AVR32795: Using the GNU Linker Scripts on
AVR UC3 Devices

Features

e Basic GNU linker script concepts

+ 32-bit AVR® UC3™ GNU linker scripts
« Controlling the location of functions and variables in the flash

1 Introduction

This document highlights the main purpose of the GNU linker script, which is to

control the location of code and variables in the executable.

Figure 1-1. AVR GNU toolchain build steps.

Compile with
avr32-gcc /
Assemble with
avr32-as

Object Files

7

Link with

avr32-Id ——— Executable

Linker Script

AIMEL

@

AIMEL

I 5

32-bit AVR

Microcontrollers

Application Note

Rev. 32158A-AVR-01/11

2 Memory map

2 AVR32795

ATmEL

The Atmel® AVR UC3 microcontroller architecture has a 32-bit memory space and
separate memory types (program and data) connected with distinct buses. Such a
memory architecture allows the processor to access both program and data
memories at the same time. Each memory type has its own address space.

Figure 2-1. Example of the Atmel AT32UC3A3256 memory map.

OxFFFFFFFF

OxFFO10000
0xFFO00000

0xDa000000

0xDo00o0o0

0x80040000

Ox80000000

0x00010000
000000000

Embedded SRAMDO & SRAM1

External SDRAM

Ermbedded Flash

Embedded CPU SRAM

}2x32kB

128 MB

} 256kE

} B4kB

32158A-AVR-01/11

AVR32795

3 Basic linker script concepts

3.1 Sections

3.2 Section properties

3.3 VMA and LMA

3.4 Symbols

3.5 Well-known sections

32158A-AVR-01/11

The linker combines input files (object file format) into a single output file
(executable).

Each object file has, among other things, a list of sections. We refer to a section in an
input file as an input section. Similarly, a section in the output file is an output section.

Each section in an object file has a name and a size. Most sections also have an
associated block of data (the section contents).

A section may be marked as loadable, which means that its contents should be
loaded into memory when the executable is run.

A section with no contents may be allocatable, which means that an area in memory
should be set aside, but nothing in particular should be loaded there (and, in some
cases, this memory must be zeroed out).

A section which is neither loadable nor allocatable typically contains some sort of
debugging information.

Every loadable or allocatable output section has two addresses. The first is the VMA,
or virtual memory address. This is the address the section will have when the output
file is run. The second is the LMA, or load memory address. This is the address at
which the section will be loaded. In most cases the two addresses will be the same.

An example of when the LMA and VMA might be different is when a data section is
loaded into ROM, and then copied into RAM when the program starts up (a technique
often used to initialize global variables in a ROM-based system). In this case, the
ROM address would be the LMA and the RAM address would be the VMA.

Every object file also has a list of symbols, known as the symbol table. A symbol may
be defined or undefined. Each symbol has a name, and each defined symbol has an
address, among other information.

The compilation of a C or C++ program into an object file will generate a defined
symbol for every defined function and global or static variable. Every undefined
function or global variable which is referenced in the input file will become an
undefined symbol.

text: usually contains the code, and is usually loaded to a non-volatile memory,
such as the internal flash.

.data: initialized data; usually contains initialized variables.

.bss: usually contains non-initialized data.

AIMEL 3

L JO

NOTE

NOTE

AVR32795

ATTEL

The section, properties, VMA, and LMA are available in an object file or output file by

using the avr32-objdump program with the -h option. For example:

1dx
0

10

11

12

13

Name
.reset

-got

.init

-text

.exception

-Fini

.rodata

.dalign

.ctors

.dtors

-heap

Size
00002004
CONTENTS,
00000000
CONTENTS,
0000001a
CONTENTS,
00001074
CONTENTS,
00000200
CONTENTS,
00000018
CONTENTS,
00000208
CONTENTS,
00000004
ALLOC
00000008
CONTENTS,
00000008
CONTENTS,
00000004
CONTENTS,
00000820
CONTENTS,
0000015c
ALLOC
0000e650
ALLOC

