coioiii ittt e e 22

5.5.7. Using the System Timer (SYSTICK).......ceeiuiiiiiiieiie e s 23

5.5.8. Using the Parallel Input/Output Controller (P1O)..........ccceeiiiiiiieeiiie e 24

5.5.9. USING the Serial POIS......cccoiiiiiiie et e e et 25

6. Get Started with Atmel StUdIO B.........cooiiiiiie e 27
6.1, REQUIFEMENTS ...ttt ettt e e st e e e bt e e san e e e et e e s br e e e sareeesbeeennee 27
6.2, L0Ad the EXAMPIE.......eiiiiiiii i 27

7. Get Started with AR EWARM.......ooiiiiiii et 29
T4, REQUIFEMENTS ..ottt ettt r e e st e s be e e e eane e e san e e e ssn e e e nnneeesrneennee 29
7.2, L0ad the EXAMPIE.......ooiiiiiiiie et 29

8. Get Started With KEIL MDK...........cuiiiiiiiieii e 31
< Tt I = To [N 1T 4= o PSRRI 31

8.2, L0ad the EXAMPIE.......oeiiiiiie ittt 32

Atmel

Get Started With GNU TOOIS........eiiiiiiiiieiie e 35
.Get Started with SAM-BA. ... 36
= To (U114 =T 0 0 1=T o1 £ PRSPPI 36

10.2. BUIld the BiNAry File.......ccoiiiiiiiee ettt st e et e et e e sneeeennbeeeenee 36
10.3. Load the EXAmMPIE.......ccoo oot e aaaae 36
. Real Time Operating System SUppOrt...........cooviiiiiiiiiiiiieeee e 38
B Y o] o] [Toz=1 i e o I VLo L= TSP SPPR 39
CREFEBIENCES... ... 40
cREVISION HISTOMY ... 41

Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE]

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

4

1. Pre-requisites
The software referenced in this application note requires several components:

* One SAM V71 Xplained Ultra Evaluation Kit
+ One PC running Windows® 7
* One of the following development tools:
— Atmel Studio 6.2 SP2 or higher
— IAR Embedded Workbench® for ARM (later than V7.40.1)
— Keil MDK-ARM (later than V5.12)
— GNU Tools for ARM Embedded Processors (later than V4.8.4)

Note: MinGW (later than V0.6.2) is necessary for GNU.

* The following debugger:

— EDBG (this unit offers SWD and USART port), that is part of SAM V71 Xplained Ultra
Evaluation Kit

* AtmelUSBInstaller.exe (later than 6.2.342)

In this document, examples are used to guide you in setting up development environments for these
tools.

Even though the SAM S70/E70 MCU series support the following debuggers, they are not explained in
this getting started document.
* SAM-ICETM (J-Link) (later than V8.0)
— SEGGER J-Link software and documentation pack (later than VV4.96)
* ULINKproTM and ULINK2TM for MDK

AtmeL Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 5

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

2. Get the Device Datasheet
Web page:

* SAM E: http://www.atmel.com/products/microcontrollers/arm/sam-e.aspx
* SAM S: http://www.atmel.com/products/microcontrollers/arm/sam-s.aspx

Datasheet document:
« SAM E70 Complete (.pdf) available at the link: http://www.atmel.com/products/microcontrollers/arm/
sam-e.aspx?tab=documents

* SAM S70 Complete (.pdf) available at the link: http://www.atmel.com/products/microcontrollers/arm/
sam-s.aspx?tab=documents

AtmeL Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 6

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

http://www.atmel.com/products/microcontrollers/arm/sam-e.aspx
http://www.atmel.com/products/microcontrollers/arm/sam-s.aspx
http://www.atmel.com/products/microcontrollers/arm/sam-e.aspx?tab=documents
http://www.atmel.com/products/microcontrollers/arm/sam-e.aspx?tab=documents
http://www.atmel.com/products/microcontrollers/arm/sam-s.aspx?tab=documents
http://www.atmel.com/products/microcontrollers/arm/sam-s.aspx?tab=documents

Get the SAMS70/E70 Kit

Web page:
* SAM E: http://www.atmel.com/products/microcontrollers/arm/sam-e.aspx?tab=tools
* SAM S: http://www.atmel.com/products/microcontrollers/arm/sam-s.aspx?tab=tools

To get the kit:
* Click on SAM V71 Xplained Ultra Evaluation Kit (marked in Purple box) as shown in the figure

below:
Figure 3-1 SAM V71 Xplained Ultra Evaluation Kit in SAM E/S Product Site

Home > Products > Microcontrollers > SMART ARM-based MCUs > SAM E MCUs

SAM E ARM Cortex-M7 Microcontrollers

Overview Product Search Documents Tools

Tools and Software SAM E ARM Cortex-M7 Microcontrollers

Recommended v

} SAM V71 Xoia - § Xplained Ultra evaluation kit for the SAM V71, SAM V70,
B t ; SAM S70 and SAM E70.

It leads to the link http://www.atmel.com/tools/ATSAMV71-XULT.aspx and the following image appears
(see the next figure):

AtmeL Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 7

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

http://www.atmel.com/products/microcontrollers/arm/sam-e.aspx?tab=tools
http://www.atmel.com/products/microcontrollers/arm/sam-s.aspx?tab=tools
http://www.atmel.com/tools/ATSAMV71-XULT.aspx

Figure 3-2 SAM V71 Xplained Ultra Evaluation Kit Link

Overview Deviees Documents Apphcations Related Tools

» Start Now »
» Contact Sales »
» Request Samples »
» Sign-up for News v

Please refer to the respective SAM V71, SAM V70, SAM S70, SAM E70 series

webpages for more detalls. As the V71 iIs 3 superset of the S70, E70 and V70
series, the SAM V71 Xplained Ultra evaluation kit can be used for their
evaluation.

" Calures

n

« ATSAMV71Q21 microcontroller
+ One mechanical reset button
+ One power switch button
Two mechanical user pushbuttons
* Two yellow user LEDs
Supercap backup
12.0 MHz crystal
32.768 kHz crystal
2 MB SDRAM
2 MB QSPI Flash
IEEE 802.332 10B3se-T/100Base-TX Ethernct RMII PHY
» AT24MAC402 256KByte EEPROM with EUI-48 address
Stereo audio codec
External PLL for precise clock generation
Microphone jack
Headphone jack

« ATAG6561 CAN Transcelver
SD Card connector with SDIO support
« Camera interface connector
MedialB connector
Two Xplained Pro extension headers
+ One Xplained Pro LCD header
+ Coresight 20 connector for 4-bit ETM
+ Arduino due compatible shield connectors
External debugger connector
USB interface, device and host mode
Embedded Debugger
« Auto-1ID for board identification in Atmel Studio
+ One yellow status LED
+ One green board power LED
Symbolic debug of complex data types including scope Information
Programming and debugging
+ Data Gateway Interface: SPI, 1'C, 4 GP1Os
* Virtual COM port (CDC)

External power input (5-14V)
USB powered

Orcler ng Afarmation

Ordering Code Atmel Store Avallability? Unit Price (USD)? Buy Online

The features supported by the kit are listed as shown in the figure above. The kit can be ordered by using
"Buy Now" or entering the quantity in the ordering information box.

* The link http://www.atmel.com/tools/ATSAMV71-XULT.aspx?tab=documents leads to the user guide
page as shown in the figure below:

AtmeL Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 8

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

http://www.atmel.com/tools/ATSAMV71-XULT.aspx?tab=documents

Figure 3-3 SAM V71 Xplained Ultra Evaluation Kit: Documents Link

Overview Devices Documents Applications Related Tools

Get Started

we'll tell you all you need to know
to start evaluating and working
with this product.

» Start Now N
» Contact Sales N
» Request Samples N
» Sign-up for News N

Related Items

e » Third Party Support
) » University Program
Atmel SMART Knowledge Base
PDE Software Description Technical Support
)) o » What's Changed
» Mature Devices
- L Atmel SAM V71 Xplained Ultra User Guide
- (file size: 4.3MB, 52 pages, revision B, updated: 06/2015)
The Atmel® | SMART SAM V71 Xplained Ultra evaluation kit is a
hardware platform to evaluate the Atmel SAM V71
microcontroller. Supported by the Atmel Studio integrated
development platform, the kit provides easy access to the
features of the Atmel ATSAMV71Q21 and explains how to
integrate the device in a custom design.

1. The pdf document in the link and as shown in the figure above is the SAM V71 Xplained Ultra User
Guide. Inside the document the features supported by the kit with all extension header pinouts,
other connectors (LCD Extension Connector, Arduino Connectors etc..), connectors silkscreen
images, peripherals supported by the kit, Embedded Debugger Implementation and Known Issues,
are highlighted.

2. The zip file in the user guide page (refer to the zip file below the software column), consists BOM,
Gerber etc, as shown in the figure below:

Figure 3-4 SAM V71 Xplained Ultra Evaluation Kit: User Guide Zip File Contents

A

Name Type

. BOM File folder

. ExportSTEP File folder

. Gerber File folder

. NC Drill File folder

, ODB File folder

. Pick Place File folder

. SAM_VT71_Xplained_Ultra_rev8_cad_source File folder

. Test Points File folder
ﬁ:‘ SAM_V71_Xplained_Ultra_design_documentation_release_rev8.pdf Adobe Acrobat Document
ﬁ; SAM_V71_Xplained_Ultra_layer_plots_release_rev8.pdf Adobe Acrobat Document
5{ SAM_V71_Xplained_Ultra_PCB_Stack-up_release_rev8.pdf Adobe Acrobat Document

Note: This is the image of revision 8 folder contents. Some documents can be added or deleted to this
package. Use the latest version from the web.

e The SAM V71 Xplained Ultra board picture is shown in the figure below:

AtmeL Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 9

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

Figure 3-5 SAM V71 Xplained Ultra Evaluation Kit

CURRENT MEASUREMENT HEADER

TARGET US8 SWO USER BUTTON
SUPER CAP RESET BUTTON
EXTERNAL POWER DEBUG USB

POWER SWITCH

USER LEDO POWER HEADER
SUPER CAP
CORESIGHT20 FOR
DISCONNECT EXTERNAL DEBUGGER
SW1 USER BUTTON
: USB VBUS
USER LED1 : DETECT SELECT
12MHz CRYSTAL = -
SAMV71 DEBUG EXTENSION 1
HEADER HEADER
VDDCORE CURRENT
MEASUREMENT SAMV71Q21
CAMERA INTERFACE ERASE JUMPER

e
32kHz CRYSTAL = 2MB QSPI FLASH
2l
2MB SDRAM - el EXTENSION 2 HEADER
EXTENSION 4 : or
LCD CONNECTOR < CRYPTO FOOTPRINTS
MEDIA LB -1
CONNECTOR -
ne AT24MACA402
EXTERNAL PLL EEPROM + EUI48
ETHERNET PHY
WMB904 AUDIO
CODEC ARDUINO DUE

g ———
zos N NP
-

LALZLELOBEYL |~ ATAB561
CAN TRANCEIVER

BASED HEADERS

HEADPHONE JACK ETHERNET SOCKET

MICROPHONE JACK SD CARD SLOT
CAN CONNECTOR

AtmeL Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 10

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

4. Get the Tools

Atmel Studio 6.2 SP2 or later: http://www.atmel.com/tools/atmelstudio.aspx?tab=overview

Atmel Software Framework 3.25 or higher: hitp://www.atmel.com/tools/avrsoftwareframework.aspx?
tab=overview

IAR™ Embedded Workbench for ARM 7.40.1 or higher: www.iar.com/en/Products/IAR-Embedded-
Workbench/ARM/

Keil MDK-ARM (v5.14 or higher): https://www.keil.com/download/product/

Segger J-Link (v4.96 or higher): www.segger.com/download _jlink.htm|

Atmel SAM-BA® (v2.15 or higher): http://www.atmel.com/tools/ATMELSAM-BAIN-
SYSTEMPROGRAMMER.aspx

Atmel SAM-ICE™ - a JTAG emulator for Atmel ARM-based MCUs: http://www.atmel.com/tools/
ATMELSAM-ICE.aspx

SAM V71/V70/E70/S70 Software Package: http://www.atmel.com/tools/samv71-samv70-same70-
sams70-software-package.aspx. This link consists of the following releases. All the packages
provides software drivers and libraries to build any application for SAM V71, SAM V70, SAM S70,
and SAM E70 Cortex-M7 based MCUs. To know more about changes in the latest release, refer to
the release package available in this page.

— SAMV71-XULT IAR EWARM 7.40.1 Software Package 1.3: SAM V71 Software Package for
EWARM requires an installation of IAR Systems Embedded Workbench for ARM version
7.40.1 or later.

— SAMV71-XULT Atmel Studio Software Package 1.3: Atmel Studio Package adds support for
the SAM V71 devices in Atmel Studio 6.2, and also package support for GNU Tools for ARM
Embedded Processors version 4.8.4 or later.

— SAMV71-XULT KEIL MDK 5.12 Software Package 1.3: SAM V71 Software Package for Keil
MDK requires an installation of MDK version 5.12 or later.

— SAMV71-XULT GNU Software Package 1.3: The SAM V71 SoftPack for GNU requires an
installation of GNU Tools ARM Embedded version 4.8.4 or later.

Note: To download the Atmel Software Framework 3.25 or SAM V71/V70/E70/S70 Software Package
contents, log-in access needed using Atmel account.

Atmel

Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 1

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

http://www.atmel.com/tools/atmelstudio.aspx?tab=overview
http://www.atmel.com/tools/avrsoftwareframework.aspx?tab=overview
http://www.atmel.com/tools/avrsoftwareframework.aspx?tab=overview
http://www.iar.com/en/Products/IAR-Embedded-Workbench/ARM/
http://www.iar.com/en/Products/IAR-Embedded-Workbench/ARM/
https://www.keil.com/download/product/
http://www.segger.com/download_jlink.html
http://www.atmel.com/tools/ATMELSAM-BAIN-SYSTEMPROGRAMMER.aspx
http://www.atmel.com/tools/ATMELSAM-BAIN-SYSTEMPROGRAMMER.aspx
http://www.atmel.com/tools/ATMELSAM-ICE.aspx
http://www.atmel.com/tools/ATMELSAM-ICE.aspx
http://www.atmel.com/tools/samv71-samv70-same70-sams70-software-package.aspx
http://www.atmel.com/tools/samv71-samv70-same70-sams70-software-package.aspx

5. The Getting-started Example
This chapter describes a simple example project that uses several important features present on the SAM
E70/S70/V70/V71 devices.
There are four main parts in this chapter:
1. The specification of the getting-started example.
2. The introduction about relevant on-chip peripherals.
3. The introduction about relevant on-board components.
4. The implementation of the various peripherals in the example.
5.1. Specification
5.1.1. Atmel Studio Program
The demonstration program makes the LED(s) on the board blink at a fixed rate. This rate is generated by
using Time tick timer. The blinking can be stopped by using the push button.
5.2 IAR and Keil Program
The demonstration program makes two LEDs on the board blink at a fixed rate. This rate is generated by
using Time tick timer. The blinking can be stopped by typing 1" or '2' in the console (one for each LED).
In the Atmel Studio program, IAR and Keil programs, the demo application can be controlled by using a
terminal window.
* On the computer, open and configure a terminal application (e.g. Terminal on Microsoft® Windows)
with these settings:
— 115200 baud rates
— Eight bits of data
— No parity
— One stop bit
— No flow control
* Run the application
* Two LEDs should start blinking on the board. In the terminal window, the following text should
appear (values depend on the board and chip used):
— \code
Getting Started Example xxx --
XXXXXX-XX
Compiled: XXX XX XXXX XX:XX:XX --
* \endcode
— Press '"1' to start/stop the LEDQO blinking and press '2' to start/stop LED1 blinking
While this software may look simple, it uses several peripherals, which make up the basis of an operating
system. As such, it serves as a good starting point for someone wanting to become familiar with the SAM
S70/E70 microcontroller series.
AtmeL Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 12

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

5.3. On-chip Peripherals
In order to perform the operations described previously, the getting-started example uses the following set
of peripherals:
« Parallel Input/Output (PIO) controller
« Timer Counter (TC)
« System Tick Timer (SysTick)
* Nested Vectored Interrupt Controller (NVIC)
* Universal Asynchronous Receiver Transmitter (UART)
LEDs and buttons on the board are connected to standard input/output pins on the chip. The pins are
managed by a PIO controller. In addition, it is possible to have the controller generate an interrupt when
the status of one of its pins changes; buttons are configured to have this behavior.
The TC and SysTick are used to generate two timebase interrupts, in order to obtain the LED blinking
rates. They are both used in interrupt mode:
« The TC triggers an interrupt at a fixed rate, each time toggling the LED state (on/off)
« The SysTick triggers an interrupt every millisecond, incrementing a variable by one tick. The Wait
function monitors this variable to provide a precise delay for toggling the second LED state.
NVIC is required to manage the interrupts. It allows the configuration of a separate interrupt handler for
each source. Three different functions are used to handle PIO, TC, and SysTick interrupts.
Finally, an additional peripheral is used to output debug traces on a serial line: the UART. Having the
firmware send debug traces at key points of the code can greatly help the debugging process.
5.4. On-board Components
5.4.1. Buttons
SAM V71 Xplained Ultra contains three mechanical buttons. One button is the RESET button connected
to the SAM V71 reset line and the others are generic user configurable buttons. When a button is
pressed, it will drive the I/O line to GND.
Table 5-1 Buttons Description
SAM V71 pin m Shared functionality
RESET RESET Trace, Shield, and EDBG
PA09 SWO0 EDBG GPIO and Camera
PB12 SW1 EDBG SWD and Chip Erase
5.4.2. LEDs
There are two general purpose LEDs (yellow) on the SAM V71 Xplained Ultra board. They are wired to
pins PA23 and PC9. Setting a logical low or high level on the corresponding PIO lines turns the LEDs on
and off.
me : Getting Started wi
me Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 13

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

5.4.3.

5.4.4.

5.4.5.

Table 5-2 LEDs Description

SAM V71 pin m Shared functionality

PA23 Yellow LEDO EDBG GPIO
PCO09 Yellow LED1 LCD and Shield

The example application uses both LEDs (PA23 and PC9).

COM Port (DBGU/UART)

On SAM V71, the default serial port, which is used to print debug information and monitor input, is
USART1. The port uses pins PA21 and PB04 for the RXD1 and TXD1 signals, respectively.

SAM V71 pin m Shared functionality

PA21 RXD1 UART Receive pin
PB04 TXD1 UART Transmit pin

Booting

The SAM V71 devices feature up to 2048KB of embedded Flash and up to 384KB of internal SRAM. The
Getting Started example can be compiled and downloaded to both the Flash and the SRAM.

The SRAM is accessible over the system Cortex-M bus at address 0x2040 0000 and the base address of
the Flash is 0x0040 0000.

Erasing Flash

The user can close the ERASE jumper as mentioned in Figure 3-5, wait for at least seven seconds and
then re-power the board to chip-erase SAM V71. The same jumper is highlighted in Figure 5-1.