VMA LMA File off
80000000 80000000 00001000
ALLOC, LOAD, READONLY, CODE
0000001c 80003634 0000501c
ALLOC, LOAD, RELOC, DATA
80002004 80002004 00003004
ALLOC, LOAD, READONLY, CODE
80002020 80002020 00003020
ALLOC, LOAD, READONLY, CODE
80003200 80003200 00004200
ALLOC, LOAD, READONLY, CODE
80003400 80003400 00004400
ALLOC, LOAD, READONLY, CODE
80003418 80003418 00004418
ALLOC, LOAD, READONLY, DATA
00000004 00000004 00000000

00000008 80003620 00005008
ALLOC, LOAD, DATA
00000010 80003628 00005010
ALLOC, LOAD, DATA
00000018 80003630 00005018
ALLOC, LOAD, DATA
0000001c 80003634 0000501c
ALLOC, LOAD, DATA
00000854 00000854 00000000

000009b0 000009b0O 00000000

Algn
2**2

2**2

2**2

2**2

2**9

2**2

2**2

2**0

2**2

2**2

2**2

2**2

2**2

2**0

The symbols are available in an object or output file by using the avr32-nm program,
or by using the avr32-objdump program with the -t option.

32158A-AVR-01/11

AVR32795

4 Default versus specific linker script

32158A-AVR-01/11

The linker always uses a linker script. If none is explicitly supplied, the linker will use a
default script that is compiled into the linker executable. The AVR GNU toolchain
default linker scripts are under the directory:

C:/Program Files/Atmel/AVR Tools/AVR(32) Toolchain/avr32/lib/Idscripts/

Other linker scripts can be supplied by using the -1 command line option (or the long
form: —script=<file>). When this is done, the linker script specified will replace the
default linker script.

Extensions of the GNU toolchain linker scripts and their meanings:

X

.Xbn:

-Xn:

XTI

-Xu:

- XWI

default linker script, for “regular” executables.

default linker script used when the —N option is specified; mix text and data on
the same page; don't align data.

default linker script used when the —n option is specified; mix text and data on
the same page.

default linker script used when the —-r option is specified; link without
relocation.

default linker script used when the —ur option is specified; link without
relocation, create constructors.

linker script to use for writable .rodata section.

AIMEL 5

L JO

ATMEL

5 GNU linker script walkthrough

5.1 MEMORY command

5.2 PHDRS command

6 AVR32795

/* .. */ . Comments

OUTPUT_FORMAT('elf32-avr32", "elf32-avr32", "elf32-avr32").
The ouTPuT_FORMAT command names the BFD format to use for the output file. In this
case, this is strictly equivalent to OUTPUT_FORMAT('el¥32-avr32")

OUTPUT_FORMAT(default, big, little):
OUTPUT_FORMAT is usable with three arguments to use different formats based on the
—EB and -EL command line options.

This permits the linker script to set the output format based on the desired
endianness.

OUTPUT_ARCH(avr32:uc): Specify a particular output machine architecture.

ENTRY(start): Set the first instruction to execute in a program (called the
entry point).

Describes the location and size of blocks of memory in the target.

MEMORY
¢
(rxai!w) : ORIGIN = 0x80000000, LENGTH = 256K
INTRAM @ : ORIGIN = 0x00000004, LENGTH = OxOO000OFFFC
E :

USERPAG ORIGIN = 0x80800000, LENGTH = 0x00000200

Name used in the linker script to refer to that memory region

} Optional list of attributes

: read-only section

: rlw section

. executable section

: allocatable section

:initialized section

. invert the sense of the following attributes

The linker will use the region attributes to select the memory region for the output
section that it creates (if not explicitly mentioned later in the script).

[]
-- X = =

Once a memory region is defined, the linker script can direct the linker to place
specific output sections into that memory region.

The ELF object file format uses program headers, aka segments. The program
headers describe how the program should be loaded into the target memory.