AtmeL Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 14

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

Figure 5-1 ERASE Jumper on the SAM V71 Xplained Ultra Evaluation Kit

CURRENT MEASUREMENT HEADER

T T
ARGET USB SWO USER BUTTON
SUPER CAP RESET BUTTON
EXTERNAL POWER DEBUG US8

POWER SWITCH

USER LEDO —y ‘ —— = o POWER HEADER
. i 3o E3 coresmrroron
< A ’ EXTERNAL DEBUGGER
SW1 USER BUTTON ~ At eL P
USER LED1 ~ L. cee DETECT SELECT
12MHz CRYSTAL B) : ok -
SAMV71 DEBUG ~ - ¢ EXTENSION 1
HEADER ~ | L HEADER
VDDCORE CURRENT o0 - « -
MEASUREMENT " - g SAMV71Q21
i . ce
CAMERA INTERFACE wC - ERASE JUMPER

32xHz CRYSTAL 2MB QSPI FLASH

= o
L
e
e
ce
P

2MB SDRAM ' EXTENSION 2 HEADER
EXTENSION 4
LCD CONNECTOR CRYPTO FOOTPRINTS
MEDIA LB —
CONNECTOR
AT24MAC402
EXTERNAL PLL EEPROM + EUI48
ETHERNET PHY
WMBH04 AUDIO
CODEC ARDUINO DUE

g
ron i wn WS

AAZALLOROYL) ATAGS561
M CAN TRANCEIVER

BASED HEADERS

HEADPHONE JACK ETHERNET SOCKET

MICROPHONE JACK SD CARD SLOT
CAN CONNECTOR

The ERASE jumper is used to reinitialize the Flash content (and some of its NVM bits) to an erased state
(all bits read as logic level 1). It integrates a pull-down resistor of about 100kQ to GND, so that it can be
left unconnected for normal operations. The pin must be tied high for more than 220ms to perform a Flash
erase operation, otherwise the ERASE operation is not taken into account.

To make sure that the erase operation is performed after power-up, the system must not reconfigure the
ERASE pin as GPIO or enter Wait mode with Flash in Deep Power-down mode before the ERASE pin
assertion time has elapsed. For more details, refer to the SAM E70/S70/V71 Series datasheet.

AtmeL Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 15

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

5.5.

5.5.1.

Implementation

As stated previously, the example defined above requires the use of several peripherals. It must also
provide the necessary code for starting up the microcontroller.

Initialization Before ‘main’
After the board is powered on, the ROM code will run and carry out the necessary initialization.

Most of the code of an embedded application is written in C. This makes the program easier to
understand, more portable, and modular.

When downloading the application via the J-link GDB server, the users can set the registers of PC and
stack pointer to 0x2040 0000 and 0x2040 0004 respectively in the GDB script for SAM V71 Xplained
Ultra. Before running the application, the user might still want to:

* Provide exception vectors
« Initialize critical peripherals
* Initialize memory segments

These initialization requirements are described in the next sections.

Entry Point
For GNU toolchain, the PC points to the start address of Reset_Handler at the beginning.

For IAR and MDK, the PC points to the start address of _iar_program_start and Reset_Handler,
respectively.

The purpose of the entry point is to:

« Set up C environment

« Set the vector table base address
* Perform the low-level initialization
* Jump to the main application

Low-Level Initialization
Starting from the LowLevellnit interface, three toolchains share the program flow.
The first step of the low-level initialization process is to configure critical peripherals:

. The main oscillator and its PLL
. MPU
- TCM

The LowLevellnit function is shown as follows.

extern WEAK void LowLevellInit (void)
{

SystemInit();

SetupMemoryRegion () ;

#ifdef ENABLE TCM

FLASHD ClearGPNVM (8) ;

FLASHD SetGPNVM(7) ;

TCM Enable () ;

#else

TCM Disable () ;

AtmeL Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 16

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

#endif
}

The following sections explain why these peripherals are considered critical, and detail the required
operations to configure them properly.

Low-Level Initialization: Systeminit
The main function of Systemlnit is to complete the processor clock and master clock configuration.

After reset, the 4/8/12MHz fast RC oscillator is enabled with the 4MHz frequency selected and it is
selected as the source of MAINCK. MAINCK is the default clock selected to start the system.

The main oscillator and its Phase Lock Loop A (PLLA) must be configured in order to run at full speed.
Both can be configured in the Power Management Controller (PMC). For details, refer to the SAM
E70/S70/V71 Series datasheet.

In the example, the processor clock and master clock are 300MHz and 150MHz respectively by default.
Example values on the SAM V71 Xplained Ultra (12MHz crystal):

#define SYS BOARD PLLAR (CKGR PLLAR ONE |\
CKGR PLLAR MULA (0x18U) |\

CKGR PLLAR PLLACOUNT (0x3fU) |\
CKGR_PLLAR DIVA (0x1U))

#define SYS BOARD MCKR (PMC_MCKR PRES CLK 1 |\
PMC_MCKR CSS_PLLA CLK |\

PMC_MCKR_MDIV PCK_DIV2)

Here:

e finput = 12MHz

* MAINCK = 12MHz

PLLACK = MAINCK * MULA /DIVA = (12* (0 x 18 + 1) / 1)MHz = 300MHz
* HCLK=PLLACK/PRES = (300 / 1)MHz = 300MHz

« MCK=PLLACK/PRES/MDIV =(300/1/2)MHz = 150MHz

In addition, the user must set the number of wait states of the embedded Flash depending on the system
frequency. When MCK is 4MHz and FWS is 0, the number of cycles for Read/Write operations is 1.

In the example, defining FWS as 5 enables six cycles access, which is done as shown below:

EFC->EEFC_FMR = EEFC FMR FWS (5);
For more details, see the “Embedded Flash Wait State” table in the SAM V71 Series datasheet.

Low-level Initialization: Memory Protection Unit (MPU)

The SAM E70/S70/V71 devices supply MPU with 16 zones as a component for memory protection. The
users can use the MPU to enforce privilege rules, separate processes, and enforce access rules.

The _SetupMemoryRegion function completes the memory mapping by setting the MPU Region Base
Address Register (RBAR), the MPU Region Attribute, and the Size Register (RASR).

The MPU_RASR.ATTRS field defines the memory type, the cacheable and shareable properties, and the
access and privilege properties of the memory region.

The System Handler Control and State Register is settled to enable memory management fault, Bus
Fault, and Usage Fault exception.

AtmeL Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 17

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

At the end of the function, the MPU region is enabled by setting the MPU Control Register.

In the example, memory regions such as ITCM, Internal flash, DTCM, SRAM, peripheral memory,
SDRAM, QSPI memory, and USBHS_RAM are all configured in this function

The SRAM, for example, is divided into two parts with the same attributes.

void MPU SetRegion(uint32 t dwRegionBaseAddr, uint32 t dwRegionAttr)
{
MPU->RBAR
MPU->RASR
}

void SetupMemoryRegion (void)

{

uint32 t dwRegionBaseAddr;

uint32 t dwRegionAttr;

dwRegionBaseAddr = SRAM PRIVILEGE START ADDRESS |

MPU REGION VALID |

MPU DEFAULT PRAM REGION; //4

dwRegionAttr = MPU AP FULL ACCESS |

INNER NORMAL WB NWA TYPE(NON SHARABLE) |

MPU CalMPURegionSize (SRAM PRIVILEGE END ADDRESS -

SRAM PRIVILEGE START ADDRESS) |

MPU REGION ENABLE;

MPU SetRegion(dwRegionBaseAddr, dwRegionAttr);

dwRegionBaseAddr = SRAM UNPRIVILEGE START ADDRESS |

MPU REGION VALID |

MPU DEFAULT UPRAM REGION; //5

dwRegionAttr = MPU AP FULL ACCESS |

INNER NORMAL WB NWA TYPE(NON SHARABLE) |

MPU CalMPURegionSize (SRAM UNPRIVILEGE END ADDRESS -

SRAM UNPRIVILEGE START ADDRESS) |

MPU REGION ENABLE;

MPU SetRegion(dwRegionBaseAddr, dwRegionAttr);

/* Enable the memory management fault, Bus Fault, Usage Fault exception */
SCB->SHCSR |= (SCB_SHCSR_MEMFAULTENA Msk |

SCB_SHCSR_BUSFAULTENA Msk |

SCB_SHCSR_USGFAULTENA Msk) ;

/* Enable the MPU region */

MPU Enable (MPU ENABLE | MPU BGENABLE) ;

}

dwRegionBaseAddr;
dwRegionAttr;

The user can configure a new memory region or adjust the attributes of some regions in the function,
such as the cacheable properties.

Low-level Initialization: Tightly Coupled Memory (TCM)

The SAM E70/S70/V71 devices embed the Tightly Coupled Memory (TCM) running at processor speed.

ITCM is a single 64-bit interface, based at 0x0000 0000 (code region) and DTCM is composed of dual 32-
bit interfaces interleaved, based at 0x2000 0000 (data region).

After reset, the DTCM is enabled by default. ITCM is disabled and needs to be enabled by software.
When enabled, the ITCM is located at 0x0000 0000, overlapping ROM or Flash depending on the
general-purpose NVM bit 1 (GPNVM). The TCM configuration is done with GPNVM bits [8:7].

The user can program them through the “Clear GPNVM Bit” and “Set GPNVM Bit” commands of the
EEFC User Interface.