PHDRS

{ This program header describes a segment to be loaded from the file

FLASH PT_LOAD;

32158A-AVR-01/11

AVR32795

INTRAM_ALIGN PT_NULL;

INTRAM_AT_FLASH PT_LOAD;

INTRAM PT_NULL><—— Indicates an unused (for loading) program header

USERPAGE PT_LOAD;

¥
To place an output section in a particular segment, use the :phdr output section
attribute.
When the executable is programmed to target, only the loadable segments should be
programmed.

NOTE There are types other than PT_L0AD and PT_NULL (refer to the GCC linker scripts

documentation for details).

5.3 SECTIONS command

Tells the linker how to map input sections into output sections, and how to place the
output sections in memory.

SECTIONS
{

sections-command
sections-command

}
Each secTioNs command may be one of the following:

e an ENTRY command

e asymbol assignment

e an output section description
e an overlay description

5.3.1 Symbol assignment

A value can be assigned to a symbol. This will define the symbol as a global symbol.

Example 1:

/* Use a default stack size if stack size was not defined. */

_ stack_size__ = DEFINED(__stack_size_) ? _ stack_size__ : 4K;

Example 2:

PROVIDE)(__executable_start = 0x80000000) ;

.= ?XSOOOOOOO;

Indicates an unused (for loading) program header

“wn

NOTE The special symbol “.” is the location counter.

AIMEL 7

—

32158A-AVR-01/11

NOTE

ATMEL

If the address of an output section is not specified, the address is set from the current
value of the location counter. The location counter is then incremented by the size of
the output section. At the start of the SECTIONS command, it equals zero by default.

5.3.2 Output section description

5.3.2.1 Sections

8 AVR32795

Most programs consist only of code, initialized data, and uninitialized data. These will
be in the .text, .data, and .bss sections, respectively. For most programs, these are
also the only sections that appear in the input files.

SECTIONS

{

. = 0x80000000;
_text : {

Set the value of the location counter

. = 0x00000000: List the_name_s of the input_sections that should be
placed into this output section: “all . text input
-data : { *(.data) } sections in all input files”

.bss): { *(-bss) }
}

Section name

The first line inside the secTions command of the above example sets the value of the
special symbol “.”, which is the location counter. If any address of an output section is
specified in some other way, the address is set from the current value of the location
counter. The location counter is then incremented by the size of the output section. At

the start of the secTiI0NS command, the location counter has the value 0.

The second line defines an output section, .text. Within the curly braces after the
output section name, it lists the names of the input sections that should be placed into
this output section.

The “*" is a wildcard, which matches any file name. The expression *(.text) means
all .text input sections in all input files.

Because the location counter is 0x80000000 when the output section .text is
defined, the linker will set the address of the .text section in the output file to be
0x80000000.

The remaining lines define the .data and .bss sections in the output file. The linker
will place the _data output section at address 0x00000000.

After the linker places the .data output section, the value of the location counter will
be 0x00000000 plus the size of the .data output section.

The effect is that the linker will place the _.bss output section immediately after the
.data output section in memory.

The linker will ensure that each output section has the required alignment, by
increasing the location counter if necessary.

In this example, the specified addresses for the _text and .data sections will probably
satisfy any alignment constraints, but the linker may have to create a small gap
between the _data and .bss sections.

32158A-AVR-01/11

AVR32795

Figure 5-1. Memory mapping.

080040000
.data init walues FLASH
080000000 .text section
000010000
.hss section INTRAM
0x00000000 .data section
5.3.2.2 Text
.text The program may use external libraries (for example,
c gcc libraries, newlib) that use specific input sections
*(.text .stub .text.*C.gnu.linkonce.t. f/,
KEEP (*(.text.*personality*))
/* _gnu.warning sections are handled specially by elf32.em.*/
*(.gnu.warning)
}(GFLASH)(AT>FLASH =0xd703d703
A A A
Set the fill pattern for an entire section
Assign a section to a previously defined segment (cf PHDRS
command)
Specify a memory region for the .text section LMA
Assign a section to a previously defined region of memory (cf. MEMORY
command)
NOTE When link-time garbage collection is in use (-gc-sections), it is often useful to mark

sections that should not be eliminated. This is accomplished by surrounding an input
section's wildcard entry with KEEP() .

32158A-AVR-01/11

AIMEL 0

L Jo]

ATMEL

6 Examples

6.1 Controlling the location of functions and variables in the flash

6.1.1 Process flow
A. Define a custom section, .flash_nvram, located in flash:
A.1l. Handle a default or pre-defined size for this section:
/* Use a default flash NVRAM size if flash NVRAM size was not defined. */

__Flash_nvram_size _ = DEFINED(__ flash_nvram size_)?_flash_nvram_size_ :4K;

A.2. Describe the output section, _flash_nvram:

.flash_nvram TGIN(FLASH) + LENGTH(FLASH) - _flash_nvram_@

{ A

@: VMA of this output section

A A A . .
Include all input sections - flash_nvram

Assign this section to a program segment (cf PHDRS{ })

Specify the memory region FLASH for the section’s LMA

Assign this section to the FLASH region of memory (cf. MEMORY{ })

B. Locate a variable in a custom section, .flash_nvram:
= Extensions to the C language family:
0 Specifying attributes of variables

__attribute__((_section__(".flash_nvram'))) static int flash_nvram_data;

C. Locate a function in a custom section, .flash_nvram:
= Extensions to the C language family:
o0 Declaring attributes of functions

__attribute__ ((_section__(".flash_nvram'))) void Func(void) {.}

NOTE Placing a variable or a function at a specific address has to be done through the linker
script (place the custom section at the specific address).

10 AVR32795

32158A-AVR-01/11

AVR32795

6.1.2 Related examples in the software framework

o drivers/flashc/flash_example/: Controlling the location of a variable in flash
o drivers/cpu/mpu/example/: Controlling the location of a function in flash

6.2 Controlling the location of functions in internal RAM

6.2.1 Process flow

6.2.2 Related examples

32158A-AVR-01/11

A. Define a custom output section, . ram_fcts, with VMA in RAM and LMA in flash:

-ram_fcts

{
4— Include all input sections .ram_fcts
¥ CINTRAN) (AT>FLASH
A A

Assign a section to a previously defined segment
(cf PHDRS command)

Specify a memory region for the . text section LMA

Assign this section’s VMA to the INTRAM region of memory
(defined in MEMORY{ })

B. Locate a function in a custom section, .ram_fcts:
= Extensions to the C language family:
o0 Declaring attributes of functions

__attribute__ ((_section__(".ram_fcts™))) void Func(void) {.}

C. The startup routine is responsible for copying the .ram_fcts LMA (in flash) to the
-ram_fcts VMA (in INTRAM), as is done for the .data section.

Examples of a startup routine implementation can be found in the AVR Software
Framework under utils/startup_files/gcc/ in ASF vl and under
utils/startup/startup_uc3.S in ASF v2.

An example using the same method can be found here:

AVR32749 Application note: Software Workaround Implementation for the Erratum
Flash Read-after-Write for AT32UC3A0512 / AT32UC3A1512 Revision E, H and I.

AIMEL 1

—

ATMEL

6.3 Controlling the location of variables and the heap in external SDRAM

6.3.1 Process flow
A. Linker script customization
A.1l. Adding the external SDRAM memory (MEMORY{})

MEMORY

{
FLASH (rxail!w) : ORIGIN = 0x80000000, LENGTH = 0x00040000
INTRAM (wxalri) : ORIGIN = 0x00000004, LENGTH = OxO000FFFC
ERAMO (wxalri) : ORIGIN = OxFFO00000, LENGTH = 0x00008000
ERAM1 (wxalri) : ORIGIN = OxFF008000, LENGTH = 0x00008000

DRAM (wxalri) : ORIGIN = 0xDO0O00000, LENGTH = 0x02000000

USERPAGE : ORIGIN = 0x80800000, LENGTH = 0x00000200

!