AtmeL Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 18

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

ITCM DTCM SRAM for 384K RAM-based RAM-based GPNVM Bits [8:7]

SRAM for 256K
0 0 384 256 0
32 32 320 192 1
64 64 256 128 2
128 128 128 0 3

Use the following codes to configure TCM to 32KB and enable it:

FLASHD_ClearGPNVM (8);
FLASHD_SetGPNVM (7) ;
TCM_Enable () ;

Accesses made to TCM regions when the relevant TCM is disabled and accesses made to the Code and
SRAM region above the TCM size limit are performed on the AHB matrix, i.e., on internal Flash or on
ROM depending on remap GPNVM bit.

Accesses made to the SRAM above the size limit will not generate aborts.

The Memory Protection Unit (MPU) can be used to protect these areas as mentioned in Low Level
Initialization: Memory Protection Unit.

Note that internal SRAM and TCM share the same memory space, which means that when TCM is
enabled, the size available as internal SRAM is correspondingly reduced.

After carrying out all of the above initialization actions, the program can jump to the main application.

5.5.2. Generic Peripheral Usage
Initialization
Most peripherals are initialized by performing the following actions:
« Disabling or reprogramming watchdog
« Enabling cache if necessary
* Enabling the peripheral clock in the PMC if necessary
« Enabling the control of the peripheral on PIO pins
« Enabling the interrupt source at the peripheral level
5.5.3. Disabling or Reprogramming Watchdog Timer (WDT)
Purpose
The Watchdog Timer (WDT) is used to prevent system lock-up if the software becomes trapped in a
deadlock. It features a 12-bit down counter that allows a watchdog period of up to 16 seconds (slow the
clock to around 32kHz). It can generate a general reset or a processor reset only. In addition, it can be
stopped while the processor is in debug mode or idle mode.
After a processor reset, the Watchdog peripheral is enabled by default with the value of watchdog counter
value equal to OxFFF, which corresponds to the maximum value of the counter with the external reset
generation enabled (bit WDT_MR.WDRSTEN at 1 after a backup reset). The user can either disable the
WDT by setting bit WDT_MR.WDDIS or reprogram the WDT to meet the maximum watchdog period the
application requires.
AtmeL Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 19

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

5.5.4.

Initialization

In the example, the user can disable WDT with the WDT_Disable function as follows.
WDT Disable(WDT) ;
The operation is done by setting WDT_MR as follows.

pWDT->WDT MR = WDT MR WDDIS;

Enabling Cache If Necessary
Purpose

The SAM E70/S70/V71 devices support 16KB of ICache and 16KB of DCache with Error Code Correction
(ECC). All caches are disabled at reset and enabling cache benefits the performance. The user can turn
on ICache and DCache if necessary.

Initialization

The user can enable cache as follows.

SCB_EnableICache() ;
SCB_EnableDCache () ;

The details of the SCB_EnablelCache function is shown below as an example.

SCB->ICIALLU = 0; // Invalidate I-Cache
SCB->CCR |= SCB _CCR_IC Msk;// Enable I-Cache

To make some regions cacheable, the following conditions should all be met:

» Enable cache as described above in the application

« Set the attributes of the relevant regions as cacheable in _SetupMemoryRegion function (refer to
SectionLow-Level Initialization: Memory Protection Unit (MPU))

Cache Coherency

Enabling cache may cause breakdown when:

* Memory locations are updated by other agents in the system
« Memory updates made by the application code must be made visible to other agents in the system

For example, in a system with a DMA that reads memory locations held in the data cache of a processor,
a breakdown of coherency occurs when the processor has written new data in the data cache, but the
DMA reads the old data held in memory.

In situations where a breakdown in coherency occurs, the software must manage the caches by using
cache maintenance operations. The Clean, Invalidate and Clean, and Invalidate operations can address
these issues.

Take DCache as an example, these operations are realized in several functions such as:

static inline void SCB_InvalidateDCache () ;
static inline void SCB_CleanDCache ();
static inline void SCB CleanInvalidateDCache ();

AtmeL Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 20

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

5.5.5.

Using the Nested Vectored Interrupt Controller (NVIC)
Purpose

The NVIC provides configurable interrupt handling abilities to the processor. It facilitates low-latency
exception and interrupt handling, and controls the power management.

The NVIC supports up to 72 interrupts, each with up to eight levels of priority. The user can change the
priority of an interrupt dynamically. The NVIC and the processor core interface are closely coupled to
enable low-latency Interrupt processing and efficient processing of late arriving interrupts. The NVIC
maintains knowledge of the stacked, or nested interrupts to enable tail-chaining of interrupts.

Initialization

The SAM E70/S70/V71 uses hardware to save and restore key context state on exception entry and exit,
and use a table of vectors to indicate the exception entry points.

The vector table contains the initialization values for the stack pointer, and the entry point addresses of
each exception handler. The vector table is defined as the constant of ‘exception_table’ for GNU
toolchain.

Part of the constant is shown as follows:

__attribute ((section(".vectors")))
const DeviceVectors exception table =
{
.pvStack = (void*) (&
.pfnReset Handler = (void*) Reset Handler,
.pfnNMI Handler = (void*) NMI Handler,
.pfnHardFault Handler = (void*) HardFault Handler,

.pfnSysTick Handler = (void*) SysTick Handler,

& estack),

.pfnTCO0_Handler = (void*) TCO Handler,

On reset, the processor initializes the vector table base address to an IMPLEMENTATION DEFINED
address. The software can find the current location of the table, or relocate the table, by using the Vector
Table Offset Register (VTOR) as shown below.

pSrc = (uint32 t *) & sfixed;
SCB->VTOR = ((uint32 t) pSrc & SCB VTOR TBLOFF Msk);

The _sfixed symbol points to the vectors section, which saves the vectors table. The
SCB_VTOR _TBLOFF_Msk is equal to OXxFFF FFF8 on SAM V71 and bits [6:0] are RAZ (Read as Zero).
The VTOR holds the vector table address.

The processor and the NVIC prioritize and handle all exceptions. When handling exceptions, all
exceptions are handled in Handler mode, and the processor state is automatically stored to the stack on
an exception, and automatically restored from the stack at the end of the Interrupt Service Routine (ISR).
The vector is fetched in parallel to the state saving, enabling efficient interrupt entry.

Configuring an interrupt source requires six steps:

1. Implement interrupt handler if necessary:
The first step is to re-implement the interrupt handler with the same name as the default interrupt
handler in the vector table as just mentioned if necessary, so that when the corresponding interrupt

AtmeL Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 21

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

5.5.6.

occurs, the reimplemented interrupt handler will be executed instead of the default interrupt
handler.

2. Disable the interrupt in case it was enabled
An interrupt triggering before its initialization completion may result in unpredictable behavior of the
system. To disable the interrupt, the Interrupt Clear-Enable Register (ICER) of the NVIC must be
written with the interrupt source ID to mask it. The following interface can be used directly:

static inline void NVIC DisableIRQ(IRQn Type IRQOn);

3. Clear any pending interrupt, if any
Setting the Interrupt Clear-Pending Register bit puts the corresponding pending interrupt in the
inactive state. It is also written with the interrupt source ID to mask it. The following interface can be
used directly:

static inline void NVIC ClearPendingIRQ (IRQn Type IRQn);

4. Configure the interrupt priority
NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register
supporting four interrupts). Priorities are maintained according to the ARMv7-M prioritization
scheme. The following interface can be used directly:

static inline void NVIC SetPriority(IRQn Type IRQn,uint32 t priority);

5. Enable the interrupt at peripheral level

6. Enable the interrupt at NVIC level
The interrupt source can be enabled, both on the peripheral (in a mode register usually) and in the
Interrupt Set-Enable Register (ISER) of the NVIC. On the side of NVIC, the following interface can
be called directly:

static inline void NVIC EnableIRQ (IRQn Type IRQn);
Refer to core_cm7.h for more interfaces about NVIC which can be used directly.

Using the Timer Counter (TC)
Purpose

Timer Counters on SAM chips can perform several functions, e.g., frequency measurement, pulse
generation, delay timing, and Pulse Width Modulation (PWM).

In this example, a single Timer Counter (TC) channel is going to provide a fixed-period delay. An interrupt
is generated each time the timer expires, toggling the associated LED on or off. This makes the LED blink
at a fixed rate.

Initialization

In order to reduce power consumption, most peripherals are not clocked by default. Writing the ID of a
peripheral in the PMC Peripheral Clock Enable Register (PMC_PCERX) activates the peripheral clock.

The TC initialization sequence is the following:

1. Write the ID of the TC in the PMC Peripheral Clock Enable Register (PMC_PCERKX):
PMC EnablePeripheral (ID TCO);

2. Configure TC as 4Hz frequency by calling the function TC_FindMckDivisor, which will find the best
MCK divisor. The best divisor depends on the timer frequency and MCK.
TC FindMckDivisor(4, BOARD MCK, &div, &tcclks, BOARD MCK);

3. Configure the TC Channel Mode Register (TC_CMRXx). TC channels can operate in different
modes. In the example, set the TC in Capture mode by clearing the WAVE bit and enable RC
Compare Trigger by setting the CPCTRG bit, , which is done in the internal TC_Configure function:
TC Configure(TCO, 0, tcclks | TC CMR CPCTRG);

AtmeL Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 22

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

4. Configure the interrupt whenever the counter reaches the value programmed in RC. The interrupt
priority is level 0 as default. At the TC level, the RC Compare Interrupt is enabled by setting the
CPCS bit of the TC Interrupt Enable Register (TC_IERX):

NVIC ClearPendingIRQ(TCO_ IRQn);
NVIC EnableIRQ(TCO IRQn);
TCO—>TC_CHANNEL[0].TC_IER = TC_IER_CPCS 5

At the end of the sequence, the program starts the counter if LED1 is enabled as shown below:

if (bLedlActive) {
TC Start(TCO, 0);
}

Interrupt Handler

The interrupt handler for TCO interrupt is ‘TCO_Handler’ and the main purpose is to toggle the state of the
LED.

The first action to do in the handler is to acknowledge the pending interrupt from the peripheral.
Otherwise, the latter continues to assert the IRQ line. In the case of a TC channel, acknowledging is done
by reading the corresponding TC Status Register (TC_SRx). The code is shown below.

dummy = TCO->TC_CHANNEL[0].TC_SR;

It simply toggles the state (on or off) of one of the blinking LEDs by programming the PIO controller.
dummy = TCO->TC CHANNEL[O].TC_SR;

Refer to Section ‘Controlling LEDs’ for more details.

5.5.7. Using the System Timer (SysTick)
Purpose
The system timer, SysTick, provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter
with a flexible control mechanism.
This getting started example uses the SysTick to provide a 1ms time base. Each time the interrupt is
triggered, a 32-bit counter is added. A Wait function uses this counter to provide a precise way for an
application to suspend itself for a specific amount of time.
Initialization
Initialization is done with the following line of code:
SysTick Config(Pck/1000);
In this example, the SysTick clock source is the processor clock / 8 and PCK = BOARD_MCK*2. The
function initializes the System Timer and its interrupt, and starts the System Timer.
Interrupt Handlers
The handler for system timer is shown as follows:
static volatile uint32 t dwTickCount = 0 ;
void SysTick Handler (void)
{
_dwTickCount ++;
AtmeL Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 23

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

Using a 32-bit counter may not always be appropriate, depending on how long the system should stay up
and on the tick period. In this example, a 1ms tick overflows the counter after about 50 days; this may not
be enough for a real application. In that case, a larger counter can be implemented.

Wait Function

By using the global counter, it is very easy to implement a wait function taking a number of milliseconds
as its parameter. Read the code for more details.

When called, the function first saves the current value of the global counter in a local variable. It adds the
requested number of milliseconds, which has been given as an argument. Then, it simply loops until the
global counter becomes equal to or greater than the computed value.

The interface can be called directly to wait for several milliseconds. In this example, it is called as follows
to wait for 1000ms:

Wait (1000);

5.5.8. Using the Parallel Input/Output Controller (PIO)

Purpose

The SAM E70/S70/V71 devices support up to five PIO controllers and each one controls up to 32 lines.

Each line can be assigned to one of four peripheral functions: A, B, C, or D.

In this example, the P1O controller manages two LEDs.

Configuring LEDs

The two PIOs connected to the LEDs must be configured as outputs, in order to turn them on or off. First,

the PIOs control must be enabled in the PIO Enable Register (PIO_PER) by writing the value

corresponding to a logical OR between the two LED IDs.

P10 direction is controlled by two registers; Output Enable Register (PIO_OER) and Output Disable

Register (PIO_ODR). Since in this case the two PIOs must be output, the same value as before shall be

written in OER.

Note that there are individual internal pull-ups on each PIO pin. These pull-ups are enabled by default.

Since they are useless for driving LEDs, they should be disabled, as this reduces the power consumption.

This is done through the PI1O Pull-Up Disable Register (PIO_PUDR).

In this example, LEDs are wired to pins PA23 and PC9. They are described in the following macros:
#define PIN LED 0 {PIO PA23, PIOA, ID PIOA, PIO OUTPUT 0, PIO DEFAULT}
#define PIN LED 1 {PIO PC9 , PIOC, ID PIOC, PIO OUTPUT 0, PIO DEFAULT}

Here is the code for LED configuration:

LED Configure(0) ;
LED Configure(1) ;

P10O_Configure will be called as shown below:

PIO Configure(&pinsLeds[dwLed], 1);

For LEDO wired to pin PA23, the program will run PIO_SetPeripheralA function.

AtmeL Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 24

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

When programming PIO, it is recommended to call PIO_Configure with proper parameters directly. So,
the definition of relevant pins such as PIN_LED_0 and PIN_LED_1 is primary.

Controlling LEDs

LEDs are turned on or off by changing the level on the PIOs to which they are connected. After those
P10s have been configured, their output values can be changed by writing the pin IDs in the PIO Set
Output Data Register (PIO_SODR) and the PIO Clear Output Data Register (PIO_CODR).

In addition, the PIO Pin Data Status Register (PIO_PDSR) indicates the current level on each pin. It can
be used to create a toggle function, i.e., when the LED is ON according to PIO_PDSR, then it is turned
off, and vice-versa.

The function is described below. PIO_GetOutputDataStatus returns the value of PIO_PDSR. The relevant
interfaces which can be called directly are listed as follows:

unsigned char PIO GetOutputDataStatus(const Pin *pin);
void PIO Clear (const Pin *pin);
void PIO_Set (const Pin *pin);

Refer to pio.c or pio.h for more interfaces that can be used directly.

5.5.9. Using the Serial Ports
Purpose
As mentioned before, the default serial port used as output is USART1 on SAM V71 Xplained Ultra.
Ensure that the board is detected as a COM device in the Device Manager once it is connected to the
computer. If it is not detected, then run AtmelUSBInstaller.exe to make sure that the PC recognizes the
port as a serial port and then connect the board with the PC via a Micro-AB USB cable.
The example application uses USART1 to print debug information and monitor input.
Initialization
The common interfaces which can be called directly are listed as below.
extern void DBG_ PutChar(uint8 t c);
extern uint32 t DBG GetChar(void);

Their purpose is outputting a character and inputting a character via the serial port respectively. At first,
the program will check whether the console has been initialized by a static variable
‘_uclsConsolelnitialized’. If not, DBG_Configure function will be called and finishes initialization and
configuration.

if (! ucIsConsoleInitialized)

{

DBG Configure (CONSOLE BAUDRSATE, BOARD MCK) ;

}
It is configured with a baudrate of 115200, eight bits of data, no parity, one stop bit, and no flow control as
default.
Redirecting printf
The function printf is redirected to the serial port in software package in 'dbg_console.h'.

AtmeL Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 25

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

For IAR toolchain, putchar is called by printf, so putchar is redefined by calling DBG_PutChar, which
outputs a character on the serial port as shown below:

extern WEAK signed int putchar(signed int c)
{

DBG PutChar(c) ;

return c ;

}

For MDK toolchain, the relevant interface is fputc. It is performed as follows:

int fputc(int ch, FILE *f)
{
if ((f == stdout) || (f == stderr))
{
DBG_PutChar (ch) ;
return ch ;
}
else
{
return EOF ;
}
}

For GNU toolchain, the relevant interface is _write. It is performed as follows:

extern int write(int file, char *ptr, int len)

{ int iIndex ;

for (iIndex=0 ; iIndex < len ; iIndex++, ptr++)
{ DBG PutChar(*ptr) ;

} return iIndex ;

}

Note: For IAR and MDK, the standard library functions are available in stdio.h.

AtmeL Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE]

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

Get Started with Atmel Studio 6

6.1. Requirements
* Atmel Studio 6.2 SP2 (or above version) installed
+ Atmel Software Framework (ASF) 3.25 installed
Note: If ASF is already installed the latest partpack can be downloaded from Atmel gallery link: https://
gallery.atmel.com/Products/Details/6f04539f-2222-477a-92c8-2ef62a28f09a
*« SAM V71 Xplained Ultra Evaluation Kit connected to IAR Embedded Workbench running on PC
and powered on
Note: Connect a USB cable (Standard-A to Micro-B or Micro-AB) between the PC and the DEBUG USB
port on the kit).
6.2. Load the Example
¢ Launch Atmel Studio
* Open the example selection menu in ASF from Atmel Studio: File — New — Example Project from
ASF...
+ Select the “Kit” view and select SAM V71 Xplained Ultra Evaluation Kit in the latest ASF
+ Select “Getting Started Application on SAM - SAMV71-XULTRA”. This can be shown in Figure 6-1
Getting Started Project in Atmel Studio on page 27.
Figure 6-1 Getting Started Project in Atmel Studio
‘ MFMM‘:NI M CROCh: :A” ': ’ Getting-Started
cation om SAM .
W SAMGOHS Xplained Pro (/1) . SAMV7L-XULTRA
Kit (5] SAMGS5S Xplained Pro (94) ' v
+ B SR (42 ooy e
4] ACC Example - SAMV71-XULTRA fixed rate. [Geming-Started Apph-
4] AES Example - SAMV71-XULTRA cation on SAM = S;-\.\(\‘Tl-
4] AES GCM-Example - SAMV71-XULTRA BRIEA sVl
3] AFEC Automatic Comparison Example - SAMV71-XULTRA € Online Help
4] AFEC Temperature Sensor Example - SAMV71-XULTRA
4] CHIPID Example - SAMV71-XULTRA
4] Common API for Clocks Control Example 1 - SAMV71-XULTRA
4] Common AP1 for Clocks Control Example 2 - SAMV71-XULTRA =
4] Common AP1 for Clocks Control Example 3 - SAMV71-XULTRA
4 Common AP for Sleep Management Example - SAMV71-XULTRA
4] Common Delay Service Example - SAMV71-XULTRA
4 Common IOPORT Service Example 1 - SAMV71-XULTRA
4] Common IOPORT Service Example 2 - SAMV71-XULTRA
4] Common IOPORT Service Example 3 - SAMV71-XULTRA
4] DAC Sinewave Example - SAMV71-XULTRA
4] Flash Program Example - SAMV71-XULTRA
4] Flash Read Unique Id Example - SAMV71-XULTRA
* Accept the license agreement (during the first time) and press Finish. Then the Atmel Studio will
open the example.
* Build the project: Build — Build Solution.
* In the computer, open and configure a terminal application (e.g. Terminal on Microsoft Windows)
with these settings:
AtmeL Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 27

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

https://gallery.atmel.com/Products/Details/6f04539f-2222-477a-92c8-2ef62a28f09a
https://gallery.atmel.com/Products/Details/6f04539f-2222-477a-92c8-2ef62a28f09a

— Port: Same port where EDBG Virtual COM Port is connected.