A.2. Adding the external SDRAM segments (PHDRS{})
PHDRS
{
FLASH PT_LOAD;
INTRAM_ALIGN PT_NULL;
INTRAM_AT_FLASH PT_LOAD;

INTRAM PT_NULL;

DRAM_AT_FLASH PT_LOAD:
SDRAM PT_NULL;

USERPAGE PT_LOAD;

A.3. Defining two output sections for variables placed in external SDRAM
(.data_sdram, _bss_sdram

) :4_ Set the location counter to SDRAM start address

.data_sdram ORIGIN(SDRAM) :

{ Set the VMA of .data sdram

PROVIDE(data_sdram)= .);

*(.data_sdram) Will be used by the startup routine for data init

. = ALIGN(8);
PROVIDE((edata_sdram)= .);

} >SDRAM AT>FLASH :SDRAM_AT_FLASH

12 AVR32795

32158A-AVR-01/11

AVR32795

PROVIDE((data_sdram_Ima)= ABSOLUTE(LOADADDR(.data_sdram)));

_bss_sdram :

{

i

Will be used by the startup routine for data init

PROVIDE » = .);
*(.bss_sdram) Will be used by the startup routine for zero init

Q

PROVIDE — s

3} (SSDRAMYET>SDRA

A A

Assign a section to a previously defined segment
(cf PHDRS{})

Specify the memory region SDRAM for the section’s LMA

Assign this section’s VMA to the region of memory SDRAM
(defined in MEMORY{ })

NOTE Because the program header sbrRAM was defined as PT_NULL, the .bss_sdram section
won'’t be loaded to target (which is ok because the _bss section is supposed to hold
uninitialized data). And so the AT>SDRAM is unnecessary and ignored. This section will
just be zeroed out in the startup routine.

NOTE Definitions:
_data_sdram: VMA address of the start of the .data_sdram section
_data_sdram: VMA address of the end of the .data_sdram section

_data_sdram_Ima: LMA start address of the .data_sdram section

>SDRAM AT>FLASH :SDRAM_AT_FLASH

>SDRAM:

AT>FLASH:

VMA of .data_sdram in external SDRAM
LMA of .data_sdram (in flash)

:SDRAM_AT_FLASH: specified as loadable in PHDRS{} (for the data init value)

32158A-AVR-01/11

AIMEL 13

—

ATMEL

A.4. Specifying the size and location of the heap to external SDRAM

-heap :

VMA address symbol used by the malloc gnu lib

{ /

Force the _heap section to be of size

*(-heap) heap size
.& _ heap_size__;

VMA address symbol used by the malloc gnu lib
e et | ’ ’ -

}(>SDRAM XAT>SDRAM)(: SDRAM

A A A

Assign a section to a previously defined segment
(cf PHDRS{})

Specify the memory region SDRAM for the section’s LMA

Assign this section’s VMA to the region of memory SDRAM
(defined in MEMORY{ 3})

NOTE Because the program header sbrRAM was defined as PT_NULL, the .heap section won't
be loaded to target. And so the AT>SDRAM is unnecessary and ignored.

B. Initialization of the SDRAM controller:

= When: before the first SDRAM access, which is performed during the startup
process (for .data_sdram and .bss_sdram sections initialization)

= How: using the startup customization API (_init_startup()), which is called
by the startup routine before doing the SDRAM access

C. Startup routine customization
C.1. Call the startup customization function:

call _init_startup: this is when the SDRAM controller must be initialized

C.2. .data_sdram and .bss_sdram sections initialization:

= Load initialized external SDRAM data having a global lifetime from the
.data_sdram LMA section using the symbols previously defined in the linker
script (_data_sdram and _edata_sdram (the VMA addresses), _data_sdram_Ima
(the LMA start address))

14 AVR32795

32158A-AVR-01/11

AVR32795

= Clear uninitialized external SDRAM data having a global lifetime in the
-bss_sdram section using the symbols previously defined in the linker script
(_bss_sdram_start and _bss_sdram_end (VMA addresses))