Note: To know this port, go to your computer — Device Manager — Open Ports (COM & LPT) in on

Microsoft Windows for example.

* 115200 baud rates
« Eight bits of data

* No parity

* One stop bit

* No flow control

— Load the code in SAM V71 Xplained Ultra Evaluation Kit and start debugging: Debug — Start

Debugging and Break.

— Now the application has been programmed and the debugger stops at the beginning of

main(). To execute it, click on Debug — Continue.

— The demonstration program makes one LED (LEDO) on the board blink at a fixed rate

— The blinking of LEDO can be stopped or re-started by using SWO0 button

— The blinking of LED1 can be stopped or re-started by using SW1 button. See
on page 28.

Figure 6-2 Atmel Studio — Getting Started Project on Terminal Window

& COM22:115200baud - Tera Term VT

r
. - f— — !

File Edit Setup Control Window Help

—— Getting Started Example ——
—— SAMU?71-XLTRA —
—— Compiled: Jul 16 2015 11:59:38 —
i ?gstem tick to get 1ms tick period.
buttons with debouncing.
SWB to Start/Stop the LEDB (yellow> blinking.
SW1 to Start/Stop the LED1 <(yellow> blinking.
1111111118

/ItmeL Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE]

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

28

7. Get Started with IAR EWARM
71. Requirements
* IAR Embedded Workbench for ARM 7.40.1 or later version installed
* SAM V71 Xplained Ultra Evaluation Kit connected to IAR Embedded Workbench running on PC
and powered on
Note: Connect a USB cable (Standard-A to Micro-B or Micro-AB) between the PC and the DEBUG USB
port on the kit).
7.2. Load the Example
Ensure that the SAM V71-XULT IAR EWARM 7.40.1 Software Package 1.3 is already downloaded as
mentioned in Chapter 4.
* Open IAR Embedded Workbench
* Open the example project file for SAM V71 Xplained Ultra Evaluation Kit (from installation folder:
arm\examples\Atmel\samv71_Xplained_Ultra\examples\getting-started\build\ewarm). See Figure
7-1 IAR — Getting Started Project Loading on page 29.
Figure 7-1 IAR — Getting Started Project Loading
rx Open Workspace g‘
QQ | . « Atmel » samv71_Xplained_Ultra » examples » getting-started » build » ewarm » -I&,H pel
Organize v New folder = v A ®
X Favorites A Name : Date modified Type Size
Bl Desktop settings 7/14/2015 8:20 PM File folder
8 Downloads , sram 7/14/2015 8:08 PM File folder
= Recent Places A getting-started.eww 6/5/2015 7:46 AM IAR IDE Workspace 1KB
4 Libraries B
¢/ Documents
o' Music
&=/ Pictures
2] Subversion
B videos
1S Computer
&, 0sDisk (C:)
ca Local Disk (D) ~
File name: getting-started.eww [Workspace Files (*.eww) -
[Open] { Cancel]
* In the Project — Options, Select Debugger option as ‘CMSIS DAP’. Also inside CMSIS DAP —
JTAG/SWD tab — select Interface as SWD.
* Build the project: Project — Rebuild All.
* In the computer, open and configure a terminal application (e.g. Terminal on Microsoft Windows)
with these settings:
— Port: Same port where EDBG Virtual COM Port is connected.
Note: To know this port, go to your computer — Device Manager — Open Ports (COM & LPT) in on
Microsoft Windows for example.
AtmeL Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 29

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

* 115200 baud rates
+ Eight bits of data

* No parity

* One stop bit

* No flow control
Load the code in SAM S70/E70 and start debugging: Project — Download and Debug.

Now the application has been programmed and the debugger stops at the beginning of
main(). To execute it, click on Debug — Go.

The demonstration program makes two LEDs on the board blink at a fixed rate
The blinking can be stopped by typing "1' or '2' in the Hyperterminal console (one for each

LED). See on page 30.
Figure 7-2 IAR — Getting Started Project on Terminal Window
r ™ |
% COM22:115200baud - Tera Term VT (o] E [

iEiIe Edit Setup Card ﬂindm; Help

—— Getting Started Example 1.3 —

—— SAM U?71 Xplained Ultra

—— Compiled: Jul 16 2015 11:43:26 With IAR——
1= Qonfigure system tick

S .

o push buttons, uses
Press 1 to Start/Stop
to Start/Stop

21
21
2 2

22221
22221
22222

to get 1ms tick period.

key 1 & 2 instead.
blue LED D1 blinking.
red LED D2 blinking.
2212222122

221
212222122221
222222222222

Altmel

Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 30

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

8. Get Started with KEIL MDK

8.1. Requirements

* Keil MDK version 5.14 or later version installed. The download link is: https://www.keil.com/
download/product/.

Note: The device support for Cortex M7 need to be updated by using the Pack Installer software, if SAM

E/S/V is not supported in current version as shown below (refer to Purple box). See Figure 8-1 Pack

Installer — Atmel Device Selection on page 31.

Figure 8-1 Pack Installer — Atmel Device Selection

4

Devices | Boards |

Search:

* X

Device

5@
v v

+
© O 0OV OO0 ¢ oo

+

Toshiba

Texas Instruments
STMicroelectronics
Spansion

SONiX

Silicon Labs
Renesas

NXP

Nuvoton

Nordic Semiconductor
Maxim

Infineon

Holtek

Freescale

Atmel

‘3 SAMR21 Series
‘3 SAMG Series
‘% SAMM Series
Ao

% SAMM4 Dualcore Series

5| Summary
79 Devices
341 Devices
521 Devices
361 Devices
43 Devices
322 Devices
2 Devices
270 Devices
394 Devices
7 Devices
4 Devices
81 Devices
11 Devices
223 Devices
237 Devices
6 Devices
9 Devices
44 Devices

Click on 'SAM V Series', so that the Keil::SAM-V_DFP download pack is available.

Figure 8-2 Pack Installer — Packs Installer for SAM V MCU on page 32

Atmel

Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE]

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

31

https://www.keil.com/download/product/
https://www.keil.com/download/product/

Figure 8-2 Pack Installer — Packs Installer for SAM V MCU

1| Packs | Examples]

Pack Action Description
= ARM:CMSIS ! Up to date | CMSIS (Cortex Microcontroller Software Interface Standard
4.3.0 (2015-03-20) » 8 Remove | CMSIS (Cortex Microcontroller Software Interface Standard
4.2.0 (2014-09-24) g Remove | CMSIS (Cortex Microcontroller Software Interface Standard
+ Previous » .ARM::CMSIS - Previous Pack Versions
(= Keil::MDK-Middleware & Update | Keil MDK-ARM Professional Middleware for ARM Cortex-V
6.4.0 (2015-04-24) 522 Install | Keil MDK-ARM Professional Middleware for ARM Cortex-NV
6.2.0 (2014-10-24) 8 Remove | Keil MDK-ARM Professional Middleware for ARM Cortex-V
+Previous | Keil::MDK-Middleware - Previous Pack Versions

i Keil:SAM-V_DFP
1.0.0 (2015-01-28)

<> Install | Atmel SAM V Series Device Support and Examples
&> Install | Atmel SAM V Series Device Support and Examples

Once 'Install' is clicked, the Keil SAM-V_DFP 2.0.0. download pack is available at ..\Keil_v5\ARM\Pack
\.Download

Click 'Keil.SAM-V_DFP.2.0.0.pack' to download it.

* SAM V71 Xplained Ultra Evaluation Kit connected to IAR Embedded Workbench running on PC
and powered on

Note: Connect a USB cable (Standard-A to Micro-B or Micro-AB) between the PC and the DEBUG USB
port on the kit).

8.2. Load the Example
Ensure that the Keil MDK software package is downloaded as mentioned in Chapter 4.

* Open an example project file for SAM V71 Xplained Ultra Evaluation Kit from the installation folder
— ARM\examples\Atme\SAMV71_Xplained_Ultra\examples\getting-started path. See Figure 8-3
Keil MDK — Getting Started Project Loading on page 33.

AtmeL Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 32

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

Figure 8-3 Keil MDK — Getting Started Project Loading

B Select Project File ‘ »]

bA

@uvl . « examples » getting-started » build » mdk » 'I"ll Search mdk

Organize v New folder =~ 0 @

Bl Desktop “ Name Date modified Type Size

& Downloads . = a
i Listings 7/14/2015 8:45 PM File folder

| Recent Places .
I, Objects 7/16/201511:12 AM File folder
L & getting-started.uvprojx 7/15/20151:58 PM pVision5 Project 40 KB
~a Libraries
%) Documents
J\ Music

&= Pictures

m

= Subversion
Videos

1% Computer
&, 0SDisk (C:)
ca Local Disk (D:)

File name: getting-started.uvprojx v [Project Files (*.uvproj; *.uvpro v]

[Open] [Cancel]

Build the project: Project — Build Target.
Load the code in SAMS70/ E70 and start debugging: Debug — Start/Stop Debug Session.
In the computer, open and configure a terminal application (e.g. Terminal on Microsoft Windows)
with these settings:
— Port: Same port where EDBG Virtual COM Port is connected.

Note: To know this port, go to your computer — Device Manager — Open Ports (COM & LPT) in on
Microsoft Windows for example.

Atmel

115200 baud rates
Eight bits of data
No parity

One stop bit

No flow control

— Now the application has been programmed and the debugger stops at the beginning of
main(). To execute it, click on Debug — Run.

— The demonstration program makes two LEDs on the board blink at a fixed rate.

— The blinking can be stopped by typing '1' or '2' in the Hyperterminal console (one for each
LED). See Figure 8-4 Keil MDK — Getting Started Project on Terminal Window on page 34.

Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 33

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

Figure 8-4 Keil MDK - Getting Started Project on Terminal Window

Altmel

=
Fi

Catiinm C anterel
2ETUP ontroi

windaow

COM92:115200baud - Tera Term VT

e can

—— Getting Started Example 1.3 —
—— SAM U71 ¥plained Ultra
—— Compiled: Jul 15 2015 17:53:43 With KEIL——
—~I—- Configure system tick to get 1ims tick period.
Configure LED PlOs.
Configure TC.

No push buttons, uses

Press
Press

12 2
22 '8
28 &
22 2
o &
2.2 2
22 &
2 2 &
o @ ‘&

1
2
2
2
2
2
-
2
2
2
2

to Start/Stop
to Start/Stop

NNNNNNNNN
NNNNNNNN -
NNNNNNNNN
NNNNNNNNN
NNNNNNNNN
NNNNNNNNN
NNNNNNNN -
NNNNNNNNN
NNNNNNNNN
NNNNNNNNN
NNNNNNNNN
NNNNNNNN -

DBG

the
the

key 1 & 2 instead.
blue LED D1 blinking.

red

LED

NNNNNNNNN
NNNNNNNNN
NNNNNNNNN
NNNNNNNNN
NNNNNNNNN
NNNNNNNNN
NNNNNNNNN
NNNNNNNNN
NNNNNNNNN
NNNNNNNDNN
NNNNNNNNN
NNNNNNNNN
NNNNNNNNN
NNNNNNNN -
NNNNNNNNN
NNNNNNNNN

D2 blinking.

Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE]

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

34

9. Get Started with GNU Tools

To know more how to use the GNU tool for ARM embedded processor, refer to Section 3.1 of the
document available in the link: http://www.atmel.com/images/atmel-44031-32-bit-cortex-m7-
microcontroller-geting-started-sam-v71-microcontroller_applicationnote.pdf.

AtmeL Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 35

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

http://www.atmel.com/images/atmel-44031-32-bit-cortex-m7-microcontroller-geting-started-sam-v71-microcontroller_applicationnote.pdf
http://www.atmel.com/images/atmel-44031-32-bit-cortex-m7-microcontroller-geting-started-sam-v71-microcontroller_applicationnote.pdf

Get Started with SAM-BA

10.1. Requirements
« Atmel Studio 6.2 (or above version) installed
* Atmel Software Framework (ASF) 3.25 installed
¢ SAM-BA v2.15 (from the link: http://www.atmel.com/tools/atmelsam-bain-systemprogrammer.aspx)
*« SAM V71 Xplained Ultra Evaluation Kit connected a PC and powered on
Note: Connect a USB cable (Standard-A to Micro-B or Micro-AB) between the PC and the DEBUG USB
port on the kit).
10.2. Build the Binary File
* Open the Atmel Studio command line: Start — All Programs — Atmel — Atmel Studio 6.2
Command Prompt.
» Change the directory where the example makefile is (\asf-standalone-archive-3.25.0.20\xdk-
asf-3.25.0\sam\applications\getting-started\samv71g21_samv71_xplained_ultra\gcc)
+ Type “make” and enter. Then the binary file (getting-started_flash.bin) will be generated in the
directory.
« The binary file generated by IAR can be programmed by SAM-BA as well. About how to generate
binary files by IAR, refer to IAR C/C++ Development Guide for ARM provided by IAR Embedded
Workbench for ARM.
10.3. Load the Example
« Connect PB12 with 3.3V in ERASE connector of SAM V71 Xplained Ultra Evaluation Kit to erase
the flash. Press the RESET button.
* Connect a USB cable to the TARGET USB Connector of SAM V71 Xplained Ultra Evaluation Kit
and press the RESET button
* Now SAM V71 will get enumerated with PC if the SAM-BA driver is installed. If the driver is not
installed the driver can be found from the SAM-BA installation path (default path: C:\Program Files
(x86)\Atmel\sam-ba_2.15\drv).
* Open SAM-BA
« Select the port where the USB device is enumerated and then select samv71-xplained as the target
board. Press Connect as shown below. See Figure 10-1 SAM-BA Connection Setting on page
36.
Figure 10-1 SAM-BA Connection Setting
e)
Select the connection : [\USBseria\COM23 | Caun R R
Select your board : Ia@lsamﬂl-xplained l] @ JTAG
JLink TimeoutMuiltiplier : [0 L] € SWD
| ™ Customize lowlevel
AtmeL Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 36

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

http://www.atmel.com/tools/atmelsam-bain-systemprogrammer.aspx

* The SAM-BA GUI opens. In SAM-BA GUI, choose Flash tab.

* For Send File Name, choose the binary file (getting-started_flash.bin) generated previously. See
Figure 10-2 SAM-BA Bin File Selection for Programming on page 37.

Figure 10-2 SAM-BA Bin File Selection for Programming
[sam-8A215 - s01sam71oxplained [ESFIENC)

File ScriptFile Help
at91samv7-ek Memory Display

Start Address : 020400000 Refresh Display format ‘Appld traces on DBGU
Size in byte(s) : 0x100 € ascii C 8-bit C 16-bit & 32-bit infos ~| Apply
0x20400000 0x4DB6BSFE O0xB37A782A 0xD0092904 0xD0092902 a

0x20400010 Ox466E7800 0x24001CB2 0x0241EB02 O0xE0101ES2
0x20400020 OxE7F66800 Ox0000F9B0 OxFOOO0E7F3 0x2B09030F
0x20400030 OxF043D802 OxE0000330 0x11003337 O0xF8021Cé4

Awanannnan AnEDDA2AAY AunsTAnTAl AuTOONANSA __ Awann ennnn

Flash | SRAM
Download / Upload File
Send File Name : xamples/getting-started/build/ewarm/flash/bin/flash.bir| 2"] Send File
Receive File Name : Ej Receive File
Address : 000400000 Size (For Receive File) : 01000 byte(s) Compare sent file with memory
Scripts
[Boo(from Flash (GPNVM1) :] Execute

loading history file ... 0 events added

SAM-BA console display active (Tcl8.5.9 / Tk8.5.9)
(sam-ba_2.15) 1 %

(sam-ba_2.15) 1 %

\USBseria\COM23| Board : at91samv71-xplained .

—_— —— ——

* Specify the address (0x400000) and press Send File

* For Scripts select Boot from Flash (GPNVM1) and then press Execute

* Now the application has been programmed. To execute it, reset the board.
* You can see the LED toggling indicating the flash is programmed

Besides J-Link, UART and USB can be used for the communication between SAM-BA and SAM E70/
S70, refer to chapter “SAM-BA Boot Program” in the SAM S70/E70 datasheet for details.

To learn more about SAM-BA, refer to the AT91 ISP/SAM-BA user guide document available at the
following link: http://www.atmel.com/images/6421b.pdf. Or simply use the SAM-BA user guide document
located in C:\Program Files (x86)\Atmel\sam-ba_X.xx\doc.

AtmeL Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 37

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

http://www.atmel.com/images/6421b.pdf

11. Real Time Operating System Support
Following is a list of real time operating systems supported for SAMS70/ E70 MCUs.

* Keil RTX: www.keil.com/pack/Keil. SAM-V_DFP.pdsc

— Application note reference: Migrating Application Code from ARM Cortex-M4 to Cortex-M7
Processors: http://www.keil.com/appnotes/files/apnt_270.pdf

* FreeRTOS: http://www.freertos.org/Atmel_SAMV7_Cortex-M7_RTOS_Demo.html

— Application note reference: Atmel AT04056: Getting Started with FreeRTOS on Atmel SAM
Flash MCUs

* NuttX: http://www.nuttx.org/Documentation/NuttX.html#at91samv71

* Segger embOS: https://www.segger.com/embos-for-cortex-m-cpus-and-rowley-compiler.html and
https://www.segger.com/download_embos-arm-cortex-m-atmel-studio.html

« ExpressLogic ThreadX: http://rtos.com/downloads/threadx_demo/

AtmeL Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 38

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

http://www.keil.com/pack/Keil.SAM-V_DFP.pdsc
http://www.keil.com/appnotes/files/apnt_270.pdf
http://www.freertos.org/Atmel_SAMV7_Cortex-M7_RTOS_Demo.html
http://www.atmel.com/images/atmel-42382-getting-started-with-freertos-on-atmel-sam-flash-mcus_applicationnote_at04056.pdf
http://www.atmel.com/images/atmel-42382-getting-started-with-freertos-on-atmel-sam-flash-mcus_applicationnote_at04056.pdf
http://www.nuttx.org/Documentation/NuttX.html#at91samv71
https://www.segger.com/embos-for-cortex-m-cpus-and-rowley-compiler.html
https://www.segger.com/download_embos-arm-cortex-m-atmel-studio.html
http://rtos.com/downloads/threadx_demo/

12. Application Notes
Following is a list of application notes supported for SAM S70/E70 MCUs from Atmel.

AT04056:
AT06015:
AT09331:
AT09332:
AT09333:
AT09334:
AT09335:
AT09336:
AT09337:
AT09338:
AT09339:
AT09340:
AT09341:
AT09423:

Getting Started with FreeRTOS on Atmel SAM Flash MCUs

Production Programming of Atmel Microcontrollers

ASF USB Stack Manual

USB Device Interface (UDI) for Communication Class Device (CDC)

USB Host Interface (UHI) for Communication Class Device (CDC)

USB Device Interface (UDI) for Human Interface Device Generic (HID Generic)
USB Device Interface (UDI) for Human Interface Device Keyboard (HID Keyboard)
USB Device Interface (UDI) for Human Interface Device Mouse (HID Mouse)
USB Host Interface (UHI) for Human Interface Device Mouse (HID Mouse)
USB Device Interface (UDI) for Mass Storage Class (MSC)

USB Host Interface (UHI) for Mass Storage Class (MSC)

USB Device Interface (UDI) for Vendor Class Device

USB Host Interface (UHI) for Vendor Class Device

SAM-BA Overview and Customization Process

How to Optimize Usage of SAM V7x/E7x/S7x Architecture

To know more about existing application notes, select one of the links: http://www.atmel.com/products/
microcontrollers/arm/sam-s.aspx?tab=documents or http://www.atmel.com/products/microcontrollers/arm/
sam-e.aspx?tab=documents and select the document type as Application Notes as shown in the below
figure (inside Purple Box). See Figure 12-1 SAM V71 Xplained Ultra Evaluation Kit Link on page 39.