Using dynamic allocation: use malloc() and free() “as usual’
E. Assigning an initialized variable to external SDRAM:
__attribute__((__section__(".data_sdram')))

static int AllGoodChildrenGoToHeaven[7] = { 1,2,3,4,5,6,7 };

F. Assigning a non-initialized variable to external SDRAM:
__attribute__ ((__section__(".bss_sdram'™)))

static int HelloGoodbye;

6.3.2 Details (documentation and source code)
AVR32733 application note: Placing data and the heap in external SDRAM.

AIMEL 15

L J&
32158A-AVR-01/11

ATTEL

7 Specific linker script examples

16

AVR32795

The AVR Software Framework provides generic linker scripts under

utils/linker_scripts/ or specific linker scripts for some examples; these scripts have
a .lds extension (the extension doesn’t matter).

drivers/flashc/flash_example/: Controlling the location of variables in flash
drivers/cpu/mpu/example/: Controlling the location of a function in flash
Application Note AVR32733: Placing data and the heap in external SDRAM

32158A-AVR-01/11

8 Frequently asked questions

AVR32795

Q: How can | use my own linker script instead of the default one inside a 32-bit
AVR project?

A: By default, avr32-gcc uses the default linker script from the AVR GNU toolchain.

To use your own linker script in a 32-bit Atmel AVR32 Studio® project, use the
following procedure:

Copy your linker script in the root of your project (use the import
command, or simply copy/paste)

Open the Project Properties view (Properties item from the contextual
menu)

Select the Tool Settings tab
Select the AVR32/GNU C Linker -> Miscellaneous item
Add -T../my_linker_script.lds to the linker flags command line

Your project is now ready to link with your own linker script.

Q: How can | declare a variable at a specific location of the flash memory?

A: To do so with GCC, a specific section must be created at link time.

Here is an example of how to place a string variable at address 0x80010000:

1. Declare the variable, specifying location in the _testloc section:

const char string[] _ attribute__ ((section ('".testloc'™))) = "String at
fixed address";

2. Create the section in the linker options:

Open the Project Properties: highlight the project name and press
Alt+Enter

Select the C/C++ Build / Settings category
Select the Tool Settings tab
Expand the AVR32/GNU Linker and highlight the miscellaneous item

In the Linker Flags field, add the -WI,-section-start=.testloc=0x80010000
option

Refer also to the screen shot below.

32158A-AVR-01/11

AIMEL 17

L JO

18

AVR32795

AIMEL

®
D
% [PTopertiesforaicaneserodaia-test: B[]
type filker text Settings
Resource
AYR32 Settings
Builders Configuration; | Debug __Manage configurations
= CiC++ Build
Discovery options
En::ronment o MCU Settings | o5 Tool setings | & Buld steps Build artifact | [mh Binary parsers | € Ervor parsers
ettings : L 1
Tool chalredkor = i) AYR3ZJGHU © Compiler Linker flags | -march=ucrl -wl,-gc-sections W, -2, _trampoline [m e e s
Wariables =
- (7 Preprocessor =
CiC++ Gereral 2 Symbals Other options (-slinker [option]) “

Project References
Refactoring Histary
RunfDebug Settings

g Directories
(2 optimization
% Debugging
E \Warnings
(22 Miscellaneous
$3 AYR3ZIGMU € Linker
ﬁ—-} General
(2 Libraries Other object &
st jects)
(% mMiscallaneous
@ Shared Library Settings
@ Opkimization
T AWRIZIGHU Assembler
@ General

T
&

]
&

(% Debugging

3 AVR3ZJGHL Preprocessing Assembler
@3 General
'@3 Debugging

T
&

Restore Defaults Apply

Q: When compiling the ARV Software Framework examples, | got the following

kinds of warnings:

Id: uc3a0512-ctrlpanel.elf: warning: allocated section ‘.dalign’ not in segment
Id: uc3a0512-ctrlpanel.elf: warning: allocated section ‘.bss’ not in segment
Id: uc3a0512-ctrlpanel.elf: warning: allocated section ‘.heap’ not in segment
Id: uc3a0512-ctrlpanel.elf: warning: allocated section ‘.stack’ not in segment
What are these warnings?

These are normal warnings, and you don't need to care about them. Here is an
explanation of these warnings:

When using the default linker scripts provided with avr32-gcc, the ELF LOAD
program headers are generated automatically from the output sections, including
BSS and the stack which are only allocated areas.

In its current revision, avr32program programs allocate LOAD program headers
that do not have to be filled with data from the ELF file, which wastes time. This
avr32program behavior will be changed in a future release, but until this is
achieved, the linker scripts provided with AVR Software Framework are modified
to place the allocated-only output sections in NULL ELF program headers, which
are ignored by avr32program, explaining the warnings when linking.

32158A-AVR-01/11

NOTE
NOTE

32158A-AVR-01/11

AVR32795

Q: How can | create a 32-bit AVR32 Studio project from an existing standalone
project that has its own makefile and linker script?

A: Here is the step-by-step procedure to import your existing project into 32-bit
AVR32 Studio and reuse the makefile and linker scripts of the project:

1. Create an empty project:

Open the New wizard selection: menu File -> New -> Other

Expand the C folder and highlight the AVR32 C project (Make) item

Click Next to open the New Project wizard

Select the Target MCU from the list, enter a project name, and click Finish

2. Add the existing source code and makefile:

Open the New wizard selection again: menu File -> New -> Other

Expand the General folder and highlight the Folder item

Click Next to open the New Folder wizard

Click on Advanced>>, and check the Link to folder in the file system box
Browse to the location of your existing stand-alone project, and click Finish

3. Create a make target:

In the Project Explorer view, browse to the folder that contains the makefile
Right-click on the makefile file, and select the Create make target item

Enter a name in the Target Name: field (for example, Build), and click
Create

Other targets could be added by repeating the above steps.

The make target creations depend on the keywords defined in the makefile:

4. Build the make target:

In the Project Explorer view, right-click on the project name, and select the
Build make target item

Select the make target to build, and click Finish

AIMEL 19

L JO

9 References

The official GNU Id linker documentation:
http://sourceware.org/binutils/docs-2.19/ld/index.html
http://sourceware.org/binutils/docs-2.19/Id/Scripts.html#Scripts

Using the GNU Compiler Collection:
http://gcc.gnu.org/onlinedocs/: online HTML or PDF document

10 Support
Atmel has several support channels available:
. Web portal: http://support.atmel.no/ All Atmel microcontrollers
. Email: avr@atmel.com All AVR products
. Email: avr32@atmel.com All 32-bit AVR products

Please register on the web portal to gain access to the following services:

e Access to a rich FAQ database

e [Easy submission of technical support requests

e History of all past support requests

o Register to receive Atmel microcontroller newsletters

20 AVR32795

32158A-AVR-01/11

11 Table of Contents

32158A-AVR-01/11

AVR32795

F AU S e 1
I [N 4o Yo [o o J o USSR 1
P2\ LT 0 0 Lo] VA 1 0 =T o PP 2
3 Basic linker sCript CONCEPLS ...coovvvviiiiiiieiee e 3
0 ST =Tod 1o 1 £ PRSPPI 3
3.2 SECHON PrOPEILIES ...eeieeiii ittt e e e e e e s e et r e e e e e e e s sanbrreereaeeanas 3
B.3VMA AN LIMA ..ottt ettt e et e et e e ra et e e nnaeeenneas 3
G Y 1 1] o] LSRR 3
3.5 WEIl-KNOWN SECHONS.....ciiiiiiiiie ittt e e eesnaeeee s 3
4 Default versus specific linker sCript......cccvvviiiiiiiieeiieeee e, 5
5 GNU linker script walkthroughccoeeiiiiiiiii e, 6
5.1 MEMORY COMMENG ...eoiiiiiiiieiiiiiieesiiiie e stiee e st e e st e e s st ee e s snbeeeessnbaeeessntneeeeans 6
5.2 PHDRS COMMANcoiiiiiiiiieiiiiie ettt ettt et e et e e st e e e staeeeessnneeee e 6
5.3 SECTIONS COMMANGuvviiieiiiiiiee s iiiie et e ettt e et e et ee e s sntae e e s staeeeessnneeaeaas 7
5.3.1 SYMDOI @SSIGNIMENTcoiiiiiiiiiiiii e e e e e e e e e eeas 7
5.3.2 Output SECLION ESCHIPLIONeiiiiiiiiiiiii e e e e e 8