Figure 12-1 SAM V71 Xplained Ultra Evaluation Kit Link

Atmel

SAM E ARM Cortex-M7 Microcontrollers

Overview Product Search Documents Tools

Document Type

Application Notes v

Application Note

Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 39

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

http://www.atmel.com/images/atmel-42382-getting-started-with-freertos-on-atmel-sam-flash-mcus_applicationnote_at04056.pdf
http://www.atmel.com/images/atmel-42215-production-programming-of-atmel-microcontroller_ap-note_at06015.pdf
http://www.atmel.com/images/atmel-42336-asf-usb-stack-manual_applicationnote_at09331.pdf
http://www.atmel.com/images/atmel-42337-usb-device-interface-udi-for-communication-class-device-cdc_at09332_apnote.pdf
http://www.atmel.com/images/atmel-42338-usb-host-interface-uhi-for-communication-class-device-cdc_ap-note_at09333.pdf
http://www.atmel.com/images/atmel-42339-usb-device-interface-udi-for-human-interface-device-generic-hid-generic_at09334-apnote.pdf
http://www.atmel.com/images/atmel-42340-usb-device-interface-uid-for-human-interface-device-keyboard-hid-keyboard_at09335_apnote.pdf
http://www.atmel.com/images/atmel-42341-usb-device-interface-udi-for-human-interface-device-mouse-hid-mouse_at09336_apnote.pdf
http://www.atmel.com/images/atmel-42342-usb-host-interface-uhi-for-human-interface-device-mouse-hid-mouse_ap-note_at09337.pdf
http://www.atmel.com/images/atmel-42343-usb-device-interface-udi-for-mass-storage-class-msc_at09338_apnote.pdf
http://www.atmel.com/images/atmel-42344-usb-host-interface-uhi-for-mass-storage-class-msc_ap-note_at09339.pdf
http://www.atmel.com/images/atmel-42345-usb-device-interface-udi-for-vendor-class-device_ap-note_at09340.pdf
http://www.atmel.com/images/atmel-42346-usb-host-interface-uhi-for-vendor-class-device_ap-note_at09341.pdf
http://www.atmel.com/images/atmel-42438-sam-ba-overview-and-customization-process_applicationnote_at09423.pdf
http://www.atmel.com/images/atmel-44047-cortex-m7-microcontroller-optimize-usage-sam-v71-v70-e70-s70-architecture_application-note.pdf
http://www.atmel.com/products/microcontrollers/arm/sam-s.aspx?tab=documents
http://www.atmel.com/products/microcontrollers/arm/sam-s.aspx?tab=documents
http://www.atmel.com/products/microcontrollers/arm/sam-e.aspx?tab=documents
http://www.atmel.com/products/microcontrollers/arm/sam-e.aspx?tab=documents

13. References

* SAM E70 Device Datasheet: http://www.atmel.com/Images/Atmel-11296-32-bit-Cortex-M7-
Microcontroller-SAM-E70Q-SAM-E70N-SAM-E70J_Datasheet.pdf

* SAM S70 Device Datasheet: hitp://www.atmel.com/Images/Atmel-11242-32-bit-Cortex-M7-
Microcontroller-SAM-S70Q-SAM-S70N-SAM-S70J_Datasheet.pdf

e Atmel Studio 6.2 sp2 Readme: http://www.atmel.com/Images/AStudio6_2sp2_1563-readme.pdf

« Atmel Software Framework 3.25 Release Notes: http://www.atmel.com/Images/asf-
releasenotes-3.25.0.pdf

* SAM V71 Xplained Ultra: http://www.atmel.com/Images/Atmel-42408-SAMV71-Xplained-
Ultra_User-Guide.pdf

* SAM V71-XULT Software Package 1.3 Release note: http://www.atmel.com/Images/
samv71_softpack release note v1.3.txt

* Smart SAM E70 SAM S70 Arm Cortex-M: http://www.atmel.com/Images/45131A-SAM-S70-
E70_E_A4 021015 web.pdf

* Getting Started with SAM V71 Microcontrollers: http://www.atmel.com/images/atmel-44031-32-bit-
cortex-m7-microcontroller-geting-started-sam-v71-microcontroller_applicationnote.pdf

AtmeL Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 40

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

http://www.atmel.com/Images/Atmel-11296-32-bit-Cortex-M7-Microcontroller-SAM-E70Q-SAM-E70N-SAM-E70J_Datasheet.pdf
http://www.atmel.com/Images/Atmel-11296-32-bit-Cortex-M7-Microcontroller-SAM-E70Q-SAM-E70N-SAM-E70J_Datasheet.pdf
http://www.atmel.com/Images/Atmel-11242-32-bit-Cortex-M7-Microcontroller-SAM-S70Q-SAM-S70N-SAM-S70J_Datasheet.pdf
http://www.atmel.com/Images/Atmel-11242-32-bit-Cortex-M7-Microcontroller-SAM-S70Q-SAM-S70N-SAM-S70J_Datasheet.pdf
http://www.atmel.com/Images/AStudio6_2sp2_1563-readme.pdf
http://www.atmel.com/Images/asf-releasenotes-3.25.0.pdf
http://www.atmel.com/Images/asf-releasenotes-3.25.0.pdf
http://www.atmel.com/Images/Atmel-42408-SAMV71-Xplained-Ultra_User-Guide.pdf
http://www.atmel.com/Images/Atmel-42408-SAMV71-Xplained-Ultra_User-Guide.pdf
http://www.atmel.com/Images/samv71_softpack_release_note_v1.3.txt
http://www.atmel.com/Images/samv71_softpack_release_note_v1.3.txt
http://www.atmel.com/Images/45131A-SAM-S70-E70_E_A4_021015_web.pdf
http://www.atmel.com/Images/45131A-SAM-S70-E70_E_A4_021015_web.pdf
http://www.atmel.com/images/atmel-44031-32-bit-cortex-m7-microcontroller-geting-started-sam-v71-microcontroller_applicationnote.pdf
http://www.atmel.com/images/atmel-44031-32-bit-cortex-m7-microcontroller-geting-started-sam-v71-microcontroller_applicationnote.pdf

14. Revision History

Date Comments

42532A 09/2015 Initial document release.

AtmeL Atmel AT12874: Getting Started with SAM S70/E70 [APPLICATION NOTE] 41

Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

[connecTen |
Altmel | enabling Uniimited Possibilities’ [fl¥]in] 3 o]
Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2015 Atmel Corporation. / Rev.: Atmel-42532A-Getting-Started-with-SAM-S70-E70_AT12874_Application Note-09/2015

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, SAM-BA®, and others are registered trademarks or trademarks of Atmel Corporation
in U.S. and other countries. ARM®, ARM Connected® logo, Cortex®, and others are the registered trademarks or trademarks of ARM Ltd. Windows® is a registered
trademark of Microsoft Corporation in U.S. and or other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Glossary
	Table of Contents
	1. Pre-requisites
	2. Get the Device Datasheet
	3. Get the SAMS70/E70 Kit
	4. Get the Tools
	5. The Getting-started Example
	5.1. Specification
	5.1.1. Atmel Studio Program

	5.2. IAR and Keil Program
	5.3. On-chip Peripherals
	5.4. On-board Components
	5.4.1. Buttons
	5.4.2. LEDs
	5.4.3. COM Port (DBGU/UART)
	5.4.4. Booting
	5.4.5. Erasing Flash

	5.5. Implementation
	5.5.1. Initialization Before ‘main’
	5.5.2. Generic Peripheral Usage
	5.5.3. Disabling or Reprogramming Watchdog Timer (WDT)
	5.5.4. Enabling Cache If Necessary
	5.5.5. Using the Nested Vectored Interrupt Controller (NVIC)
	5.5.6. Using the Timer Counter (TC)
	5.5.7. Using the System Timer (SysTick)
	5.5.8. Using the Parallel Input/Output Controller (PIO)
	5.5.9. Using the Serial Ports

	6. Get Started with Atmel Studio 6
	6.1. Requirements
	6.2. Load the Example

	7. Get Started with IAR EWARM
	7.1. Requirements
	7.2. Load the Example

	8. Get Started with KEIL MDK
	8.1. Requirements
	8.2. Load the Example

	9. Get Started with GNU Tools
	10. Get Started with SAM-BA
	10.1. Requirements
	10.2. Build the Binary File
	10.3. Load the Example

	11. Real Time Operating System Support
	12. Application Notes
	13. References
	14. Revision History