B EXAMPIES ..o 10
6.1 Controlling the location of functions and variables in the flash 10
6.1.1 ProCESS flIOW ... 10
6.1.2 Related examples in the software framework ... 11

6.2 Controlling the location of functions in internal RAM...........cccccccoiviiiiiineeeeeennns 11
6.2.1 ProCESS flIOW ... 11
6.2.2 Related @XAMPIES.....ccooiiiiiiiiei e 11

6.3 Controlling the location of variables and the heap in external SDRAM 12
6.3.1 PrOCESS TlIOW ... 12
6.3.2 Details (documentation and SOUrCe COOE)ceeeeeriiiiiiiiieeeaaiiiiiieee e e e iiieeeee e 15

7 Specific linker script eXamplesS........coovviiiiiiiiiie e 16
8 Frequently asked qUESLIONS.........coovviiiiiiiiie e 17
O REIBIBNCESuiii i e 20
1O SUP PO e e 20
11 Table Of CONLENTS....uuuiii e 21

AIMEL 2

L Jo]

AIMEL

Y ()
Atmel Corporation Atmel Asia Limited Atmel Munich GmbH Atmel Japan
2325 Orchard Parkway Unit 01-5 & 16, 19F Business Campus 9F, Tonetsu Shinkawa Bldg.
San Jose, CA 95131 BEA Tower, Milennium City 5 Parkring 4 1-24-8 Shinkawa
USA 418 Kwun Tong Road D-85748 Garching b. Munich Chou-ku, Tokyo 104-0033
Tel: (+1)(408) 441-0311 Kwun Tong, Kowloon GERMANY JAPAN
Fax: (+1)(408) 487-2600 HONG KONG Tel: (+49) 89-31970-0 Tel: (+81) 3523-3551
www.atmel.com Tel: (+852) 2245-6100 Fax: (+49) 89-3194621 Fax: (+81) 3523-7581

Fax: (+852) 2722-1369

© 2010 Atmel Corporation. All rights reserved. / Rev.: CORP072610

Atmel®, Atmel logo and combinations thereof, AVR®, AVR Studio® and others are registered trademarks of Atmel Corporation or its
subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS
ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION,
DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO
USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or
warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and
product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically
provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or
warranted for use as components in applications intended to support or sustain life.

32158A-AVR-01/11

	1 Introduction
	2 Memory map
	3 Basic linker script concepts
	3.1 Sections
	3.2 Section properties
	3.3 VMA and LMA
	3.4 Symbols
	3.5 Well-known sections

	4 Default versus specific linker script
	5 GNU linker script walkthrough
	5.1 MEMORY command
	5.2 PHDRS command
	5.3 SECTIONS command
	5.3.1 Symbol assignment
	5.3.2 Output section description

	6 Examples
	6.1 Controlling the location of functions and variables in the flash
	6.1.1 Process flow
	6.1.2 Related examples in the software framework

	6.2 Controlling the location of functions in internal RAM
	6.2.1 Process flow
	6.2.2 Related examples

	6.3 Controlling the location of variables and the heap in external SDRAM
	6.3.1 Process flow
	6.3.2 Details (documentation and source code)

	7 Specific linker script examples
	8 Frequently asked questions
	9 References
	10 Support
	11 Table of Contents

